
111

Client-Specific Upgrade Compatibility Checking via
Knowledge-Guided Discovery

CHENGUANG ZHU
∗
, The University of Texas at Austin, USA

MENGSHI ZHANG,Meta Platforms, USA
XIUHENG WU, Nanyang Technological University, Singapore
XIUFENG XU, Nanyang Technological University, Singapore
YI LI

†
, Nanyang Technological University, Singapore

Modern software systems are complex and they heavily rely on external libraries developed by different
teams and organizations. Such systems suffer from higher instability due to incompatibility issues caused by
library upgrades. In this paper, we address the problem by investigating the impact of a library upgrade on the
behaviors of its clients. We developed CompCheck, an automated upgrade compatibility checking framework
which generates incompatibility-revealing tests based on previous examples. CompCheck first establishes
an offline knowledge base of incompatibility issues by mining from open source projects and their upgrades.
It then discovers incompatibilities for a specific client project, by searching for similar library usages in the
knowledge base and generating tests to reveal the problems. We evaluated CompCheck on 202 call sites of 37
open-source projects and the results show that CompCheck successfully revealed incompatibility issues on 76
call sites, 72.7% and 94.9% more than two existing techniques, confirming CompCheck’s applicability and
effectiveness.

CCS Concepts: • Software and its engineering→ Software evolution; Maintaining software; Software
libraries and repositories.
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1 INTRODUCTION
Modern complex software systems are often built by integrating components created by different
teams or even different organizations, and these components inevitably evolve over time. With
little understanding of changes happening in external components, it is very challenging to ensure
that the new upgrades do not introduce incompatibility issues to the existing software system.
This is due to the fact that the specifications of third-party components are usually limited to the
descriptions of their Application Programming Interfaces (APIs) only. Yet, even upgrades which
do not alter the APIs can still cause behavioral differences, hindering the stability of dependent
components [77]. A recent study [41] shows that 202 out of 408 sampled open source Java projects
break after an upgrade of library components, and 41.3% of the breakages were runtime test failures
(not caught by compilers). Such incompatibility issues are difficult to detect statically, and there is
no easy way to understand their cascading effects on the whole system.

Managing upgrades to third-party software packages is challenging and many developers choose
to avoid it as much as they can. Another empirical study [50] indicates that 81.5% of the studied sys-
tems keep their outdated dependencies. When it comes to security patches, 69% of the interviewed
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Client 1 Client 2

Upgrade

V0
lib(s1, s2) {
    if (s1 ∩ s2 == ∅) return “”;
    else return … 
}

V1
--- if (s1 ∩ s2 == ∅) return “”;
+++ if (s1 ∩ s2 == ∅) return null;   

lib(x, y); lib(
  x.concat(“abc”),
  y.concat(“abc”)
);

Fig. 1. A client-specific compatibility issue.

developers were unaware of the vulnerabilities in the libraries that they use and therefore were
reluctant to upgrade due to extra efforts and added responsibilities. This raises critical security
concerns and may in turn leave their systems open to zero-day attacks [13].
To upgrade, or not to upgrade: that is the question. An upgrade incompatibility issue manifests

mismatches between two independently managed software components, i.e., the client and the
library. Naturally, the compatibility checking problem has also been studied along these dimensions.
Existing compatibility checking techniques can be classified based on (1) whether they target
client developers or not (i.e., client-oriented), and (2) whether they treat different client applications
separately when considering the impacts from a library upgrade (i.e., client-specific).

Client-oriented techniques are designed from the client’s perspective, to provide client developers
information and actionable recommendations on detected incompatibilities. Examples include smart
alerting [83], which raise an alarm if a library upgrade may affect the client’s original functionalities,
and framework/APImigration techniques such as AURA [88] which generates change rulesmapping
target API methods (old version) to replacement methods (new version). On the other hand, library-
oriented techniques help library developers to better test and improve their library code. A recent
work advancing towards this direction is DeBBI [15].

Not all client-oriented techniques are client-specific. For example, package compatibility check-
ing tools rely on historical upgrade failure information to make recommendations to developers,
including Dependabot [19] and GemChecker [17]. The downside of these techniques is that the
information used in defining compatibility is too generic and does not consider how upgraded
libraries are used by specific client applications, thus being imprecise when making recommenda-
tions. Regression testing [90], being client-specific, can be used to verify changes to client code,
but often fails to capture issues caused by library upgrades. This is because regression tests are
created by client developers, who have incomplete knowledge about library changes.
Client-Specific Compatibility Checking. To break the information barrier between client and
library developers, and to precisely evaluate the impact of a library upgrade on specific client
applications, we develop a client-specific compatibility checking framework—CompCheck. Different
from existing techniques, CompCheck is client-oriented and client-specific.
Figure 1 shows an example of a client-specific compatibility issue. The upgrading of an API

method lib() has different impacts on its two clients due to their different usage contexts, e.g.,
passing different arguments. The function lib() computes the longest common substring of two
input parameters, s1 and s2. In the upgraded version (V1), lib() returns null instead of "" (in V0)
when there is no common string. In this example, a behavioral incompatibility is exposed in Client1
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(NullPointerExceptionmay be thrown), while Client2 remains unaffected. A client-agnostic technique
would miss the subtlety and raise a false alarm for Client2.

To detect client-specific incompatibility issues, CompCheck first establishes an offline knowledge
base of previously discovered incompatibility issues. The knowledge base records the client-library
pairs before and after the upgrades, the context summaries indicating how the libraries are used
by the corresponding clients, and the runtime program traces from both the libraries and clients.
During the online incompatibility detection, CompCheckmatches a given client with an entry from
the knowledge base, if they both depend on the same library upgrades and the contexts of which are
similar. We then use the recorded information from the knowledge base to guide the generation of
incompatibility-revealing tests for the new client. Upon completion of test runs, CompCheck either
discovers incompatibility issues manifested by concrete tests, or produces an enhanced regression
test suite with the ability to detect potential incompatibilities in future upgrades. Client developers
can directly act upon the revealed issues when performing library upgrades.

We evaluated the effectiveness of CompCheck on 202 call sites of 37 open-source projects, per-
forming an end-to-end comparison with two existing techniques: (1) Sensor [84], a state-of-the-art
technique that detects dependency (library) conflicts using test generation guided by client code
analysis, and (2) CIA+SBST, a technique that detects library incompatibility by combining change
impact analysis with search-based test generation. These are the most relevant competitor of
CompCheck, as other existing techniques target fundamentally different problems. The experi-
mental results show that CompCheck successfully revealed incompatibility issues on 76 call sites,
72.7% more than Sensor and 94.9% more than CIA+SBST, confirming CompCheck’s applicability
and efficiency. Furthermore, by comparing CompCheck’s incompatibility discovery with plain
search-based test generation, we show that CompCheck’s object reusing significantly improves
the effectiveness of incompatibility revealing.
Contributions. CompCheck is designed to handle real-world client and library programs and
it produces no false positive in revealing incompatibility, since every incompatibility reported is
accompanied with a concrete test case. We have implemented a prototype targeting Java projects
using Maven [4] as their build system. To facilitate reusing and reproducing our research, we
make CompCheck publicly available, together with additional experimental data and results.1 To
summarize, we make the following contributions in this paper.
• A dataset containing 758 incompatible client-library pairs. To the best of our knowledge, it is the
largest dataset of library upgrade incompatibility issues.
• An empirical study of library upgrade incompatibility issues in open source projects, summarizing
common incompatibility manifestation patterns.
• A novel technique generating incompatibility-revealing tests for new clients, guided by the
summaries of previously discovered incompatibility issues from an offline knowledge base. A
key advantage of CompCheck is its client-specificity: it focuses on target clients similar to the
ones that are known to fail previously.
We envision CompCheck to be deployed as a long-running and self-evolving online service,

ideally with tight integration with project hosting platforms, such as GitHub [34]. This will enable
it to expand the knowledge base continuously by learning from new clients and tests in a scalable
manner.

2 EXAMPLE
In this section, we illustrate the workflow of CompCheck on real-world project examples. Code
snippets in the example are simplified for demonstration purposes.

1https://sites.google.com/view/compcheck
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1 public void testKryo() {
2 Kryo kryo = new Kryo();
3 ByteArrayOutputStream bytes = new

ByteArrayOutputStream();
4 Output output = new Output(bytes);
5 Boo b = new Boo("hello");

6 kryo.writeObject(output, b);

7 output.close();
8 ...
9 }

(a) Affected method M1 (Rtree).

1 public void testSerializeAndDeserializeOfPerson
2 StreamUsingKryo() {
3 Person source = new Person("fred", 24);
4 Serialized.kryo().write(source, file);
5 ...
6 }
7
8 private final Kryo kryo = new Kryo();
9 ...
10 public Observable write(Object source, File file) {
11 Output output = new Output(new

FileOutputStream(file, false), 4096);

12 kryo.writeObject(output, source);

13 output.close();
14 ...
15 }

(b) Affected method M2 (Rxjava-

extras).

M1:

kryo : Kryo.<init>()→ ⊙
output : Output.<init>(OutputStream)→ ⊙

b : Boo.<init>(String)→ ⊙

M2:

kryo : Kryo.<init>()→ ⊙
output : Output.<init>(OutputStream, int)→ ⊙
object : Person.<init>(String, int)→ ⊙

S0 S1
Kryo.<init>()

S0

Output.<init>(OutputStream)
S1

Output.<init>(
OutputStream, int)

S2

S0

Boo.<init>(String)
S1

Person.<init>(
String, int)

S2

arg_0:

arg_1:

arg_2:

(c) Argument traces and their

summary.

1 public byte[] serialize(final Object obj) {
2 ByteArrayOutputStream outputStream = new

ByteArrayOutputStream();
3 Output output = new Output(outputStream);
4 Kryo kryo = new Kryo();

5 kryo.writeObject(output, obj);

6 bytes = output.toBytes();
7 output.flush();
8 return bytes; }

(d) Matched client method in [23].

1 public void save(OutputStream os,
SaveFileFormat save) {

2 ...
3 kryo = new Kryo(resolver);

4 kryo.setRegistrationRequired(false);

5 Output output = new Output(os);

6 kryo.writeObject(output,

7 save.componentIdentifiers); }

(e) Unmatched client method in [6].

1 @Test
2 public void test0() {
3 Boo boo0 = loadObj(arg_2_S1);
4 KryoSerializer kryoSerializer0 = new

KryoSerializer();
5 kryoSerializer0.serialize(boo0); }

(f) A test generated for client (d),

loadObj is a special function for load-
ing a previously cached object.

Fig. 2. Clients affected by the Kryo library upgrade, their argument trace summary, and the test generated

by CompCheck.

Kryo [24] is a popular binary object graph serialization framework for Java, which has over
5.7K stars on GitHub. Its artifact ID on Maven Central [55] is com.esotericsoftware:kryo. Two client
projects, Rtree [76] and Rxjava-extras [78], depend on it and work well with the previous stable
release v3.0.3. Yet, if the Kryo version is bumped to v5.0.0-RC4, they both suffer from regression
test failures. The code snippets of the affected tests are shown in Figures 2a and 2b, respectively,
where the API calls causing incompatibility are highlighted (Line 6 and Line 12, respectively). The
API method affected by the upgrade is Kryo.writeObject(Output,Object), which writes the serialized
object (the Object argument) into an output stream (the Output argument). It throws an exception
internally once upgraded to the newer version. This is caused by a change of the initial value of a
Boolean field, which controls whether a class is required to be registered with the library before
serialization can be performed. It was initialized to false in v3.0.3 [21] while it is then set to true by
default in v5.0.0-RC4 [22]. Kryo’s official documentation also confirms that many changes made
between its major releases are backward incompatible [49].
Incompatibility Knowledge Mining. An upgrade to the Kryo library may not always cause
a problem. It also depends on how the library is used by the client program. For example, client
programs which always register before calling writeObject would not be affected by this upgrade.
Therefore, compatibility checking methods should be client-specific [61] and the key step of our ap-
proach is to collect and summarize the usage contexts of the target library in the clients. Specifically,
CompCheck collects runtime traces for each argument passed into the library API.
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Figure 2c shows the argument traces we collected for the backward incompatible API in the
affected clients M1 and M2. There are in total three arguments for writeObject, including the implicit
one, i.e., the class instance kryo to which the API method belongs. For each argument, the traces
record all operations on the argument with potential side-effects, preceding the API call. This
includes method calls on arguments of object types. For example, the first argument (arg_0) of
M1 is the implicit kryo object. Before it is passed to the API (shown as ⊙ in Fig. 2c), the method
Kryo.<init>() is called on it, which is a no-argument constructor of class Kryo. Traces of other
arguments in M1 and M2 are also listed in Fig. 2c.
We summarize argument traces of all previously observed backward incompatible API calls to

form a knowledge base, which can be used to discover similar issues in new projects. The summary
of the argument traces for M1 and M2 is shown in Fig. 2c, which is obtained by merging traces of
each argument into a Finite State Machine (FSM). This way, we obtain an FSM for each argument.
For instance, the FSM for arg_1 has two branching transitions coming out of the initial state 𝑆0:
“𝑆0→ 𝑆1” from M1 (red) and “𝑆0→ 𝑆2” from M2 (blue).
Knowledge-Guided Incompatibility Discovery. Given a new client program, CompCheck
searches for any usage of library API calls matching the summaries stored in the knowledge base.
The high-level idea of the matching procedure is to examine the new client method, and check if
there exists any program path which may lead to the same argument being passed into the library
API. Technically, this is done by enumerating paths of the new client and deriving traces (i.e.,
operation sequences) for specific arguments, which are then checked against the FSM summaries
for acceptance. If an argument trace is accepted by the FSM, then it is possible for the new client
to reproduce the same argument value causing incompatibilities previously. Note that it may not
necessarily require the arguments to have the exact same values, in order to trigger the same
incompatibility issues. We design a number of heuristics to balance the matching accuracy and the
ability to discover more issues, which will be discussed further in Section 4.2.1.
Figure 2d shows an example client method that is successfully matched with the knowledge

base. The serialize method from the project Myth [23] invokes the same API as highlighted (Line 5).
The first argument (kryo) has a potential trace: “Kryo.<init>()→ ⊙”, which is accepted by the FSM of
arg_0. Similarly, the second argument (output) has a potential trace: “Output.<init>(OutputStream)→
⊙ → Output.flush()”, which is accepted by the FSM of arg_1 when ignoring the operation after
the API call (⊙). The third argument (obj) is passed directly from outside, thus assumed to match
with any summary. In this case, all three arguments have traces accepted by the stored summaries,
which is a strong indication that the same incompatibility issue exists. Thus, we give higher priority
to such client and generate tests to reproduce and confirm the incompatibility.
Figure 2e shows an example client that is not matched. The save method is from Artemis-

odb [6] and the reason for not matching is highlighted in red (Line 4). The only possible trace for
kryo is: “Kryo.<init>(ReferenceResolver) → kryo.setRegistrationRequired(false) → ⊙”, which is not
accepted by the FSM of arg_0. The key issue here is the extra method call setRegistrationRequired
which changes the calling contexts of writeObject and makes it less likely to trigger the same
incompatibility issue than the previous examples. We do not attempt to generate tests for such
clients. This is also confirmed by our observation that the same issue does not happen here when
registrationRequired is false.

CompCheck applies the stored argument values in the knowledge base to reproduce the incom-
patibility on matched clients with best efforts. Figure 2f shows a test generated by CompCheck
to manifest the incompatibility in serialize (Fig. 2d). The test first loads a stored object argument,
namely, boo0, and then invokes the target API with it (Line 5). KryoSerializer is the class containing
the serialize method. The oracle used for the generated tests is that the return value of the client (if
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𝑃 ::= 𝐿

𝐿 ::= class 𝐶 extends 𝐶{𝐶 𝑓 ; 𝐾 𝑀}

𝐾 ::= 𝐶(𝐶 𝑓 ){super(𝑓 ); this.𝑓 = 𝑓 ;}

𝑀 ::= 𝐶 𝑚(𝐶 𝑥){𝑆}
𝑆 ::= 𝑥 := 𝑒 | 𝑒.𝑓 := 𝑒 | 𝑒.𝑚(𝑒) | return 𝑒 |

if(𝑏)then{𝑆} | goto 𝑛
𝑒 ::= 𝑥 | 𝑒.𝑓 | 𝑒.𝑚(𝑒) | new 𝐶(𝑒) | (𝐶)𝑒
𝑏 ::= true | false | 𝑏 && 𝑏 | !𝑏 | 𝑒 == 𝑒

Fig. 3. Syntax rules for a simple Java-like language.

one exists) should stay the same, and there should not be uncaught exception thrown. We elaborate
more on how we establish the test oracles in Section 4. In this case, the test reveals incompatibility
when the kryo library is upgraded by triggering a runtime exception.

3 BACKGROUND
In this section, we provide the necessary background and define the terminologies which will be
used in the remainder of the paper.

To keep the presentation of our technique concise, we step back from the complexities of the full
Java language and concentrate on its core features. We adopt a simple functional subset of Java based
on Featherweight Java [43]. The syntax rules of the language are given in Fig. 3. A program 𝑃 consists
of a list of class declarations (𝐿), where the overhead bar 𝐿 stands for a (possibly empty) sequence
⟨𝐿1, . . . , 𝐿𝑛⟩. We use ⟨⟩ to denote an empty sequence and comma for sequence concatenation. Every
class declaration has members including fields (𝐶 𝑓 ), methods (𝑀), and constructors (𝐾 ). A method
body consists of a sequence of statements, which can either be local assignment, field assignment,
method call, return, conditional branch, or goto (loops are omitted). The expression assigned or
returned can be a variable, a field access, a method call, an instance creation, or a typecast.
In a program 𝑃 , some of the classes, 𝐿𝑙 ∈ 𝐿, are designated as libraries (e.g., a jar file in Java),

whose methods are called by the methods of the client classes 𝐿𝑐 . A client-library (method) pair,
(𝑀𝑐 , (𝑀𝑙

1, 𝑀
𝑙
2)), consists of a client method𝑀𝑐 and two versions of the same library method, namely,

𝑀𝑙
1 and𝑀

𝑙
2. The two library methods may have different bodies but share the same signature, thus,

can be called interchangeably from the client method. A program 𝑃 may contain multiple client-
library pairs. In our scenario, the source code of libraries is not necessarily available, but the
Application Programming Interface (API) is always known in advance.

We also assume standard program semantics and are particularly interested in the program traces
generated during runtime.

Definition 1 (Program Trace). Given a program 𝑝 , a program trace 𝜋 is a sequence of statements,
𝜋 = ⟨𝑠1, . . . , 𝑠𝑚⟩, traversed during an execution, where 𝑠𝑖 ∈ 𝑆 .

We say a trace 𝜋2 is a subtrace of 𝜋 , if there exist traces, 𝜋1 and 𝜋3, such that 𝜋 = 𝜋1, 𝜋2, 𝜋3. We
say 𝜋2 is a suffix of 𝜋 , when 𝜋3 is empty. Let𝑉 be the set of all values evaluated during an execution.

Definition 2 (Method Trace). Let 𝜋 be a program trace. A method trace𝑚(𝜋) can be derived
from 𝜋 by retaining only the method call statements, i.e., 𝑚(𝜋) = ⟨𝑦𝑖 :=𝑚𝑖 (𝑥𝑖 )⟩, where 𝑚𝑖 is the
method signature, 𝑥𝑖 ∈ 𝑉 𝑛 is the list of input values (including accessed fields), and 𝑦𝑖 ∈ 𝑉𝑚 is the list
of output values (including fields).

The method calls appear in the method trace according to the order they are pushed to the call
stack. Then the observable behaviors of a method𝑀 on a program trace 𝜋 are the set of all observed
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input/output value pairs of𝑀 , i.e., Ob(𝑀, 𝜋) = {(𝑥𝑀𝑖
, 𝑦𝑀𝑖
)}. We use Ob(𝑀, 𝑃) = ∪𝜋∈𝑃Ob(𝑀, 𝜋) to

denote the set of all observable behaviors of𝑀 in all possible traces of 𝑃 . Similar subtraces can be
defined for object instances as well.

Definition 3 (Object Trace). Let 𝜋 be a program trace and 𝑥 be an object instance. An object
trace, 𝑜 (𝜋, 𝑥), can be derived from 𝜋 by retaining only the assignment statements to and method calls
on 𝑥 , i.e., 𝑜 (𝜋, 𝑥) = ⟨𝑠𝑖 ∈ 𝜋 | 𝑠𝑖 ∈ {‘𝑥 := _’, ‘_ := 𝑥 .𝑚(_)’, ‘𝑥 .𝑚(_)’}⟩.

Intuitively, an object trace contains all operations which may have an side-effect on the state
of the instance. Given a method call, 𝑦𝑖 := 𝑚𝑖 (𝑥𝑖 ), we can collect object traces for all its input
arguments 𝑥𝑖 and call it the argument context of𝑚𝑖 . Now we define the problem of library upgrade
incompatibility as follows.

Definition 4 (Library-Upgrade Incompatibility). We say a program 𝑃 is library-upgrade
incompatible if there exists a client-library pair, (𝑀𝑐 , (𝑀𝑙

1, 𝑀
𝑙
2)), such that,

∃(𝑥𝑖 , 𝑦𝑖 ) ∈ Ob(𝑀𝑐 , 𝑃), ∃(𝑥 𝑗 , 𝑦 𝑗 ) ∈ Ob(𝑀𝑐 , 𝑃 [𝑀𝑙
1 ↦→ 𝑀𝑙

2])·(
𝑥𝑖 = 𝑥 𝑗 ∧ 𝑦𝑖 ≠ 𝑦 𝑗

)
,

where 𝑃 [𝑀𝑙
1 ↦→ 𝑀𝑙

2] means the program with𝑀𝑙
1 substituted by𝑀

𝑙
2.

Intuitively, a library upgrade is incompatible with respect to a client, if the change in library
results in an observable behavioral difference of the client, i.e., same inputs producing different
outputs. In general, a library upgrade incompatibility can be a compilation error or a behavioral
incorrectness. In this paper, we only focus on the latter, which is much harder to detect.

4 TECHNIQUE
Figure 4 shows an overview of CompCheck. CompCheck consists of two major components:
knowledge mining and incompatibility discovery. For knowledge mining, CompCheck maintains
and grows a knowledge base of incompatible library upgrades, initially bootstrapped from a small
portion of open-source projects on GitHub. The incompatibility issues are mined by running
accompanied regression test suites while upgrading all library dependencies one-by-one (details
discussed in Section 4.1.1), which is then stored along with contextual information such as execution
traces. The collected information is further consolidated to form the knowledge base. Next, in
the incompatibility discovery component, given a new target client project, CompCheck tries to
match it with the stored client contexts from the knowledge base. If a client method is matched,
CompCheck attempts to generate unit test cases, guided by the knowledge observed previously, to
reveal and confirm the incompatibility in the next client. The generated test cases help developers
to locate and fix the incompatibility, and once confirmed in the new project, can be used to enhance
the existing regression test suite as well as the knowledge base.
Our envisioned usage scenario of CompCheck is a long-running and self-evolving service

deployed on the cloud, analogous to commercial solutions (e.g., Dependabot [19]). This way, the
knowledge base of CompCheck may continuously grow by learning from new clients and new
tests in a scalable manner. To expand the knowledge base, one needs to run available regression
tests at the client sides, for every newly discovered library version. If integrated with continuous
integration (CI) tools, CompCheck does not introduce much overhead beyond the regular regression
testing. Over time, the knowledge base is to be maintained when some library versions become
obsolete and are no longer used by any client.
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Fig. 4. Overview of the CompCheck workflow.

4.1 Knowledge Mining
The knowledge discovery component consists of three main phases: module-level regression testing,
knowledge extraction, and knowledge aggregation.

4.1.1 Module-level Regression Testing. To obtain incompatible API upgrades, we perform module-
level regression testing, i.e., upgrading libraries and checking if any previously passing client
tests flip to fail, on a set of collected GitHub projects. The initial dataset was collected from 1,225
top-rated Java projects on GitHub which use Maven as their build system. We focused on Maven
projects because of the technology maturity. We then performed module-level regression testing
on this dataset. For each project in the dataset, we first ran its entire test suite, ensuring that all the
tests pass in the base version. A project was dropped if it encountered any compilation error or test
failure. To alleviate the harm of potential flaky tests, we ran the test suite three times, dropping a
project if the test suite fails in any single run.
For the remaining projects, we checked if any of their external dependencies (i.e., jar files) are

upgradable. For each upgradable jar file, we upgraded it to the latest version on Maven Central [55]
and reran the test suite. If any test failed in this run, we considered the library has a backward
incompatibility issue with the client project. Note that we only upgrade a single library each time
to isolate failures caused by different libraries. The result of this step is a set of test cases which flip
to fail after upgrading. Although CompCheck relies on regression testing to mine knowledge at a
massive scale, the regression test suite of a sole client is usually not sufficient to detect potential
incompatibility without prior knowledge about library upgrades.

4.1.2 Knowledge Extraction. With tests failing due to upgrades, CompCheck then extracts infor-
mation about the nature and context of the incompatibility issues from method traces (Definition 2)
collected from test executions. The traces were collected by instrumenting the client code and
recording necessary execution information. For each failed test execution, the recorded method
trace includes the method signatures and input/output values, in the execution order.

To identify the library method which triggers the test failure in the client, we consider two cases:
(1) when the failure is caused by a runtime exception, the incompatible API call is the latest library
method along the trace called from the client; and (2) when the failure is caused by an assertion
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violation, the culprit can be determined by comparing the two method traces obtained before and
after the upgrade. More specifically, an assertion violation may not always be caused by the closest
library call, because the client’s behavior difference can also be introduced much earlier on. The
assertion violation indicates a behavioral difference of the client. Since there is no change in client
code, we must have at least one library call along the trace which takes the same inputs, but returns
different outputs. We consider the first such library call as an incompatible API call. We record the
incompatible APIs and their client method in the form of client-library pairs, which by definition
satisfy the criteria in Definition 4.
After identifying a client-library pair, the next step is to extract contextual information from

the client, which can be used later to search for clients with similar issues. We first record the
argument context 𝜙 (C.f. Section 3) of the incompatible API. Note that if the API method is not
static, the receiver object is treated as its first argument (arg_0). For each argument, we record the
values passed into the API if it is of the primitive type, and the object traces (see Definition 3) if
it is of an object type. In practice, we also record the intermediate states of the object, between
each operation along the object trace. Therefore, for an object argument, we record the method
call sequence on it and the value (i.e., state) of the object after each method call in that sequence.
The output of this step is a knowledge record 𝑘 specific to one incompatible API occurrence, which
includes a client-library pair along with its argument context.

4.1.3 Knowledge Aggregation. Next, we merge the extracted knowledge record with the accumu-
lated knowledge base so far. This is essentially merging the argument contexts of all occurrences
of the same API. Specifically, for each argument, we merge values for primitive types into a set and
compactly represent object traces as an FSM. The merging of object traces is performed following
the automaton learning algorithm proposed by Oncina and Garcia [65]. Given a set of traces, the
algorithm recursively merges the sequences that have common prefixes, and generates a merged
FSM as the outcome in polynomial time. It does not attempt to minimize the merged FSM though.
Therefore, the resulting knowledge base contains aggregated knowledge records in the form of
𝑘 = (𝑀𝑐 , (𝑀𝑙

1, 𝑀
𝑙
2),Φ), where Φ is the merged argument contexts.

4.2 Incompatibility Discovery
The incompatibility discovery component leverages the knowledge base to check potential incom-
patibility issues in new target client projects. It consists of three phases: knowledge matching, test
generation, and test validation. Algorithm 1 describes the first two phases. Given the incompatible
API𝑀𝑙 , its target caller’s control flow graph𝐺 , argument context Φ, intermediate states Λ (extracted
from Φ), and matching strategies 𝑆 (we introduce it later in this section), CompCheck attempts to
generate incompatibility-revealing tests for the target API call site.

4.2.1 Knowledge Matching. In knowledge matching, CompCheck scans the target client while
going through the knowledge base, to locate the call sites of all the known incompatible APIs.
It performs context matching when finding such a call site. For matching, CompCheck builds a
control flow graph of the client method which is used to statically compute all possible object traces
for each argument of the API. The control flow graph is intra-procedural. It only analyzes the client
method that directly contains the target call site. We limit the analysis scope to intra-procedural to
reduce costs, but leave it configurable. In practice, one could perform more fine-grained analysis,
e.g., field values, by modifying this configuration. We then check if any of these object traces is
accepted by the FSM in the knowledge base. For each object argument of API, we perform a suffix
matching on its object trace in the caller with the corresponding FSM.
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Fig. 5. Suffix matching and object reusing.

Figure 5 illustrates suffix matching together with object reusing. Here, two client methods
(Client1 and Client2), having different object traces, are to match with an FSM in the knowledge
base. Starting with the acceptance state, we do a backward matching between the object trace and
the stored argument context, following the inverse of the transitions, until we end up with a state
in the stored FSM (indicating a match) or some unseen states (indicating a mismatch). The rationale
of suffix matching is that by connecting a previously stored intermediate state to the matched
suffix, we can accurately replay the state of an incompatibility-triggering object argument.
For instance, in Fig. 2d, the object trace of arg_1 of writeObject in the new client is accepted

by the FSM: Output.<init>(OutputStream) → ⊙. For arg_0, it is an argument of the caller, and is
directly passed to the API. Therefore, it matches with the acceptance state directly, as we can load
any stored final states of Output to create a known incompatibility-triggering argument. In contrast,
in Fig. 2e, the object trace of arg_0 fails to match with the corresponding FSM. As indicated by the
red line, it executes one more transition Kryo.setRegistrationRequired(false) after reaching the end
state (via transaction Kryo.<init>()). Semantically, the Kryo object explicitly sets no registration
required, thus the API writeObject(Output,Object) will not trigger the exception after an upgrade.
These examples confirm the value of our client-specific approach. Compared with client-agnostic
techniques, we can differentiate that Fig. 2d is a similar usage as the knowledge (Figs. 2a and 2b),
while Fig. 2e is a different usage.
Matching Strategies.Multiplematching strategies can be applied in contextmatching (Algorithm 1,
Line 16). They collectively determine whether a call site of an incompatible API matches the
corresponding knowledge. Intuitively, the most strict matching (requiring an exact match on the
argument context) may not be necessary, as reasonably different argument values might still be
able to trigger the issue. In such cases, tolerating certain differences of argument context can
improve recall with little or no loss of precision. As an example, in Section 2, an Output object,
either created by Output.<init>(OutputStream) or by Output.<init>(OutputStream, int), triggers the
same incompatibility issue. Our experiment also confirms that this intuition holds in many cases in
practice.
Our matching strategies have two dimensions: (1) for each individual argument, we use two

switches to control their matching; and (2) for the API call site as a whole, we compute its confidence
score and empirically set a matching threshold. Specifically, the two switches controlling the
matching of an individual argument are: (S1) Relax Polymorphism: if enabled, when matching
the object traces of two arguments, we allow matching other objects under inheritance relationship,
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Algorithm 1: Algorithm for incompatibility discovery
input :𝑀𝑙 : the incompatible API;𝐺 : the control flow graph of𝑀𝑐 ; Φ: the merged argument context of𝑀𝑙 ; Λ: the

stored intermediate states of𝑀𝑙 ; 𝑆 : matching strategies;
output :𝑡 – an incompatibility-revealing test of𝑀𝑙

1 𝐺− ← 𝐺 with all the edges reversed;
2 foreach 𝑜 ∈ GetObjectArgs(𝑀𝑙 ) do
3 𝐺−𝑜 ← 𝐺− (𝑜 ) ; Φ𝑜 ← Φ(𝑜 ) ; Λ𝑜 ← Λ(𝑜 ) ;
4 stored_state← MatchArgumentContext(𝐺−𝑜 ,Φ𝑜 , 𝑆 ) ;
5 if 𝑠 ≠ null then
6 𝑠 ← LoadState(stored_state) ;
7 𝑡 ← GenerateTest(𝑠,𝑀𝑙 ) ;
8 return 𝑡 ;

9 return ∅;
10 FunctionMatchArgumentContext(𝐺−𝑜 ,Φ𝑜 ,Λ𝑜 , 𝑆 ) :
11 𝐴𝐶𝐶 ← {∀𝜙 ∈ Φ𝑜 s.t. 𝜙 = acceptance};
12 foreach 𝑎𝑐𝑐 ∈ 𝐴𝐶𝐶 do
13 current← 𝑎𝑐𝑐 ; 𝑖 ← IndexOf(current,Φ𝑜 ) ;
14 foreach 𝑗 ∈ |𝐺−𝑜 | do
15 𝑚 ← 𝐺−𝑜 [ 𝑗 ];
16 if Match(current,𝑚, 𝑆 ) then
17 if𝑚 = 𝐺𝑜 [0] then return Λ𝑜 [𝑖 ] ;
18 − − 𝑗 ;
19 current← Φ𝑜 [− − 𝑖 ];
20 else break ;

21 return null;

overriding methods, and overloading methods; otherwise, we require an exact match on object types
and methods. (S2) Relax Primitive: if enabled, when matching two primitive arguments (including
string and class literal), we do not require the values to be exactly the same. As an example usage of
the switches, assume our knowledge only contains a single transition, Output.<init>(OutputStream),
for arg_1 in Fig. 2c. When matching a new client calling Output.<init>(OutputStream, int), if S1 is
enabled, CompCheck considers it as a match, otherwise, a mismatch.
We quantifies the confidence that the whole API call site matches another using a confidence

score, which is calculated as follows:
Confidence = 𝑁matched/𝑁total (1)

where 𝑁matched and 𝑁total denote the number of matched and the total number of arguments of
method, respectively. By adjusting the threshold of the confidence score, we control how many
arguments are required for the target call site to match.

Besides the strategies introduced above, based on our empirical studies (C.f. Section 5), we also
found that project configurations (e.g., pom.xml files) provide useful insights which are helpful for
context matching. We investigate the impact of these strategies in Section 6.1.

4.2.2 Test Generation. With a matched call site of incompatible API, CompCheck attempts to
generate incompatibility-revealing tests utilizing the corresponding knowledge. Our test generation
depends on whether CompCheck has control over any API argument from the outside of its caller.
There are three cases: (1) When CompCheck directly controls an argument of the API outside
the caller, i.e., an argument of API is also an argument of the caller, which is passed from caller
to API after a sequence of operations. In such cases, our test case can reuse a stored object state
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by passing it to the caller, as shown in Fig. 5. (2) When CompCheck has only indirect control on
an argument of the API outside the caller, i.e., an argument of API has data dependency with a
caller argument, but conversion is needed for obtaining API argument from the caller argument. In
such cases, we cannot directly reuse stored states. As such, we developed an optimization, type
conversion table, for CompCheck to handle such cases if the conversion is simple and has been
observed previously. (3) When CompCheck has no control over any argument of the API outside
the caller, then CompCheck performs standard search-based test generation.

CompCheck’s test oracle generation is two-fold. (1) If the incompatibility issue is manifested as
a runtime exception, we generate a test with no explicit oracle. During the test execution, if any
exception is thrown, the test is considered failing. (2) If the incompatibility issue is manifested as
an assertion violation, i.e., different output values are produced, we determine the test oracle based
on heuristics. Specifically, we invoke the client method with the generated test inputs under the
old library version, collect its output values, and use them as oracles.
The caller method of the target API may have some extra arguments that are irrelevant to the

API call site, but necessary for it to be invoked. CompCheck performs standard search-based
generation to generate such arguments. CompCheck also employs another optimization—caller
slicing—to eliminate some irrelevant complex inputs by slicing off arguments and statements with
no dependency on the API call site.

4.2.3 Test Validation. For each generated test, CompCheck executes it with both the old and
new libraries. If a test case passes with the old library but fails with the new one, it is a valid
incompatibility-revealing test. Finally, CompCheck performs knowledge mining on the generated
incompatibility-revealing tests, merging it with the existing knowledge base.
By consolidating newly obtained knowledge, CompCheck keeps evolving its knowledge base.

This could be extremely beneficial in an industrial environment, e.g., setting up CompCheck on
a centralized code repository of a company and iterating from time to time. For scalability, we
constantly merge the summary of argument traces and drop redundant ones. In the future, we also
plan to compute the similarity of object states and drop a state if a similar one already exists in the
knowledge base.

4.2.4 Illustrations of the Optimizations. As stated in Section 4.2.2, CompCheck employs two
optimizations for improving the effectiveness of knowledge matching and test generation. Here we
provide details on these optimizations together with illustrative examples.
Type Conversion Table. The first optimization is building a type conversion table for each
incompatible API in the knowledge base, to make the mined knowledge applicable to more similar
contexts. The transformation table stores the mapping between each argument type of the API and
the types which can be directly (i.e., in one step) obtained from the argument. This way, even if a
new API call site requires a different type of value to be passed in, we can still utilize the knowledge
with proper conversion in place. We build the type conversion table by scanning the bytecode of
clients. We then store the transformation and the values before/after the conversion. For primitive
values, we store the standard conversions.

Figure 6a shows an example where the type conversion table helps in the project HttpCompo-
nents [32]. The caller method Type2Message.<init>(String) takes a string argument and converts
the string into a byte array, before passing it into the API Base64.decodeBase64(byte[]). In the type
conversion table, CompCheck stores the API’s argument type (highlighted in blue), the caller’s
argument type (highlighted in green), and the conversion method from the API argument type to
the caller’s argument type. In this case, the API takes an argument of byte[] type, while the caller
takes a String type. Therefore, when generating tests, CompCheck reuses a byte array saved in the
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1 Type2Message( final String messageBody )

throws NTLMEngineException {

2 this(Base64.decodeBase64(

3 messageBody.getBytes(DEFAULT_CHARSET));

4 ...

5 }

API Arg Type (x) Caller Arg Type (y) Conversion: (x->y)
byte[] String String.<init>(byte[])
. . . . . . . . .

(a) Optimization with type conversion table

1 Object visit(Operation<?> expr, Void context) {

2 Operator op = expr.getOperator();

3 if (op == Ops.EQ) { ...

4 return asDBObject(asDBKey(expr, 0),

convert(path, constant)); }

5 else if (op == Ops.NOT) { ...

6 return visit(ExpressionUtils.operation(

Boolean.class, Ops.NOT_IN,

subOperation.getArg(0),

subOperation.getArg(1)), context); }

7 ...

8 else if (op == Ops.BETWEEN) {

9 BasicDBObject value = new

BasicDBObject("$gte", asDBValue(expr, 1));

10 value.append("$lte", asDBValue(expr, 2));

11 return asDBObject(asDBKey(expr, 0), value); }

12 ... }

sliced away

(b) Optimization with caller slicing

Fig. 6. Illustrations of the optimizations employed by CompCheck.

knowledge base, using the method String.<init>(byte[]) to do the conversion, and then invokes the
caller method with the obtained String object to reveal the incompatibility issue.
Caller Slicing. The second optimization is to perform slicing for the caller of the target API,
dropping arguments and statements with no effect on the API call site. It enables us to (1) avoid
generating some complex objects that are irrelevant to the target call site, e.g., a special file that
is not used by the call site, and (2) reach a certain branch containing the target call site without
guessing inputs to bypass complex branch conditions. The sliced caller method preserves the same
calling context, when the API call site is reached.

Figure 6b illustrates how caller slicing helps with test generation in the project Querydsl [72]. In
this example, the target incompatible API is the constructor of BasicDBObject (Line 9). The caller
method visit takes two arguments. The second argument context is used only at Line 6, which
is on a different conditional branch thus has no data dependency with the API call site. Without
caller slicing, to generate a test invoking the visit method, CompCheck’s test generator has to
first generate three object instances, including an instance of the class containing the visit method
(MongodbSerializer in this case), an instance of Operation class, and an instance of Void class. In
contrast, with caller slicing enabled, as illustrated by Fig. 6b, CompCheck can drop the context
argument as it has no effect on the target API call site (Line 9), and slice away all the branches that
have no effect on the target API call site, including the branches at Lines 3–4 and Lines 5–6. In this
way, the test generator only needs to search for the first two objects, the search space is therefore
reduced.

5 A STUDY ON THE LIBRARY UPGRADE INCOMPATIBILITY KNOWLEDGE BASE
To understand the distribution and manifestation of library upgrade incompatibility issues, we
conduct a manual empirical study on our knowledge base. Specifically, we aim to answer the
research question: RQ1: What are the manifestation patterns of incompatibility issues in Java
projects?
The knowledge base for the study is built on 651 client projects collected from GitHub, which

are written in Java and use Maven as build system. Starting with 1,225 top-starred Maven projects
on GitHub, we filtered out 574 projects that have compilation errors or test failures in the initial
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execution, resulting in 651 projects for extracting knowledge. We collected backward incompatible
client-library pairs through the module-level regression testing process, which is stated in Sec-
tion 4.1.1, For each client project, we checked if any of its libraries are upgradable with Maven’s
Versions Plugin [69]. For each upgradable library, we upgraded it to the latest version on Maven
Central [55] and reran the test suite. If any test failed in this run, it means that the library has
a backward incompatibility issue with the client. We only upgrade a single library each time to
isolate failures caused by different libraries.

In total, we discovered 758 backward incompatible client-library pairs (𝑀𝑐 , (𝑀𝑙
1, 𝑀

𝑙
2)). Of these

pairs, 386 only have runtime errors, 265 only have assertion violations, and 107 have both types
of failures. The 758 incompatible client-library pairs include 175 unique clients and 430 unique
libraries in total. On average, each client uses 4.3 incompatible libraries, while each incompatible
library corresponds to 1.8 clients. There are 388 incompatible client-library pairs having behavioral
incompatibility issues that cannot be simply detected by recompiling, which correspond to 114
unique clients and 266 unique libraries. The affected clients have 2.5 K stars on GitHub on average,
being popular in the developers’ community and can influence many potential users. The total
number of tests failed due to incompatibility is 58.8 K. The average LOC of the tests that failed
due to incompatibility is 17.9. In the knowledge base, the average number of arguments of each
incompatible API is 1.8. The statistics show that an incompatibility issue of a library can affect
multiple clients, and the incompatibility issues are often complex and can be time-consuming for
developers to diagnose. In this study, the time overhead for running CompCheck is 5.6 seconds per
test method and 91.3 hours in total, respectively. The knowledge base takes 211.3 KB per context
on average and 11.9 GB of disk space in total respectively.
We further inspected the failed tests to study the characteristics of incompatibility issues. For

feasibility, we randomly sampled 200 client-library pairs, and randomly selected one failed test from
each pair for inspection. The goal of the inspection is to determine and categorize the incompatibility
manifestation pattern of each pair. Two authors inspected these cases independently and discussed
the findings. We dropped 23 pairs as due to the complexity of the client code, we were unable to
identify the root causes of these incompatibility issues, thus were uncertain which manifestation
pattern should be assigned to them. In the end, we had inspection results of 177 failed tests, of
which 120 are runtime errors and 57 are assertion violations.

From the observations, we summarized three common incompatibility manifestation patterns:
(1) direct incompatibility happens when the incompatible API is directly invoked by the client,
e.g., Fig. 2; (2) transitive incompatibility happens when the incompatible API is not invoked by the
client, but by another dependant library of the client; and (3) co-evolution incompatibility happens
when multiple dependent libraries of a client are supposed to maintain the same version number
or follow some constraints on their versions. Upgrading one library without the others accordingly
triggers incompatibility, in either the upgraded library or the remaining ones.
Co-Evolution Incompatibility. Figure 7 shows the pom.xml file of an example of co-evolution
incompatibility. The client is JVM-Profiler [70]. Jackson-core [27] and Jackson-databind [28] are
two dependent libraries that are supposed to evolve together (always using the same version)
when upgrading. Only upgrading Jackson-databind from the old version (2.9.10.1, the value of
jackson.version) to the new version (2.10.1) makes Jackson-databind throw a runtime exception,
as it uses the method JsonGenerator.writeStartArray of Jackson-core, which does not exist in the
old version. However, if upgrading both libraries to 2.10.1, the incompatibility issue disappears, as
their co-evolution constraint is satisfied.
Usually, co-evolving libraries are distributed under the same organization. However, to the

best of our knowledge, there is no standard rule stating how these version constraints should be
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1 <dependency>

2 <groupId>com.fasterxml.jackson.core</groupId>

3 <artifactId>jackson−core</artifactId>

4 <version>${jackson.version}</version>

5 </dependency>

6 <dependency>

7 <groupId>com.fasterxml.jackson.core</groupId>

8 <artifactId>jackson−databind</artifactId>

9 <version>${jackson.version}</version>

10 </dependency>

Fig. 7. Co-evolving dependencies declared in pom.xml.
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Fig. 8. Distribution of incompatibility patterns.

documented and maintained. Based on our observation, sometimes the constraints are explicitly
documented by library developers [40], while in some other cases the constraints are implicitly
treated as a convention by experienced users [35]. Therefore, novice users may miss such require-
ments when integrating such a library into their projects, which potentially causes incompatibility
issues in the future. Note that the sets of instances for the three manifestation patterns are disjoint.
Although the instances of the co-evolution incompatibility pattern can also be assigned to direct or
transitive incompatibility, their distinguishable characteristics (e.g., sharing the same group ID)
make them easier to identify and fix automatically, compared with regular incompatibility issues.
Therefore, we assign them to a separate pattern.

Figure 8 shows the distribution of different patterns in the dataset. Of all the inspected incompat-
ibility issues, 67.8% manifest themselves as runtime exceptions, while 32.2% are assertion violations.
Direct Incompatibility, transitive incompatibility, and co-evolution incompatibility constitute 28.8%,
16.4%, and 54.8% of the failures, respectively.

As it indicates, more than half of the inspected issues are co-evolution incompatibility. This
has two implications. First, co-evolution information can help with context matching, since some
incompatibility issues can only be triggered if both co-evolving libraries are present in the same
project. As an evidence, in Section 6.1, we show that incorporating co-evolution information in
context matching can achieve the best matching effectiveness. Second, if a library consists of
multiple individual artifacts which only operate correctly with the right combinations of versions,
then such constraints should be explicitly documented, to avoid misuses by client developers.

Based on these implications, we added the consideration of co-evolution issues into our matching
strategies, which can potentially improve the matching accuracy. Thus, we extended our basic
confidence score formula (Eq. (1)) to incorporate this factor (see Eq. (2)).

Confidence = 0.5 × (𝑁matched/𝑁total) + 0.5 × 𝐹coevo . (2)
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In Eq. (2), 𝐹coevo = 1 when the configuration file (pom.xml) of the target client contains the same
co-evolving libraries as a known failing client in the knowledge base. Otherwise, 𝐹coevo = 0. In
Section 6.1, we investigate the improvement of Eq. (2) compared with Eq. (1) on matching accuracy.

Answer to RQ1:Our study discovered that there are three manifestation patterns of incompat-
ibility issues in Java projects: direct incompatibility, transitive incompatibility, and co-evolution
incompatibility. They constitute 28.8%, 16.4%, and 54.8% of the failures, respectively.

6 IMPLEMENTATION AND EVALUATION
We implemented CompCheck with a combination of Java programs and Python scripts. We used
the ASM [7] Java bytecode instrumentation framework to collect and analyze execution traces, and
the XStream [89] library for saving object states. We stored the knowledge base and object traces in
the JSON and XML formats, respectively. We built control flow graphs of clients and implemented
caller slicing using Soot [39]. We implemented the test generation component as an extension of
the EvoSuite [33] search-based test generator. When generating an argument of the caller method
of target API, if the context matches knowledge and CompCheck has control over an argument,
then CompCheck loads a stored object, instead of searching from scratch. Besides, we customized
EvoSuite to not use any code entity from libraries that are removed during the upgrade. This is to
prevent the target call site from being hidden by shallow errors, e.g., NoClassDefFoundError, which
are less interesting as they can be easily located and fixed. When executing test generation, we
set the target class/method for EvoSuite as the class/method containing the call site, using default
values for other parameters.
Research Questions. We aim to answer the following research questions. RQ2: How do different
matching strategies affect the effectiveness of context matching?RQ3: How effective is CompCheck
and its incompatibility discovery in revealing incompatibility issues on new target call sites? RQ4:
How effective is CompCheck compared with existing techniques in revealing incompatibility
issues? RQ5: What are the contributions of CompCheck’s object reusing and optimizations, to
CompCheck’s overall effectiveness?

6.1 Impact of Matching Strategies
To study the impact of different matching strategies, we first sampled a set of incompatible APIs
from the knowledge base, then manually labeled a set of call sites for each API. Finally, we ran
CompCheck’s context matching on these call sites with different matching strategies, comparing
the precision and recall of each strategy.

Table 1 shows the backward incompatible APIs used in our experiments. From left to right, the
columns show the API IDs, API names and argument types, library names, old version numbers,
new version numbers, and the number of known call sites of the APIs in the knowledge base,
respectively. Some names are shortened to save space, and an expanded table is available online [18].
We used all the 24 incompatible APIs as the knowledge for the matching experiment, requiring
that each knowledge must have at least two known failing call sites.
We extracted call sites of APIs from the projects we collected in Section 4.1.1, i.e., the 1,225

top-starred Maven projects on GitHub. For each API, we went through the client projects and
extracted its call sites from the projects that use the API. We kept adding call sites until most APIs
in Table 1 have no less than five call sites. In total, we collected 202 call sites from 37 client projects,
which is shown in Table 2. During the collection, we found that many call sites did not expose
incompatible behaviors in the module-level regression testing: they were either not covered by the
developers’ test cases, not checked by the existing test assertions, or their execution did not trigger
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Table 1. Backward Incompatible APIs.

Id Incompatible API Library (𝑙𝑖𝑏, 𝑙𝑖𝑏′) #𝑀𝑐

k1 Kryo.writeObject(Output,Object) Kryo [24] (3.0.3, 5.0.0-RC4) 3
k2 CmdLineParser.<init>(Object) Args4j [46] (2.0.23, 2.33) 2
k3 ObjectMapper.writeValueAsString(Object) Jackson [28] (2.9.10.1, 2.10.1) 2
k4 MethodVisitor.visitFrame(int,int,Object[],int,Object[]) ASM [7] (5.1, 7.2) 3
k5 Type.getType(String) ASM [7] (5.0.4, 7.2) 2
k6 Guice.createInjector(Module[]) Guice [38] (4.0, 4.2.2) 4
k7 Reflections.<init>(String,Scanner[]) Reflections [73] (0.9.9-RC1, 0.9.11) 2
k8 ObjectMapper.readValue(InputStream,Class) Jackson [28] (2.8.11.3, 2.10.1) 3
k9 Base64.decodeBase64(byte[]) Codec [31] (1.12, 1.13) 2
k10 Schema.writeTo(Output,Object) Protostuff [71] (1.5.9, 1.6.2) 2
k11 BasicDBObject.<init>(String,Object) MongoDB [60] (3.5.0, 3.12.0) 3
k12 LoggerFactory.getLogger(String) SLF4J [82] (1.7.9, 2.0.0-alpha1) 4
k13 EqualsVerifier.forClass(Class) EqualsVerifier [66] (1.7.5, 3.1.11) 2
k14 DateTimeFormatter.parseDateTime(String) Joda-Time [45] (2.8.1, 2.10.5) 2
k15 DateTimeFormatter.parseMillis(String) Joda-Time [45] (2.8.1, 2.10.5) 2
k16 HttpClient.execute(HttpUriRequest) HttpComponents [3] (4.5.3, 4.5.10) 3
k17 Json.jsonPath(String) WebMagic [87] (0.6.1, 0.7.3) 3
k18 Logger.getName() SLF4J [82] (1.7.25, 2.0.0-alpha1) 3
k19 HtmlCleaner.clean(String) HtmlCleaner [42] (2.5, 2.23) 3
k20 Client.handle(Request) Restlet [75] (2.2.1, 3.0-M1) 2
k21 JSONObject.toJSONString() Fastjson [1] (1.1.41, 1.2.62) 2
k22 DefaultHttpClient.getCookieStore() HttpComponents [3] (4.2.5, 4.5.10) 3
k23 ObjectMapper.readTree(String) Jackson [27] (2.9.9, 2.10.1) 2
k24 URIBuilder.build() HttpComponents [3] (4.5.1, 4.5.10) 2

errors with the developer-provided inputs. This further motivates our work. When incompatibility
issues cannot be exposed by the developer’s existing tests, client developers may utilize CompCheck
to enhance their test suite to test the compatibility of their libraries. For each client project, we
show its URL on GitHub, LOC, the number of stars, and the version (SHA) analyzed. We used all
the 202 call sites as the targets for the matching experiment.
We manually labeled each call site through inspection and test creation. If we could manually

create an incompatibility-revealing test for a call site, we labeled it as revealable (+); otherwise, if
we failed to create a test to expose its incompatibility, we labeled it as unrevealable (-). As a result, of
the 202 call sites, we labeled 104 as revealable and 98 as unrevealable. A call site is revealable means
that its incompatibility can be exposed by a manually created test. Therefore, an unrevealable
call site is “compatible” in theory, except that there could be some noises due to mislabeling. We
discuss the limitation of the labeling in Section 6.4. Intuitively, a call site is unrevealable if given
its context, the API’s incompatibility cannot be exposed. A typical example of an unrevealable
call site is Fig. 2e. The client calls kryo.setRegistrationRequired(false) (Line 4) to explicitly disable
the registration checking, thus the API call site (Line 6) can never trigger the incompatibility
(“IllegalArgumentException: Class is not registered”), no matter what arguments are provided to
the API.

Precision =
tp

tp + fp =
|{CompCheck matched} ∩ {revealable}|

|{CompCheck matched}| (3a)

Recall =
tp

tp + fn =
|{CompCheck matched} ∩ {revealable}|

|{revealable}| (3b) and 𝐹1 =
2 · Precision · Recall
Precision + Recall (3c)

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.



111:18 Zhu, et al.

Table 2. Client Projects for the Experiment.

URL (https://github.com/) K KLOC #Stars SHA

alibaba/druid k12 295.7 25,234 1d784d12
apache/hive k9 1,704.5 4,587 358e5a93
apache/httpcomponents-client k9 284.6 931 a3f24e97
apache/incubator-pinot k13 278.8 3,849 bbf29dc6
apache/servicecomb-java-chassis k10 203.6 1,554 2701f56f
aws/aws-sdk-java k14, k15 7,340.2 3,707 28f5c5f3
bazaarvoice/jolt k6 172.7 929 a07d777c
bguerout/jongo k7, k11 36.3 558 7f15d205
brianway/webporter k17 19.6 2,611 01795a07
BroadleafCommerce/BroadleafCommerce k24 188.9 1,513 6129f6ed
code4craft/webmagic k19 12.7 10,282 1b6394be
ctripcorp/apollo k6 1,104.5 20,593 6b0a06a4
davidmoten/rtree k1 33.1 946 7c6f2001
DigitalPebble/storm-crawler k8 27.8 634 43d05f80
dynjs/dynjs k2 366.0 613 785b2039
electronicarts/ea-async k5 13.9 870 96962312
EsotericSoftware/reflectasm k4 3.4 1,066 7cab65bb
fengjiachun/Jupiter k4, k10 44.0 1,149 2b16d7ab
galenframework/galen k3 561.2 1,373 11e4053c
glowroot/glowroot k18 139.1 972 a3a63617
google/closure-templates k2 189.4 433 44e80ce9
hcoles/pitest k13 67.7 1,364 9f838bdc
internetarchive/heritrix3 k9 84.9 1,710 83c7044b
intuit/wasabi k6, k24 573.8 922 9f2aa5f9
jamesdbloom/mockserver k23 74.8 3,593 aec1fbf1
junkdog/artemis-odb k5 41.5 581 d03b4650
magro/kryo-serializers k1 5.4 368 c6b544ea
NanoHttpd/nanohttpd k22 6.8 6,267 e7935c56
querydsl/querydsl k7, k11 686.1 2,784 8d6b7382
raphw/byte-buddy k5 111.8 5,337 dcb89da2
rhuss/jolokia k16 30.8 737 fffeeee7
stanford-futuredata/macrobase k1 56.2 590 f729b896
stoicflame/enunciate k3, k8 407.8 445 780bcf77
uber/uReplicator k20, k21 7.8 817 629e3a9e
uber-common/jvm-profiler k3 7.5 1,300 03a21825
x-stream/xstream k14 59.3 637 807e21fb
zanata/zanata-platform k2 16.9 308 c679fd0a

We experimented with the following matching strategies: 𝑆∗, disabling switches S1 and S2,
enforcing exact match on argument context and primitive values; 𝑆∗poly, enabling S1 and disabling
S2; 𝑆∗prim, disabling S1 and enabling S2; 𝑆∗poly,prim, enabling both S1 and S2; and 𝑆∗¬coevo, same as 𝑆∗

except using Eq. (1) to compute the confidence score, i.e., the calculation is solely based on the
number of matched arguments, not utilizing co-evolution information. Note that all the strategies
use Eq. (2) to compute the confidence score except 𝑆∗¬coevo. The strategies 𝑆∗, 𝑆∗poly, 𝑆

∗
prim, and 𝑆

∗
poly,prim

apply different combinations of switches. 𝑆∗¬coevo is designed to study whether the co-evolution
information can help in matching (by comparing the curves of 𝑆∗ and 𝑆∗¬coevo).
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Table 3. Comparison of Matching Strategies: Precision, Recall and F1 Scores under Different Strategies and
Confidence Thresholds (The maximal F1 scores in each row are colored in orange, the global maximal F1
score is colored in blue).

Confidence
Threshold

𝑆∗ 𝑆∗poly 𝑆∗prim 𝑆∗poly,prim 𝑆∗¬coevo

PR RC F1 PR RC F1 PR RC F1 PR RC F1 PR RC F1
0.0 0.51 1.00 0.675 0.51 1.00 0.675 0.51 1.00 0.675 0.51 1.00 0.675 0.51 1.00 0.675
0.1 0.62 1.00 0.765 0.61 1.00 0.758 0.53 1.00 0.693 0.53 1.00 0.693 0.70 0.42 0.525
0.2 0.62 1.00 0.765 0.62 1.00 0.765 0.53 1.00 0.693 0.53 1.00 0.693 0.70 0.42 0.525
0.3 0.62 1.00 0.765 0.62 1.00 0.765 0.53 1.00 0.693 0.53 1.00 0.693 0.70 0.42 0.525
0.4 0.62 1.00 0.765 0.62 1.00 0.765 0.53 1.00 0.693 0.53 1.00 0.693 0.70 0.40 0.509
0.5 0.62 1.00 0.765 0.62 1.00 0.765 0.53 1.00 0.693 0.53 1.00 0.693 0.70 0.40 0.509
0.6 0.70 0.42 0.525 0.70 0.57 0.628 0.76 0.83 0.793 0.75 0.97 0.846 0.96 0.21 0.345
0.7 0.70 0.40 0.509 0.74 0.55 0.631 0.77 0.82 0.794 0.78 0.96 0.861 1.00 0.12 0.214
0.8 0.96 0.21 0.345 0.90 0.37 0.524 0.87 0.53 0.659 0.87 0.68 0.763 1.00 0.12 0.214
0.9 1.00 0.12 0.214 0.90 0.27 0.415 0.88 0.48 0.621 0.87 0.62 0.724 1.00 0.12 0.214
1.0 1.00 0.12 0.214 0.90 0.27 0.415 0.88 0.48 0.621 0.87 0.62 0.724 1.00 0.12 0.214

Table 3 shows the precision, recall, and F1 scores of context matching with different matching
strategies. A higher F1 scores indicates a better balance between the precision and recall. The
precision, recall, and F1 scores are computed according to formula Eqs. (3a) to (3c) respectively. If
a call site is manually identified as unrevealable, but CompCheck matches it, we consider it as a
false positive of matching; if a call site is manually identified as revealable, but CompCheck does
not match it, then we consider it as a false negative of matching. From top to bottom in Table 3,
each row shows the scores given a certain confidence threshold value (from 0.0 to 1.0, at the step of
0.1). The maximal F1 scores in each row are colored in orange, while the global maximal F1 score is
colored in blue.

The result indicates that the best strategy is 𝑆∗poly,prim with the confidence threshold set to 0.7 (F1
score = 0.861). It confirms our intuition that tolerating reasonable difference in context matching
could improve the recall without much loss of the precision. We used it as our default matching
strategy for the experiment for RQ3–RQ5. Another observation is that 𝑆∗ generally performs
better than 𝑆∗¬coevo, indicating the library co-evolution information can improve the effectiveness of
context matching. For 𝑆∗ and 𝑆∗¬coevo, as the threshold value increases from 0.0 to 1.0, recall keeps
decreasing while precision keeps increasing. This is because as the threshold goes higher, fewer call
sites can be matched, but each call site is matched with higher confidence. For the other strategies,
since they all tolerate differences in the contexts, they may have false positives even when the
confidence threshold is 1.0, thus can have precision scores lower than 1.00 at the bottom row.

Answer to RQ2:Matching strategies impact the effectiveness of context matching. On our
dataset, with switches S1 and S2 enabled and confidence threshold set to 0.7, context matching
achieves the best effectiveness (precision = 0.78, recall = 0.96). Library co-evolution information
helps context matching.

6.2 Effectiveness of Incompatibility Discovery
To answer RQ3 and RQ4, we ran CompCheck’s incompatibility discovery on 202 call sites collected
from the clients in Table 2. For RQ3, we evaluated CompCheck’s effectiveness based on how many
call sites of incompatible APIs that it could reveal successfully. For RQ4, to show CompCheck’s
effectiveness compared with existing techniques, we performed an end-to-end comparison on
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CompCheck and two other techniques: (1) Sensor [84], a state-of-the-art technique that detects
dependency (library) conflicts by test generation guided by client code analysis, and (2) CIA+SBST,
a technique that detects library incompatibility by combining change impact analysis with search-
based test generation. In these experiments, we configured CompCheck to use the default strategy
𝑆∗poly,prim for knowledge matching. We give details of each experiment setup later in this section.
The experiments were performed on a 4-core Intel(R) Core(TM) i7-8650 CPU @ 1.90 GHz machine
with 16GB of RAM, running Ubuntu 16.04, with Java 1.8.0_151 and Python 3.7.3.

The end-to-end comparison experiment (RQ4) was conducted on CompCheck and two other
techniques—Sensor and CIA+SBST. Our rationale for selecting these techniques for comparison is
as follows. First, Sensor is the most recent state-of-the-art technique for detecting library incompat-
ibilities (named dependency conflicts in [84]) in a Java project. From the technical perspective, both
CompCheck and Sensor use program analysis to guide test generation, where the main difference
is that when generating tests, CompCheck utilizes runtime input values recorded in the knowledge
base, which are known to cause incompatibility in some other clients previously; while Sensor relies
on the parameter values extracted from the client code under test. The implementation of Sensor
is also publicly available. Second, the goal of differential regression test generation [16, 25] is very
similar to CompCheck’s. In fact, it can be used to reveal changes by generating a set of targeted
tests. Yet, to the best of our knowledge, the only available tool implementation, EvoSuiteR [25] is
not client-oriented: it is able to generate tests for changed (library) classes, but not for target clients
relying on them. Therefore, for a fair comparison, we implemented an end-to-end compatibility
checking technique on top of EvoSuite, based on the idea of EvoSuiteR and made it client-oriented
with the help of change impact analysis (CIA) [74]. We name this combination CIA+SBST and use
it as another baseline to compare with CompCheck.

Note that many other existing compatibility checking tools are not comparable with CompCheck
by their nature. CompCheck is client-oriented and client-specific, i.e., it is designed for developers
of client applications and only focuses on incompatibility issues which can be manifested at a given
client context. Smart alerting [83] and Dependabot [19] are client-oriented but not client-specific.
They warn client developers whenever there is a known severe bug in the new library version
without providing concrete test cases, even if the buggy code is not used by the client. DeBBI [15] is
library-oriented and aims to help library developers test their code more effectively with the support
of additional test suites. GemChecker [17], AURA [88], and HiMa [57] aim to detect deprecated
APIs in new library versions or discover API migration rules, rather than revealing behavioral
incompatibility.
The experiment was performed on 202 call sites collected from the clients in Table 2. For

CompCheck’s call site matching, we used its default strategy 𝑆∗poly,prim. For Sensor, we firstly
modified the pom.xml files of each client project to include both the old and the new versions of the
target library, then enforced Maven to load both library files, and manually ran Maven’s debugging
mode in each client to make sure both .jar files are present on the class path. For single-module
Maven projects, we ran Sensor in the root directory; for multi-module Maven projects, we ran
Sensor in both the root and the sub-module directories containing the call site of the target API
and reported the combined results. For cases that Sensor detects conflict libraries but does not
attempt to generate tests, we ran the standard EvoSuite (the test generator used by Sensor) on top
of Sensor’s detection result. If the standard EvoSuite generates any incompatibility-revealing tests,
we consider it as a success of Sensor as well.

For CIA+SBST, we ran change impact analysis on both library and client at the Java bytecode
level. Given an old version and a new version of the library, CIA+SBST uses Chianti’s impact
analysis algorithm to identify the impacted code entities of the client, obtaining a list of public
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Fig. 9. Effectiveness of incompatibility discovery.

methods affected by the changes of the library. Next, the list is passed to the search-based test
generator (i.e., EvoSuite), which in turn uses these methods as test generation targets and finally
outputs of a set of generated tests.
To compare the tools’ effectiveness, the tests generated by all three tools were executed on the

old and new library versions separately, and we compared their numbers of generated incompat
ibility-revealing tests, which pass with the old version but fail with the new version. The more
incompatibility issues a tool can reveal with its generated incompatibility-revealing tests, the more
effective it is. We set a time budget of 30 min for each target call site for all the tools. To avoid
fluctuations caused by randomness, we ran each tool 10 times and reported the average.
Figure 9a shows the results of the experiment. By knowledge matching, CompCheck matches

128 call sites as targets, of which it successfully generated incompatibility-revealing tests for 76 call
sites. In contrast, Sensor was able to detect incompatibility on 44 call sites in total. CIA+SBST treats
202 call sites as targets because all these call sites are affected by the library changes, but it managed
to generate incompatibility-revealing tests for only 39 of them. Recall that for incompatibility
discovery, an incompatibility issue is considered successfully discovered by a tool if the tool can
generate an incompatibility-revealing test on the call site of the incompatible API. Therefore, in
this experiment, CompCheck successfully discovered 76 incompatibility issues, while Sensor and
CIA+SBST each discovered 44 and 39 issues, respectively. The result indicates that CompCheck is
more effective than both Sensor and CIA+SBST.

Figure 10 shows an example client method where CompCheck outperforms Sensor in generating
incompatibility-revealing tests. The code snippet is from the XStream [89] project. In this example,
the incompatible API is “DateTimeFormatter.parseDateTime” from the Joda-Time [45] library (Line
5), which accepts two input variables: “formatter” and “str”. The incompatibility issue is that
when Joda-Time was upgraded to the new version, the parsing logic of certain date values was
changed, thus can cause exceptions in its clients [20]. To trigger the incompatible behavior, the “str”
variable must be of specific values (the string representations of certain dates). Thus, randomly-
generated strings can hardly trigger it. In this case, CompCheck was able to generate incompat
ibility-revealing tests because it directly reused the string values mined from the test execution
of Amazon’s AWS Java SDK [8] in its knowledge mining phase—“292278994-08-17T07:12:55.807Z”,
which was also confirmed by the AWS developers in the release notes [9]. However, Sensor was
not able to generate incompatibility-revealing tests, as its class instance pool [84] only contains the
objects and primitives from the project under test (XStream in this case). However, no relevant
string value, which triggers this incompatibility issue, appears in XStream’s code base. As a result,
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1 public Object fromString(final String str) {

2 for (int i = 0; i < formattersUTC.length ; ++i) {

3 final DateTimeFormatter formatter = formattersUTC[i];

4 try {

5 final DateTime dt = formatter.parseDateTime(str);

6 final Calendar calendar = dt.toGregorianCalendar();

7 calendar.setTimeZone(TimeZone.getDefault());

8 return calendar;

9 } catch (final IllegalArgumentException e) {

10 ...

11 }

12 }

13 ...

14 }

Fig. 10. An example where CompCheck outperforms Sensor in generating incompatibility-revealing tests.

Sensor failed to find useful seeds for its test generation, thus could not reveal this incompatibility
issue. This example demonstrates the benefit of CompCheck’s knowledge-based approach. With
the help of past knowledge mined from other projects, it can discover new incompatibility issues
in unseen clients.
Out of the 76 incompatibility issues revealed by CompCheck, 44 were manifested as direct

incompatibility, 13 were manifested as transitive incompatibility, and 19 were manifested as co-
evolution incompatibility. This indicates that CompCheck is able to reveal incompatibility issues
of all the manifestation patterns. In total, 297 test methods were generated by CompCheck. Among
these tests, 103 are incompatibility-revealing tests and 194 are non-incompatibility-revealing tests.
CompCheck utilizes EvoSuite as its underlying test generator. In general, EvoSuite generates one
test class per call site, where each test class can contain multiple test methods. The number of test
methods in a test class varies. Each test method corresponds to one client calling context of the
target API.

There are 52 call sites where CompCheck matched but was not able to generate incompatibility-
revealing tests. We inspected them, found that a common reason is that they have arguments that
are too complex to generate within the time bound. For example, Fig. 11 shows a client method in
the project Heritrix [5]. The incompatible API is Base64.decodeBase64 (Line 12). The client (caller)
method PersistProcessor.populatePersistEnvFromLog accepts as input a BufferedReader object. This
BufferedReader object is supposed to be initialized from a text file with each line separated by a
space. The method then extracts certain contents from the file, processes them, and passes them
to the target API. It is almost impossible to construct such a specific BufferedReader by searching.
Furthermore, CompCheck’s caller slicing cannot be applied to the BufferedReader argument here,
as the target API call site has data dependency on it. On these call sites, not only CompCheck, but
neither Sensor nor CIA+SBST was able to generate incompatibility-revealing tests.

Answer to RQ3: CompCheck is effective in discovering incompatibility issues. Among the
104 manually labeled revealable call sites, CompCheck successfully revealed incompatibility
issues on 76 (73.1%). Every incompatible call site revealed by CompCheck is true positive and
is validated by a generated incompatibility-revealing test.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.



Client-Specific Upgrade Compatibility Checking via Knowledge-Guided Discovery 111:23

1 public static int populatePersistEnvFromLog(BufferedReader persistLogReader,

StoredSortedMap<String,Map> historyMap) throws

UnsupportedEncodingException, DatabaseException {

2 int count = 0;

3 Iterator<String> iter = new LineReadingIterator(persistLogReader);

4 while (iter.hasNext()) {

5 String line = iter.next();

6 if (line.length() == 0) {

7 continue;

8 }

9 String[] splits = line.split(" ");

10 ...

11 alist = (Map) SerializationUtils.

12 deserialize(Base64.decodeBase64(splits[1].getBytes("UTF-8")));

13 ...

14 }

15 ...

16 }

Fig. 11. An example that CompCheck failed to generate incompatibility-revealing test.

Answer to RQ4: CompCheck is more effective in discovering incompatibility issues than
existing techniques. It revealed incompatibility issues on 76 call sites, 72.7% more than Sensor
(revealed 44) and 94.9% more than CIA+SBST (revealed 39), respectively.

6.3 Effectiveness Contributions of Technical Components
For RQ5, to measure the improvement brought by object reusing, we compared the effectiveness of
CompCheck with its variant that has this feature disabled; to measure the improvement brought
by the optimizations (i.e., type conversion table and caller slicing), we compared the effectiveness
of CompCheck with its variant that disables the optimizations. Same as Section 6.2, in these
experiments, we used the default strategy 𝑆∗poly,prim for CompCheck’s knowledge matching. We
give details of each experiment setup later in this section. The experiments were performed in the
same environment as Section 6.2.

To evaluate the benefit of object reusing in generating incompatibility-revealing tests, we com-
pared CompCheck with its variant that only disables object reusing (named CompCheck–). From
an implementation perspective, CompCheck– is equivalent to running EvoSuite on the knowledge-
matched target call sites. The experiment setup is similar to the previous one. As shown in Fig. 9b,
out of the 128 matched call sites, CompCheck– managed to generate incompatibility-revealing
tests on 52 while CompCheck succeeded on 76. This indicates that object reusing can significantly
help improve the effectiveness of test generation (24 more issues revealed). As an example, the
incompatibility issue of k2 can be exposed only when it takes as input an object with final fields
annotated with the “@Option” annotation (an annotation class in Args4j). For plain search-based
test generation (used by CompCheck–), such an object is extremely hard to create. However, with
object reusing, CompCheck can reuse a stored object from the knowledge base, cutting the search
space of the object and achieving significant saving. Note that here we compare CompCheck
with CompCheck– on 128 call sites because improvement is only possible when the knowledge is
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matched. For other call sites, CompCheck behaves exactly the same as CompCheck–, making the
comparison meaningless.
To measure the benefit of CompCheck’s optimizations in incompatibility discovery, we com-

pared CompCheck with its two variants, CompCheck–table and CompCheck–slice, each disabling
one optimization—type conversion table and caller slicing, respectively (both optimizations are
enabled by default in CompCheck). As shown in Fig. 9b, both variants perform less effective than
CompCheck, which confirms that both optimizations improve the effectiveness of incompatibility
discovery. Type conversion table and caller slicing each helped solve 5 and 20 cases, respectively.

Answer to RQ5: CompCheck’s object reusing and optimizations significantly contribute to
its overall effectiveness. 24 of the 76 revealed incompatibility issues were discovered with the
help of object reusing. The two optimizations, type conversion table and caller slicing, helped
discover 5 and 20 issues, respectively.

6.4 Threats to Validity
Our evaluation is subject to the following threats to validity.
External. Projects that we used for the experiments may not be representative of all software
projects. To mitigate this threat, we chose popular open-source projects from GitHub that use
Maven—a widely used project management tool for Java—as their build system. Our current
implementation of CompCheck supports only Java, but our methodology and workflow can apply
to any programming language. However, for weakly typed or untyped languages, such as Python and
JavaScript, the matching strategy should be redesigned as we are not able to use type information
to control the matching sensitivity.

The knowledge base used may not be representative. We limited our experiments with a knowl-
edge base built at the latest versions of the libraries at the time of the study. For the library pairs,
the old ones are usually more than a year old and the new ones are the most recent release (median
age is 5.5 months) at the time of experimenting. The age of the clients does not matter for knowl-
edge mining, since we upgrade their libraries automatically. We focused on high-starred projects
on GitHub, as they generally have high test coverage and representative usages of libraries. By
considering the latest version of the libraries, we simulate the scenario where knowledge is mined
right after a library is released. In a realistic setting, e.g., deploying CompCheck on a continuous
integration environment, one would monitor the releases of the libraries of interest and perform
knowledge mining after every new release, resulting in a much richer knowledge base over time.
Internal.When manually labeling the call sites of incompatible APIs for the matching strategy
experiment, the call sites labeled as revealable are guaranteed to be revealable, as we could create
tests for them; but for those call sites labeled as unrevealable, we cannot guarantee it is unrevealable
under all possible inputs, because we could not enumerate all input combinations. Thus, the
mislabeling of some revealable call sites as unrevealable is a possible threat. As a result, when
calculating the precision and recall values, our computation may be an under-approximation for
the precision and an over-approximation for the recall. In our experiment, on all the call sites
that are manually labeled as unrevealable, none of the experimented tools was able to generate an
incompatibility-revealing test. Therefore, we did not observe mislabeled call sites in practice.
Test flakiness may affect the soundness of CompCheck. In knowledge mining, if a client test

fails intermittently, CompCheck may treat it as an incompatibility failure by mistake. To mitigate
this threat, in the module-level regression testing phase, for each client, the initial clean test run
without upgrading any library was executed three times, and CompCheck accepts the project only
if the test suite passes in all three runs. In this way, we can alleviate the harm of “shallow” flaky
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tests that are easy to expose. For incompatibility discovery, CompCheck uses EvoSuite as the test
generator, which avoids generating flaky tests by design [26]. Besides, we manually inspected all
the incompatibility-revealing tests generated by CompCheck and confirmed all the failures were
indeed caused by incompatibility instead of flakiness.

CompCheck implementation or any scripts we wrote to run experiments may contain bugs. To
mitigate this threat, we reviewed code thoroughly and wrote unit tests.

7 RELATEDWORK
We populate the related work along the following axes.
API Incompatibility. Mostafa et al. [62] studied 126 real-world bug reports related to behavioral
incompatibilities of Java libraries. The authors reported that, unhandled exceptions and GUI
changes are the most common incompatible behaviors, and most client software bugs caused
by backward incompatibility of libraries are fixed with simple changes to the code around the
backward incompatible API invocation. Table 4 summarizes and compares the key techniques from
the API incompatibility detection literature.
Wang et al. [84] studied dependency conflicts, i.e., the library APIs referenced by a project

have identical method signature but inconsistent semantics across the loaded and the shadowed
versions of the libraries. The definition of dependency conflict is similar to that of ours on upgrade
incompatibility. But the reasons behind the semantic inconsistencies are different—the former
is caused by dependency shadowing and the latter is because of library version upgrades. Their
empirical findings also indicate that it is rather challenging to expose the semantic inconsistencies
by randomly generated input values to the clients, especially when class instances are required.
Therefore, they proposed to construct a class instance pool with pregenerated class instances
instantiated with parameters found statically from source code at all invocation contexts, which
will then be used as seeds for EvoSuite in test generation. We faced the same issue in test generation,
and our solution is to rely on runtime input values recorded in the knowledge base, which are
known to cause incompatibilities, and avoid the need to perform random searching.
Foo et al. [30] suggested a light-weight static analysis to determine if an upgrade to library

packages may introduce an API incompatibility. This is done by checking if any deleted or changed
library method is still used by the client. Various optimizations, such as bytecode hashing, have
been implemented to ensure the queries are finished quickly so that the compatibility checking can
be integrated into a CI/CD pipeline. Yet, there might be imprecision in such an analysis, because
using a changed library method does not imply that the client’s behavior will be affected. Chen et
al. [15] proposed DeBBI, which uses a large number of test suites of open-source client projects to
test the incompatibility of library upgrades. To reduce the testing cost of clients, DeBBI prioritizes
client test suites to expose issues earlier via information retrieval and test selection. Different from
these techniques, CompCheck is client-specific. It is not designed for library developers who have
no knowledge of client implementations, but is supposed to be used by users of the library for
checking the compatibility of their specific clients.

Apart from Java, similar API incompatibility issues have also been studied for other ecosystems,
such as JavaScript [58, 59, 63], Python [30, 93], Ruby [30], Android [52], and REST APIs [36].
Mezzetti et al. [58] presented NoRegrets, a type regression testing technique to detect type-related
breaking changes in Node.js libraries. Moller et al. [59] proposed NoRegrets+, a model-based
variant of NoRegrets, improving the scalability. Given a single execution of the client tests,
NoRegrets+ generates an API model to summarize multiple subsequent updates to the library
and utilizes the model to dynamically explore the library and check the type consistency of the
values passing between the client and library. Godefroid et al. [36] proposed differential regression
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Table 4. A comparative summary of the API incompatibility detection literature (“C.S.” stands for “Client-

Specific”).

Techniques Incompatibility Definitions Studied Ecosystems C.S.?

CompCheck Inconsistent library method semantics captured
by client tests

Java Yes

Wang et al. [84] Inconsistent library method semantics captured
by client tests

Java Yes

Chen et al. [15] Inconsistent library method semantics captured
by client tests

Java No

Foo et al. [30] Missing or changed library methods Java, Python, Ruby No
Mostafa et al. [62] Behavioral incompatibilities reported as bugs Java No
Li et al. [52] API Methods accessed without proper Android

API-level protections
Android Yes

Mezzetti et al. [58] Changed type signatures of public API inter-
faces

JavaScript No

Godefroid et al. [36] Previous valid requests are no longer accepted
or return wrong results

REST API Yes

testing for REST APIs, which discovers REST API behavioral differences by feeding generated
HTTP requests to cloud services and comparing the output HTTP responses. Mujahid et al. [63]
studied the upgrade incompatibility issues in the npm ecosystem. They proposed to rely on test
cases from multiple dependent projects collectively, to detect breakage-inducing library versions,
a.k.a. upgrade incompatibilities. They have shown that using crowd-sourced tests could increase the
overall test coverage, and thus improve the capacity of incompatibility detection. Their definition
of incompatibility is similar to ours, i.e., both using crowd-sourced tests as an indicator, but they
do not consider the client-specificity of library usages.
API Usage Patterns andMisuses. There is usually insufficient documentation on how to correctly
use library APIs. Library API usage patterns can be useful resources for client developers when
facing such a challenge. Many studies have been done to mine API-related usage patterns [64, 79–
81, 94]. For example, Saied et al. [79] proposed a multi-level API usage mining technique which
detects groups of API methods that are highly cohesive in terms of usage by client programs.
The detected patterns are constructed in a hierarchical manner and are useful to enrich the API’s
documentation. Later, Saied et al. [80] introduced an algorithm, GenLTL, to recover API usage
patterns as Linear Temporal Logic (LTL) expressions. The LTL expressions can then be translated
into natural language documentation to assist developers in safely using the multiple APIs necessary
for their development tasks.
A closely related topic is to recognize API misuses [85, 86], where implicit usage constraints

(patterns) are violated. For instance, Zhang et al. [92] performed a study on the API misuses in
practice. They verified the reliability of code examples found on the Stack Overflow Q&A forum
by examining whether the code samples provided in the most voted answers match the context-
enriched call sequence patterns mined from a wide range of usage examples on GitHub. Amann et
al. constructed a standard benchmark, MUBench, for real-world API misuses, which contains 73
misuses from software projects and 17 from the survey on developers. They also systematically
evaluated various API-misuse detectors on it [2].
The upgrade incompatibility issues that we study in this paper, are not necessarily caused by

API misuses. Indeed, some misuses may be induced by library upgrades, when a client usage no
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longer complies with the new API-usage constraints. Yet, other incompatibilities are manifested
as behavior differences at the client side, even when the usages are correct, e.g., see Client1 in
Fig. 1. CompCheck is able to capture both types of incompatibility issues, as long as they have been
previously recorded in the knowledge base.
ProgramEquivalence Checking. Equivalence verification [11, 29, 37, 51, 61, 67] and compatibility
checking [15, 58, 59] are two major approaches for checking behavioral incompatibility of library
upgrade. For equivalence verification, regression verification [29, 37] aims to formally prove that
two programs are functionally equivalent. An example of such techniques is RVT [37], which proves
the partial equivalence of two related programs, i.e., producing the same outputs for all inputs given
that they both terminate, based on a set of proof rules. On the other hand, differential symbolic
execution (DSE) [67, 68] performs standard symbolic execution on both program versions before
and after the change, either reports the two versions equivalent or characterizes the behavioral
differences by identifying the sets of inputs causing different effects. Different from RVT and
DSE, which defines equivalence over the entire program without separating clients and libraries,
Clever [61] performs client-specific equivalence checking, which considers the effect of client
context on library changes. The equivalence verification problem, in its most general form, is shown
to be intractable [14]—there is no known complete solution to it which can tackle real software
packages, especially ones of large sizes and with complex language constructs, often witnessed in
real-world development scenarios.
Program Analysis Guided Test Generation. Automated test generation [16, 33] is developed to
automatically generate test cases to discover program defects. Program analysis techniques are
actively employed for guiding test generation. Jaygarl et al. [44] proposed an object capture-based
automated testing technique, which uses dynamically captured object instances from program
executions to improve code coverage of existing test generation tools. Zhang et al. [91] used dynamic
analysis to extract information for guiding legal sequence generation and use static analysis to
improve the diversity of the generated test cases. Babić et al. [10] used dynamic analysis to revolve
around a visibly pushdown automaton (VPA) for representing the program’s global control flow
structure and used static analysis to assist symbolic execution to explore vulnerabilities based
on the shortest paths and loop pattern heuristics. Ma et al. [54] propose GRT, a guided random
testing technique which uses static analysis to extract information on program types, data, and
dependencies to guide run-time test generation. Kechagia et al. [47] proposed Catcher, a tool that
utilizes static exception propagation analysis to guide search-based test case generation, in order to
effectively pinpoint crash-prone API misuses.
To the best of our knowledge, CompCheck is the first that combines dynamic analysis of

previously mined clients, static analysis of new target clients, and search-based test generation,
focusing on revealing client-specific library upgrade incompatibility issues.
Code-to-Code Search. Given a simple code snippet as a query, code-to-code search techniques
aim to search for code similar to the query snippet. Bajracharya et al. [12] proposed Sourcerer,
which takes a complete compilation unit as input and extracts structural code information for
fine-grained code search. McMillan et al. [56] propose Portfolio to extract function invocation
chain to help developers search and understand code usage. Luan et al. [53] propose Aroma, a
structural code search tool, which takes a code snippet as input, filters out similar function bodies
from corpus and clusters and intersects them to provide developers representative code snippets.
Kim et al. [48] propose FaCoY, a code-to-code search engine which takes a code snippet as query,
searches in a database to find relevant natural language descriptions and recommends related posts
and code. These approaches are similar to the context matching of CompCheck in terms of the goal.
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However, instead of using code snippet or a query, CompCheck leverages consolidated execution
information, e.g., argument traces, to model and match the API usage context.

8 CONCLUSION
Modern complex software systems heavily rely on libraries developed by different teams and
organizations and the systems suffer from higher external vulnerability due to the incompatibility
issues caused by library upgrade. In this paper, we studied the impact of library upgrade on the
dependent software and proposed CompCheck, an automated compatibility checking technique for
specific clients. CompCheck constructs an offline knowledge base summarizing previous recognized
incompatibility issues on a large scale program corpus. During the online incompatibility discovery,
given a new client, CompCheck matches it with context summary in the knowledge base with
respect to the usage of target API, and uses the stored execution data to guide the generation of
incompatibility-revealing tests for it. We evaluated our technique on 202 call sites from 37 open-
source projects, the results show that CompCheck successfully generate incompatibility-revealing
tests for 76 call sites, 72.7% and 94.9% more than two existing techniques. The evaluation results
show that CompCheck is effective in generating incompatibility-revealing tests, which can be used
to assist developers in a smooth upgrade of library dependencies.
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