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ABSTRACT
Smart contracts are gaining popularity as a means to support trans-
parent, traceable, and self-executing decentralized applications,
which enable the exchange of value in a trustless environment.
Developers of smart contracts rely on various libraries, such as
OpenZeppelin for Solidity contracts, to improve application quality
and reduce development costs. The API documentations of these li-
braries are important sources of information for developers who are
unfamiliar with the APIs. Yet, maintaining high-quality documenta-
tions is non-trivial, and errors in documentations may place barriers
for developers to learn the correct usages of APIs. In this paper, we
propose a technique, DocCon, to detect inconsistencies between
documentations and the corresponding code for Solidity smart con-
tract libraries. Our fact-based approach allows inconsistencies of
different severity levels to be queried, from a database contain-
ing precomputed facts about the API code and documentations.
DocCon successfully detected high-priority API documentation
errors in popular smart contract libraries, including mismatching
parameters, missing requirements, outdated descriptions, etc. Our
experiment result shows that DocCon achieves good precision and
is applicable to different libraries: 29 and 22 out of our reported 40
errors have been confirmed and fixed by library developers so far.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Documentation.
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1 INTRODUCTION
Blockchain is a distributed ledger shared between nodes of a peer-to-
peer network following a certain consensus protocol, and one of the
fastest-growing technologies of the modern time. The blockchain
technology owes its initial popularity to Bitcoin [73], which first
appeared in 2008. Later, Ethereum [91] started the era of Blockchain
2.0 and expanded the capabilities and applications of blockchain
by introducing Turing-complete smart contracts [82], which are
self-executing computer programs managing large sums of money,
carrying out transactions of valuable assets, and governing the
transfer of digital rights between multiple parties. Decentralized
applications (DApps) allow users to interact with smart contracts,
and can be used to govern the automatic executions of transac-
tions on top of blockchain platforms. DApps enable autonomous,
transparent, and fully-traceable exchange of value in a trustless
environment. Significant progress has been made in applying them
to support a wide range of activities. Many traditional industries,
such as supply chain, energy, finance, legal and medical services,
are expected to be revolutionized by this new technology. As of
May 2022, there are nearly 50 million Solidity [80] smart contracts
deployed on Ethereum, which is a 1.96x increase from just two
years ago [5]. These smart contracts have enabled 4,056 DApps
serving about 113.86K daily active users [6]. As the complexity
of the DApps grows, smart contract developers are increasingly
relying on well-established libraries to reduce development costs
and avoid security vulnerabilities. For example, a recent study [45]
revealed that code reuse is prevalent in smart contracts, and a large
portion of the reuse is attributed to the most popular smart con-
tract library—OpenZeppelin [29]: at least eight out of the top 20
most reused subcontracts are from OpenZeppelin. Furthermore,
according to the Etherscan [5] search data, over 100K contracts
have imported OpenZeppelin as a part of their source code. The
most used OpenZeppelin APIs include: (1) the standard implemen-
tations of the ERC interfaces [15], such as ERC-20 (fungible tokens)
and ERC-721 (non-fungible tokens), (2) proven implementations
of the core utilities, such as the SafeMath APIs, providing math
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utilities including the standard arithmetic operations and typecast
functions that are free from the overflow/underflow vulnerabilities,
and (3) common smart contract design patterns, such as the role-
based access control pattern, and the pull-payment pattern that is
immune to the reentrancy attacks [88].

Still in their early stages, both the Solidity language standard
and the smart contract libraries are still quickly evolving and un-
dergoing major upgrades. Therefore, the API documentations are
important sources for developers who are unfamiliar with the li-
braries to learn the correct usages of the APIs. Yet, maintaining
high-quality documentations is non-trivial and documentation er-
rors are common even in widely-used and well-maintained libraries.
For example, during the past six months since November 2021, 46%
of the commits from OpenZeppelin have modified the documen-
tation, many of which are fixes. Similar patterns can also be seen
in Java libraries [46, 79]. The major causes of Solidity documenta-
tion errors include typos as well as grammatical errors, out-of-date
descriptions of the API usages, failures in indicating important
prerequisites as well as side effects of the APIs, etc.

In general, API documentation errors may pose a burden on
developers and may mislead them, resulting in API misuses [37]
and reduced productivity. Due to the unique structure of DApps,
some specific features of Solidity library APIs are of particular im-
portance to DApp developers. For example, a typical DApp consists
of smart contracts deployed on a blockchain, and some off-chain
code supporting the front-end user interface, creating, and sending
transactions to the smart contracts (see Sect. 2.1 for more details).
Because Ethereum DApps are event-driven, one needs to be aware
of the events emitted by each API function to be able to properly
handle them in the off-chain code. Mishandling events may lead to
synchronization bugs [96]. Moreover, transactions sent through an
API function may be reverted, if their requirements (e.g., having suf-
ficient balance) are not met. Such information is usually described
in API documentations, but can become out-of-date when libraries
evolve (see Fig. 2b and the corresponding fix [30]).

To detect documentation errors in Solidity smart contract APIs,
we propose an automated technique, called DocCon. DocCon
identifies inconsistencies between the API documentations and
the corresponding library code through a fact-based approach. We
first obtain code facts by parsing the library code and extract rele-
vant relations between important code elements, such as the event
emission, contract inheritance, function override, and function call
relations. We then extract similar relations from the corresponding
API documentations as document facts, based on custom natural
language templates. Both types of facts are represented with Data-
log [35] following a uniform fact schema and stored in a factbase,
which can be queried to detect documentation inconsistency errors
at various severity levels. In particular, we deem incorrect documen-
tations of highest severity (level-1), where a fact only appears in the
documentation but not in the code. There are also incomplete docu-
mentations, where a fact from the code does not have corresponding
descriptions in the documentations. These are further classified into
the external (level-2) and internal (level-3) incompleteness errors
based on the importance of the facts. We define the severity levels
to make the management of documentation errors more effective:
the level-1 errors can be reported to the library developers with high
confidence, while the level-2 and level-3 errors might be ignored if
the library is not following a strict documentation guideline.
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Figure 1: Typical workflow of Ethereum DApps.

Contributions.To summarize, in this paper, wemade the following
contributions.

• We proposed the first automated documentation error detec-
tion technique DocCon, for Solidity smart contract library APIs.
Existing techniques in the same area focus on Java code and
documentations, which demonstrate distinct structures and pose
very different concerns.
• We designed a comprehensive schema and developed custom fact
extractors for relevant Solidity code and documentation facts. We
defined documentation inconsistency errors of various severity
levels and implemented the corresponding factbase queries.
• We evaluated DocCon on three popular real-world smart con-
tract libraries, namely, OpenZeppelin [29], Dappsys [9], and
ERC721 Contract Extensions [16]. DocCon discovered high-
priority API documentation errors, such as incorrect descrip-
tions, missing events, and missing transaction requirements. We
reported 40 errors to smart contract library developers, who have
confirmed 29 and fixed 22 errors so far.
• Our dataset and tool implementation is made available online:
https://sites.google.com/view/doccon-tool.

2 BACKGROUND
In this section, we review necessary terminology and background
needed by the rest of the paper.

2.1 Solidity and DApp Primer
Solidity is the programming language used to write smart contracts
on Ethereum and other EVM-compatible blockchain platforms, such
as Binance Smart Chain [8] and TRON Network [34]. Solidity [80]
supports code reuse through both contract inheritance and external
library import. Different from traditional programming languages,
Solidity itself is equipped with logging functionalities via two key-
words, event and emit. Then the off-chain code can subscribe to
these events and react based on DApp business logic.

https://sites.google.com/view/doccon-tool
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1 /** ... Emits a {TokensReleased} event. */
2 function release(address token) public virtual {
3 uint256 releasable = vestedAmount(token,

uint64(block.timestamp)) - released(token);↩→
4 _erc20Released[token] += releasable;
5 emit ERC20Released(token, releasable);
6 SafeERC20.safeTransfer(IERC20(token), beneficiary(),

releasable);↩→
7 }

(a) An incorrectly documented event emission in VestingWallet.

1 /** ... Requirements:
2 * - `tokenId` must be already minted.
3 * - `receiver` cannot be the zero address.
4 * - `feeNumerator` cannot be greater than the fee denominator. */
5 function _setTokenRoyalty(uint256 tokenId, address receiver,
6 uint96 feeNumerator) internal virtual {
7 require(feeNumerator<=_feeDenominator(), "ERC2981: ...");
8 require(receiver!=address(0),"ERC2981: Invalid parameters");
9 ... }

(b) A spurious transaction requirement documented in ERC2981.

1 /** @dev Stores the sent amount as credit to be withdrawn.
2 * @param payee The destination address of the funds. */
3 function deposit(address payee) public payable virtual onlyOwner {
4 uint256 amount = msg.value;
5 _deposits[payee] += amount;
6 emit Deposited(payee, amount); }
7
8 /** @dev Called by the payer to store the sent amount as credit

to be pulled ...↩→
9 * @param dest The destination address of the funds.
10 * @param amount The amount to transfer. */
11 function _asyncTransfer(address dest, uint256 amount) internal

virtual {↩→
12 _escrow.deposit{value: amount}(dest); }

(c) Undocumented transitive event emission in PullPayment.

1 /** @dev Returns the item at the beginning of the queue. */
2 function front(Bytes32Deque storage deque) internal view returns

(bytes32 value) {↩→
3 if (empty(deque)) revert Empty();
4 int128 frontIndex = deque._begin;
5 return deque._data[frontIndex]; }
6
7 /** @dev Returns the item at the end of the queue. */
8 function back(Bytes32Deque storage deque) internal view returns

(bytes32 value) {↩→
9 if (empty(deque)) revert Empty();
10 int128 backIndex;
11 unchecked { backIndex = deque._end - 1;}
12 return deque._data[backIndex]; }

(d) Undocumented transaction reversions in DoubleEndedQueue.

Figure 2: Examples of Solidity smart contract API documentation errors.

Figure 1 shows the typical workflow of Ethereum DApps. A
DApp delegates its core functionality to the smart contracts de-
ployed on the Ethereum network. A user can publish a transaction
through the front-end to execute a certain smart contract function.
When all the transaction requirements are satisfied, the contract
execution is successful and events may be emitted as well; other-
wise, the transaction is reverted. The back-end of a DApp is usually
deployed on a off-chain server, which is subscribed to blockchain
events and may decide to publish further transactions.

Suppose a user would like to give approval to a delegate account
(e.g., a marketplace) to withdraw some ERC-20 [13] tokens from
her account and to transfer them to other accounts. The user would
first send a transaction from the front end calling the approve func-
tion, which emits an Approval event upon successful completion.
The marketplace back end listening to the Approval event, would
trigger a new transaction calling the transferFrom function to
redeem the approved allowance and perform relevant transfers.
The results of the transactions can also be reflected on the front
end with proper handling code of the transaction status events.

2.2 Software Fact Extraction and Representation
Software artifacts can be reverse engineered to extract useful infor-
mation as facts. Fact extractors are custom, human-defined analyz-
ers that automatically scan structured software artifacts to retrieve
pertinent details to be included in a resultant factbase. Fact ex-
tractors for different programming languages and platforms have
been previously built, including Javax [2] for Java, Cppx [1] and
ClangEx [3] for C/C++, and ASX [47] for assembler, objects, dy-
namic libraries and executables.

Datalog is a declarative language using a syntax similar to the
logic programming language, Prolog. We use Datalog to represent
facts and leverage its inference capabilities to capture the differ-
ences between document and code facts. Atoms are building blocks

of Datalog. An atom 𝑃 (𝑥1, . . . , 𝑥𝑛) represents an 𝑛-ary predicate 𝑃 ,
and 𝑥1, . . . , 𝑥𝑛 are its arguments. For example, we can use a binary
predicate Call(𝑥, 𝑦) to describe function 𝑦 being invoked in func-
tion 𝑥 . An atom with all its arguments being constant represents
a fact, e.g., Call(“transferFrom”, “_move”) asserts that func-
tion transferFrom calls another function named _move. Datalog
engines deduce new facts from existing ones according to some
inference rules, which are horn clauses of atoms in the form,

𝑃1 (𝑥1, . . . , 𝑥𝑛) ← 𝑃2 (𝑦1, . . . , 𝑦𝑠 ), . . . , 𝑃𝑛 (𝑧1, . . . , 𝑧𝑡 ).

The predicate on the left hand side (𝑃1) is the head of a rule and
the right hand side is the body. The head predicate is true if all
the predicates in the body are true. For example, IndirectCall(𝑥,
𝑧) ← Call(𝑥, 𝑦), Call(𝑦, 𝑧) states that function 𝑥 indirectly
calls 𝑧, if 𝑥 calls 𝑦 and 𝑦 calls 𝑧. A Datalog program can contain
multiple rules like this to implement a complex query. Modern
Datalog implementations such as Soufflé [57] can efficiently deduce
facts on a large set of facts and have been used in tasks such as
pointer analysis [43].

3 EXAMPLES
We illustrate Solidity API documentation errors with the exam-
ples in Fig. 2. All of these examples are from the OpenZeppelin
library, the de facto standard library of the Solidity community [45].
OpenZeppelin has more than 17.7K stars on GitHub and is actively
maintained. Some parts of the library, such as SafeMath, have even
been integrated into the Solidity language v0.8.+ [80]. We show
these errors not only since they represent the typical errors in So-
lidity smart contract API documentations, but also because they
were all successfully detected by DocCon.

Figure 2a is an example where an event emission is incorrectly
documented. The release function belongs to a VestingWallet
contract which is used to handle the vesting of Ether (the native
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facts and leverage its inference capabilities to capture the differ-
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predicate Call(𝑥, 𝑦) to describe function 𝑦 being invoked in func-
tion 𝑥 . An atom with all its arguments being constant represents
a fact, e.g., Call(“transferFrom”, “_move”) asserts that func-
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3 EXAMPLES
We illustrate Solidity API documentation errors with the exam-
ples in Fig. 2. All of these examples are from the OpenZeppelin
library, the de facto standard library of the Solidity community [45].
OpenZeppelin has more than 17.7K stars on GitHub and is actively
maintained. Some parts of the library, such as SafeMath, have even
been integrated into the Solidity language v0.8.+ [80]. We show
these errors not only since they represent the typical errors in So-
lidity smart contract API documentations, but also because they
were all successfully detected by DocCon.

Figure 2a is an example where an event emission is incorrectly
documented. The release function belongs to a VestingWallet
contract which is used to handle the vesting of Ether (the native



ASE ’22, October 10–14, 2022, Rochester, MI, USA Chenguang Zhu, Ye Liu, Xiuheng Wu, and Yi Li

cryptocurrency on Ethereum) and ERC-20 tokens [13] for beneficia-
ries. An ERC20Released event is emitted to notify the users before
the transfer starts. In Fig. 2a, the event is incorrectly documented as
“Emits a TokensReleased event” (Line 1), and there is no such event
defined in the library. As such, one may be misled into handling a
non-existent event in the off-chain code.

Figure 2b shows an example where a transaction requirement
is incorrectly documented. The ERC2981 contract is the reference
implementation of the EIP-2981 standard [12], which is used to
retrieve royalty payment information for a given non-fungible
token (NFT) or a set of NFTs. The _setTokenRoyalty function is
for setting the royalty information for a specific token id. In this
case, the requirement documented on Line 2, “tokenId must be
already minted”, is not enforced in the code. The OpenZeppelin
developers also confirmed that this requirement is spurious and
they have recently removed this requirement [30].

Figure 2c shows an example where the API documentation is
incomplete, missing an event emission. This case involves both
the PullPayment and Escrow contracts, which implement a pull-
payment design pattern [90]. The function Escrow.deposit emits
a Deposited event to notify the payee (Line 6). Yet, the event is
documented neither in the Escrow.deposit function, nor its caller,
the PullPayment._asyncTransfer function. This incomplete doc-
umentation affects not only the users of Escrow.deposit, but also
users of functions further along the call chain.

Figure 2d is an example of an undocumented transaction rever-
sion. The DoubleEndedQueue contract from OpenZeppelin imple-
ments a double-ended queue that supports pushing and popping
operations from the both ends. Both the front and back functions
have a transaction reversion condition such that the operations
performed on empty queues will be reverted (Lines 3 and 9). How-
ever, this reversion is not documented for neither of the functions.
Missing a transaction reversion in the documentation can mislead
DApp developers, for example, resulting in unexpected reversion.

DocCon successfully detected all these issues from the corre-
sponding versions of the library. Our detection results are either
directly confirmed by the library developers in their responses to
our submitted bug reports, or validated by developers’ independent
patches [7, 26, 30, 32].

Apart from the errors discussed above, we manually inspected
the most recent commits of OpenZeppelin for the past six months
and discovered that 46% of the commits involve fixes of the docu-
mentations. This shows that maintaining high-quality API docu-
mentations is indeed challenging—this also motivates us in devel-
oping an automated technique to detect API documentation errors
for Solidity smart contracts.

4 METHODOLOGY
We now define the problem of identifying smart contract API doc-
umentation errors and describe our approach in details. An API
documentation error in Solidity is an inconsistency between the
library source code and its API documentations. Following the
literature [87, 99], such inconsistencies can be further classified
into the incorrectness and incompleteness issues. The former means
that certain information is stated in the documentation but never

Smart Contract 
Solidity Code

Smart Contract API 
Documentation

Code Facts Document FactsFact Query Engine

API Documentation 
Errors

Extracting Code Facts Extracting Document FactsError Detector

Code Fact Extractor Document Fact Extractor

Figure 3: Overview of DocCon.

implemented in the code, while the latter means that certain infor-
mation in the code is never documented. In general, incorrectness is
more severe than incompleteness. We further break incompleteness
errors down to the external and internal incompleteness errors,
based on their affected program elements. Specifically, external
incompleteness concerns events and operations on transactions,
while internal incompleteness affects other code entities. External
incompleteness is more severe than internal incompleteness as it
has direct impact on the users of the library. DocCon targets all
the three types of errors.

Figure 3 shows an overview of DocCon: it consists of three
main components, namely, the code fact extractor, document fact
extractor, and error detector. The code fact extractor accepts as
input the Solidity code of the smart contract library under analysis,
extracts, and outputs the extracted code facts. The document fact
extractor takes as input the API documentation text of the same
library and outputs the extracted document facts. Finally, the error
detector performs queries on the extracted code facts and document
facts with its query engine, and outputs the detected errors, if any.

4.1 Fact Schema
Table 1 shows the schema used for document and code facts. The left
column lists the declarations of the predicates, showing their names
and argument types. The right column gives a short description for
each predicate. The first two rows represent contract inheritance
and function overriding. The next five predicates are used to capture
syntactic characteristics of the contract code, such as the modifiers
and function parameters. The Call relation captures all function
invocations in the program; Require, Revert, and Emit describe
important semantics of functions, corresponding to the require,
revert, and emit statements in Solidity programs. These three
types of facts can be propagated through the call chain, i.e., if
the callee has a requirement, event emission, or reversion under
certain conditions, its callers also have those characteristics. The
last one (SeeFn) is specific to document facts. As a convention,
library developers sometimes write “see . . . ” in the document of
a function, referring users to the document of another function
which shares the same descriptions as the current one. Upon seeing
SeeFn(a, b), we propagate all document facts of function b to a.

Most argument types in the predicates, such as Ct, Fn, are simply
used to indicate which corresponding syntactic elements of the pro-
gram the arguments refer to. The actual aguments of Call as well
as the conditional expressions of Require, Revert, and Emit are
of Expr type. Expr is defined in Table 1 as an algebraic data type
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Table 1: Schema of documentation and code facts.
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Table 1: Schema of documentation and code facts.

Predicates and Types Descriptions

Inherit(ca:Ct, cb:Ct) Contract cb inherits contract ca
Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasStateVar(c:Ct, v:SVar) Contract c has a state variable v
HasFn(c:Ct, f:Fn) Contract c has a function f
CtHasMod(c:Ct, m:Mod) Contract c has a modifer m
HasParam(c:Ct, f:Fn, p:Var) Function c.f has a parameter p
FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m

Call(ca:Ct, fa:Fn, e:ExprList, Function ca.fa calls cb.fb,
cb:Ct, fb:Fn, p:VarList) e are arguments, p are parameters

Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true
Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e
Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

SeeFn(fa:Fn, fb:Fn) [doc only] fa refers fb with a “see fb” note

.type Expr = Cmp{a:Expr, b:Expr, op:BinOp} | Bool{b:symbol}

| Logic{a:Expr, b:Expr, op:LogicOp} | Neg{e:Expr}

| Math{a:Expr, b:Expr, op:MathOp} | Lit{x:symbol}

representing various forms of expressions, including binary compar-
isons, basic logic formulas (negation, conjunction, and disjunction),
arithmetic expressions, Boolean values, and literals (e.g., strings,
numbers, and dictionary lookups). For example, we may represent
the expression “owner! = address(0)” as Cmp( Lit("owner"), Lit(

"address(0)"),NEQ),1 where “NEQ” stands for “not equal to”. Being
able to represent complicated expressions structurally enables us
to better determine the equivalence of two conditional expressions,
and to map variable names accordingly when propagating facts
through the call chain.

4.2 Extracting Code Facts

DocCon aims to generate code facts defined in Table 1. DocCon
first obtains a set of compilation units of the Solidity library code,
and then leverages the Slither [31] parser to build their Abstract
Syntax Trees (ASTs). Then the AST nodes are visited to collect
relevant code names and their relations. The code names include
types (contracts, interfaces, and events), constructors and functions,
function modifiers, and variables (parameters and state variables).
Their relations include the modifier uses, function calls, require
statements, conditional revert statements, and (conditional) event
emit statements.
(a) HasFn("VestingWallet", "release")
(b) HasParam("VestingWallet", "release", "token")
(c) Emit("VestingWallet", "release", "ERC20Released", "true")
(d) Call("VestingWallet", "release", ["IERC20(token)",

"beneficiary()", "releasable"], "SafeERC20",
"safeTransfer", ["token", "to", "value"])

↩→

↩→

Figure 4: Extracted code facts for release function in Fig. 2a

Figure 4 shows the extracted code facts for the release function
in Fig. 2a. In Fig. 4, Line (a) is a fact that the VestingWallet contract
has a release function, while Line (b) shows the function has a
parameter named token. The event emission behavior and function
call relation are captured by Lines (c) and (d), respectively. In (c), the

1In later sections, for brevity, we may write complex expressions in their original
forms instead of using the actual Datalog representations.

Table 2: A partial list of DocCon’s document templates.

Document Templates Facts

<In cb: “Implement ′ca′ Contract”> Inherit(ca, cb)
<In cb.fb: “Overridden from ′ca.fa′”> Override(ca, fa, cb, fb)
<In c.f: “@param ′p′”> HasParam(c, f, p)
<In c.f: “Guaranteed by the ′m′ modifier”> FnHasMod(c, f, m)
<In c.f: “Requirements: - ′va′ must be strictly

Require(c, f, va < vb)less than ′vb′”>
<In c.f: “Reverts with ... if ′va′ is at least ′vb′”> Revert(c, f, va >= vb)
<In c.f: “Emits an {e} event”> Emit(c, f, e, "true")
<In c.f: “Might emit an {e} event”> Emit(c, f, e, "")
<In ca.fa: “@dev See {cb.fb}”> SeeFn(ca, fa, cb, fb)

“true” condition indicates that the function always emit the event.
The call fact on Line (d) also records the correspondence between
the callee parameter list and the argument list.2

4.3 Extracting Document Facts

To figure out what facts to extract from the smart contract API
documentations, we manually inspected the documents of 140 core
functions (in the “Core” sections of the documentation) of the Open-
Zeppelin library. During the inspection, we focused on finding out:
(1) whether the documents cover key features of Solidity contracts,
including event emissions, transaction requirements, transaction
reversions, which are pertinent to DApp construction (see Sect. 2.1);
(2) whether the information is documented in a structured or semi-
structured way such that we can build an automated fact extractor
to extract document facts from them. We inspected OpenZeppelin
because it is the most widely-used Solidity smart contract library,
and we expected its documentation to be well maintained.
Observations. We found that the API documentation of Open-
Zeppelin indeed has an emphasize on event emissions, transaction
requirements, and transaction reversions. Specifically, of the 140
functions we inspected, 77 explicitly document at least one event
emission, transaction requirement, or transaction reversion. Be-
sides, we discovered that the developers also documented many
other aspects which can be captured by our fact schema defined
in Sect. 4.1, including contract inheritance, function overriding,
function with modifiers, function parameter descriptions, etc. We
also observed that these key information is usually documented
in a semi-structured way, enabling us to automatically extract the
corresponding document facts. For example, in OpenZeppelin, the
event emissions are documented in a uniform format on a separate
line, “Emits/Might emit an {e} event”, where “e” is the event name
defined in code.

Based on these observations, we summarized 37 document tem-
plates covering all of our fact schema. Table 2 shows a partial list of
them,while the complete list is available online [33]. Each document
template encodes a rule for extracting a document fact from a sen-
tence in the documentation. For example, the document template,
<In c.f: “Emits an {e} event”> → Emit(c,f,e,"true"), translates
the sentence “Emits an e event” from function f’s document, to a
fact Emit(c,f,e,"true"). In the example of Fig. 2a, the fact Emit(
"VestingWallet","release", "TokensReleased", "true")is generated
from Line 1. Notice that each template only extracts one document

2For brevity and easier understanding, lists in fact (d) are written in a form simpler
than their actual Datalog representation.

representing various forms of expressions, including binary compar-
isons, basic logic formulas (negation, conjunction, and disjunction),
arithmetic expressions, Boolean values, and literals (e.g., strings,
numbers, and dictionary lookups). For example, we may represent
the expression “owner != address(0)” as Cmp(Lit(("owner"),
Lit("address(0)"),NEQ),1 where “NEQ” stands for “not equal to”.
Being able to represent complicated expressions structurally en-
ables us to better determine the equivalence of two conditional
expressions, and to map variable names accordingly when propa-
gating facts through the call chain.

4.2 Extracting Code Facts
DocCon aims to generate code facts defined in Table 1. DocCon
first obtains a set of compilation units of the Solidity library code,
and then leverages the Slither [31] parser to build their Abstract
Syntax Trees (ASTs). Then the AST nodes are visited to collect
relevant code names and their relations. The code names include
types (contracts, interfaces, and events), constructors and functions,
function modifiers, and variables (parameters and state variables).
Their relations include the modifier uses, function calls, require
statements, conditional revert statements, and (conditional) event
emit statements.

Identifying Solidity Smart Contract API Documentation Errors ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Schema of documentation and code facts.

Predicates and Types Descriptions

Inherit(ca:Ct, cb:Ct) Contract cb inherits contract ca
Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasStateVar(c:Ct, v:SVar) Contract c has a state variable v
HasFn(c:Ct, f:Fn) Contract c has a function f
CtHasMod(c:Ct, m:Mod) Contract c has a modifer m
HasParam(c:Ct, f:Fn, p:Var) Function c.f has a parameter p
FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m
Call(ca:Ct, fa:Fn, e:ExprList, Function ca.fa calls cb.fb,

cb:Ct, fb:Fn, p:VarList) e are arguments, p are parameters
Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true
Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e
Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

SeeFn(fa:Fn, fb:Fn) [doc only] fa refers fb with a “see fb” note
.type Expr = Cmp{a:Expr, b:Expr, op:BinOp} | Bool{b:symbol}

| Logic{a:Expr, b:Expr, op:LogicOp} | Neg{e:Expr}

| Math{a:Expr, b:Expr, op:MathOp} | Lit{x:symbol}

representing various forms of expressions, including binary compar-
isons, basic logic formulas (negation, conjunction, and disjunction),
arithmetic expressions, Boolean values, and literals (e.g., strings,
numbers, and dictionary lookups). For example, we may represent
the expression “owner! = address(0)” as Cmp( Lit("owner"), Lit(

"address(0)"),NEQ),1 where “NEQ” stands for “not equal to”. Being
able to represent complicated expressions structurally enables us
to better determine the equivalence of two conditional expressions,
and to map variable names accordingly when propagating facts
through the call chain.

4.2 Extracting Code Facts
DocCon aims to generate code facts defined in Table 1. DocCon
first obtains a set of compilation units of the Solidity library code,
and then leverages the Slither [31] parser to build their Abstract
Syntax Trees (ASTs). Then the AST nodes are visited to collect
relevant code names and their relations. The code names include
types (contracts, interfaces, and events), constructors and functions,
function modifiers, and variables (parameters and state variables).
Their relations include the modifier uses, function calls, require
statements, conditional revert statements, and (conditional) event
emit statements.
(a) HasFn("VestingWallet", "release")
(b) HasParam("VestingWallet", "release", "token")
(c) Emit("VestingWallet", "release", "ERC20Released", "true")
(d) Call("VestingWallet", "release", ["IERC20(token)",

"beneficiary()", "releasable"], "SafeERC20",
"safeTransfer", ["token", "to", "value"])

↩→
↩→

Figure 4: Extracted code facts for release function in Fig. 2a

Figure 4 shows the extracted code facts for the release function
in Fig. 2a. In Fig. 4, Line (a) is a fact that the VestingWallet contract
has a release function, while Line (b) shows the function has a
parameter named token. The event emission behavior and function
call relation are captured by Lines (c) and (d), respectively. In (c), the

1In later sections, for brevity, we may write complex expressions in their original
forms instead of using the actual Datalog representations.

Table 2: A partial list of DocCon’s document templates.

Document Templates Facts

<In cb: “Implement ′ca′ Contract”> Inherit(ca, cb)
<In cb.fb: “Overridden from ′ca.fa′”> Override(ca, fa, cb, fb)
<In c.f: “@param ′p′”> HasParam(c, f, p)
<In c.f: “Guaranteed by the ′m′ modifier”> FnHasMod(c, f, m)
<In c.f: “Requirements: - ′va′ must be strictly

Require(c, f, va < vb)less than ′vb′”>
<In c.f: “Reverts with ... if ′va′ is at least ′vb′”> Revert(c, f, va >= vb)
<In c.f: “Emits an {e} event”> Emit(c, f, e, "true")
<In c.f: “Might emit an {e} event”> Emit(c, f, e, "")
<In ca.fa: “@dev See {cb.fb}”> SeeFn(ca, fa, cb, fb)

“true” condition indicates that the function always emit the event.
The call fact on Line (d) also records the correspondence between
the callee parameter list and the argument list.2

4.3 Extracting Document Facts
To figure out what facts to extract from the smart contract API
documentations, we manually inspected the documents of 140 core
functions (in the “Core” sections of the documentation) of the Open-
Zeppelin library. During the inspection, we focused on finding out:
(1) whether the documents cover key features of Solidity contracts,
including event emissions, transaction requirements, transaction
reversions, which are pertinent to DApp construction (see Sect. 2.1);
(2) whether the information is documented in a structured or semi-
structured way such that we can build an automated fact extractor
to extract document facts from them. We inspected OpenZeppelin
because it is the most widely-used Solidity smart contract library,
and we expected its documentation to be well maintained.
Observations. We found that the API documentation of Open-
Zeppelin indeed has an emphasize on event emissions, transaction
requirements, and transaction reversions. Specifically, of the 140
functions we inspected, 77 explicitly document at least one event
emission, transaction requirement, or transaction reversion. Be-
sides, we discovered that the developers also documented many
other aspects which can be captured by our fact schema defined
in Sect. 4.1, including contract inheritance, function overriding,
function with modifiers, function parameter descriptions, etc. We
also observed that these key information is usually documented
in a semi-structured way, enabling us to automatically extract the
corresponding document facts. For example, in OpenZeppelin, the
event emissions are documented in a uniform format on a separate
line, “Emits/Might emit an {e} event”, where “e” is the event name
defined in code.

Based on these observations, we summarized 37 document tem-
plates covering all of our fact schema. Table 2 shows a partial list of
them,while the complete list is available online [33]. Each document
template encodes a rule for extracting a document fact from a sen-
tence in the documentation. For example, the document template,
<In c.f: “Emits an {e} event”> → Emit(c,f,e,"true"), translates
the sentence “Emits an e event” from function f’s document, to a
fact Emit(c,f,e,"true"). In the example of Fig. 2a, the fact Emit(
"VestingWallet","release", "TokensReleased", "true")is generated
from Line 1. Notice that each template only extracts one document

2For brevity and easier understanding, lists in fact (d) are written in a form simpler
than their actual Datalog representation.

Figure 4: Extracted code facts for release function in Fig. 2a

Figure 4 shows the extracted code facts for the release function
in Fig. 2a. In Fig. 4, Line (a) is a fact that the VestingWallet contract
has a release function, while Line (b) shows the function has a
parameter named token. The event emission behavior and function

1In later sections, for brevity, we may write complex expressions in their original
forms instead of using the actual Datalog representations.

Table 2: A partial list of DocCon’s document templates.
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Table 1: Schema of documentation and code facts.

Predicates and Types Descriptions

Inherit(ca:Ct, cb:Ct) Contract cb inherits contract ca
Override(ca:Ct, fa:Fn, cb:Ct, fb:Fn) Function cb.fb overrides ca.fa

HasStateVar(c:Ct, v:SVar) Contract c has a state variable v
HasFn(c:Ct, f:Fn) Contract c has a function f
CtHasMod(c:Ct, m:Mod) Contract c has a modifer m
HasParam(c:Ct, f:Fn, p:Var) Function c.f has a parameter p
FnHasMod(c:Ct, f:Fn, m:Mod) Function c.f has a modifier m

Call(ca:Ct, fa:Fn, e:ExprList, Function ca.fa calls cb.fb,
cb:Ct, fb:Fn, p:VarList) e are arguments, p are parameters

Require(c:Ct, f:Fn, e:Expr) c.f requires condition e to be true
Revert(c:Ct, f:Fn, e:Expr) c.f reverts under condition e
Emit(c:Ct, f:Fn, ev:Event, e:Expr) c.f emits event ev under condition e

SeeFn(fa:Fn, fb:Fn) [doc only] fa refers fb with a “see fb” note

.type Expr = Cmp{a:Expr, b:Expr, op:BinOp} | Bool{b:symbol}

| Logic{a:Expr, b:Expr, op:LogicOp} | Neg{e:Expr}

| Math{a:Expr, b:Expr, op:MathOp} | Lit{x:symbol}

representing various forms of expressions, including binary compar-
isons, basic logic formulas (negation, conjunction, and disjunction),
arithmetic expressions, Boolean values, and literals (e.g., strings,
numbers, and dictionary lookups). For example, we may represent
the expression “owner! = address(0)” as Cmp( Lit("owner"), Lit(

"address(0)"),NEQ),1 where “NEQ” stands for “not equal to”. Being
able to represent complicated expressions structurally enables us
to better determine the equivalence of two conditional expressions,
and to map variable names accordingly when propagating facts
through the call chain.

4.2 Extracting Code Facts

DocCon aims to generate code facts defined in Table 1. DocCon
first obtains a set of compilation units of the Solidity library code,
and then leverages the Slither [31] parser to build their Abstract
Syntax Trees (ASTs). Then the AST nodes are visited to collect
relevant code names and their relations. The code names include
types (contracts, interfaces, and events), constructors and functions,
function modifiers, and variables (parameters and state variables).
Their relations include the modifier uses, function calls, require
statements, conditional revert statements, and (conditional) event
emit statements.
(a) HasFn("VestingWallet", "release")
(b) HasParam("VestingWallet", "release", "token")
(c) Emit("VestingWallet", "release", "ERC20Released", "true")
(d) Call("VestingWallet", "release", ["IERC20(token)",

"beneficiary()", "releasable"], "SafeERC20",
"safeTransfer", ["token", "to", "value"])

↩→

↩→

Figure 4: Extracted code facts for release function in Fig. 2a

Figure 4 shows the extracted code facts for the release function
in Fig. 2a. In Fig. 4, Line (a) is a fact that the VestingWallet contract
has a release function, while Line (b) shows the function has a
parameter named token. The event emission behavior and function
call relation are captured by Lines (c) and (d), respectively. In (c), the

1In later sections, for brevity, we may write complex expressions in their original
forms instead of using the actual Datalog representations.

Table 2: A partial list of DocCon’s document templates.

Document Templates Facts

<In cb: “Implement ′ca′ Contract”> Inherit(ca, cb)
<In cb.fb: “Overridden from ′ca.fa′”> Override(ca, fa, cb, fb)
<In c.f: “@param ′p′”> HasParam(c, f, p)
<In c.f: “Guaranteed by the ′m′ modifier”> FnHasMod(c, f, m)
<In c.f: “Requirements: - ′va′ must be strictly

Require(c, f, va < vb)less than ′vb′”>
<In c.f: “Reverts with ... if ′va′ is at least ′vb′”> Revert(c, f, va >= vb)
<In c.f: “Emits an {e} event”> Emit(c, f, e, "true")
<In c.f: “Might emit an {e} event”> Emit(c, f, e, "")
<In ca.fa: “@dev See {cb.fb}”> SeeFn(ca, fa, cb, fb)

“true” condition indicates that the function always emit the event.
The call fact on Line (d) also records the correspondence between
the callee parameter list and the argument list.2

4.3 Extracting Document Facts

To figure out what facts to extract from the smart contract API
documentations, we manually inspected the documents of 140 core
functions (in the “Core” sections of the documentation) of the Open-
Zeppelin library. During the inspection, we focused on finding out:
(1) whether the documents cover key features of Solidity contracts,
including event emissions, transaction requirements, transaction
reversions, which are pertinent to DApp construction (see Sect. 2.1);
(2) whether the information is documented in a structured or semi-
structured way such that we can build an automated fact extractor
to extract document facts from them. We inspected OpenZeppelin
because it is the most widely-used Solidity smart contract library,
and we expected its documentation to be well maintained.
Observations. We found that the API documentation of Open-
Zeppelin indeed has an emphasize on event emissions, transaction
requirements, and transaction reversions. Specifically, of the 140
functions we inspected, 77 explicitly document at least one event
emission, transaction requirement, or transaction reversion. Be-
sides, we discovered that the developers also documented many
other aspects which can be captured by our fact schema defined
in Sect. 4.1, including contract inheritance, function overriding,
function with modifiers, function parameter descriptions, etc. We
also observed that these key information is usually documented
in a semi-structured way, enabling us to automatically extract the
corresponding document facts. For example, in OpenZeppelin, the
event emissions are documented in a uniform format on a separate
line, “Emits/Might emit an {e} event”, where “e” is the event name
defined in code.

Based on these observations, we summarized 37 document tem-
plates covering all of our fact schema. Table 2 shows a partial list of
them,while the complete list is available online [33]. Each document
template encodes a rule for extracting a document fact from a sen-
tence in the documentation. For example, the document template,
<In c.f: “Emits an {e} event”> → Emit(c,f,e,"true"), translates
the sentence “Emits an e event” from function f’s document, to a
fact Emit(c,f,e,"true"). In the example of Fig. 2a, the fact Emit(
"VestingWallet","release", "TokensReleased", "true")is generated
from Line 1. Notice that each template only extracts one document

2For brevity and easier understanding, lists in fact (d) are written in a form simpler
than their actual Datalog representation.

call relation are captured by Lines (c) and (d), respectively. In (c), the
“true” condition indicates that the function always emit the event.
The call fact on Line (d) also records the correspondence between
the callee parameter list and the argument list.2

4.3 Extracting Document Facts
To figure out what facts to extract from the smart contract API
documentations, we manually inspected the documents of 140 core
functions (in the “Core” sections of the documentation) of the Open-
Zeppelin library. During the inspection, we focused on finding out:
(1) whether the documents cover key features of Solidity contracts,
including event emissions, transaction requirements, transaction
reversions, which are pertinent to DApp construction (see Sect. 2.1);
(2) whether the information is documented in a structured or semi-
structured way such that we can build an automated fact extractor
to extract document facts from them. We inspected OpenZeppelin
because it is the most widely-used Solidity smart contract library,
and we expected its documentation to be well maintained.
Observations. We found that the API documentation of Open-
Zeppelin indeed has an emphasize on event emissions, transaction
requirements, and transaction reversions. Specifically, of the 140
functions we inspected, 77 explicitly document at least one event
emission, transaction requirement, or transaction reversion. Be-
sides, we discovered that the developers also documented many
other aspects which can be captured by our fact schema defined
in Sect. 4.1, including contract inheritance, function overriding,
function with modifiers, function parameter descriptions, etc. We
also observed that these key information is usually documented
in a semi-structured way, enabling us to automatically extract the
corresponding document facts. For example, in OpenZeppelin, the
event emissions are documented in a uniform format on a separate
line, “Emits/Might emit an {e} event”, where “e” is the event name
defined in code.

Based on these observations, we summarized 37 document tem-
plates covering all of our fact schema. Table 2 shows a partial
list of them, while the complete list is available online [33]. Each
document template encodes a rule for extracting a document fact
from a sentence in the documentation. For example, the document
template, <In c.f: “Emits an {e} event”>→ Emit(c,f,e,"true"),
translates the sentence “Emits an e event” from function f’s docu-
ment, to a fact Emit(c,f,e,"true"). In the example of Fig. 2a, the

2For brevity and easier understanding, lists in fact (d) are written in a form simpler
than their actual Datalog representation.
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fact Emit("VestingWallet", "release", "TokensReleased",
"true")is generated from Line 1. Notice that each template only
extracts one document fact, but the same document fact can be ex-
tracted from multiple document templates depending on the actual
sentences. We used these document templates to extract document
facts from the libraries evaluated in our experiments.

4.4 Detecting Inconsistencies
With the extracted code facts and document facts, DocCon’s error
detector executes queries on the combined facts, which checks if
any fact does not exist in either side, respecting necessary propaga-
tion of facts along certain relations. If DocCon detects such a fact,
then it reports either an incorrectness error, i.e., a fact is in the docu-
mentation but is not implemented in the code, or an incompleteness
error, i.e., a fact exists in the code but is not documented.
Severity Levels.We set three severity levels for the detected API
documentation errors. (1) An error is level-1 if the document fact
does not have corresponding code facts. (2) An error is level-2 if
the code fact does not have corresponding document facts, and
the code fact is Emit, Require, or Revert. (3) An error is level-3 if
the code fact does not have corresponding document facts, and the
code fact falls in other categories in the schema.

In general, level-1 errors are the most severe, as incorrect API
documentations may mislead the library users. Level-2 and level-3
errors are generally less severe, and their key difference is that
level-2 errors focus on the external behaviors of smart contracts.
These include event emissions, transaction requirements, and trans-
action reversions. Failing to document such external behaviors may
mislead DApp developers—unhanded events may lead to bugs in
DApps. Finally, level-3 errors target internal behaviors, which in-
clude code structural information. For example, a parameter of a
function may not be documented, which may be against the docu-
mentation guidelines.
Inconsistency Queries. Let 𝐷 and𝐶 be the sets of document facts
and code facts respectively. We first infer additional facts 𝐷′ and
𝐶′ according to the following rules, respectively.
(1) If a function reverts, its callers also revert, under the same

condition. This propagation can be achieved with rules such
as: Revert(ca, caller, e) ← Revert(cb, callee, e),
Call(ca, caller, _, cb, callee, _). Here we leave out
the handling of function parameters for brevity.

(2) If a function emits an event, its callers also emit this event. A rule
similar to (1) follows: Emit(ca, caller, ev, e)← Emit(cb,
callee, ev, e), Call(ca, caller, _, cb, callee, _).

(3) If a function has a requirement, its callers should also have the
corresponding requirement. Here we show a more complex rule
to demonstrate how we substitue variable names according to
the Call facts to achieve a better accuracy. The following rule
deduces require(caller, v ⊲⊳ n) for caller when the callee
requires p ⊲⊳ n, where p is a parameter of the callee, v is an
actual argument and ⊲⊳ is a binary comparison operator such as
“≠”. Require(caller, v ⊲⊳ n)← Call(caller, [v], callee,
[p]), Require(callee, p ⊲⊳ n).

(4) Some relations are transitive, including inheritance, function
overriding and function call . For example, contract cb inherits

ca, and cc inherits cb, lead to a new fact: contract cc inherits ca.
Inherit(ca, cc)← Inherit(ca, cb), Inherit(cb, cc).

(5) If the document of function ca.fa has a “see cb.fb” note, all
facts about cb.fb also apply for ca.fa. The following rule
propagates Revert according to the SeeFn facts. Revert(ca,
fa, e)← SeeFn(ca, fa, cb, fb), Revert(cb, fb, e).

The first four categoreis of the rules expand code facts 𝐶 to 𝐶′
and the last one expands document facts 𝐷 to 𝐷′. In the following
paragraphs, we append suffixes -D or -C after predicate names to
distinguish code facts from document facts, and use prefixes L1-,
L2-, and L3- before predicate names to indicate inconsistencies of
the correponding levels. We also use subscripts to indicate subset
of 𝐷′ or 𝐶′: 𝐷′revert represents the Revert facts in 𝐷′.

To discover level-1 inconsistencies, for each predicate 𝑝 , we
compute the set difference 𝐷′𝑝 \𝐶′𝑝 . For instance, 𝐷′revert \𝐶′revert
can be computed by: L1Revert(c, f, e)← RevertD(c, f, e),
!RevertC(c, f, e). We use Datalog inference instead of simple set
algebra for more flexible comparison, e.g.,document facts usually
do not have details about function parameters, so we can leave out
the parameters when detecting inconsistencies: L1Call(ca, fa,
cb, fb)← CallD(ca, fa, _, cb, fb, _), !CallC(ca, fa,
_, cb, fb, _). Also, documentation tends to not explicitly state
the condition of emit, but only indicate “might emit”. Thus, we
only distinguish “might emit” and “(always) emit”, but do not treat
emit under concrete conditions in code facts and “might emit” with
unknown condition in document facts as inconsistencies, leading
to the following two rules.
(6) “(always) emit” in document facts, but not in code facts:

L1Emit(c, f, ev, "true")← EmitD(c, f, ev, "true"),
!EmitC(c, f, ev, "true").

(7) “might emit” in document facts, but not in code facts: L1Emit(c,
f, ev, "")← EmitD(c, f, ev, e1), !EmitC(c, f, ev,
e2), e1 ≠ "true", e2 ≠ "true".

For level-2 inconsistencies, we calculate 𝐶′𝑝 \ 𝐷′𝑝 for 𝑝 ∈ {revert,
emit, require}; and for level-3 inconsistencies, similarly, the incon-
sistencies are 𝐶′𝑝 \ 𝐷′𝑝 for 𝑝 ∉ {revert, emit, require}.

5 EVALUATION
In this section, we first propose research questions for evaluating
DocCon, then describe our experimental setup and the subjects for
evaluation. Finally, we present our experiment results, discuss the
findings, and answer the research questions.

We evaluated DocCon with respect to the following research
questions. RQ-1: How precise is DocCon in detecting errors in
Solidity smart contract API documentations? RQ-2: How relevant
are the smart contract API documentation errors detected by Doc-
Con? RQ-3: What are the categories of the smart contract API
documentation errors detected by DocCon?

5.1 Experimental Setup
DocCon was implemented in Python. It consists of three main
components: (1) code fact extractor, (2) document fact extractor, and
(3) error detector. We used the Slither [31] static analysis framework
to analyze the ASTs of Solidity programs and extract code facts.
We used the document templates defined in Sect. 4.3 to extract
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Table 3: Solidity libraries used in the experiments.

Library URL (https://github.com/) Version LOC #Stars

OpenZeppelin OpenZeppelin/openzeppelin-contracts v4.5.0 17.3k 17.7K
Dappsys dapphub/dappsys HEAD 3.5k 1094
ERC721 Cont. Ext. 1001-digital/erc721-extensions v0.0.18 0.9k 114

document facts. We performed fact querying using the Datalog
engine Soufflé [57].

Table 3 lists three popular libraries that DocCon was evalu-
ated on. The selected libraries are of high quality and widely used.
OpenZeppelin [29] is the most popular smart contract libraries [45].
Dappsys [9], launched from August 2016, is another collection of
building blocks for DApps, including ds-token [11], ds-proxy [10],
etc. ERC721 Contract Extensions [16] provides a set of composable
extensions for the OpenZeppelin ERC-721 base contracts. ERC721
Contract Extensions is used by many popular NFT DApps such as
OpenSea having 32.83K daily users on Ethereum [6]. For OpenZep-
pelin and ERC721 Contract Extensions, We used their latest release
versions at the time of our experiments, which are v4.5.0 and v0.0.18
respectively. As Dappsys does not publish a recent release version,
we used the latest SHA of its each sub-library at the time of our
experiments. The complete list of SHAs can be found on DocCon’s
website [33].

We ran DocCon on all the libraries with all the three severity
levels. For each library, we ran both the code fact and document fact
extractors on the source code and API documentations, respectively.
Notice that different libraries may put their API documentations in
separate locations. OpenZeppelin and ERC721 Contract Extensions
keep their API documentations in the source files, and the docu-
mentation of each function is next to the corresponding code block.
Dappsys keeps its documentation in separate text files. Therefore,
we created separate parsers for each library to associate each func-
tion’s code with its documentation. When processing code facts
from a library, we excluded the facts of its dependent libraries to
avoid double counting. Specifically, ERC721 Contract Extensions de-
pends on OpenZeppelin, while Dappsys has dependencies among
its component libraries. During the run, DocCon skipped a de-
pendent code fact if it had already been processed previously. We
extracted document facts in a uniform way for all the library func-
tions using our document templates. Finally, with the extracted
code facts and document facts, we executed the error detector for
all the three severity levels, obtaining a set of errors on each level.

All the experiments were performed on a 4-core Intel(R)
Core(TM) i7-8650 CPU @ 1.90 GHz machine with 16GB of RAM,
running Ubuntu 16.04, with Python 3.8.13, Slither 0.8.3, and Conda
4.7.10.

5.2 Results
Table 4 shows the results of DocCon in detecting API documenta-
tion errors on all the libraries. In total, DocCon detected 56, 787,
and 4,566 errors when the severity level is set to level-1, level-2,
and level-3, respectively. DocCon successfully detected errors on
all the severity levels on all the libraries, demonstrating its effec-
tiveness. The observation that level-1 errors (i.e., incorrectness)
appear in all the libraries indicates that many errors exist in smart
contract library API documentations, which further validates the

value of DocCon. The results also confirm the generalizability of
DocCon. Although our fact schema was initially designed based
on observations from OpenZeppelin, we were able to effectively
extract facts from other libraries as well. It again attests that smart
contract developers generally focus on similar aspects of APIs, as
captured by DocCon’s fact schema.

5.2.1 DocCon’s Precision in Detecting Smart Contract API Docu-
mentation Errors. To measure the precision of DocCon in detecting
smart contract API documentation errors, we manually inspected
the level-1 and level-2 errors detected by DocCon to determine
whether an error is true positive or false positive. For level-1 errors,
we inspected all the cases. For level-2 errors (567, 141, and 79 in
OpenZeppelin, Dappsys, and ERC721 Contract Extensions, respec-
tively), we inspected all errors from Dappsys and ERC721 Contract
Extensions. We sampled 229 errors from OpenZeppelin, in order to
reach a confidence level of 95 % with a margin error within ±5%
on whether the sample is representative of all reports. For these
505 (49+4+3+229+141+79) errors, two of the authors spent five min-
utes per error to confirm the true positives, respectively. In case
the verdict by the two authors was not unanimous, a third author
broke the tie. Via this confirmation process, we got the precision
of DocCon, which is shown in Table 4. The overall precision of
DocCon on level-1 and level-2 errors is 76% and 66%, respectively.
DocCon showed highest precision on ERC721 Contract Extensions
and lowest precision on Dappsys.
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versions at the time of our experiments, which are v4.5.0 and v0.0.18
respectively. As Dappsys does not publish a recent release version,
we used the latest SHA of its each sub-library at the time of our
experiments. The complete list of SHAs can be found on DocCon’s
website [33].

We ran DocCon on all the libraries with all the three severity
levels. For each library, we ran both the code fact and document fact
extractors on the source code and API documentations, respectively.
Notice that different libraries may put their API documentations in
separate locations. OpenZeppelin and ERC721 Contract Extensions
keep their API documentations in the source files, and the docu-
mentation of each function is next to the corresponding code block.
Dappsys keeps its documentation in separate text files. Therefore,
we created separate parsers for each library to associate each func-
tion’s code with its documentation. When processing code facts
from a library, we excluded the facts of its dependent libraries to
avoid double counting. Specifically, ERC721 Contract Extensions de-
pends on OpenZeppelin, while Dappsys has dependencies among
its component libraries. During the run, DocCon skipped a de-
pendent code fact if it had already been processed previously. We
extracted document facts in a uniform way for all the library func-
tions using our document templates. Finally, with the extracted
code facts and document facts, we executed the error detector for
all the three severity levels, obtaining a set of errors on each level.

All the experimentswere performed on a 4-core Intel(R) Core(TM)
i7-8650 CPU @ 1.90 GHz machine with 16GB of RAM, running
Ubuntu 16.04, with Python 3.8.13, Slither 0.8.3, and Conda 4.7.10.

5.2 Results
Table 4 shows the results of DocCon in detecting API documenta-
tion errors on all the libraries. In total, DocCon detected 56, 787,
and 4,566 errors when the severity level is set to level-1, level-2,
and level-3, respectively. DocCon successfully detected errors on
all the severity levels on all the libraries, demonstrating its effec-
tiveness. The observation that level-1 errors (i.e., incorrectness)
appear in all the libraries indicates that many errors exist in smart
contract library API documentations, which further validates the
value of DocCon. The results also confirm the generalizability of
DocCon. Although our fact schema was initially designed based
on observations from OpenZeppelin, we were able to effectively

extract facts from other libraries as well. It again attests that smart
contract developers generally focus on similar aspects of APIs, as
captured by DocCon’s fact schema.

5.2.1 DocCon’s Precision in Detecting Smart Contract API Docu-
mentation Errors. To measure the precision of DocCon in detecting
smart contract API documentation errors, we manually inspected
the level-1 and level-2 errors detected by DocCon to determine
whether an error is true positive or false positive. For level-1 errors,
we inspected all the cases. For level-2 errors (567, 141, and 79 in
OpenZeppelin, Dappsys, and ERC721 Contract Extensions, respec-
tively), we inspected all errors from Dappsys and ERC721 Contract
Extensions. We sampled 229 errors from OpenZeppelin, in order to
reach a confidence level of 95 % with a margin error within ±5%
on whether the sample is representative of all reports. For these
505 (49+4+3+229+141+79) errors, two of the authors spent five min-
utes per error to confirm the true positives, respectively. In case
the verdict by the two authors was not unanimous, a third author
broke the tie. Via this confirmation process, we got the precision
of DocCon, which is shown in Table 4. The overall precision of
DocCon on level-1 and level-2 errors is 76% and 66%, respectively.
DocCon showed highest precision on ERC721 Contract Extensions
and lowest precision on Dappsys.

Answer to RQ1: DocCon successfully detected 56 level-1 and
787 level-2 API documentation errors in all the three smart
contract libraries, with the level-1 and level-2 precision of 76%
and 66%, respectively.

False Positives. There are two main sources of false positives for
DocCon: (1) imprecise static analysis in code fact extraction, and
(2) missing domain knowledge in document fact extraction.

Figure 5 shows an example false positive case caused by im-
precise static analysis. It is a level-1 error reported on function
_spendAllowance from the OpenZeppelin library. In this case, the
document fact is Emit("ERC20._spendAllowance", "Approval", "")

(extracted from Line 1, where "" indicates that the function might
emit an event under some unstated condition). The document fact
is correct, because the Approval event will only be emitted by the
call to the _approve function (Line 7), when the if condition is
evaluated to true. However, there is no corresponding code fact
for it, thus DocCon reported a level-1 error. We inspected the
code facts and found a related one: Emit("ERC20._spendAllowance",
"Approval", "true"). The key difference between the two is the
emit condition, i.e., "true" (always emit) versus "" (might emit).
This is because DocCon over-approximates call relations: a fact,
Call(f1, _, f2, _), is extracted regardless of the calling condition.
With a more sophisticated context-sensitive analysis, this false
positive can be eliminated with some timing overhead.

The second reason for false positives is missing domain knowl-
edge. From domain experts’ view, certain code fact and document
fact have equivalent semantics, but DocCon reported errors due to
their mismatched representations. For example, DocCon does not
understand that the concept “the caller having X number of tokens”
has the same meaning as “the message sender has X balance” in the
scenarios of using ERC-777 non-fungible tokens [14]. Such domain

False Positives. There are two main sources of false positives for
DocCon: (1) imprecise static analysis in code fact extraction, and
(2) missing domain knowledge in document fact extraction.

Figure 5 shows an example false positive case caused by im-
precise static analysis. It is a level-1 error reported on function
_spendAllowance from the OpenZeppelin library. In this case, the
document fact is Emit("ERC20._spendAllowance", "Approval",
"") (extracted from Line 1, where "" indicates that the function
might emit an event under some unstated condition). The document
fact is correct, because the Approval event will only be emitted by
the call to the _approve function (Line 7), when the if condition
is evaluated to true. However, there is no corresponding code fact
for it, thus DocCon reported a level-1 error. We inspected the code
facts and found a related one: Emit("ERC20._spendAllowance",
"Approval", "true"). The key difference between the two is the
emit condition, i.e., "true" (always emit) versus "" (might emit).
This is because DocCon over-approximates call relations: a fact,
Call(𝑓1, _, 𝑓2, _), is extracted regardless of the calling con-
dition. With a more sophisticated context-sensitive analysis, this
false positive can be eliminated with some timing overhead.

The second reason for false positives is missing domain knowl-
edge. From domain experts’ view, certain code fact and document
fact have equivalent semantics, but DocCon reported errors due to
their mismatched representations. For example, DocCon does not
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1 /** ... Might emit an Approval event. */
2 function _spendAllowance(address owner, address spender,
3 uint256 amount) internal virtual {
4 uint256 currentAllowance = allowance(owner, spender);
5 if (currentAllowance!=type(uint256).max) {
6 require(currentAllowance>=amount,"...insufficient

allowance");↩→
7 unchecked{_approve(owner, spender, currentAllowance-amount);}
8 }
9 }

Figure 5: A false positive example caused by imprecise static
analysis.

Table 4: Results of DocCon on detecting Solidity API docu-
mentation errors.

Library #Detected Precision

Lv-1 Lv-2 Lv-3 Lv-1 Lv-2

OpenZeppelin 49 567 3,741 78% 72%
Dappsys 4 141 448 50% 53%
ERC721 Cont. Ext. 3 79 377 100% 73%

Overall 56 787 4,566 76% 66%

knowledge are way too complex to be captured by DocCon’s rule-
based document templates. With more advanced NLP techniques,
such false positives can potentially be reduced, but the technical
complexity will be significantly increased.

5.2.2 Practical Relevance of DocCon. To evaluate the practical rel-
evance of the errors detected by DocCon, we reported the detected
true positive errors to library developers and collected their feed-
back. We reported the errors in a hierarchical way based on their
severity levels. We reported all the distinct level-1 incorrectness
errors (we excluded 18 errors due to their repetitive causes) and five
randomly sampled distinct level-2 incompleteness errors for each
library. Since level-3 errors focus on internal incompleteness issues,
such as undocumented function parameters, we did not report them
due to their low importance.

In total, we reported 40 errors detected by DocCon to the library
developers, of which 25 are level-1 errors and 15 are level-2 errors.
Our reported errors have received extensive welcomes from the
developers. By the time of submission, the library developers have
already confirmed 29 errors and fixed 22 errors, with a significant
confirmation rate of 72.5%. The links to the corresponding GitHub
issues, together with developers’ responses and their pull requests
fixing the errors, are publicly available on DocCon’s website [33].
Discussions. DocCon successfully detected all the four errors
in Fig. 2, and the errors are either confirmed and fixed by the li-
brary developers based on our bug reports [26, 32], or validated by
their independent fixes [7, 30]. From the release function of the
Fig. 2a example,DocConmanaged to extract a document fact, Emit(
"VestingWallet", "release", "TokensReleased", "true"), and a re-
lated code fact, Emit("VestingWallet", "release", "ERC20Released",
"true"). This mismatch is captured by the error detection rules. We
have submitted a bug report for it, which was later confirmed and
fixed [26]. For the example in Fig. 2b, DocCon extracted the doc-
ument fact Require ("ERC2981", "_setTokenRoyalty", "_minted(

tokenId)", "true"), while no corresponding code fact exists. This

case was also validated by developers’ independent fixes that hap-
pened after our experimented release version [30].

For the example in Fig. 2c, DocCon extracted the code facts Call
("PullPayment", "_asyncTransfer", "Escrow", "deposit") and Emit
("Escrow", "deposit", "Deposited", "true"). The emission of event
Deposited was not documented for the Escrow.deposit func-
tion. Based on the propagation of events through function call
chains, DocCon’s fact propagation rules inferred that function
PullPayment._asyncTransfer should also emit Deposited, which
was not documented either. Therefore,DocCon reported two errors
as a result. We submitted a bug report on this case, which was also
confirmed and fixed by the library developers [32]. The developers
also responded us in details, providing additional domain knowl-
edge and mentioning that they would improve the wording of the
documentation as well:

“I’ll add the details..._asyncTransfer will indeed trigger an event,
but at another address (the escrow and the PullPayment are
two different contract) so the wording should reflect that.” [20]

For the example in Fig. 2d, DocCon extracted the code facts Revert
("DoubleEndedQueue", "front", "Empty()") and Revert ("Double-

EndedQueue", "back", "Empty()"). Neither fact has corresponding
document facts in the results. Therefore, when running on the li-
brary version with this error, DocCon detected the mismatches
and reported two errors. This case was also validated by develop-
ers’ independent fix that happened after our experimented release
version [7].

With the fact propagation rules (Sect. 4.4), DocCon was capable
of detecting errors that need to be exposed via complex function call
chains and documentation references. Figure 6 shows such an exam-
ple. In this case, function ERC721.safeTransferFrom implements
the interface function IERC721.safeTransferFrom, and its docu-
mentation only contains a reference to the corresponding interface
documentation (Line 7:@dev See{IERC721 − safeTransferFrom}).
The interface documentation explicitly requires that the from pa-
rameter value cannot be the zero address (Line 3), but the im-
plementation function ERC721.safeTransferFrom itself, together
with all its (transitive) callee functions, did not enforce this transac-
tion requirement.DocCon extracted code fact Require("IERC721",
"safeTransferFrom", "from"!="address(0)"). With the fact propa-
gation rule (3) in 4.4, it inferred the code fact Require("ERC721",
"safeTransferFrom", "from"!="address(0)") which has no corre-
sponding document fact. Therefore, DocCon reported an error.
Our bug report on this case was also confirmed [28]. The develop-
ers did not fix it though, as in their implementation this requirement
is implied by another require statement (Line 14), according to
their explanations:

“In our implementation, the address(0) is an invalid owner. You
cannot transfer any token to 0 (unless you are burning the
token)...” [18]

This response is interesting as it indicates that in the API documen-
tations, certain facts can be implied by others and can potentially be
extracted with more advanced documentation analysis. Currently,
DocCon is not able to figure out such implications as it requires
complex domain knowledge that cannot be captured by our current
document templates.

Figure 5: A false positive example caused by imprecise static
analysis.

Table 4: Results of DocCon on detecting Solidity API docu-
mentation errors.
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understand that the concept “the caller having X number of tokens”
has the same meaning as “the message sender has X balance” in the
scenarios of using ERC-777 non-fungible tokens [14]. Such domain
knowledge are way too complex to be captured by DocCon’s rule-
based document templates. With more advanced NLP techniques,
such false positives can potentially be reduced, but the technical
complexity will be significantly increased.

5.2.2 Practical Relevance of DocCon. To evaluate the practical rel-
evance of the errors detected by DocCon, we reported the detected
true positive errors to library developers and collected their feed-
back. We reported the errors in a hierarchical way based on their
severity levels. We reported all the distinct level-1 incorrectness
errors (we excluded 18 errors due to their repetitive causes) and five
randomly sampled distinct level-2 incompleteness errors for each
library. Since level-3 errors focus on internal incompleteness issues,
such as undocumented function parameters, we did not report them
due to their low importance.

In total, we reported 40 errors detected by DocCon to the library
developers, of which 25 are level-1 errors and 15 are level-2 errors.
Our reported errors have received extensive welcomes from the
developers. By the time of submission, the library developers have
already confirmed 29 errors and fixed 22 errors, with a significant
confirmation rate of 72.5%. The links to the corresponding GitHub
issues, together with developers’ responses and their pull requests
fixing the errors, are publicly available on DocCon’s website [33].
Discussions. DocCon successfully detected all the four errors
in Fig. 2, and the errors are either confirmed and fixed by the li-
brary developers based on our bug reports [26, 32], or validated
by their independent fixes [7, 30]. From the release function
of the Fig. 2a example, DocCon managed to extract a document
fact, Emit("VestingWallet", "release", "TokensReleased",
"true"), and a related code fact, Emit("VestingWallet",

"release", "ERC20Released", "true"). This mismatch is cap-
tured by the error detection rules. We have submitted a bug report
for it, which was later confirmed and fixed [26]. For the example in
Fig. 2b,DocCon extracted the document fact Require ("ERC2981",
"_setTokenRoyalty", "_minted(tokenId)", "true"), while no
corresponding code fact exists. This case was also validated by de-
velopers’ independent fixes that happened after our experimented
release version [30].

For the example in Fig. 2c, DocCon extracted the code
facts Call ("PullPayment", "_asyncTransfer", "Escrow",
"deposit") and Emit ("Escrow", "deposit", "Deposited",
"true"). The emission of event Deposited was not documented
for the Escrow.deposit function. Based on the propagation of
events through function call chains, DocCon’s fact propagation
rules inferred that function PullPayment._asyncTransfer should
also emit Deposited, which was not documented either. Therefore,
DocCon reported two errors as a result. We submitted a bug report
on this case, which was also confirmed and fixed by the library
developers [32]. The developers also responded us in details, provid-
ing additional domain knowledge and mentioning that they would
improve the wording of the documentation as well:

“I’ll add the details..._asyncTransfer will indeed trigger an event,
but at another address (the escrow and the PullPayment are
two different contract) so the wording should reflect that.” [20]

For the example in Fig. 2d, DocCon extracted the code facts
Revert ("DoubleEndedQueue", "front", "Empty()") and
Revert ("Double-EndedQueue", "back", "Empty()"). Neither
fact has corresponding document facts in the results. Therefore,
when running on the library version with this error, DocCon de-
tected the mismatches and reported two errors. This case was also
validated by developers’ independent fix that happened after our
experimented release version [7].

With the fact propagation rules (Sect. 4.4), DocCon was capable
of detecting errors that need to be exposed via complex function call
chains and documentation references. Figure 6 shows such an exam-
ple. In this case, function ERC721.safeTransferFrom implements
the interface function IERC721.safeTransferFrom, and its docu-
mentation only contains a reference to the corresponding interface
documentation (Line 7: @dev See {IERC721-safeTransferFrom}).
The interface documentation explicitly requires that the from
parameter value cannot be the zero address (Line 3), but
the implementation function ERC721.safeTransferFrom
itself, together with all its (transitive) callee functions,
did not enforce this transaction requirement. DocCon ex-
tracted code fact Require("IERC721", "safeTransferFrom",
"from"!="address(0)"). With the fact propagation rule
(3) in 4.4, it inferred the code fact Require("ERC721",
"safeTransferFrom", "from"!="address(0)") which has
no corresponding document fact. Therefore, DocCon reported an
error. Our bug report on this case was also confirmed [28]. The
developers did not fix it though, as in their implementation this
requirement is implied by another require statement (Line 14),
according to their explanations:

“In our implementation, the address(0) is an invalid owner. You
cannot transfer any token to 0 (unless you are burning the
token)...” [18]
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1 /** @dev Safely transfers `tokenId` token from `from` to `to` ...
2 * Requirements:
3 * - `from` cannot be the zero address. ... */
4 function safeTransferFrom(
5 address from, address to, uint256 tokenId) external;
6
7 /** @dev See {IERC721-safeTransferFrom}. */
8 function safeTransferFrom(address from, address to,
9 uint256 tokenId) public virtual override {
10 safeTransferFrom(from, to, tokenId, "");
11 }
12 function _transfer(address from, address to,
13 uint256 tokenId) internal virtual {
14 require(ERC721.ownerOf(tokenId) == from, "... incorrect owner");
15 require(to!=address(0), "ERC721: transfer to the zero address");
16 _beforeTokenTransfer(from, to, tokenId); ...}

Figure 6: A level-1 error in OpenZeppelin exposed through
complex reference chains.

1 /* ... Requirements: `index` must be strictly less than length. */
2 function at(Bytes32Set storage set, uint256 index) internal view

returns (bytes32) { return _at(set._inner, index); }↩→

Figure 7: Another level-1 error in OpenZeppelin.

There are seven cases confirmed by developers, but they were not
fixed. One such example is Fig. 7. In this case, the EnumerableSet.at
function requires that index must be strictly less than the length
of the array (Line 1). However, in the function code, there is no
corresponding require statement enforcing this rule.DocCon also
detected that the document fact Require("EnumerableMap", "at",

"index"<"length") does not have any corresponding code fact and
thus reported an error. We submitted a bug report on this case,
which was confirmed by the library developers [24]. But they did
not fix it, because the newer Solidity compiler performs the index-
out-of-bound check itself.

“set._values is a solidity array. The solidity compiler checks
that the index is lower than the length. It’s true that we do not
check the index ourselves because solidity does it...” [19]

To capture this information, one needs to incorporate deeper lan-
guage semantics into the analysis, which is beyond the scope of
DocCon. Encouragingly, even for those cases that were not fixed
(seven in total), the developers still positively confirmed our find-
ings and provided detailed explanations.

The fact that developers confirmed and fixedmost of our reported
errors firmly validates that DocCon is valuable in practice. The
developers also admitted that they needed more consistency and
clearer documentation guidelines after confirming several errors
reported by us:

“Thank you for pointing that out. We definitely need more
consistency or at least clearer guidelines on how we approach
that matter...” [21]

They encouraged us to submit further issues and pull requests:
“You’re welcome to submit pull requests as well next time” [22]. We
would also like to take our experiment findings and their feedback
into account to further enhance DocCon in the future.

1 /* @dev Moves `amount` of tokens from `sender` to `recipient` */
2 function _transfer(address from, address to, uint256 amount
3 ) internal virtual {
4 require(from != address(0), "... from the zero address"); ... }

Figure 8: A level-1 error in the element containment category.

Answer to RQ2:We reported 40 errors detected by DocCon
in total to smart contract library developers, who have already
confirmed 29 errors and fixed 22 by the time of submission
(confirmation rate = 72.5%). The results validate that DocCon’s
detection results are valuable in practice.

5.2.3 Categorization of Smart Contract API Documentation Errors.
To study the errors in smart contract API documentations in depth,
we categorized all the manually validated true-positive level-1 and
level-2 errors (the manual inspection and sampling process is de-
scribed in Sect. 5.2.1). For each error, we determined its category
based on the facts involved in detecting it.
Event Emission. The errors in this category were detected by the
Emit facts. An event emission error indicates either i) an event is
documented but does not exist in the corresponding code (level-
1), or ii) an event is emitted in the code but not documented in
the corresponding documentation (level-2). Figure 2a and Fig. 2c
demonstrate these two scenarios, respectively.
Transaction Requirement and Reversion. The errors in this
category were detected by the facts Require and Revert. Similar
to the previous category, an error indicates either a transaction
requirement or reversion is documented but not enforced (level-1),
or it is enforced but not documented (level-2). Figure 2b and Fig. 2d
are level-1 and level-2 errors in this category, respectively.
Element Containment. The errors in this category were detected
by the facts HasFn, CtHasMod, HasStateVar, and HasParam. Simi-
larly, an error indicates either a containment relation is documented
but not in the code (level-1), or it exists in the code but is not docu-
mented (level-3). Currently, DocCon supports the following con-
tainment relations: a contract containing functions/modifiers/state
variables, and a function containing parameters. Figure 8 demon-
strates an example of a level-1 element containment error. In this
case, the documentation incorrectly references parameter names,
sender and recipient, since the actual parameter names in the
code are from and to. This error was detected by DocCon using
the HasParam fact. It was confirmed and fixed by the library devel-
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Element Reference. The errors in this category were detected by
the facts Inherit, Override, and FnHasMod. An error indicates ei-
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DocCon supports the following reference relations: a contract in-
herits another contract, a function overrides another function, and a
function uses a modifier. Figure 9 shows an example of a level-1 ele-
ment reference error. In this case, the documentation (Line 1) incor-
rectly refers to a non-existing contract HasSecondarySalesFees. It
was detected by DocCon with the Override fact. It was confirmed
and fixed by the library developers [17, 27].

Figure 6: A level-1 error in OpenZeppelin exposed through
complex reference chains.
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6
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1 /* ... Requirements: `index` must be strictly less than length. */
2 function at(Bytes32Set storage set, uint256 index) internal view

returns (bytes32) { return _at(set._inner, index); }↩→

Figure 7: Another level-1 error in OpenZeppelin.

There are seven cases confirmed by developers, but they were not
fixed. One such example is Fig. 7. In this case, the EnumerableSet.at
function requires that index must be strictly less than the length
of the array (Line 1). However, in the function code, there is no
corresponding require statement enforcing this rule.DocCon also
detected that the document fact Require("EnumerableMap", "at",

"index"<"length") does not have any corresponding code fact and
thus reported an error. We submitted a bug report on this case,
which was confirmed by the library developers [24]. But they did
not fix it, because the newer Solidity compiler performs the index-
out-of-bound check itself.

“set._values is a solidity array. The solidity compiler checks
that the index is lower than the length. It’s true that we do not
check the index ourselves because solidity does it...” [19]

To capture this information, one needs to incorporate deeper lan-
guage semantics into the analysis, which is beyond the scope of
DocCon. Encouragingly, even for those cases that were not fixed
(seven in total), the developers still positively confirmed our find-
ings and provided detailed explanations.

The fact that developers confirmed and fixedmost of our reported
errors firmly validates that DocCon is valuable in practice. The
developers also admitted that they needed more consistency and
clearer documentation guidelines after confirming several errors
reported by us:

“Thank you for pointing that out. We definitely need more
consistency or at least clearer guidelines on how we approach
that matter...” [21]

They encouraged us to submit further issues and pull requests:
“You’re welcome to submit pull requests as well next time” [22]. We
would also like to take our experiment findings and their feedback
into account to further enhance DocCon in the future.
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mented (level-3). Currently, DocCon supports the following con-
tainment relations: a contract containing functions/modifiers/state
variables, and a function containing parameters. Figure 8 demon-
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code are from and to. This error was detected by DocCon using
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(confirmation rate = 72.5%). The results validate that DocCon’s
detection results are valuable in practice.

5.2.3 Categorization of Smart Contract API Documentation Errors.
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we categorized all the manually validated true-positive level-1 and
level-2 errors (the manual inspection and sampling process is de-
scribed in Sect. 5.2.1). For each error, we determined its category
based on the facts involved in detecting it.
Event Emission. The errors in this category were detected by the
Emit facts. An event emission error indicates either i) an event is
documented but does not exist in the corresponding code (level-
1), or ii) an event is emitted in the code but not documented in
the corresponding documentation (level-2). Figure 2a and Fig. 2c
demonstrate these two scenarios, respectively.
Transaction Requirement and Reversion. The errors in this
category were detected by the facts Require and Revert. Similar
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Element Containment. The errors in this category were detected
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larly, an error indicates either a containment relation is documented
but not in the code (level-1), or it exists in the code but is not docu-
mented (level-3). Currently, DocCon supports the following con-
tainment relations: a contract containing functions/modifiers/state
variables, and a function containing parameters. Figure 8 demon-
strates an example of a level-1 element containment error. In this
case, the documentation incorrectly references parameter names,
sender and recipient, since the actual parameter names in the
code are from and to. This error was detected by DocCon using
the HasParam fact. It was confirmed and fixed by the library devel-
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ther a reference relation is documented but not in the code (level-1),
or it exists in the code but is not documented (level-3). Currently,
DocCon supports the following reference relations: a contract in-
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Answer to RQ2:We reported 40 errors detected by DocCon
in total to smart contract library developers, who have already
confirmed 29 errors and fixed 22 by the time of submission
(confirmation rate = 72.5%). The results validate that DocCon’s
detection results are valuable in practice.

5.2.3 Categorization of Smart Contract API Documentation Errors.
To study the errors in smart contract API documentations in depth,
we categorized all the manually validated true-positive level-1 and
level-2 errors (the manual inspection and sampling process is de-
scribed in Sect. 5.2.1). For each error, we determined its category
based on the facts involved in detecting it.
Event Emission. The errors in this category were detected by the
Emit facts. An event emission error indicates either i) an event is
documented but does not exist in the corresponding code (level-
1), or ii) an event is emitted in the code but not documented in
the corresponding documentation (level-2). Figure 2a and Fig. 2c
demonstrate these two scenarios, respectively.
Transaction Requirement and Reversion. The errors in this
category were detected by the facts Require and Revert. Similar
to the previous category, an error indicates either a transaction
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Element Containment. The errors in this category were detected
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but not in the code (level-1), or it exists in the code but is not docu-
mented (level-3). Currently, DocCon supports the following con-
tainment relations: a contract containing functions/modifiers/state
variables, and a function containing parameters. Figure 8 demon-
strates an example of a level-1 element containment error. In this
case, the documentation incorrectly references parameter names,
sender and recipient, since the actual parameter names in the
code are from and to. This error was detected by DocCon using
the HasParam fact. It was confirmed and fixed by the library devel-
opers [23, 25].
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the facts Inherit, Override, and FnHasMod. An error indicates ei-
ther a reference relation is documented but not in the code (level-1),
or it exists in the code but is not documented (level-3). Currently,
DocCon supports the following reference relations: a contract in-
herits another contract, a function overrides another function, and a
function uses a modifier. Figure 9 shows an example of a level-1 ele-
ment reference error. In this case, the documentation (Line 1) incor-
rectly refers to a non-existing contract HasSecondarySalesFees. It
was detected by DocCon with the Override fact. It was confirmed
and fixed by the library developers [17, 27].
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mented (level-3). Currently, DocCon supports the following con-
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1 /// Implement the `HasSecondarySalesFees` Contract ...
2 function getFeeRecipients(uint256) public view override returns (
3 address payable[] memory ) {
4 address payable[] memory recipients = new address payable[](1);
5 ... }

Figure 9: A level-1 error in the element reference category.

Level-1
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TR: 17
(39.5%)
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ER: 3 (7.0%)
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errors EE: 106

(35.7%)

TR: 191
(64.3%)

Figure 10: Distribution of categories of errors. (EE: Event Emis-
sion, TR: Transaction Requirement or Reversion, EC: Element Containment,
ER: Element Reference)

Figure 10 shows the distribution of error categories for level-1
and level-2 errors. For level-1 errors, the largest category is ele-
ment containment, which is mainly due to outdated information,
such as certain code entities not being consistently renamed. The
event- and transaction-related cases take about 47% of the level-1
errors. These key features, although critical to smart contracts, are
often incorrectly documented. They also constitute all of level-2
errors, which indicates that these features are often incompletely
documented as well.

We observed that in Solidity smart contracts, the API documenta-
tion errors are different from those of the general-purpose program-
ming languages, e.g., errors in Javadoc. To the best of our knowledge,
all the existing works on detecting Javadoc inconsistencies focus on
aspects including code names [59, 98] and parameter constraints
(nullness, types, value ranges, and exceptions) [99, 100]. In Solidity,
many of the API documentation errors are related to events and
transactions, which do not have their counterparts in Java. There-
fore, these works are not directly applicable in our domain. Even
if one re-implemented a technique for Javadoc to check Solidity
libraries, the technique could detect no more than two categories of
the errors (i.e., element containment and element reference), which
only take 6.76 % of the errors detected by DocCon.

Answer to RQ3: There are four categories of the smart contract
API documentation errors detected by DocCon: event emission
(32.06 %), transaction requirement or reversion (61.18 %), ele-
ment containment (5.88 %), and element reference (0.88 %). Half
of the categories have no counterparts in general-purpose pro-
gramming languages such as Java.

5.3 Threats to Validity
Internal. There is no ground truth for the Solidity smart contract
API documentation errors. To mitigate this issue, we manually
verified the errors detected by DocCon. Two of the authors spent
five minutes per error to confirm whether it is a true positive.
Besides, many reported true positive errors have been confirmed
or fixed by the library developers, which also attests the accuracy
of our manual labeling.

External. Our experimental findings may not generalize to other
smart contract libraries. To mitigate this threat, we selected high-
quality and widely used smart contract libraries as the representa-
tives where all of their source code and API documentations are
available.DocCon can only support Solidity-written smart contract
libraries, and in the future our approach can also be extended to
the libraries of other smart contract programming languages.

6 RELATEDWORK
APIDocumentations. There is a large body of empirical studies on
API documentations [36, 38, 46, 55, 67, 71, 75, 78, 79, 87, 97]. Their
findings indicate that maintaining high-quality documentations is
non-trivial and documentation errors are common even in widely-
used and well-maintained libraries [46, 79]. Moreover, developers
have higher chances of introducing bugs and ask more questions
when using APIs with linguistic anti-patterns in the documents [36].
Saied et al. [78] also conducted an observational study on the API
usage constraints and their documentation.

Zhong and Su [98] proposed an approach combining NLP and
code analysis to detect API documentation errors. Their work fo-
cuses on grammatical errors (e.g., erroneous spellings) and incorrect
code names (document-referred names that do not exist in source
code). Lee et al. [59] proposed a technique extracting change rules
from code revisions and applying the rules to detect outdated API
names in JavaAPI documents. Their work targets API names, includ-
ing names of Java classes, methods, and fields. Compared with these
works, DocCon targets not only name errors but also semantic er-
rors in the API documentation, such as event emissions, transaction
requirements, and transaction reversions. Zhou et al. [99] proposed
a technique that combines NLP and static analysis to detect defects
on parameter usage constraints in Java APIs. Their work focuses
on Java parameter constraints, including parameter nullness, type
restriction, and range limitation. Their subsequent work [100] auto-
matically repairs these defects in Java API documents based on the
detection results. DocCon differs from [99] in two main aspects.
First, most of the parameter constraints in [99] are not applicable
to Solidity, as there is no notion of nullness in Solidity and the type
of an address parameter cannot be statically determined. Second,
DocCon targets many semantic constraints that are specific to
the smart contract domain, such as event emission and transac-
tion requirements, which do not have their counterparts in Java
programs.
Code Comments. There is also a large body of works on analyzing
code comments [42, 53, 60, 62, 68, 69, 74, 76, 77, 81, 83–85, 89, 94, 95].
One direction is to detect inconsistencies between comments and
code, sometimes called fragile comments [77], through program
analysis [95] and heuristic rules [83, 89]. Similar idea can also be
applied to suggest updates to comments. For example, techniques
including CUP [69], CUP2 [68], and HebCup [60] were proposed
to automatically perform just-in-time comment updates when the
corresponding code is changed. Habib and Pradel [53] proposed
an approach to automatically infer thread safety documentations
for Java classes that can assist test generation. Another direction
focuses on retrieving information with NLP-based techniques from
various software artifacts, including documents, discussions, issues,
reviews, andmanuals. Comparedwith these works,DocCon targets

Figure 9: A level-1 error in the element reference category.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chenguang Zhu, Ye Liu, Xiuheng Wu, and Yi Li

1 /// Implement the `HasSecondarySalesFees` Contract ...
2 function getFeeRecipients(uint256) public view override returns (
3 address payable[] memory ) {
4 address payable[] memory recipients = new address payable[](1);
5 ... }

Figure 9: A level-1 error in the element reference category.

Level-1
errors

EE: 3 (7.0%)

TR: 17
(39.5%)

EC: 20
(46.5%)

ER: 3 (7.0%)

Level-2
errors EE: 106

(35.7%)

TR: 191
(64.3%)

Figure 10: Distribution of categories of errors. (EE: Event Emis-
sion, TR: Transaction Requirement or Reversion, EC: Element Containment,
ER: Element Reference)

Figure 10 shows the distribution of error categories for level-1
and level-2 errors. For level-1 errors, the largest category is ele-
ment containment, which is mainly due to outdated information,
such as certain code entities not being consistently renamed. The
event- and transaction-related cases take about 47% of the level-1
errors. These key features, although critical to smart contracts, are
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1 /// Implement the `HasSecondarySalesFees` Contract ...
2 function getFeeRecipients(uint256) public view override returns (
3 address payable[] memory ) {
4 address payable[] memory recipients = new address payable[](1);
5 ... }

Figure 9: A level-1 error in the element reference category.
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an approach to automatically infer thread safety documentations
for Java classes that can assist test generation. Another direction
focuses on retrieving information with NLP-based techniques from
various software artifacts, including documents, discussions, issues,
reviews, andmanuals. Comparedwith these works,DocCon targets
very different research questions. Typical Solidity programs are very
succinct for efficiency considerations (e.g., gas usage). As a result,
they have few inline comments. Besides, the tags used in Solidity
API documentations are significantly different from Javadoc (e.g.,
there is no @return tags), as Solidity API developers mainly focus
on event and transaction related properties.
Fact-Based Approaches. The idea of reverse engineering pro-
grams and representing relevant information as facts is not new.
The existing work on fact extraction can be broadly categorized
into the intra-version and inter-version ones. Intra-version fact ex-
traction focuses on a single version of the program artifacts. There
are many downstream analyses performed on the intra-version
facts for architecture understanding [40], visualization, and re-
documentation [58]. Inter-version fact extraction relies on sophis-
ticated structural differencing [41, 44, 48] and code change classifi-
cation [50, 51, 54] algorithms. The former is used to compute an
optimal sequence of atomic edit operations that can transform one
AST into another, and the latter is used to classify atomic changes
according to their change types. Wu et al. [92] proposed a uniform
exchangeable representation of differential facts, which establishes
links between intra-version facts and inter-version facts. Their fact
representation supports efficient querying and manipulation, and
thus can be used in various program analysis tasks. This work
combines program facts and documentation facts for inconsistency
checking.
Smart Contract Analysis. There have been a large number of
static [4, 49, 52, 61, 70, 72] and dynamic [56, 63, 86, 88, 93] analysis
techniques focusing on the security aspects of smart contracts. For
example, Oyente [70] is one of the earliest static analysis tool to
detect security vulnerabilities such as reentrancy and Slither [49]
performs taint analysis to find information flow vulnerabilities.
Model-based testing [64, 65] and fuzzing [56, 86, 88, 93] have also
be explored to discover common security issues, such as permission
bugs [64]. Another interesting property concerning the quality of
smart contracts is their fairness. For instance, Bartoletti et al. [39]
found through a survey that a large number of the transactions
on Ethereum could be owing to Ponzi schemes. Such fairness is-
sues may endanger the trust of users towards the blockchain plat-
forms. Liu et al. [66] developed an automated tool to verify fairness
properties through a game-theoretic approach. To the best of our
knowledge, DocCon is the first work for detecting smart contract
API documentation errors. It can be integrated into the current tool
chains to enhance the overall quality of DApp development.

7 CONCLUSION
In this paper, we presented an automated technique DocCon to de-
tect API documentation errors for Solidity smart contract libraries.
Our approach is based on the extraction and querying of pertinent
facts from both the library code and documentation. We designed a
unified documentation-code fact schema and outline the queries for

various severity levels. Through experimental evaluation on popu-
lar Solidity libraries, DocCon is shown to be effective in identifying
documentation errors and its practical value is further proven by
the positive feedback from the library developers.
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