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ON APPROXIMATING MATRIX NORMS IN DATA STREAMS∗

YI LI† , HUY L. NGUYỄN‡ , AND DAVID P. WOODRUFF§

Abstract. This paper presents a systematic study of the space complexity of estimating the
Schatten p-norms of an n×n matrix in the turnstile streaming model. Both kinds of space complex-
ities, bit complexity and sketching dimension, are considered. Furthermore, two sketching models,
general linear sketching and bilinear sketching, are considered. When p is not an even integer, we
show that any one-pass algorithm with constant success probability requires near-linear space in
terms of bits. This lower bound holds even for sparse matrices, i.e., matrices with O(1) nonzero
entries per row and per column. However, when p is an even integer, we give for sparse matrices
an upper bound which, up to logarithmic factors, is the same as estimating the pth moment of an
n-dimensional vector. These results considerably strengthen lower bounds in previous work for ar-
bitrary (not necessarily sparse) matrices. Similar near-linear lower bounds are obtained for Ky Fan
norms, SVD entropy, eigenvalue shrinkers, and M-estimators, many of which could have been solv-
able in logarithmic space prior to this work. The results for general linear sketches give separations
in the sketching complexity of Schatten p-norms with the corresponding vector p-norms, and rule
out a table-lookup nearest-neighbor search for p = 1, making progress on a question of Andoni. The
results for bilinear sketches are tight for the rank problem and nearly tight for p ≥ 2; the latter is
the first general subquadratic upper bound for sketching the Schatten norms.
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1. Introduction. In the turnstile data stream model, there is an underlying n-
dimensional vector x which is initialized to 0n and then undergoes a long sequence of
additive positive and negative updates of the form xi ← xi + ∆ to its coordinates xi.
The algorithm maintains a small summary of x while processing the stream. At the
end of the stream it should succeed in approximating a prespecified function f of x
with constant probability. A major interest is the space complexity of the summary
that the algorithm maintains, for which the following two models have been broadly
considered.

Data stream model. In this model it is assumed that x ∈ Zn and that each
coordinate update ∆ ∈ {−m,−m + 1, . . . ,m}. We make the standard simplifying
assumption that n, m, and the length of the stream are polynomially related. The
goal is to minimize the space usage of the algorithm in bits.
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Sketching model. In this model it is often assumed that x ∈ Rn and ∆ ∈ R.
The algorithm chooses a linear sketch L : Rn → Rk (which is usually random) and
maintains Lx throughout the process of the data stream, so that for any fixed vector
x, one can approximate f(x) from Lx. Given an update of the form xi ← xi + ∆,
resulting in a new vector x′ = x + ∆ · ei, we can add L(∆ · ei) to Lx to obtain Lx′
(here ei is the ith standard unit vector). The goal is to minimize the dimension k.

We will call the model insertion-only if each coordinate can be updated at most
once.1 In general, the two models above are not comparable. In the data stream
model, if one wants to output a vector x ∈ {0, 1, . . . ,M − 1,M}n, one needs n logM
bits of space. On the other hand, if u is the vector (1, (M + 1), (M + 1)2, (M +
1)3, . . . , (M +1)n), one can recover x from 〈u, x〉, so the sketching dimension k is only
equal to 1. The sketching complexity thus gives a meaningful measure of complexity
in the real RAM model. Conversely, lower bounds in the sketching model do not
translate into lower bounds in the data stream model. This statement holds even
given the work of [55], which characterizes turnstile streaming algorithms as linear
sketches. The problem is that lower bounds in the sketching model involve continuous
distributions, and after discretizing the distributions it is no longer clear whether the
lower bounds hold.

A well-studied problem for both models in the literature is approximating the
frequency moments Fp(x), which is equivalent to estimating the `p-norms2 ‖x‖p =
(
∑n
i=1 |xi|p)1/p, for p ∈ [0,∞], dating back to work of Alon, Matias, and Szegedy [2].

For p ≤ 2 it is possible to obtain any constant factor approximation using Θ(1) sketch
dimension or Θ̃(1) bits of space [42, 49], while for p > 2 the bound is Θ̃(n1−2/p) sketch
dimension or Θ̃(n1−2/p) bits [18, 12, 44, 5, 33, 56, 15, 34], where f̃ = f · poly(log(f)).
In addition to being of theoretical interest, the problems have several applications.
The value ‖x‖0, by continuity, is equal to the support size of x, also known as the
number of distinct elements [31, 32]. The norm ‖x‖1 is the Manhattan norm, which
is a robust measure of distance and is proportional to the variation distance between
distributions [40, 42, 48]. The Euclidean distance ‖x‖2 is important in linear algebra
problems [66] and corresponds to the self-join size in databases [2]. Often one wishes
to find or approximate the largest coordinates of x, known as the heavy hitters [19, 24],
and ‖x‖∞ is defined, by continuity, to equal maxi |xi|.

In this paper we primarily study the analogous problem of estimating matrix
norms. In the turnstile streaming model, an underlying n × n matrix A undergoes
a sequence of additive updates to its entries. Each update has the form (i, j,∆) and
indicates that Ai,j ← Ai,j + ∆. The analogy of the `p-norm of vectors is the Schatten
p-norm of matrices. Suppose that A is an n×n rank-r matrix. The Schatten p-norm
of A is defined to be2 ‖A‖p = (

∑r
i=1 σ

p
i )1/p, where σ1 ≥ · · · ≥ σr are the nonzero

singular values of A. When p = 0, ‖A‖0 is defined to be the rank of A. The cases
p = 1, 2, and ∞ correspond to the trace norm, the Frobenius norm, and the operator
norm, respectively. These problems have found applications in several areas; we refer
the reader to [22] for graph applications for p = 0, to the work on differential privacy
[41, 54] and nonconvex optimization [17, 28] for p = 1, and to the survey on numerical
linear algebra for p ∈ {2,∞} [57]. Fractional Schatten p-norms of Laplacians were
studied by Zhou [74] and Bozkurt and Bozkurt [13]. We refer the reader to [68] for

1In some works, insertion-only refers to multiple updates, provided they are all positive. As we
will prove lower bounds when each coordinate is updated at most once and by a positive amount,
our lower bounds are only stronger by considering this notion of insertion-only.

2Technically it is not a norm when p < 1, but it is still a well-defined quantity. In this paper we
refer to it using the name of “norm” for simplicity.
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Table 1.1
Our results for approximating the Schatten p-norm up to a constant factor (except for the

p = ∞ case) with constant probability in both the bilinear sketching and general sketching models.
For the bilinear case, we look at the minimal r · s value, while for general linear sketches we look at
the minimal value of k. For p =∞, parameter α ≥ 1 is the desired approximation factor.

Bilinear sketches General sketches
Schatten p-norm Lower bound Upper bound Lower bound Upper bound

p =∞ See general sketches Ω(n2/α4) O(n2/α4) [7]
p ∈ [4,∞) See general sketches Ω(n2−4/p) O(n2−4/p) even p

p ∈ (0, 4) \ {2} See general sketches Ω(n) O(n2)
p = 0 Ω(n2) O(n2) Ω(

√
n) O(n2)

applications of the case p = 1/2, which is the Laplacian-energy-like (LEL) invariant
of a graph.

In nearest-neighbor search (NNS), one technique often used is to first replace each
of the input objects (points, images, matrices, etc.) with a small sketch, and then
build a lookup table for all possible sketches to support fast query time. Alexandr
Andoni, in his talks at the Barriers in Computational Complexity II workshop and
Mathematical Foundations of Computer Science conference, stated that a goal would
be to design an NNS data structure for the Schatten norms, e.g., the trace or Schatten
1-norm (slide 31 of [4]). If a sketch for a norm has small size, building a table lookup
is feasible.

It is similarly assumed for the data stream model that A ∈ Zn×n and ∆ ∈
{−m, . . . ,m} and for the sketching model that A ∈ Rn×n and ∆ ∈ R. The sketching
model can be further categorized into general linear sketching and bilinear sketching.
In the general linear sketching model, the n × n matrix A is interpreted as a vector
in Rn2 , and the goal is then to design a distribution over linear maps L : Rn2 → Rk,
such that for any fixed n× n matrix A, interpreting it as a vector in Rn2 , from L(A)
one can approximate ‖A‖p up to a factor with constant probability. The goal is to
minimize k. In the bilinear sketching model, there is a distribution over pairs of r×n
matrices S and n× s matrices T such that for any fixed n×n matrix A, from S ·A ·T
one can approximate ‖A‖p up to an approximation factor with constant probability,
where ‖A‖p is a matrix norm. The goal is to minimize r · s. This model has been
used in several streaming papers for sketching matrices [7, 25, 43], and as far as we
are aware, all known sketches in numerical linear algebra applications have this form.
It also has the advantage that SAT can be computed quickly if S and T have fast
matrix multiplication algorithms.

1.1. Our contributions.

1.1.1. Sketching model. We summarize our results for the two sketching mod-
els in Table 1.1. We note that, prior to our work, for all p /∈ {2,∞}, all upper bounds
in the table were a trivial O(n2), while all lower bounds for p ≤ 2 were a trivial Ω(1),
while for p > 2 they were a weaker Ω(n1−2/p logn).

For the general sketching model, we have the following results. For the spectral
norm (p =∞), we prove an Ω(n2/α4) bound for achieving a factor α-approximation
with constant probability, matching an upper bound achievable by an algorithm of
[7]. This generalizes to Schatten p-norms for p > 2, for which we prove an Ω(n2−4/p)
lower bound and give a matching O(n2−4/p) upper bound for even integers p. For odd
integers p we are only able to achieve this upper bound if we additionally assume that
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A is positive semidefinite3 (PSD). For p = 0, 1 our bounds are now weaker Ω(
√
n)

and Ω(n), respectively. However, they are the first superconstant lower bounds for
the rank and the Schatten 1-norm, respectively, which in particular rules out a naïve
table-lookup solution to the NNS problem, addressing a question of Andoni.

For the bilinear sketching model, we prove an Ω(n2) lower bound for rank ap-
proximation (p = 0), showing that no nontrivial sketching is possible.

Prior to our work, surprisingly, the only known o(n2) upper bound for either
model was for p = 2, in which case one can achieve a bilinear sketch with r · s = O(1)
[43]. Moreover, the only lower bounds known were those for estimating the `p-norm
of a vector x, obtained for p > 2 by planting v into the diagonal line of A, and were
of the form k = Ω(n1−2/p logn) [8, 56, 62]. Thus, it was not even known whether
a sketching dimension of r · s = O(1) was sufficient for bilinear sketches to obtain a
constant-factor approximation to the rank or Schatten 1-norm, or if k = Ω(n2) was
required for general linear sketches.

1.1.2. Data stream model. We show that for approximating Schatten p-norms
up to a sufficiently small constant factor, for any positive real number p which is not
an even integer, almost n bits of space are necessary. Moreover, this holds even for
matrices with O(1) nonzero entries per row and column, and consequently is tight
for such matrices. It also holds even in the insertion-only model. Furthermore, for
even integers p, we present an algorithm achieving an arbitrarily small constant-factor
approximation for any matrix with O(1) nonzero entries per row and column, which
achieves Õ(n1−2/p) bits of space. Also, Ω(n1−2/p) bits of space are necessary for even
integers p, even with O(1) nonzero entries per row and column, and even if all entries
are absolute constants independent of n.

We summarize prior work and its relation to our results in Table 1.2. The best
previous lower bound for estimating the Schatten p-norm up to an arbitrarily small
constant factor for p ≥ 2 was Ω(n1−2/p), which is the same for vector `p-norms.
For p ∈ [1, 2), the lower bound was Ω(n

1/p−1/2

logn ) [6], based on nonembeddability, and
the best lower bound obtainable via this approach is Ω(n1/p−1/2), since the identity
map is an embedding of the Schatten p-norm into the Schatten-2 norm with n1/p−1/2

distortion, and the latter can be sketched with O(logn) bits; further, it is unknown
whether the lower bound of [6] holds for sparse matrices [63]. For p ∈ (0, 1), which is
not a norm but still a well-defined quantity, the prior bound is only Ω(logn), which
follows from lower bounds for `p-norms of vectors. For p = 0, an Ω(n1−g(ε)) lower
bound was shown for (1 + ε)-approximation [16], where g(ε)→ 0 as ε→ 0+.

Our techniques also generalize to other functions of a matrix spectrum, i.e., func-
tions of the form f(A) =

∑
i f(σi), where σi’s are the singular values of A. There are

a number of other spectrum functions of importance, including the SVD entropy func-
tion, which has seen foundational applications in genome processing [3], and optimal
eigenvalue shrinkers, which are motivated from regularized low rank approximation.
The SVD entropy is defined to be f(σi) = (σ2

i /‖A‖2F ) log2(‖A‖2F /σ2
i ). In insertion-

only streams, ‖A‖2F can be computed exactly, so one can set f(σi) = σ2
i log2(1/σ2

i ),
from which, given ‖A‖2F and an approximation to

∑n
i=1 f(σi), one can approximate

the SVD entropy. Optimal eigenvalue shrinkers are defined for different loss func-
tions, such as the Frobenius, operator, and nuclear norm losses [36]. For example, for
Frobenius norm loss, f(x) = 1

x

√
(x2 − α− 1)2 − 4α for x ≥ 1 +

√
α, and f(x) = 0

3A square matrix is called positive semidefinite if it is symmetric and all its eigenvalues are
nonnegative.
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Table 1.2
A summary of existing and new lower bounds for (1 + ε)-approximating Schatten p-norms and

Ky Fan k-norms, where ε is an arbitrarily small constant. The Ω-notation is suppressed. The
function g(ε)→ 0 as ε→ 0 and could depend on the parameters p or k and be different in different
rows. We show that the lower bound n1−2/p is tight up to logarithmic factors by providing a new
upper bound for even integers p and sparse matrices. For even integers we also present a new proof
of an n1−2/p lower bound in which all entries of the matrix are bounded by O(1).

Space complexity in bits
Previous lower bounds Our lower bounds

Schatten
p-norm

p ∈ (2,∞) ∩ 2Z n1−2/p [37, 46]
p ∈ (2,∞) \ 2Z n1−2/p [37, 46] n1−g(ε)

p ∈ [1, 2) n1/p−1/2

logn [6] n1−g(ε)

p ∈ (0, 1) logn [49] n1−g(ε)

p = 0 n1−g(ε) [16]
Ky Fan k-norm max{n

k
, k

1/2

log k } [12, 6] n1−g(ε) (any k)

otherwise, where α is a given parameter. Other applications include low rank ap-
proximation with respect to functions on the singular values that are not norms,
such as Huber or Tukey loss functions, which could find more robust low dimensional
subspaces as solutions; we further discuss these functions in section 13.

We also obtain a similar near-linear lower bound for estimating the Ky Fan k-
norm, which is defined to be the sum of the k largest singular values and has applica-
tions to clustering and low rank approximation [72, 29]. Interestingly, these norms do
not have the form

∑n
i=1 f(σi) but rather have the form

∑k
i=1 f(σi), yet our framework

is robust enough to handle them.

1.2. Our techniques.

1.2.1. General linear sketches. A standard technique for proving lower bounds
is Yao’s minimax principle, which implies that if there exists a distribution on sketches
that succeeds on all n × n input matrices A with large probability, then for any dis-
tribution L on inputs A, there is a fixed sketch L : Rn2 → Rk, which succeeds with
large probability over A ∼ L. Moreover, when treating L as a k × n2 matrix, we can
assume the rows of L are orthonormal. The induced distribution of the sketch L(A),
where A ∼ L, is denoted by L′.

For p > 2 we choose L1 and L2 such that L′1 is the distribution of a k-dimensional
vector g of independent and identically distributed (i.i.d.) Gaussians and L′2 is the
distribution of g + h, where g is as before but h = 1

n1/2−1/p (uTL1v, . . . , uTLkv) for
random n-dimensional Gaussian vectors u and v, and where Li is the ith row of the
sketching matrix L, viewed as an n × n matrix. We again use the χ2-divergence
to bound the total variance distance dTV (L′1,L′2) with appropriate conditioning; the
definitions of χ2-divergence and total variation distance can be found in subsection 2.3.
This idea was previously used in the context of sketching p-norms of vectors [8],
improving the previous Ω(n1−2/p) bound to Ω(n1−2/p logn).

For p = 1 we consider distinguishing a (scaled) n×n Gaussian matrix 1√
n
G from a

random orthogonal n×nmatrix O. Previously Chatterjee and Meckes showed that the
Wasserstein distance between the linear sketches in these two cases is O(k/n3/2) [21].
In general, small Wasserstein distance does not imply small total variation distance,
and it seems unlikely that one can obtain a bound on total variation distance following
their techniques since the characterization of a multidimensional Gaussian distribution
is a second-order differential equation. Instead, we perturb the candidate distributions
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and consider 1√
n
G + η√

n
G′ and O + η√

n
G′ for some small constant η > 0 and an

independent copy of Gaussian matrix G′. This perturbs the linear sketches by a
random Gaussian vector N(0, η

2

n In), where In denotes the n×n identity matrix. The
total variation distance between the new linear sketches can now be bounded in terms
of the Wasserstein distance between the original linear sketches.

For p = 0 we look at distinguishing an n × n Gaussian matrix G from a matrix(
G′ G′O

)
, where G′ is an n × n/2 Gaussian random matrix and O is a random

n/2× n/2 orthogonal matrix. It is clear that the ranks in the two cases are different
by a constant factor. Applying our sketching matrix L, we have L′1 distributed as
N(0, Ik), but L′2 is the distribution of (Z1, . . . , Zk), where Zi = 〈Ai, G′〉+ 〈Bi, G′O〉,
and each Li is written as the adjoined matrix

(
Ai Bi

)
for (n × n/2)-dimensional

matrices Ai and Bi. For each fixed O, we can view Z as a k-dimensional Gaussian
vector formed from linear combinations of entries of G′. Thus the problem amounts
to bounding the variation distance between two zero-mean k-dimensional Gaussian
vectors with different covariance matrices. For L′1 the covariance matrix is the identity
Ik, while for L′2 it is Ik + P for some perturbation matrix P . We show that with
constant probability over O, the Frobenius norm ‖P‖F is small enough to give us an
k = Ω(

√
n) bound, and so it suffices to fix O with this property. One may worry

that fixing O reduces the variation distance—in this case one can show that with
k = O(

√
n), distributions L′1 and L′2 already have constant variation distance.

1.2.2. Bilinear sketches. We follow the same framework for the general sketches,
and similarly we may assume, when proving the lower bounds, that the sketching ma-
trix S has orthonormal rows and T has orthonormal columns. Thus, it suffices to
give two distributions L1 and L2 on A for which the ‖A‖p values differ by a factor
α with high probability (w.h.p.) in the two distributions, but for any matrix S with
orthonormal rows and T with orthonormal columns, the induced distributions L′1 and
L′2 on SAT , when A ∼ L1 and A ∼ L2, respectively, have low total variation distance
dTV (L′1,L′2).

Since S has orthonormal rows and T has orthonormal columns, if L1 and L2
are rotationally invariant distributions, then SAT is equal in distribution to an r× s
submatrix of A. For our Ω(n2) bound for p = 0, we consider the following rotationally
invariant distributions: L1 = UV T for n × n/2 i.i.d. Gaussian U and V , while L2 =
UV T +γG for the same U and V and G an n×n i.i.d. Gaussian matrix with variance
γ ≤ 1/ poly(n).

The problem of bounding dTV (L′1,L′2) amounts to distinguishing an r × s sub-
matrix Q of UV T from an r × s submatrix of UV T + γG. Working directly with
the density function of UV T is intractable. Instead, we provide an algorithmic proof
to bound the variation distance. See Theorem 6.1 for details. The proof also works
for an arbitrary subset Q ⊆ [n]× [n] of cardinality O(n2), implying a lower bound of
Ω(n2) to decide whether an n×n matrix is of rank at most n/2 or ε-far from rank n/2
(for constant ε), showing that an algorithm of Krauthgamer and Sasson is optimal
[52].

1.2.3. Sketching algorithm. Due to these negative results, a natural question
is whether nontrivial sketching is possible for any Schatten p-norm other than the
Frobenius norm. To show that this is possible, given an n × n matrix A, we left
multiply by an n × n matrix G of i.i.d. Gaussians and right multiply by an n × n
matrix H of i.i.d. Gaussians, resulting in a matrix A′ of the form G′ΣH ′, where
G′, H ′ are i.i.d. Gaussian and Σ is diagonal with the singular values of A on the
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diagonal. We then look at cycles in a submatrix of G′ΣH ′. The (i, j)th entry of A′
is
∑n
`=1 σ`G

′
i,`H

′
`,j . Interestingly, for even p, for any distinct i1, . . . , ip/2 and distinct

j1, . . . , jp/2,

E[(A′i1,j1
A′i2,j1

) · (A′i2,j2
A′i3,j2

) · · · (A′ip/2,jp/2
A′i1,jp/2

)] = ‖A‖pp.

The row indices of A′ read from left to right to form a cycle (i1, i2, i2, i3, i3, , . . . ,
ip/2, ip/2, i1) which, since also each column index occurs twice, results in an unbiased
estimator. We need to average over many cycles to reduce the variance, and one way
to obtain the associated estimates is to store a submatrix of A′ and average over all
cycles in it. While some of the cycles are dependent, their covariance is small, and we
show that storing an n1−2/p × n1−2/p submatrix of A′ suffices.

1.2.4. Bit lower bound. The starting point of our work is [16], which showed
an Ω(n1−g(ε)) lower bound for estimating the rank of A up to a (1 + ε)-factor by
using the fact that the rank of the Tutte matrix equals twice the size of the maximum
matching of the corresponding graph, and there are lower bounds for estimating the
maximum matching size in a stream [69].

This suggests that lower bounds for approximating matching size could be used
more generally for establishing lower bounds for estimating Schatten p-norms. We
abandon the use of the Tutte matrix, as an analysis of its singular values turns out
to be quite involved. Instead, we devise simpler families of hard matrices, which are
related to hard graphs for estimating matching sizes. Our matrices are block diagonal,
in which each block has constant size (depending on ε). For functions f(x) = |x|p for
p > 0 not an even integer, we show a constant-factor multiplicative gap in the value
of
∑
i f(σi) in the case where the input matrix is (1) block diagonal, in which each

block is the concatenation of an all-1s matrix and a diagonal matrix with an even
number of 1s; or (2) block diagonal, in which each block is the concatenation of an
all-1s matrix and a diagonal matrix with an odd number of 1s. We call these Case 1
and Case 2. We also refer to the 1s on a diagonal matrix inside a block as tentacles.

The analysis proceeds by looking at a block in which the number of tentacles fol-
lows a binomial distribution. We show that the expected value of

∑
i f(σi), restricted

to a block given that the number of tentacles is even, differs by a constant factor
from the expected value of

∑
i f(σi), restricted to a block given that the number of

tentacles is odd. Using the hard distributions for matching [11, 35, 69], we can group
the blocks into independent groups of four matrices and then apply a Chernoff bound
across the groups to conclude that w.h.p.,

∑
i f(σi) of the entire matrix in Case 1 dif-

fers by a (1+ε)-factor from
∑
i f(σi) of the entire matrix in Case 2. This is formalized

in Theorem 9.1.
The number k of tentacles is subject to a binomial distribution supported on

even or odd numbers in Case 1 or 2, respectively. Proving a “gap” in expectation for
a random even value of k in a block versus a random odd value of k in a block is
intractable if the expressions for the singular values are sufficiently complicated. Our
choice of hard instance allows us to consider only the contribution from the singular
values r(k), which are the square roots of the roots of a quadratic equation. The
function value f(r(k)), viewed as a function of the number of tentacles k, can be
expanded into a power series f(r(k)) =

∑∞
s=0 csk

s, and the difference in expectation
in the even and odd cases subject to a binomial distribution is
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m∑
k=0

(−1)k
(
m

k

)
f(r(k)) =

∞∑
s=0

cs

m∑
k=0

(−1)k
(
m

k

)
ks =

∞∑
s=0

cs(−1)mm!
{
s

m

}

= (−1)mm!
∞∑
s=m

cs

{
s

m

}
,

where
{
s
m

}
is the Stirling number of the second kind, the second equality is a combi-

natorial identity (see, e.g., [39, p. 265]), and the third equality follows from the fact
that

{
s
m

}
= 0 for s < m. The problem reduces to analyzing the last series of s. For

f(x) = |x|p (p > 0 not an even integer), with our choice of hard instance, which we
can parameterize by a small constant γ > 0, the problem reduces to showing that
cs = cs(γ) > 0 for a small γ and for all large s, for which we use machinery from
hypergeometric functions.

The result for f(x) = xp generalizes to functions which are asymptotically xp

near 0 or infinity by first scaling the input matrix by a small or a large constant.
1.2.5. Upper bound for even p and sparse matrices. We illustrate the

ideas of our upper bound with p = 4, in which case ‖A‖44 =
∑
i,j |〈ai, aj〉|2, where ai

is the ith row of A. Suppose for the moment that every row ai had the same norm
α = Θ(1). It would then be easy to estimate nα4 =

∑
i |〈ai, ai〉|2 = Θ(n) just by

looking at the norm of a single row. Moreover, by the Cauchy–Schwarz inequality,
α4 = ‖ai‖4 ≥ |〈ai, aj〉|2 for all j 6= i. Therefore in order for

∑
i6=j |〈ai, aj〉|2 to

“contribute” to ‖A‖44, its value must be Ω(nα4), but since each summand is upper-
bounded by α4, there must be Ω(n) nonzero terms. It follows that if we sample
O(
√
n) rows uniformly and in their entirety, by looking at all O(n) pairs |〈ai, aj〉|2

for sampled rows ai and aj , we obtain Ω(1) samples of the “contributing” pairs i 6= j.
Using the fact that each row and column has O(1) nonzero entries, this can be shown
to be enough to obtain a good estimate to ‖A‖44, and it uses O(

√
n logn) bits of space.

In the general situation, where the rows of A have differing norms, we need
to sample them proportional to their squared 2-norm. Also, it is not possible to
obtain the sampled rows ai in their entirety, but we can obtain noisy approximations
to them. We achieve this by adapting known algorithms for `2-sampling in a data
stream [60, 5, 47] and using our conditions that each row and each column of A have
O(1) nonzero entries. Given rows ai and aj , one can verify that |〈ai, aj〉|2 ‖A‖4

F

‖ai‖2
2‖aj‖2

2

is an unbiased estimator of ‖A‖44, and in fact, this is nothing other than importance
sampling. It turns out that also in this more general case, only O(

√
n) rows need to

be sampled, and we can look at all O(n) pairs of inner products between such rows.
1.2.6. Open questions. We believe our work raises a number of intriguing open

questions.
1. Is it possible that for every odd integer p <∞, sketching the Schatten p-norm

requires k = Ω(n2)? Interestingly, odd and even p behave very differently
since for even p, we have ‖A‖p = ‖A2‖p/2, where A2 is PSD. Note that
estimating Schatten norms of PSD matrices A can be much easier: in the
extreme case of p = 1, the Schatten norm ‖A‖1 is equal to the trace of A,
which can be computed with k = 1, while we show k = Ω(

√
n) for estimating

‖A‖1 for non-PSD A.
2. Both the bit lower bound and the sketching lower bound show that even

integers p are a special case. Is it possible that the even integers p are the
only special case in which the sketching lower bound for all p 6∈ 2Z requires
k = Ω(n2)?
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3. Is it possible to prove an Ω(n2), or even an Ω(n), bit lower bound for dense
matrices? Recently the bit lower bound of estimating rank was improved to
Ω(n2−g(ε)) by Assadi, Khanna, and Li using the Erdős–Szemerédi graph [10],
which is a dense graph. The new construction, however, does not yield a gap
in Schatten norms.

1.2.7. Follow-up work. After the publication of our work [55], Kong and
Valiant improved the running time for estimation of Schatten p-norms for even inte-
gers p in [51], while achieving the same sketching dimension; see also follow-up work
on sampling matrices to estimate their spectrum by Khetan and Oh [50]. In other
follow-up work, Braverman et al. [14] extended our results to multipass algorithms,
showing that better space complexity for estimating Schatten p-norms is possible with
a constant (depending on p) number of passes. They also obtained faster algorithms
based on more structured random sketches.

1.2.8. Organization. In section 2 we review basic notions and concepts which
are used in subsequent sections. In sections 3–8 we discuss the sketching model, and
sections 9–13 explore the data stream model.

2. Preliminaries.

2.1. Notation. Let Rn×d be the set of n × d real matrices, and let On be the
orthogonal group of degree n (i.e., the set of n × n orthogonal matrices).4 We write
X ∼ D for a random variable X subject to a probability distribution D. Let N(µ,Σ)
denote the (multivariate) normal distribution of mean µ and covariance matrix Σ, and
let χ2(n) denote the χ2-distribution with n degrees of freedom. Denote the uniform
distribution on a set S (if it exists) by Unif(S). We also use On to denote the uniform
distribution over the orthogonal group of order n (i.e., endowed with the normalized
Haar measure). We denote by G(m,n) the ensemble of m× n random matrices with
i.i.d. N(0, 1) entries.

We write the n-dimensional vector full of 1s as 1n and write the n-dimensional
zero vector as 0n. We also adopt the conventional notation [n] as shorthand for the
set {1, 2, . . . , n}.

For two n × n matrices X and Y , we define 〈X,Y 〉 as 〈X,Y 〉 = tr(XTY ) =∑
i,j XijYij , i.e., the entrywise inner product of X and Y .
For two distributions µ and ν, we denote by µ ∗ ν the convolution of µ and ν.
We write X = a ± b if a − b ≤ X ≤ a + b. Similarly, we write X = (1 ± ε)Y

if (1 − ε)X ≤ Y ≤ (1 + ε)X and say that X is a (1 ± ε)-approximation to Y in this
case. For β > 1, we also say X is a β-approximation to Y if Y ≤ X ≤ βY . It is clear
that if X is a (1± ε)-approximation to Y , (1 + ε)X is a (1 + 3ε)-approximation to Y
when ε ∈ (0, 1); consequently, it is conventional not to distinguish between (1 + ε)-
approximation algorithms and (1± ε)-approximation algorithms, provided that ε > 0
is sufficiently small.

We write f & g (resp., f . g) if there exists a constant C > 0 such that f ≥ Cg
(resp., f ≤ Cg). Also we write f ' g if there exist constants C1 > C2 > 0 such that
C2g ≤ f ≤ C1g. For the notation hiding constants, such as Ω(·), O(·), ., &, we may
add subscripts to highlight the dependence; for example, Ωa(·), Oa(·), .a, &a mean
that the hidden constant depends on a.

4Throughout the paper we use the italic letter O for orthogonal matrices and the script letter O
for the big-O notation in asymptotics.
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2.2. Singular values and Schatten norms. Consider a square matrix A ∈
Rn×n; its eigenvalues are denoted by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) in decreasing
order. The set of the eigenvalues of A is called the spectrum of A.

Now consider a matrix A ∈ Rn×d (not necessarily a square matrix); then ATA

is a positive semidefinite matrix. The eigenvalues of
√
ATA are called the singular

values of A, denoted by σi(A) =
√
λi(ATA), sorted in decreasing order again. Let

r = rank(A). It is clear that σr+1(A) = · · · = σd(A) = 0. The matrix A also has the
following singular value decomposition (SVD) A = UΣV T , where U ∈ On, V ∈ Od,
and Σ is an n× d diagonal matrix with diagonal entries σ1(A), . . . , σmin{n,d}(A).

Define

‖A‖p =
(

r∑
i=1

(σi(A))p
) 1

p

, p > 0;

then ‖A‖p is a norm called the pth Schatten norm, over Rn×d for p ≥ 1. When
p = 1, it is also called the trace norm or Ky Fan norm. When p = 2, it is exactly the
Frobenius norm ‖A‖F , recalling that σi(A)2 = λi(ATA) and thus ‖A‖2F = tr(ATA) =∑
i λi(ATA).
Let ‖A‖op denote the operator norm of A when treating A as a linear opera-

tor from `d2 to `n2 . Additionally, it holds that limp→∞ ‖A‖p = σ1(A) = ‖A‖op and
limp→0+ ‖A‖p = rank(A). We define ‖A‖∞ and ‖A‖0 accordingly in this limit sense.

Finally, note that A and AT have the same nonzero singular values, so ‖A‖p =
‖AT ‖p for all p.

2.3. Distance between probability measures. Suppose µ and ν are two
probability measures over some Borel algebra B on Rn such that µ is absolutely
continuous with respect to ν. For a convex function φ : R → R such that φ(1) = 0,
we define the φ-divergence

Dφ(µ||ν) =
∫
φ

(
dµ

dν

)
dν.

In general, Dφ(µ||ν) is not a distance because it is not symmetric. For more details
on φ-divergence, the reader may refer to any standard text, e.g., [26].

The total variation distance between µ and ν, denoted by dTV (µ, ν), is defined as
Dφ(µ||ν) for φ(x) = |x− 1|.

The χ2-divergence between µ and ν, denoted by χ2(µ||ν), is defined as Dφ(µ||ν)
for φ(x) = (x − 1)2 or φ(x) = x2 − 1. It can be verified that these two choices of φ
give exactly the same value of Dφ(µ||ν).

Proposition 2.1 (see [64, p. 99]). dTV (µ, ν) ≤
√
χ2(µ||ν).

Proposition 2.2 (see [45, p. 97]). χ2(N(0, In) ∗ µ||N(0, In)) ≤ E e〈x,x′〉 − 1,
where x, x′ ∼ µ are independent.

In the case of n = 1, if F (x) and G(x) are the cumulative distribution functions
of µ and ν, respectively, the Kolmogorov distance is defined as

dK(µ, ν) = sup
x
|F (x)−G(x)|.

It follows easily that for continuous and bounded f ,

(2.1)
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ‖f‖∞ · dK(µ, ν).
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If both µ and ν are compactly supported, it suffices to have f continuous and bounded
on the union of the supports of µ and ν.

TheWasserstein distance (or the earth mover distance) between µ and ν is defined
as

dW (µ, ν) = inf
π

∫
d(x, y)dπ(x, y),

where the infimum is taken over all distributions π on Rn×Rn with marginals µ and
ν on the first and the second factors, respectively. Usually, the Wasserstein distance
and the total variation distance have no clear connection. The following seems to
be a folklore result and has been used implicitly in the literature; nevertheless, for
completeness we include a proof from [1].

Proposition 2.3. Let µ and ν be two distributions in Rn. Suppose that γ is a
probability distribution in Rn symmetric around 0 and that γx denotes the probability
distribution that shifts the center of γ to x ∈ Rn. Then

dTV (µ ∗ γ, ν ∗ γ) ≤
(

sup
x 6=y

dTV (γx, γy)
‖x− y‖2

)
· dW (µ, ν).

Proof. Let π be any measure with marginals µ and ν so that µ =
∫
δxdπ(x, y)

and ν =
∫
δydπ(x, y). It follows that

µ− ν =
∫

(δx − δy)dπ(x, y)

and
dTV (µ ∗ γ, ν ∗ γ) ≤

∫
dTV (γx, γy)dπ(x, y) ≤ K

∫
‖x− y‖2dπ(x, y),

where K = supx 6=y dTV (γx, γy)/‖x − y‖2. Taking infimum over π(x, y) yields the
claimed result.

2.4. Distribution of singular values. We need the following two lemmata.
Lemma 2.4 (Marčenko–Pastur law [58, 38]). Suppose that X is an m×n matrix

with i.i.d. N(0, 1/m) entries. Consider the probability distribution FX(x) associated
with the spectrum of XTX as

FX(x) = 1
n

∣∣{i : λi(XTX) ≤ x
}∣∣ .

For γ ∈ (0, 1], define a distribution Gγ(x) with density function pγ(x) as

pγ(x) =
√

(b− x)(x− a)
2πγx , x ∈ [a, b],

where
a = (1−√γ)2, b = (1 +√γ)2.

Then when n → ∞, m → ∞, and m/n → γ ∈ (0, 1), it holds that the expected
Kolmogorov distance is

E
X

sup
x
|FX(x)−Gγ(x)| = O

(
1√
n

)
.

Lemma 2.5 (operator norm of Gaussian random matrix [70]). Suppose that X ∼
G(m,n). Then with probability at least 1−e−t2/2, it holds that σ1(X) ≤

√
m+
√
n+ t.
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2.5. Communication complexity. We shall use a problem called Boolean Hid-
den Hypermatching, denoted by BHH0

t,n, defined in [69]. In this subsection, we denote
the exclusive-or by ⊕ and the Hamming weight of a Boolean vector x by wH(x).

Definition 2.6 (see [69]). In the Boolean Hidden Hypermatching problem
BHHt,n, Alice gets a Boolean vector x ∈ {0, 1}n with n = 2rt for some positive
integers r and t, and Bob gets a perfect t-hypermatching M on the n coordinates of x,
i.e., each edge has exactly t coordinates, and a binary string w ∈ {0, 1}n/t. Let Mx
denote the vector of length n/t defined as (

⊕
1≤i≤t xM1,i , . . . ,

⊕
1≤i≤t xMn/t,i

), where
{(Mj,1, . . . ,Mj,t)}n/tj=1 are edges of M . It is promised that either Mx ⊕ w = 1n/t or
Mx⊕ w = 0n/t. The problem is to return 1 in the first case and 0 otherwise.

Verbin and Yu [69] proved that this problem has an Ω(n1−1/t) randomized one-
way communication lower bound by proving a lower bound for deterministic protocols
with respect to the hard distribution in which x and M are independent and respec-
tively uniformly distributed, and w = Mx with probability 1/2 and w = Mx (bitwise
negation ofMx) with probability 1/2. In [16], Bury and Schwiegelshohn defined a ver-
sion without w and with the constraint that wH(x) = n/2, for which they also showed
an Ω(n1−1/t) lower bound. We shall use this version, with a slight modification.

Definition 2.7. In the Boolean Hidden Hypermatching problem BHH0
t,n, Alice

gets a Boolean vector x ∈ {0, 1}n with n = 4rt for some r ∈ N and even integer t
and wH(x) = n/2, and Bob gets a perfect t-hypermatching M on the n coordinates of
x, i.e., each edge has exactly t coordinates. We denote by Mx the Boolean vector of
length n/t given by

(⊕t
i=1 xM1,i

, . . . ,
⊕t

i=1 xMn/t,i

)
, where {(Mj,1, . . . ,Mj,t)}n/tj=1 are

the edges of M . It is promised that either Mx = 1n/t or Mx = 0n/t. The problem is
to return 1 in the first case and 0 otherwise.

A slightly modified (yet almost identical) version of the proof in [16] shows that
this problem also has an Ω(n1−1/t) randomized one-way communication lower bound.
We include the proof below for completeness.

Proof. We reduce BHHt,n to BHH0
t,2n. Let x ∈ {0, 1}n with n = 2rt for some r,

and let M be a perfect t-hypermatching on the n coordinates of x and x ∈ {0, 1}n/t.
Define x′ =

(
xT x̄T

)T to be the concatenation of x and x̄ (bitwise negation of x).
Let {x1, . . . , xt} ∈ M be the lth hyperedge of M . We include two hyperedges

in M ′, the input of Bob’s input in the BHH0
t,2n, as follows. When wl = 0, include

{x1, . . . , xt} and {x1, x2, . . . , xt} in M ; when wl = 1, include {x1, x2, . . . , xt} and
{x1, x2, . . . , xt} in M ′. Observe that we flip an even number of bits in the case wl = 0
and an odd number of bits when wl = 1, and since t is even, this does not change
the parity of each set. Therefore M ′x′ = 02n if Mx + w = 0n/2 and M ′x′ = 12n if
Mx+ w = 1n/2. The lower bound then follows from the lower bound for BHHt,n.

When t is clear from context, we shorten BHH0
t,n to BHH0

n.

2.6. Special functions. The gamma function Γ(x) is defined as

Γ(x) =
∫ ∞

0
xt−1e−x dx.

For positive integer n, it holds that Γ(n) = (n − 1)!. The definition above can be
extended by analytic continuation to all complex numbers except nonpositive integers.

The hypergeometric function pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) of p upper param-
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eters and q lower parameters is defined as

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

; z
)

=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

· z
n

n! ,

where

(a)n =
{

1, n = 0,
a(a+ 1) · · · (a+ n− 1), n > 0.

The parameters must be set such that the denominator factors are never 0. When
ai = −n for some 1 ≤ i ≤ p and nonnegative integer n, the series above becomes
terminating and the hypergeometric function is in fact a polynomial in x.

3. Sketching lower bound for p > 2.
Lemma 3.1. 5 Suppose that x ∼ N(0, Im) and y ∼ N(0, In) are independent and

A ∈ Rm×n satisfies ‖A‖F < 1. It holds that

E
x,y
ex

TAy ≤ 1√
1− ‖A‖2F

.

Proof. First, it is easy to verify that

E
x,y∼N(0,1)

eaxy = 1
2π

∫∫
R×R

eaxy−
x2+y2

2 dxdy

= 1
2π

∫
R

∫
R
e−

1
2 (x−ay)2

e−
1
2 (1−a2)y2

dxdy

= 1√
2π

∫
R
e−

1
2 (1−a2)y2

dy

= 1√
1− a2

, a ∈ [0, 1).

Without loss of generality, assume that m ≥ n. Consider the singular value decom-
position A = UΣV T , where U and V are orthogonal matrices of dimension m and
n, respectively, and Σ = diag{σ1, . . . , σn}, with σ1, . . . , σn being the nonzero singular
values of A. We know that σi ∈ [0, 1) for all i by the assumption that ‖A‖F < 1. By
rotational invariance of the Gaussian distribution, we may assume that m = n and
thus that

E
x,y∼N(0,In)

ex
TAy = E

x,y∼N(0,In)
ex

T Σy

= 1
(2π)n

∫∫
Rn×Rn

exp
{

n∑
i=1

(
σixiyi −

x2
i + y2

i

2

)}
dxdy

=
n∏
i=1

1√
1− σ2

i

≤ 1√
1−

∑n
i=1 σ

2
i

= 1√
1− ‖A‖2F

.

5A similar result holds for x and y of i.i.d. centered sub-Gaussian coordinates, where the right-
hand side is replaced with exp(c‖A‖2

F ) for some constant c > 0 that only depends on the sub-Gaussian
distribution. The proof requires heavier machinery, but we only need the elementary variant here by
our choice of hard instance.



1656 YI LI, HUY L. NGUYỄN, AND DAVID P. WOODRUFF

Next we consider the problem of distinguishing two distributions D1 = G(m,n)
and D2 as defined below. Let u1, . . . , ur be i.i.d. N(0, Im) vectors, let v1, . . . , vr
be i.i.d. N(0, In) vectors, and further suppose that {ui} and {vi} are independent.
Let s ∈ Rr, and define the distribution D2 as G(m,n) +

∑r
i=1 siu

i(vi)T . We take
k linear measurements and denote the corresponding rows (measurements) of the
sketching matrix by L1, . . . , Lk. Without loss of generality, we may assume that
tr((Li)TLi) = 1 and tr((Li)TLj) = 0 for i 6= j since these correspond to the rows of
the sketching matrix being orthonormal, which we can assume since we can always
change the basis of the row space of the sketching matrix in a postprocessing step.
Let L1 and L2 be the corresponding distribution of the linear sketch of dimension k
on D1 and D2, respectively. The main result is the following theorem.

Theorem 3.2. There exists an absolute constant c > 0 such that dTV (L1,L2) ≤
1/10 whenever k ≤ c/‖s‖42.

Proof. It is not difficult to verify that L1 = N(0, Ik) and L2 = N(0, Ik)+µ, where
µ is the distribution of 

∑r
i=1 si(ui)TL1vi∑r
i=1 si(ui)TL2vi

...∑r
i=1 si(ui)TLkvi

 .

Consider a random variable (we shall see in a moment where it comes from)

ξ =
k∑
i=1

r∑
j,l=1

m∑
a,c=1

n∑
b,d=1

sjsl(Li)ab(Li)cd(uj)a(vj)b(ul)c(vl)d.

Take expectation on both sides, and notice that the nonvanishing terms on the right-
hand side must have j = l, a = c, and b = d,

E ξ =
k∑
i=1

r∑
j=1

m∑
a=1

n∑
b=1

s2
j (Li)2

ab E(uj)2
a E(vj)2

a = k‖s‖22.

Define an event E = {‖s‖2ξ < 1/2}, and it follows from our assumption and Markov’s
inequality that Pr(E) ≥ 1 − 2c. Restrict µ to this event, and denote the induced
distribution by µ̃. Let L̃2 = N(0, In) + µ̃.

Then the total variation distance between L1 and L2 can be upper bounded, using
Propositions 2.1 and 2.2, as

dTV (L1,L2) ≤ dTV (L1, L̃2) + dTV (L2, L̃2)

≤
√

E
z1,z2∼µ̃

e〈z1,z2〉 − 1 + dTV (µ, µ̃)

≤

√
1

Pr(E)

(
E

z1∼µ̃,z2∼µ
e〈z1,z2〉 − 1

)
+ Pr(Ec),
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and we shall bound E e〈z1,z2〉 in the rest of the proof.

E
z1∼µ̃,z2∼µ

e〈z1,z2〉 = E exp


k∑
i=1

∑
j,a,b

∑
j′,a′,b′

sj(Li)ab(uj)a(vj)b · sj′(Li)a′b′(xj
′
)a′(yj

′
)b′


= E
u1,...,ur,v1,...,vr|µ̃

r∏
j′=1

E
xj′∼N(0,Im)
yj′∼N(0,In)

exp

∑
a′,b′

Qj
′

a′,b′(x
j′)a′(yj

′
)b′

 ,

where Qj′ is an m× n matrix whose (a′, b′)th entry is defined as

Qj
′

a′,b′ = sj′
k∑
i=1

∑
j,a,b

(Li)ab(Li)a′b′ · sj(uj)a(vj)b.

In order to apply the preceding lemma, we need to verify that ‖Qj′‖2F < 1. Indeed,

‖Qj
′
‖2F

=
∑
a′,b′

(Qj
′
)2
a′,b′

= s2
j′

∑
a′,b′

∑
i,i′

∑
j,a,b

∑
`,c,d

sj(Li)ab(Li)a′b′(uj)a(vj)b · s`(Li
′
)cd(Li

′
)a′b′(u`)c(v`)d

= s2
j′

∑
a′,b′

∑
i

(Li)2
a′b′

∑
j,a,b

∑
`,c,d

sj(Li)ab(uj)a(vj)b ·s`(Li)cd(u`)c(v`)d (i must be equal to i′)

= s2
j′

∑
i

∑
j,a,b

∑
`,c,d

sj(Li)ab(uj)a(vj)b · s`(Li)cd(u`)c(v`)d

= s2
j′ξ < 1

since we have conditioned on E . Now it follows from the preceding lemma that

E
u1,...,ur,v1,...,vr

r∏
i=1

E
xj′ ,yj′

exp

∑
a′,b′

Qj
′

a′,b′(x
j′)a′(yj

′
)b′

 ≤ E
u1,...,ur,v1,...,vr

r∏
j′=1

1√
1− s2

j′ξ

≤ E
u1,...,ur,v1,...,vr

1√
1− ‖s‖2ξ

≤ 1 + ‖s‖2 E ξ
≤ 1 + k‖s‖4,

where, in the third inequality, we used the fact that 1/
√

1− x ≤ 1+x for x ∈ [0, 1/2].
Therefore,

dTV (L1,L2) ≤
√
k‖s‖4
1− 2c + 2c ≤

√
c

1− 2c + 2c ≤ 1
10

when c > 0 is small enough.
We will apply the preceding theorem to obtain our lower bounds for the appli-

cations. To do so, we note that by Yao’s minimax principle, we can fix the rows of
our sketching matrix and show that the resulting distributions L1 and L2 above have
small total variation distance. By standard properties of the variation distance, this
implies that no estimation procedure can be used to distinguish the two distributions
with sufficiently large probability, thereby establishing our lower bound.
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Corollary 3.3 (α-approximation to operator norm). Let c > 0 be an arbitrarily
small constant. For α ≥ 1 + c, any sketching algorithm that estimates ‖X‖op for X ∈
Rn×n within a factor of α with error probability ≤ 1/6 requires sketching dimension
Ω(n2/α4).

Proof. Let m = n, take r = 1 and s1 = 5α/
√
n in D2, and apply the preceding

theorem. For notational convenience, we write u1 and v1 in the definition of D2 as u
and v, respectively. We claim that ‖G‖op and ‖G+ 5α√

n
uvT ‖op differ by a factor of α

with high probability; then the preceding theorem yields the desirable lower bound.
It follows from Lemma 2.5 that ‖G‖op ≤ 2.1

√
n with probability ≥ 1 − e−n/200.

On the other hand, let X = Cα√
n
uvT . Note that X is of rank one, and the only nonzero

singular value σ1(X) = ‖X‖F ≥ 4.9α
√
n with w.h.p., since ‖uvT ‖2F = ‖u‖22‖v‖22 ∼

(χ2(n))2, which is tightly concentrated around n2. It follows that

‖G+X‖op ≥ ‖X‖op − ‖G‖op ≥ (4.9α− 2.1)
√
n ≥ 2.1α

√
n.

Thus ‖G‖op and ‖G+X‖op differ by a factor of at least α.
Corollary 3.4 (Schatten norm for p > 2). Suppose that p > 2. There exists

a constant c = c(p) > 0 such that any sketching algorithm that estimates ‖X‖pp for
X ∈ Rn×n within a factor of 1 + c with error probability ≤ 1/6 requires sketching
dimension Ω(n2(1−2/p)).

Proof. Let m = n, and take r = 1 and s1 = 5/n1/2−1/p in D2. For notational
convenience, we write u1 and v1 in the definition of D2 as u and v, respectively. We
shall show that ‖G‖p and ‖G+ 5n1/p−1/2uvT ‖p differ by a constant factor w.h.p.

Let X = 5n1/p−1/2uvT . Since X is of rank one, the only nonzero singular value
σ1(X) = ‖X‖F ≥ 4.9 · n1/p+1/2 w.h.p, since ‖uvT ‖2F ∼ (χ2(n))2, which is tightly
concentrated around n2.

On the other hand, combining Lemmas 2.4 and 2.5 as well as (2.1) with f(x) = xp

on [0, 4], we can see that with probability 1− o(1) it holds for X ∼ 1√
n
G(n, n) (note

the normalization!) that

(3.1) ‖X‖pp = (Ip + o(1))n, p > 0,

where

(3.2) Ip =
∫ 4

0
x

p
2 ·
√

(4− x)x
2πx dx =

2pΓ( 1+p
2 )

√
πΓ(2 + p

2 )
, p > 0.

We claim that Ip ≤ 2p. To prove the claim, it suffices to show that Γ(x) ≤
√
πΓ(x+ 3

2 )
for x ≥ 1

2 . It is a well-known fact that Γ(x) is decreasing on [0, x0] and increasing on
[x0,+∞) for some x0 ∈ (1.46, 1.47) (see, e.g., [27]), and thus it suffices to show the
inequality for x ∈ [ 1

2 , x0], in which case Γ(x) ≤ Γ( 1
2 ) =

√
π =
√
πΓ(2) ≤

√
πΓ(x+ 3

2 ).
This proves the claim.

Hence ‖G‖p ≤ 1.1 · I1/p
p n1/2+1/p ≤ 1.1 · 2 · n1/2+1/p w.h.p. On the other hand, by

the triangle inequality,

‖G+X‖p ≥ ‖X‖p − ‖G‖p ≥ (4.9− 2.2)n1/p+1/2 ≥ 1.2 · 2.2n1/p+1/2 ≥ 1.2‖G‖p

w.h.p.
The result follows from the preceding theorem, where c can be chosen as c =

c(p) = |Ip−1|
2(Ip+1) .



ON APPROXIMATING MATRIX NORMS IN DATA STREAMS 1659

4. Sketching lower bound for p > 0 and p 6= 2. Let G,G′ ∼ G(n, n) and
O ∼ On be independent. When p > 0, it follows from (3.2) that Ip = 1 if and only if
p = 2, and it then follows from (3.1) that ‖ 1√

n
G‖pp and ‖O‖pp differ by a constant factor

(depending on p) for p 6= 2 with probability 1− o(1); therefore we can pick η ∈ (0, 1)
to be a constant sufficiently small such that ‖ 1√

n
G+ η√

n
G′‖pp and ‖O+ η√

n
G′‖pp differ

by a constant factor of (1 + cp) with probability 1 − o(1) for some small constant cp
that depends only on p.

Let D1 be the distribution of 1√
n
G + η√

n
G′, and let D2 be the distribution of

O + η√
n
G. We consider the problem of distinguishing the two distributions D1 and

D2. For a distribution D, we denote by L(D) the distribution of the induced linear
sketch, where, as in the previous section, we assume that the linear sketch L has
orthonormal rows.

Theorem 4.1 (Schatten norm for p 6= 2). Let p > 0 and p 6= 2. There exists
a constant c = c(p) > 0 such that any sketching algorithm that estimates ‖X‖pp for
X ∈ Rn×n (n ≥ 2) within a factor of 1 + c with error probability ≤ 1/6 requires
sketching dimension Ω(n).

Proof. It was proved by Chatterjee and Meckes [21, Theorem 4.4] (note that
L( 1√

n
G) = N(0, 1

nIn) and that our scaling of sketches Li differs from that in [21] by
a factor of

√
n) that

dW

(
L
(

1√
n
G

)
,L(O)

)
≤

√
2k√

n(n− 1)
.

For notational convenience, let γ = N(0, η
2

n In), and we consider dTV (γx, γy) for x, y ∈
Rn, where γx and γy are as defined in Proposition 2.3. It is well known that (see,
e.g. [64, p. 146])

dTV (N(x, In), N(y, In)) ≤ min
{

1, 1√
2
‖x− y‖2

}
, x, y ∈ Rn.

Rescaling the covariance matrix, we see that

dTV (γx, γy) ≤ min
{

1,
1√
2‖x− y‖2
η/
√
n

}
≤ min

{
1, η√

2
√
n‖x− y‖2

}
.

In Proposition 2.3, taking η as in the current argument, µ = L( 1√
n
G) and ν = L(O),

we obtain that
dTV (L(D1),L(D2)) ≤ ηk

n− 1 <
k

n− 1 .

Hence when k ≤ (n− 1)/10, it will hold that dTV ≤ 1/10.

5. Sketching lower bound for rank (p = 0). Consider a random matrix(
G GO

)
, where G ∼ G(n, n/2) and O ∼ On/2.

As before, consider k orthonormal sketches L1, . . . , Lk. For each i, write Li as
Li =

(
Ai Bi

)
. Then by orthonormality, 〈Ai, Aj〉 + 〈Bi, B(j)〉 = δi,j . Define Zi =

〈Ai, G〉+ 〈Bi, GO〉 and Dn,k to be the distribution of (Z1, . . . , Zk).
Theorem 5.1. Let Dn,k be defined as above, and let ζ ∈ (0, 1). Then it holds for

k ≤ (ζ/3)3/2√n that dTV (Dn,k, N(0, Ik)) ≤ ζ.
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Proof. The sketch can be written as a matrix Φg, where Φ ∈ Rk×n2/2 is a random
matrix that depends on Ai, Bi, and O, and g ∼ N(0, In2/2). Assume that Φ has
full row rank (we shall justify this assumption below). Fix Φ (by fixing O). Then
Φg ∼ N(0,ΦΦT ). It is known that [64, p. 146]

dTV (N(0,ΦΦT ), N(0, Ik)) ≤
√

tr(ΦΦT )− k − ln det(ΦΦT ).

Write ΦΦT = I + P . Define an event E = {O : ‖P‖2F ≤ 12
ζ ·

k2

n }. When E happens,

the eigenvalues of P are bounded by
√

12
ζ ·

k√
n
≤ 2

3 . Let µ1, . . . , µk be the eigenvalues
of P , then λi(ΦΦT ) = 1 + µi with |µi| ≤ 2

3 . Hence

dTV (N(0,ΦΦT ), N(0, Ik)) ≤

√√√√ k∑
i=1

(µi − ln(1 + µi)) ≤

√√√√ k∑
i=1

µ2
i =

√
‖P‖2F

≤
√

12
ζ
· k√

n
≤ 2

3ζ,

where we use the fact that x − ln(1 + x) ≤ x2 for x ≥ −2/3. Therefore, when E
happens, Φ is of full rank, and we can apply the total variation bound above. We
claim that EP 2

ij ≤ 4/n for all i, j and thus E ‖P‖2F ≤ 4k2/n; it then follows from
Markov’s inequality that Pr(E) ≥ 1− ζ/3 and thus

dTV (Dn,k, N(0, Ik)) ≤ 2
3ζ + Pr(Ec) ≤ 2

3ζ + 1
3ζ = ζ

as stated.
Now we show that EP 2

ij ≤ 4/n for all i, j. Suppose that O = (oij). Notice that
the rth row of Φ is

A
(r)
i` +

∑
j

B
(r)
ij o`j , i = 1, . . . , n, ` = 1, . . . , n2 .

Hence by a straightforward calculation, the inner product of the rth and sth rows is

〈Φr·,Φs·〉 = δrs +
∑
i,j,`

A
(r)
i` B

(s)
ij o`j +

∑
i,j,`

A
(s)
i` B

(r)
ij o`j

= δrs +
∑
j,`

(
〈A(r)

` , B
(s)
j 〉+ 〈A(s)

` , B
(r)
j 〉
)
o`j ,

where A(r)
i denotes the ith column of A(r). Then

Prs = tr(UO),

where the matrix U is defined by

uj` = 〈A(r)
` , B

(s)
j 〉+ 〈A(s)

` , B
(r)
j 〉.

Since

u2
jk ≤ 2

{(∑
i

|A(r)
ik |

2

)(∑
i

|B(s)
ij |

2

)
+
(∑

i

|A(s)
ik |

2

)(∑
i

|B(r)
ij |

2

)}
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and thus

‖U‖2F ≤ 2
∑
j,k

{(∑
i

|A(r)
ik |

2

)(∑
i

|B(s)
ij |

2

)
+
(∑

i

|A(s)
ik |

2

)(∑
i

|B(r)
ij |

2

)}

≤ 2
(
‖A(r)‖2F ‖B(s)‖2F + ‖A(s)‖2F ‖B(r)‖2F

)
≤ 2,

we conclude that

E[P 2
rs] =

∑
j,k

u2
jk E o2

kj +
∑

(j,k) 6=(i,`)

ujkui` E(okjoi`) = 2
n

∑
j,k

u2
jk = 2‖U‖2F

n
≤ 4
n
.

This completes the proof.
Let X ∼ G(n, n) be independent of Y =

(
G GO

)
, where G ∼ G(n, n/2) and

O ∼ On/2 are independent. It is clear that w.h.p., rank(X) = n and rank(Y ) = n/2,
which differ by a constant factor. The preceding theorem immediately yields the
following corollary.

Corollary 5.2 (rank). There exists an absolute constant c > 0 such that any
sketching algorithm that estimates rank(X) for X ∈ Rn×n within a factor of 1 + c
with error probability ≤ 1/6 requires sketching dimension Ω(

√
n).

We remark that this hard instance also gives an Ω(
√
n) lower bound for all p > 0

and p 6= 2.

6. Bilinear sketch lower bound for rank (p = 0). Let S ⊂ [n] × [n] be a
set of indices of an n × n matrix. For a distribution L over Rn×n, the entries of S
induce a marginal distribution L(S) on R|S| as

(Xp1,q1 , Xp2,q2 , . . . , Xp|S|,q|S|), X ∼ L.

Theorem 6.1. Let U, V ∼ G(n, d), and let G ∼ γG(n, n) for γ = n−14. Consider
two distributions L1 and L2 over Rn×n defined by UV T and UV T + G, respectively.
Let S ⊂ [n]× [n]. When |S| ≤ d2, it holds that

(6.1) dTV (L1(S),L2(S)) ≤ C|S|
(
n−2 + dcd

)
,

where C > 0 and 0 < c < 1 are absolute constants.
Proof. (Sketch; see the next subsection for the full proof.) We give an algorithm

which gives a bijection f : R|S| → R|S| with the property that for all but a subset of
R|S| of measure o(1) under both L1(S) and L2(S), the probability density functions
of the two distributions are equal up to a multiplicative factor of (1±1/poly(n)). The
idea is to start with the row vectors U1, . . . , Un of U and V1, . . . , Vn of V , and to itera-
tively perturb them by adding γGi,j to UV T for each (i, j) ∈ S. We find new vectors
U ′1, . . . , U

′
n and V ′1 , . . . , V ′n of n×dmatrices U ′ and V ′ so that (U ′)(V ′)T and UV T+γG

are equal on S. We do this in a way such that ‖Ui‖2 = (1 ± 1/ poly(n))‖U ′i‖2 and
‖Vi‖2 = (1±1/ poly(n))‖V ′i ‖2 for all i, and so the marginal density function evaluated
on Ui (or Vj) is close to that evaluated on U ′i (or V ′j ), by definition. Moreover, our
mapping is bijective, so the joint distribution of (U ′1, . . . , U ′n, V ′1 , . . . , V ′n) is the same
as that evaluated on (U1, . . . , Un, V1, . . . , Vn) up to a (1 ± 1/ poly(n))-factor. The
bijection we create depends on properties of S; e.g., if the entry (UV T )i,j = 〈Ui, Vj〉
is perturbed, and more than d entries of the ith row of A appear in S, this places
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more than d constraints on Ui, but Ui is only d-dimensional. Thus, we must also
change some of the vectors Vj . We change those Vj for which (i, j) ∈ S, and there
are fewer than d rows i′ 6= i for which (i′, j) ∈ S; in this way there are fewer than d
constraints on Vj , so it is not yet fixed. We can find enough Vj with this property by
the assumption that |S| ≤ d2.

In the theorem above, choose d = n/2 so that rank(UV T ) ≤ n/2, while rank(G) =
n with probability 1. Note that both distributions are rotationally invariant, and so
the lower bound on bilinear sketches follows immediately.

Theorem 6.2. Let A ∈ Rn×n be an arbitrary matrix. Suppose that an algo-
rithm takes a bilinear sketch SAT (S ∈ Rs×n and T ∈ Rn×t) and computes Y with
(1− c) rank(A) ≤ Y ≤ (1 + c) rank(A) with probability at least 3/4, where c ∈ (0, 1/3)
is a constant. It must hold that st = Ω(n2).

As an aside, we note that given that w.h.p. over A ∼ L2 in Theorem 6.1 the matrix
A requires modifying Θ(n2) of its entries to reduce its rank to at most d if d ≤ n/2,
this implies that we obtain an Ω(d2) bound on the nonadaptive query complexity of
deciding if an n× n matrix is of rank at most d or ε-far from rank d (for constant ε),
showing that an algorithm of Krauthgamer and Sasson is optimal [52].

6.1. Proof of Theorem 6.1. We shall overload the notation p for different
meanings in this subsection, since this is the proof for a lower bound on rank estima-
tion, independent of the parameter p in the Schatten p-norm.

Proof. Suppose that |S| = k and S = {(pi, qi)}ki=1. By symmetry, without loss
of generality, we can assume that S does not contain a pair of symmetric entries.
Throughout this proof, we rewrite L1(S) as L1 and L2(S) as L2. Now, using the new
notation, let us denote the marginal distribution of L2 with fixed G by L2|G. We also
denote the canonical Borel algebra on Rk byM(Rk).

Then

(6.2)

dTV (L1,L2) = sup
A∈M(Rk)

∣∣∣∣Pr
L1

(A)− Pr
L2

(A)
∣∣∣∣

= sup
A∈M(Rk)

∣∣∣∣Pr
L1

(A)−
∫
Rn2

Pr
L2

(A|G)p(G)dG
∣∣∣∣

≤ sup
A∈M(Rk)

∫
Rn2

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG

≤ sup
A∈M(Rk)

(∫
F (δ)

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG

+
∫
F (δ)c

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG

)
≤ sup
G∈F (δ)

dTV (L1,L2|G) + 2 Pr{F (δ)c},

where
F (δ) = {G ∈ Rn×n : |Gpi,qi

| ≤ δ ∀i = 1, . . . , k},
and Pr{F (δ)c} is the probability of the complement of F (δ) under the distribution on
G, and we choose δ = n1/4γ. Recalling the probability density function of a Gaussian
random variable and that k ≤ n2, it follows from a union bound that

Pr{F (δ)c} ≤ ke−δ
2/(2γ2) = ke−n

1/2/2 ≤ n−3.(6.3)
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Now we examine dTV (L1,L2|G) with G ∈ F (δ). For notational convenience, let
ξ = (ξ1, . . . , ξk)T = (Gp1,q1 , . . . , Gpk,qk

)T , and define ξ(i) = (ξ1, . . . , ξi, 0, . . . , 0)T .
Applying the triangle inequality to a telescoping sum, we obtain

(6.4)

dTV (L1,L2|G) = sup
A∈M(Rk)

∣∣∣∣Pr
L1

(A)− Pr
L2|G

(A)
∣∣∣∣

= sup
A∈M(Rk)

∣∣∣∣Pr
L1

(A)− Pr
L1

(A− ξ)
∣∣∣∣

≤ sup
A∈M(Rk)

k∑
i=1

∣∣∣∣Pr
L1

(A− ξ(i−1))− Pr
L1

(A− ξ(i))
∣∣∣∣ .

To bound (6.4), we need a way of bounding |PrL1(A)−PrL1(A− tei)| for a value
t with |t| ≤ δ. In this case, we say that we perturb a single entry (p, q) := (pi, qi)
of UV T by t while fixing the remaining k − 1 entries. We claim that there exists a
mapping Tt : Rn×d × Rn×d → Rn×d × Rn×d with (U, V ) 7→ (U ′, V ′) for which the
following three properties hold:

1. (U ′(V ′)T )pq = (UV )pq + t, and for all (p′, q′) ∈ S \ {(p, q)} it holds that
(U ′(V ′)T )p′q′ = (UV T )p′q′ .

2. ‖U −U ′‖F ≤ t′, ‖V −V ′‖F ≤ t′ with probability 1−O(1/n2 + dcd), over the
randomness of U and V . When this holds, we say that U and V are good;
otherwise, we say that they are bad.

3. T−t ◦ Tt = id.
The last property shows that Tt is a bijection. We defer the construction of Tt to the
end of the proof and now examine the implications on the total variation distance.
Define

E(x) = {(U, V ) : UV T |S = x},
Egood(x) = {(U, V ) ∈ E(x) : (U, V ) is good},
Ebad(x) = {(U, V ) ∈ E(x) : (U, V ) is bad}.

Then, using these three properties about Tt, as well as the triangle inequality, and
letting p(U), p(V ) be the p.d.f.’s of U and V so that

(6.5) p(U) = 1
(2π)nd/2

exp
(
−‖U‖

2
F

2

)
, p(V ) = 1

(2π)nd/2
exp

(
−‖V ‖

2
F

2

)
,
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we have that

(6.6)

∣∣∣∣Pr
L1

(A)− Pr
L1

(A− tei)
∣∣∣∣

=

∣∣∣∣∣
∫
E(A)

p(U)p(V )dUdV −
∫
E(A−tei)

p(U)p(V )dUdV

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Egood(A)

p(U)p(V )dUdV −
∫
Egood(A)

p(U ′)p(V ′)dUdV

∣∣∣∣∣
+
∫
Ebad(A)

p(U)p(V )dUdV +
∫
Ebad(A)

p(U ′)p(V ′)dUdV

≤
∫
Egood(A)

|p(U)− p(U ′)|p(V )dUdV

+
∫
Egood(A)

p(U ′)|p(V )− p(V ′)|dUdV +O
(

1
n2 + dcd

)
.

Using (6.5), we obtain

|p(U)− p(U ′)| = p(U) ·
∣∣∣∣1− exp

(
‖U‖2F − ‖U ′‖2F

2

)∣∣∣∣ .(6.7)

Notice that ‖U‖2F ∼ χ2(nd), and so by a tail bound for the χ2-distribution [53, Lemma
1], ‖U‖2F ≤ 6nd−t′ (recall that t′ = 1/n4) with probability at least 1−e−nd ≥ 1−n−3.
When this happens, for good U it follows from the triangle inequality, the second
property of Tt above, and the fact that t′ = 1/n4 that∣∣‖U‖2F − ‖U ′‖2F ∣∣ = (‖U‖F + ‖U ′‖F )

∣∣‖U‖F − ‖U ′‖F ∣∣
≤ (2‖U‖F + ‖U − U ′‖F ) ‖U − U ′‖F ≤ 2

√
6nd · t′ ≤ 6n−3.

Using |1− e|x|| ≤ 2|x| for |x| < 1 and combining with (6.7), we have

(6.8) |p(U)− p(U ′)| ≤ p(U) · 12n−3.

Similarly, it holds that ‖V ‖2F ≤ 6nd − t′ with probability ≥ 1 − n−3, and when this
happens,

|p(V )− p(V ′)| ≤ p(V ) · 12n−3.

It then follows that∫
Egood(A)

|p(U)− p(U ′)|p(V )dUdV = O
(

1
n3

)
,(6.9) ∫

Egood(A)
p(U ′)|p(V )− p(V ′)|dUdV = O

(
1
n3

)
.(6.10)

Plugging (6.9) and (6.10) into (6.6) yields that

(6.11)
∣∣∣∣Pr
L1

(A)− Pr
L1

(A− tei)
∣∣∣∣ = O

(
1
n2 + dcd

)
,

which, combined with (6.4), (6.2), and (6.3), finally leads to

dTV (L1,L2) ≤ dTV (L1,L2|G) + 2 Pr{F (δ)c} = O
(
k

(
1
n2 + dcd

))
.
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Construction of Tt. Now we construct Tt. Suppose the entry to be perturbed is
(p, q).

Case 1a. Suppose that the pth row contains s ≤ d entries read, say at columns
q1, . . . , qs. Without loss of generality, we can assume that s = d, as we can preserve
the entries in S, perturbing one of them, and preserve d−s arbitrary additional entries
in the pth row.

Then we have (Ui denotes the ith row of U, and Vi denotes the ith column of V )

Ui
(
Vq1 Vq2 · · · Vqd

)
= x,

and we want to construct U ′i such that

U ′i
(
Vq1 Vq2 · · · Vqd

)
= x+ ∆x.

Hence property 1 automatically holds, and

(6.12) (U ′i − Ui)
(
Vq1 Vq2 · · · Vqd

)
= ∆x.

With probability 1, the matrix Ṽ :=
(
Vq1 Vq2 · · · Vqd

)
has rank d. Hence we can

solve U ′i − Ui uniquely, and

‖U ′i − Ui‖2 ≤
‖∆x‖2
σd(Ṽ )

≤ δ

σd(Ṽ )
.

Using the tail bound on the minimum singular value given in [65], we have Pr{σd(Ṽ ) ≤
ε/
√
d} ≤ Cε + cd, where C > 0 and 0 < c < 1 are absolute constants. Choosing

ε = n−4 and recalling that d ≤ n, we see that with probability at least 1−Cn−4− cd,
it holds that σd(Ṽ ) ≥ 1/n9/2 and thus that

‖U ′i − Ui‖2 ≤ n9/2δ = n9/2+1/4γ ≤ n−5.

This proves property 2 of this case. This step is invertible, because if we replace
∆x with −∆x in (6.12), the solution U ′i − Ui will be of the opposite sign, too. This
shows property 3 of this case.

Case 1b. Suppose that the qth column contains s ≤ d entries read. Similarly to
Case 1a, we have U ′i = Ui and ‖V ′i − Vi‖2 ≤ n−5 with probability ≥ 1 − Cn−4 − cd.
The invertibility is similar to that in Case 1a and therefore holds.

Case 2. Suppose that there are more than d entries read in both the pth row
and the qth column. Define

J = {i ∈ [n] : ith column has ≤ d entries contained in S},
Colr = {i ∈ [n] : (r, i) ∈ S}, Rowc = {i ∈ [n] : (i, c) ∈ S}.

Call the columns with index in J good columns and those with index in Jc bad
columns.

Note that |Jc| ≤ d since the total number of entries in S is at most d2. Take
the columns in Jc ∩ Colp, and note that q ∈ Jc ∩ Colp. As in Case 1a, we can
change Up to U ′p such that U ′V T agrees with the perturbed entry of UV T at (p, q)
and keeps the entries of UV T the same for all (p, q′) for q′ ∈ (Jc ∩ Colp) \ {q}, since
|(Jc ∩ Colp) \ {q}| ≤ d− 1.

However, this new choice of U ′ possibly causes (U ′V T )p,i 6= (UV T )p,i for i ∈
Colp ∩ J . For each i ∈ Colp ∩ J , we also need to change Vi to a vector V ′i without



1666 YI LI, HUY L. NGUYỄN, AND DAVID P. WOODRUFF

affecting the entries read in any bad column. Now for each good column, the matrix
Ũ used in Case 1b applied to each i in Colp∩J is no longer i.i.d. Gaussian because one
row of Ṽ has been changed, and this change has `2-norm at most n−5 (the guarantee
on property 2 in Case 1b) with probability at least 1 − 4n−3 − cd, and since the
minimum singular value is a 1-Lipschitz function of matrices, the minimum singular
value is perturbed by at most n−5. Hence for each good column i, with probability at
least 1−4n−3−cd, we have ‖Vi−V ′i ‖2 ≤ n−5. Since there are at most d good columns,
by a union bound, with probability at least 1−4/n2−dcd we have ‖V −V ′‖F ≤ n−4.
This concludes the proof of properties 1 and 2 in Case 2.

The final step is to verify property 3, i.e., that this step is invertible in this case.
Suppose that Tt(U, V ) = (U ′, V ′) and T−t(U ′, V ′) = (U ′′, V ′′); we want to show that
U ′′ = U and V ′′ = V . Observe that Vi = (V ′)i = (V ′′)i for i ∈ Jc∩Colp = {q1, . . . , qd};
we have

(U ′p − Up)
(
Vq1 Vq2 · · · Vqd

)
= ∆x,

(U ′′p − U ′p)
(
Vq1 Vq2 · · · Vqd

)
= −∆x.

Summing the two equations yields

(U ′′p − Up)
(
Vq1 Vq2 · · · Vqd

)
= 0,

and thus U ′′p = Up provided that (Vq1 , Vq2 , . . . , Vqd
) is invertible. Since Ui = U ′i = U ′′i

for all i 6= p, we have U = U ′′. Next we show that V ′′i = Vi for each i ∈ Colp ∩ J .
Suppose that Rowi = {p1, . . . , pd} 3 p. Similarly to the above, we have that

U ′p1
...
U ′p
...
U ′pd

 (V ′i − Vi) =



0
...

−(U ′p − Up)Vi
...
0


and 

U ′′p1
...
U ′′p
...
U ′′pd

 (V ′′i − V ′i ) =



0
...

−(U ′′p − U ′p)V ′i
...
0

 .

Summing the two equations and recalling that U ′′p = Up and Ui = U ′i = U ′′i for all
i 6= p, we obtain that

Up1
...
Up
...
Upd

 (V ′′i − Vi) +



0
...

U ′p − Up
...
0

 (V ′i − Vi) =



0
...

(U ′p − Up)(V ′i − Vi)
...
0

 ,
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i.e., 

Up1
...
Up
...
Upd

 (V ′′i − Vi) =



0
...
0
...
0

 ,

whence it follows immediately that V ′′i = Vi provided that (UTp1
, . . . , UTpd

) is invertible.
Together with Vi = V ′i = V ′′i for all i ∈ Colp ∩ Jc, we conclude that V ′′ = V .

7. Reduction to square matrices for the upper bound. Before presenting
our bilinear sketching algorithms for the Schatten p-norm, we make a reduction from
general matrices to square matrices based on the Johnson–Lindenstrauss Transform,
and henceforth we assume that the input matrices are square in our bilinear sketching
algorithms.

Suppose that A ∈ Rn×d (n > d). When n = O(d/ε2), let Ã =
(
A 0

)
with zero

padding so that Ã is a square matrix of dimension n. Then ‖Ã‖p = ‖A‖p for all p > 0.
Otherwise, we can sketch the matrix with O(d/ε2) rows while roughly maintaining
the singular values as follows. Call Φ a (d, δ)-subspace embedding matrix if with
probability ≥ 1− δ it holds that

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

for all x in a fixed d-dimensional subspace. In [66], the following lemma is proved.
Lemma 7.1. Suppose that H ⊂ Rn is a d-dimensional subspace. Let Φ be an r-

by-n random matrix with i.i.d. N(0, 1/r) entries, where r = Θ(d/ε2 log(1/δ)). Then
it holds with probability ≥ 1− δ that

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2 ∀x ∈ H.

In fact we can use more modern subspace embeddings [66, 23, 59, 61] to improve
the time complexity, though since our focus is on the sketching dimension, we defer a
thorough study of the time complexity to future work.

Now we are ready to show the subspace embedding transform on singular values,
which follows from the min-max principle for singular values.

Lemma 7.2. Let Φ be a (d, δ)-subspace embedding matrix. Then, with probability
≥ 1− δ, it holds that (1− ε)σi(ΦA) ≤ σi(A) ≤ (1 + ε)σi(ΦA) for all 1 ≤ i ≤ d.

Proof. The min-max principle for singular values says that

σi(A) = max
Si

min
x∈Si

‖x‖2=1

‖Ax‖2,

where Si runs through all i-dimensional subspace. Observe that the range of A is a
subspace of dimension at most d. It follows from Lemma 7.1 that with probability
≥ 1− δ,

(1− ε)‖Ax‖2 ≤ ‖ΦAx‖2 ≤ (1 + ε)‖Ax‖2 ∀x ∈ Rd.

The claimed result follows immediately from the min-max principle for singular
values.
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Algorithm 8.1. The sketching algorithm for odd p ≥ 3.
Input: n, ε > 0, odd integer p ≥ 3, and PSD A ∈ Rn×n
1: N ← Ω(ε−2)
2: Let {Gi} be independent n1−2/p × n matrices with i.i.d. N(0, 1) entries
3: Maintain each GiAGTi , i = 1, . . . , N
4: Compute Z as defined in (8.1)
5: return Z

Let Ã =
(
ΦA 0

)
with zero padding so that Ã is a square matrix of dimension

O(d/ε2). Then by the preceding lemma, with probability ≥ 1− δ, ‖Ã‖p = ‖ΦA‖p is a
(1± ε)-approximation of ‖A‖p for all p > 0. Therefore we have reduced the problem
to the case of square matrices.

8. Bilinear sketch algorithms. We present two sketching algorithms to com-
pute a (1± ε)-approximation of ‖A‖pp for A ∈ Rn×n using linear sketches, which can
thus be implemented in the most general turnstile data stream model (an arbitrary
number of positive and negative additive updates to entries given in an arbitrary or-
der). The first algorithm works for PSD matrices A when p ≥ 3 is an odd integer,
and the second algorithm works for arbitrary A when p ≥ 4 is an even integer.

8.1. PSD matrices and odd p. In this subsection, we assume that A ∈ Rn×n
is PSD and p ≥ 3 is an odd integer.

Given integers k and p < k, call a sequence (i1, . . . , ip) a cycle if ij ∈ [k] for all j
and ij1 6= ij2 for all j1 6= j2. On a k × k matrix A, each cycle σ defines a product

Aσ =
p∏
i=1

Aσi,σi+1 ,

where we adopt the convention that ip+1 = i1. Let Cyc denote the set of cycles. Call
two cycles σ, τ ∈ Cyc k-disjoint if |σ∆τ | = 2k, where σ and τ are viewed as multisets.

Theorem 8.1. With probability ≥ 3/4, the output X returned by Algorithm 8.1
satisfies (1− ε)‖A‖pp ≤ X ≤ (1 + ε)‖A‖pp when A is PSD. The algorithm is a bilinear
sketch with r · s = Op(ε−2n2−4/p).

Proof. Since A is symmetric, it can be written as A = OΛOT , where Λ is a
diagonal matrix and O is an orthogonal matrix. Let G be a random matrix with i.i.d.
N(0, 1) entries. By rotational invariance, GAGT is identically distributed as GΛGT .
Let k = n1−2/p, and let Ã be the upper-left k × k block of GΛGT . It is clear that

Ãs,t =
n∑
i=1

λiGi,sGi,t.

Define
Y = 1

|Cyc|
∑
σ∈Cyc

Ãσ.

Suppose that σ = (i1, . . . , ip); then

Ãσ =
n∑

j1,...,jp=1
λj1 · · ·λjp

p∏
`=1

Gj`,i`Gj`,i`+1 .
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It is easy to see that E Ãσ =
∑
λpi = ‖A‖pp (all j`’s are the same) and thus that

EY = ‖X‖pp. Now we compute EY 2:

EY 2 = 1
|Cyc|2

p∑
m=0

∑
σ,τ∈Cyc

σ,τ are m-disjoint

E(ÃσÃτ ).

It is not difficult to see that (see subsection 8.3 for details), when m ≤ p− 2, it holds
for m-disjoint σ and τ that

E(X̃σX̃τ ) .m,p ‖A‖κn1
κ ‖A‖(κ+2)n2

κ+2 ,

where κ = 2d p
2(p−m)e and (n1, n2) is the solution to

κn1 + (κ+ 2)n2 = 2p,
n1 + n2 = p−m.

By Hölder’s inequality, ‖A‖qq ≤ n
1− q

p ‖A‖qp for q < p, and thus

E(ÃσÃτ ) .m,p np−m−2, m ≤ p− 2.

When σ, τ are (p− 1)- or p-disjoint, we obtain

E(ÃσÃτ ) ≤ ‖A‖2pp .

There are Op(kp+m) pairs of m-disjoint cycles, and |Cyc| = Θ(kp),

1
|Cyc|2

∑
σ,τ∈Cyc
|σ∆τ |=2m

E(ÃσÃτ ) ≤ Cm,p
np−m−2

kp−m
‖A‖2pp ≤ Cm,p‖A‖2pp , m ≤ p− 2,

1
|Cyc|2

∑
σ,τ∈Cyc
|σ∆τ |=2m

E(ÃσÃτ ) ≤ 1
k
‖A‖2pp , m = p− 1,

1
|Cyc|2

∑
σ,τ∈Cyc
|σ∆τ |=2m

E(ÃσÃτ ) ≤ ‖A‖2pp , m = p.

Therefore EY 2 ≤ Cp‖A‖2pp for some constant Cp dependent on p only. Hence if we
take multiple copies of this distribution as stated in Algorithm 8.1 and define

(8.1) Z = 1
N

N∑
i=1

1
|Cyc|

∑
σ∈Cyc

(GiAGTi )σ =: 1
N

N∑
i=1

Yi,

then Yi’s are i.i.d. copies of Y . It follows that

EZ = EY = ‖A‖pp

and
Var(Z) = Var(Y )

N
≤ EY 2

N
= 1

4ε
2‖A‖2pp .
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Algorithm 8.2. The sketching algorithm for even p ≥ 4.
Input: n, ε > 0, even integer p ≥ 4, and A ∈ Rn×n
1: N ← Θp(ε−2)
2: Let {Gi}i∈[N ] and {Hi}i∈[N ] be independent n1−2/p×nmatrices with i.i.d. N(0, 1)

entries
3: Maintain each GiAHT

i , i = 1, . . . , N
4: Compute Z as defined in (8.2)
5: return Z

Finally, by Chebyshev’s inequality,

Pr
{∣∣Z − ‖A‖pp∣∣ > ε‖A‖pp

}
≤ V ar(Z)
ε2‖A‖2pp

≤ 1
4 ,

which implies the correctness of the algorithm. It is easy to see that the algorithm
only reads the upper-left k × k block of each GiAGTi , and thus it can be maintained
in O(Nk2) = Op(ε−2n2−4/p) space.

8.2. Arbitrary matrices and even p. In this subsection, we assume that p ≥ 4
is an even integer. We redefine the notion of cycles and the estimator below, using
the same letters as in the preceding subsection. The algorithm and the analysis are
similar to those in the preceding subsection.

Suppose that p = 2q. We define a cycle σ to be an ordered pair of a sequence
of length q: σ = ((i1, . . . , iq), (j1, . . . , jq)) such that ir, jr ∈ [k] for all r, ir 6= is and
jr 6= js for r 6= s. Now we associate with σ

Aσ =
q∏
`=1

Ai`,j`
Ai`+1,j`

,

where we adopt the convention that ik+1 = i1.
For two sequences i = (i1, . . . , iq) and i′ = (i′1, . . . , i′q), each having distinct ele-

ments, we denote by i∆i′ the symmetric difference between i and i′, treating i and i′
as multisets.

Let Cyc denote the set of cycles. We say that two cycles σ = ({i}, {j}) and
τ = ({i′}, {j′}) are (m1,m2)-disjoint if |i∆i′| = 2m1 and |j∆j′| = 2m2, denoted by
|σ∆τ | = (m1,m2).

We define

(8.2) Z = 1
N

N∑
i=1

1
|Cyc|

∑
σ∈Cyc

(GiAHT
i )σ

for even p, where G1, . . . , GN , H1, . . . ,HN are independent n1−2/p × n Gaussian ran-
dom matrices with entries i.i.d. N(0, 1).

Theorem 8.2. With probability ≥ 3/4, the output Z returned by Algorithm 8.2
satisfies (1 − ε)‖A‖pp ≤ Z ≤ (1 + ε)‖A‖pp when p is even. The algorithm is a bilinear
sketch with r · s = Op(ε−2n2−4/p).

Proof. Let A = UΣV be the SVD of A. Let G and H be random matrices with
i.i.d. N(0, 1) entries. By rotational invariance, GAHT is identically distributed as
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GΣHT . Let k = n1−2/p, and let Ã be the upper-left k× k block of GΣHT . It is clear
that6

Ãs,t =
n∑
i=1

σiGi,sHi,t.

Define
Y = 1

|Cyc|
∑
σ∈Cyc

Ãσ.

Suppose that σ = ({is}, {js}); then

Ãσ =
∑

`1,...,`q
m1,...,mq

q∏
s=1

σ`sσms

q∏
s=1

G`s,isH`s,jsGms,is+1Hms,js .

It is easy to see that E X̃σ =
∑
σ2q
i = ‖A‖pp (all {`s} and {ms} are the same) and

thus that EY = ‖X‖pp. Now we compute EY 2:

EY 2 = 1
|Cyc|2

q∑
m1=0

q∑
m2=0

∑
σ,τ∈Cyc

|σ∆τ |=(m1,m2)

E(ÃσÃτ ).

Suppose that |σ∆τ | = (m1,m2),

E(ÃσÃτ ) =
∑

`1,...,`q

`′1,...,`
′
q

m1,...,mq

m′1,...,m
′
q

(
q∏
i=1

σ`i
σmi

σ`′
i
σm′

i

)
,

E

{
q∏
s=1

G`s,isGms,is+1G`′s,i′sGm′s,i′s+1

}
E

{
q∏
s=1

H`s,jsHms,jsH`′s,j
′
s
Hm′s,j

′
s

}
.

An argument similar to that in the preceding section gives that

E(ÃσÃτ ) .m,p


‖A‖κn1

κ ‖A‖(κ+2)n2
κ+2 , m1,m2 ≤ q − 1,

‖A‖4(q−m2−1)
4 ‖A‖4(m2+1)

2(m2+1), m1 = q,m2 ≤ q − 1,
‖A‖4(q−m1−1)

4 ‖A‖4(m1+1)
2(m1+1), m2 = q,m1 ≤ q − 1,

‖A‖4q2q, m1 = m2 = q,

where κ = 2d p
p−me and (n1, n2) is the solution to

κn1 + (κ+ 2)n2 = 2p,
n1 + n2 = p−m1 −m2.

By Hölder’s inequality, ‖A‖rr ≤ n
1− r

p ‖A‖rp for r < p. Thus,

E(ÃσÃτ ) .m,p


np−m1−m2−2‖A‖2pp , m1,m2 ≤ q − 1,
nq−m1−1‖A‖2pp , p2 = q, p1 ≤ q − 1,
nq−m2−1‖A‖2pp , p1 = q, p2 ≤ q − 1,
‖A‖2pp , m1 = m2 = q.

6In this proof we use σi (with subscript) for singular values and use σ (without subscripts) for
cycles.
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There are Oq(kq+m1kq+m2) = Op(kp+m1+m2) pairs of (m1,m2)-disjoint cycles, and
|Cyc| = Θ(kp),

1
|Cyc|2

∑
σ,τ∈Cyc

|σ∆τ |=(m1,m2)

E(ÃσÃτ ) ≤ Cm1+m2,p
np−m1−m2−2

kp−m1−m2
‖A‖2pp

≤ Cm1+m2,p‖A‖2pp , m1,m2 ≤ q − 1,
1

|Cyc|2
∑

σ,τ∈Cyc
|σ∆τ |=(m1,m2)

E(ÃσÃτ ) ≤ Cm1+m2,p
nq−m1−1

kq−m1
‖A‖2pp

≤ Cm1,p‖A‖2pp ,
p

2 ≤ m2 = q,m1 ≤ q − 1,

1
|Cyc|2

∑
σ,τ∈Cyc

|σ∆τ |=(m1,m2)

E(ÃσÃτ ) ≤ Cm1+m2,p
np−m2−1

kq−m2
‖A‖2pp

≤ Cm1,p‖A‖2pp ,
p

2 ≤ m1 = q,m2 ≤ q − 1,
1

|Cyc|2
∑

σ,τ∈Cyc
|σ∆τ |=(m1,m2)

E(ÃσÃτ ) ≤ ‖A‖2pp , m1 +m2 = p.

Therefore EY 2 ≤ Cp‖A‖2pp for some constant Cp dependent on p only. Since

Z = 1
N

N∑
i=1

Yi,

then Yi’s are i.i.d. copies of Y . It follows that

EZ = EY = ‖A‖pp

and
Var(Z) = Var(Y )

N
≤ EY 2

N
= 1

4ε
2‖A‖2pp .

Finally, by Chebyshev’s inequality,

Pr
{∣∣Z − ‖A‖pp∣∣ > ε‖A‖pp

}
≤ Var(Z)
ε2‖A‖2pp

≤ 1
4 ,

which implies the correctness of the algorithm. It is easy to see that the algorithm
only reads the upper-left k × k block of each GiAHT

i , and thus it can be maintained
in O(Nk2) = Op(ε−2n2−4/p) space.

8.3. Omitted details in the proof of Theorem 8.1. Suppose that σ =
(i1, . . . , ip) and τ = (j1, . . . , jp) are m-disjoint. Then

E(ÃσÃτ ) =
∑

`1,...,`p

`′1,...,`
′
p

λ`1 · · ·λ`pλ`′1 · · ·λ`′p E

{
p∏
s=1

G`s,isG`s,is+1G`′s,jsG`′s,js+1

}
.

For the expectation to be nonzero, each appearing entry must be repeated an even
number of times. Hence, if some is appears only once among the indices {is} and {js},
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it must hold that `s = `s+1. Thus for each of the summation terms, the indices {`s}
break into a few blocks, in each of which all `s take the same value; the same holds
for {`′s}. We also need to piece together the blocks of {`s} with those of {`′s}. Hence
the whole sum breaks into sums corresponding to different block configurations. For
a certain kind of configuration, in which `1, . . . , `w are free variables with multiplicity
r1, . . . , rw, respectively, the sum is bounded by

C ·
∑

`1,...,`w

λr1
`1
· · ·λrw

`w
≤ C‖A‖r1

r1
· · · ‖A‖rw

rw
,

where the constant C depends on the configuration only, and thus it can be made
dependent on m and p only by taking the maximum constant over all possible block
configurations. Notice that in a configuration, all rw’s are even, r1 + · · · + rw = 2p,
and w ≤ p−m. Note that

‖A‖rr‖A‖ss ≤ ‖A‖r−1
r−1‖A‖

s+1
s+1, r > s,

‖A‖r+sr+s ≤ ‖A‖rr‖A‖ss,

it is easy to see that the worst case of configuration is when w = p−m and

(r1, . . . , rw) = (κ, . . . , κ︸ ︷︷ ︸
n1 times

, κ+ 2, . . . , κ+ 2︸ ︷︷ ︸
n2 times

),

where
κ = 2

⌈
p

2(p−m)

⌉
,

and (n1, n2) is the solution to

κn1 + (κ+ 2)n2 = 2p,
n1 + n2 = p−m.

This gives the bound
C‖A‖κn1

κ ‖A‖(κ+2)n2
κ+2 .

Finally, observe that the number of configurations is a constant that depends on p
and m only, giving the variance claim.

9. Bit lower bound for Schatten norms. Let m be an even integer, and let
Dm,k (0 ≤ k ≤ m) be an m ×m diagonal matrix with the first k diagonal elements
equal to 1 and the remaining diagonal entries 0. Define

(9.1) Mm,k =
(

1m1Tm 0√
γDm,k 0

)
,

where γ > 0 is a constant (which may depend on m).
Our starting point is the following theorem. Let m ≥ 2, and let pm(k) =(

m
k

)
/2m−1 for 0 ≤ k ≤ m. Let Even(m) be the probability distribution on even integers

{0, 2, . . . ,m} with probability density function pm(k), and let Odd(m) be the distribu-
tion on odd integers {1, 3, . . . ,m− 1} with density function pm(k). We say a function
f on square matrices is diagonally block-additive if f(X) = f(X1) + · · · + f(Xs) for
any block diagonal matrix X with square diagonal blocks X1, . . . , Xs. It is clear that
f(X) =

∑
i f(σi(X)) is diagonally block-additive.
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Theorem 9.1. Let t be an even integer, and let N be sufficiently large (indepen-
dent of t). Suppose that X ∈ RN×N . Let f be a function of square matrices that is
diagonally block-additive. If there exists m = m(t) such that

E
q∼Even(t)

f(Mm,q)− E
q∼Odd(t)

f(Mm,q) 6= 0,(9.2)

then there exists a constant c = c(t) > 0 such that any streaming algorithm that
approximates f(X) within a factor 1 ± c with constant error probability must use
Ωt(N1−1/t) bits of space.

Proof. We reduce the problem from the BHH0
t,n problem. Let n = Nt/(2m).

For the input of the BHH0
t,n problem, construct a graph G as follows. The graph

contains n vertices v1, . . . , vn, together with n/t cliques of size m, together with edges
connecting vi’s with the cliques according to Alice’s input x. These latter edges
are called “tentacles.” In the jth clique of size m, we fix t vertices, denoted by
wj,1, . . . , wj,t. Whenever xi = 1 for i = (j − 1)(n/t) + r (0 ≤ r < n/t), we join vi and
wj,r in the graph G.

LetM be constructed from G as follows: both the rows and columns are indexed
by nodes of G. For every pair w, v of clique nodes in G, letMw,v = 1, where we allow
w = v. For every tentacle (u,w), where w is a clique node, letM(u,w) = √γ. Then
M is an N ×N block diagonal matrix of the following form after permuting the rows
and columns:

(9.3) Mn,m,t =


Mm,q1

Mm,q2

. . .
Mm,qn/t

 ,

where q1, . . . , qn/t satisfy the constraint that q1 + q2 + · · ·+ qn/t = n/2 and 0 ≤ qi ≤ t
for all i. It holds that f(Mn,m,t) =

∑
i f(Mm,qi).

Alice and Bob will run the following protocol. Alice keeps adding the matrix
entries corresponding to tentacles while running the algorithm for estimating f(M).
Then she sends the state of the algorithm to Bob, who will continue running the algo-
rithm while adding the entries corresponding to the cliques defined by the matching
he owns. At the end, Bob outputs which case the input of BHH0

n belongs to based
upon the final state of the algorithm.

From the reduction for BHH0
t,n and the hard distribution of BHHt,n, the hard

distribution of BHH0
t,n exhibits the following pattern: q1, . . . , qn/t can be divided into

n/(2t) groups. Each group contains two qi’s and has the form (q, t − q), where q is
subject to distribution Even(t) or Odd(t) depending on the promise. Furthermore, the
q’s across the n/(2t) groups are independent. The two cases to distinguish are that
all qi’s are even (referred to as the even case) and that all qi’s are odd (referred to as
the odd case).

For notational simplicity, let Fq = f(Mm,q), q = 0, . . . , t. Suppose that the gap
in (9.2) is positive. Let A = Eq∼Even(t) 2(Fq + Ft−q) and B = Eq∼Odd(t) 2(Fq + Ft−q);
then A − B > 0. Summing up (n/2t) independent groups and applying a Chernoff
bound, w.h.p., f(M) ≥ (1 − δ) n2tA in the even case and f(M) ≤ (1 + δ) n2tA, where
δ is a small constant to be determined. If we can approximate f(M) up to a (1± c)-
factor, say X, then with constant probability, in the even case we have an estimate
X ≥ (1− c)(1− δ) n2tA, and in the odd case X ≤ (1 + c)(1 + δ) n2tA. Choose δ = c and
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choose c < B−A
3(B+A) . Then there will be a gap between the estimates in the two cases.

The conclusion follows from the lower bound for the BHH0
n problem.

A similar argument works when the gap in (9.2) is negative.
Our main theorem in this section is the following, which shows the near linear

lower bound for estimating Schatten-p norms.
Theorem 9.2. Let p ∈ (0,∞) \ 2Z. For every even integer t, there exists a

constant c = c(t) > 0 such that any algorithm that approximates ‖X‖pp within a factor
1 ± c with constant probability in the streaming model must use Ωt(N1−1/t) bits of
space.

The theorem follows from applying Theorem 9.1 to f(x) = xp and m = t and ver-
ifying that (9.2) is satisfied. The proof is technical and thus postponed to section 10.

For even integers p, we change our hard instance to

Mm,k = 1m1Tm − Im +Dm,k,

where Im is the m ×m identity matrix. We then have the following lemma, whose
proof is postponed to the end of section 11.

Lemma 9.3. For f(x) = xp and integer p ≥ 2, the gap condition (9.2) is satisfied
if and only if t ≤ p/2, under the choice that m = t.

This yields an Ω(n1−2/p) lower bound, which agrees with the lower bound obtained
by injecting the Fp moment problem into the diagonal elements of the input matrix
[37, 46], but here we have the advantage that the entries are bounded by a constant
independent of n. In fact, for even integers p, we show that our lower bound is tight
up to poly(logn) factors for matrices in which every row and column has O(1) nonzero
elements by providing an algorithm in section 12 for the problem. Hence our matrix
construction Mm,k will not give a substantially better lower bound. Our lower bound
for even integers p also helps us in the setting of general functions f in section 13.

10. Proof of Theorem 9.2.
Proof. First, we find the singular values of Mm,k. Assume that 1 ≤ k ≤ m − 1

for now.
MT
m,kMm,k =

(
m1m1Tm + γDm,k 0

0 0

)
.

Let ei denote the ith vector of the canonical basis of R2m. It is clear that e1 − ei
(i = 2, . . . , k) are the eigenvectors with corresponding eigenvalue γ, which means that
Mm,k has k − 1 singular values of √γ. Since rank(Mm,k) = k + 1, there are two
more nonzero singular values, which are the square roots of another two eigenvalues,
say r1(k) and r2(k), of MT

m,kMm,k. It follows from tr(MT
m,kMm,k) = m + γk that

r1(k) + r2(k) = m2 + γ and from ‖Mm,kMm,k‖2F = (m + γ)2k + (m2 − k)m2 that
r2
1(k) + r2

2(k) = m4 + 2γkm+ γ2. Hence r1(k)r2(k) = m2γ − kmγ. In summary, the
nonzero singular values of Mm,k are √γ of multiplicity k − 1,

√
r1(k), and

√
r2(k),

where r1,2(k) are the roots of the following quadratic equation:

x2 − (m2 + γ)x+ (m2 − km)γ = 0.

The conclusion above remains formally valid for k = 0 and k = m. In the case of
k = 0, the matrix Mm,0 has a single nonzero singular value m, while r1(k) = m2 and
r2(k) = γ. In the case of k = m, the matrix Mm,m has singular values

√
m2 + γ of
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multiplicity 1 and √γ of multiplicity m − 1, while r1(k) = m2 + γ and r2(k) = 0.
Hence the left-hand side of (9.2) becomes

1
2m−1

∑
even k

(
m

k

)(
(k − 1)γp/2 + r

p/2
1 (k) + r

p/2
2 (k)

)
− 1

2m−1

∑
odd k

(
m

k

)(
(k − 1)γp/2 + r

p/2
1 (k) + r

p/2
2 (k)

)
= 1

2m−1 (G1 +G2),

where the γp/2 terms cancel and

(10.1) Gi =
∑
k

(−1)k
(
m

k

)
r

p
2
i (k), i = 1, 2.

Our goal is to show that G1 +G2 6= 0 when p is not an even integer. To simplify and
to abuse notation, in the remainder of this section we replace p/2 with p in (10.1),
and hence G1 and G2 are redefined as

(10.2) Gi =
∑
k

(−1)k
(
m

k

)
rpi (k), i = 1, 2,

and our goal becomes to show that G1 +G2 6= 0 for nonintegers p.
Next we choose

r1(k) = 1
2

(
m2 + γ +

√
m4 − 2γm2 + γ2 + 4γkm

)
,

r2(k) = 1
2

(
m2 + γ −

√
m4 − 2γm2 + γ2 + 4γkm

)
.

We claim that they admit the following power series expansion in k (the proof deferred
to subsection 10.2):

(10.3) rp1(k) =
∑
s≥0

Ask
s, rp2(k) =

∑
s≥0

Bsk
s,

where for s ≥ 2,

(10.4) As = (−1)s−1γsm2p−s

s!(m2 − γ)2s−1

s−1∑
i=0

(−1)i
(
s− 1
i

)
Fp,s,iγ

s−i−1m2i,

(10.5) Bs = (−1)sγpms

s!(m2 − γ)2s−1

s−1∑
i=0

(−1)i
(
s− 1
i

)
Fp,s,iγ

im2(s−i−1),

and

Fs,i =
s−i−1∏
j=0

(p− j) ·
i∏

j=1
(p− 2s+ j).
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We analyze As first. It is easy to see that |Fs,i| ≤ (2s)s for s > 2p, and hence

|As| ≤
γsm2p−s

s!(m2 − γ)2s−1

s−1∑
i=0

(
s− 1
i

)
|Fs,i|γs−i−1m2i

≤ γsm2p−s
√

2πs( se )s(m2 − γ)2s−1
(2s)sm2(s−1)

(
1 + γ

m2

)s−1

≤ m2p 2e√
2πs

γ

m2(m2 − γ)

(
4emγ

(m2 − γ)2

)s−1
,

whence it follows immediately that
∑
sAsk

s is absolutely convergent. We can apply
term after term the identity

(10.6)
m∑
k=0

(
m

k

)
ks(−1)k =

{
s

m

}
(−1)mm!,

where
{
s
m

}
is the Stirling number of the second kind, and obtain that (since m is

even)

G1 =
∑
s≥m

{
s

m

}
m!As,

which, using the fact that
{
s
m

}
m! ≤ ms, can be bounded as

|G1| ≤
∑
s≥m

ms|As| ≤ c1m2p
( c2
m2

)m−1

for some absolute constants c1, c2 > 0.
Bounding G2 is more difficult, because Bs contains an alternating sum. How-

ever, we are able to prove the following critical lemma, whose proof is postponed to
subsection 10.1.

Lemma 10.1. For any fixed noninteger p > 0, one can choose γ0 and m such that
Bs has the same sign for all s ≥ m and all 0 < γ < γ0.

Since
∑
s≥mBsm

s is a convergent series with positive terms, we can apply (10.6)
to
∑
sBsk

s term after term, giving the gap contribution from r2(k) as

G2 =
∑
s≥m

{
s

m

}
m!Bs.

Let am,i be the summand in Bm, that is,

am,i =
(
s− 1
i

)
Fs,iγ

im2(s−i−1).

Since p is not an integer, am,i 6= 0 for all i. Then

rm,i := am,i
am,i−1

= m− i− 1
i+ 1 · p− 2m+ i

p−m+ i
· γ
m2 .

If we choose m such that m2/γ & ([p]− 1)/(p− [p]) when p > 1 or m2/γ & 1/(p− [p])
when p < 1, it holds that |rm,i| ≤ 1/3 for all i, and thus the sum is dominated by
am,0. It follows that

G2 ≥ Bm &
γpmm

s!(m2 − γ)2m−1 |am,0| & (p− [p])2[p]! γp

(m− dpe − 1)p−[p]m[p] .
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It follows from Lemma 10.1 that the above is also a lower bound for G2. Therefore
G1 is negligible compared with G2 and G1 + G2 6= 0. This ends the proof of Theo-
rem 9.2.

10.1. Proof of Lemma 10.1. The difficulty is due to the fact that the sum in
Bs is an alternating sum. However, we notice that the sum in Bs is a hypergeometric
polynomial with respect to γ/m2. This is our starting point.

Proof of Lemma 10.1. Let x = γ/m2 and write Bs as

(10.7) Bs = (−1)s−1 γpm3s−2

s!(m2 − γ)2s−1

s−1∑
i=0

(−1)i+1
(
s− 1
i

)
Fs,ix

i.

Then

Bsm
s = (−1)s−1γp

m4s−2

s!(m2 − γ)2s−1

s−1∑
i=0

(−1)i+1
(
s− 1
i

)
Fs,ix

i.

Observe that the sum can be written using a hypergeometric function, and the series
above becomes

Bsm
s = (−1)sγp 1

s!(1− x)2s−1 ·
Γ(1 + p)

Γ(1 + p− s) · 2F1

(
1− s, 1 + p− 2s

1 + p− s
;x
)
.

Invoking Euler’s Transformation (see, e.g., [9, p. 78])

2F1

(
a, b

c
;x
)

= (1− x)c−a−b 2F1

(
c− a, c− b

c
;x
)

gives

(10.8) 2F1

(
1− s, 1 + p− 2s

1 + p− s
;x
)

= (1− x)2s−1
2F1

(
p, s

p− s+ 1;x
)
.

Therefore

(10.9) Bsm
s = (−1)s γpΓ(1 + p)

s! Γ(1 + p− s) 2F1

(
p, s

p− s+ 1;x
)
.

Since Γ(1 + p − s) has alternating signs with respect to s, it suffices to show that
2F1(p, s; p − s + 1;x) > 0 for all x ∈ [0, x∗] and all s ≥ s∗, where both x∗ and s∗

depend only on p.
Now, we write 2F1(p, s; p− s+ 1;x) =

∑
n bn, where

bn = p(p+ 1) · · · (p+ n− 1) · s(s+ 1) · · · (s+ n− 1)
(1 + p− s)(2 + p− s) · · · (n+ p− s)n! xn.

It is clear that bn has the same sign for all n ≥ s− dpe and has alternating signs for
n ≤ s− dpe. Consider ∣∣∣∣ bnbn−1

∣∣∣∣ = (p+ n− 1)(s+ n− 1)
(p− s+ n)n x.

One can verify that when n ≥ 2s and x ≤ 1/10, |bn/bn−1| < 3x ≤ 1/3 and thus
|
∑
n≥2s bn| ≤

3
2 |b2s|. Also, when s ≥ 3p is large enough, x ≤ 1/10 and n ≤ s/2.
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It holds that |bn/bn−1| < 1, and thus {|bn|} is decreasing when n ≤ s/2. (In fact,
{|bn|} is decreasing up to n = 1−x

1+xs + O(1).) Recall that {bn} has alternating signs
for n ≤ s/2, and it follows that

(10.10) 0 ≤
∑

2≤n≤s/2

bn ≤ b2.

Next we bound
∑
s/2<n<2s bn. Let n∗ ∈ argmaxs/2<n<2s |bn|. When n∗ ≤ s− dpe,

∣∣∣∣∣∣
∑

s/2<n≤2s

bn

∣∣∣∣∣∣ ≤ 3
2s|bn

∗ |

≤ 3
2s
p(p+ 1) · · · (p+ n∗)

n∗!
(s− [p]− n∗)!
(s− [p]− 1)!

(s+ n∗ − 1)!
s! xn

∗

≤ 3
2s(n

∗)p
(
s+n∗−1

s

)(
s−[p]−1
s−[p]−n∗

)xn∗
≤ 3

2s · es
p · 4s · xs/2

≤ x3,

provided that x is small enough (independent of s) and s is big enough. When
n∗ > s− dpe,

∣∣∣∣∣∣
∑

s/2<n<2s

bn

∣∣∣∣∣∣ ≤ 3
2s|bn

∗ |

≤ 3
2s
p(p+ 1) · · · (p+ n∗)

n∗!
(s+ n∗ − 1)!

(s− [p]− 1)!(n∗ − s+ [p]− 1)!s!x
n∗

≤ 3
2s

2(n∗)p
(

s+ n∗ − 1
s− [p], n∗ − s+ [p]− 1, s

)
xn
∗

≤ 3
2s

2 · e(2s)p · 33s−1 · xs−dpe

≤ x3,

provided that x is small enough (independent of s) and s is big enough. Similarly
we can bound, under the same assumption on x and s as above, that |b2s| ≤ x3.
Therefore

(10.11)

∣∣∣∣∣∣
∑
n>s/2

bn

∣∣∣∣∣∣ ≤ Kx3

for some K and sufficiently large s and small x, all of which depend only on p.
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It follows that

2F1

(
p, s

p− s+ 1;x
)
≥ 1− ps

s− p− 1x−
∑

2≤n≤s/2

bn −

∣∣∣∣∣∣
∑
n>s/2

bn

∣∣∣∣∣∣
≥ 1− ps

s− p− 1x− b2 −Kx
3 (using (10.10) and (10.11))

≥ 1− ps

s− p− 1x−
p(p+ 1)s(s+ 1)

2(s− p− 1)(s− p− 2)x
2 −Kx3

> 0

for sufficiently large s and small x (independent of s).
The proof of Lemma 10.1 is now complete.
10.2. Proof of power series expansion. In this subsection, our main task is

to prove the claim made in section 10 that rp1(k) and rp2(k) admit the series expansion
in (10.3).

Proof of (10.3). We first verify the series expansion of r1(k). It is a standard
result that for |x| ≤ 1/4 (see, e.g., [39, p. 203]),

1 +
√

1− 4x
2 = 1−

∞∑
n=1

Cn−1x
n,

1−
√

1− 4x
2 =

∞∑
n=1

Cn−1x
n,

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number. Let x = −γkm/(m2 − γ)2, and we

have

r1(k) = m2 1 +
√

1− 4x
2 + γ

1−
√

1− 4x
2

= m2 − (m2 − γ)
∞∑
n=1

Cn−1x
n

= m2 −
∞∑
n=1

Cn−1
(−1)nγnknmn

(m2 − γ)2n−1 .

Applying the generalized binomial theorem, we obtain

r1(k)p

= m2p +
∞∑
i=1

(
p

i

)
(−1)im2(p−i)

( ∞∑
n=1

Cn−1
(−1)nγnknmn

(m2 − γ)2n−1

)i

= m2p +
∞∑
i=1

(
p

i

)
(−1)im2(p−i)

∑
n1,...,ni≥1

∏i
j=1 Cnj−1(−kγm)

∑
j
nj

(m2 − γ)2
∑

j
nj−i

= m2p +
∞∑
s=1

s∑
i=1

(
p

i

)
m2(p−i) (−kγm)s

(m2 − γ)2s−i

∑
n1,...,ni≥1
n1+···+ni=s

i∏
j=1

Cnj−1,

where we replace
∑
j nj with s. It is a known result using the Lagrange inversion

formula that (see, e.g., [67, p. 128])∑
n1,...,ni≥1
n1+···+ni=s

i∏
j=1

Cnj−1 = i

s

(
2s− i− 1
s− 1

)
.
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Hence (replacing i with i+ 1 in the expression above)

(10.12) As = (−1)s+1γsm2p

(m2 − γ)2s−1

s−1∑
i=0

(−1)i
(

p

i+ 1

)
i+ 1
s

(
2s− i− 2
s− 1

)
ms−2(i+1)(m2−γ)i.

To see that (10.12) agrees with (10.4), it suffices to show that

s−1∑
i=0

(−1)i
(
s− 1
i

)
Fp,s,iγ

s−i−1m2i−s

= s!
s−1∑
i=0

(−1)i
(

p

i+ 1

)
i+ 1
s

(
2s− i− 2
s− 1

)
ms−2(i+1)(m2 − γ)i.

Comparing the coefficients of γj , we need to show that

(−1)s−1
(
s− 1
j

)
Fp,s,j,s−j−1 = s!

s−1∑
i=j

(−1)i
(

p

i+ 1

)
i+ 1
s

(
2s− i− 2
s− 1

)(
i

j

)
.

Note that both sides are a degree-s polynomial in p with head coefficient (−1)s−1, so
it suffices to verify that they have the same roots. It is clear that 0, . . . , j are roots.
When r > j, each summand on the right-hand is nonzero, and the right-hand side
can be written, using the ratio of successive summands, as

S0 2F1

(
1 + j − p, 1 + j − s

2 + j − 2s ; 1
)
,

where S0 6= 0. Hence it suffices to show that 2F1(1 + j− p, 1 + j− s; 2 + j− 2s; 1) = 0
when p = 2s− k for 1 ≤ k ≤ s− j − 1. This holds by the Chu–Vandermonde identity
(see, e.g., [9, Corollary 2.2.3]), which states, in our case, that

2F1

(
1 + j − p, 1 + j − s

2 + j − 2s ; 1
)

= (1 + p− 2s)(2 + p− 2s) · · · (−1 + p− s− j)
(2 + j − 2s)(3 + j − 2s) · · · (−s) .

The proof of expansion of r1(k) is now complete. Similarly, starting from

r2(k) = γ
1 +
√

1− 4x
2 +m2 1−

√
1− 4x
2 ,

we can deduce as an intermediate step that

Bs = (−1)sγpms

(m2 − γ)2s−1

s−1∑
i=0

(−1)i
(

p

i+ 1

)
i+ 1
s

(
2s− i− 2
s− 1

)
γs−i−1(m2 − γ)i

and then show it agrees with (10.5). The whole proof is almost identical to that for
r1(k).

The convergence of both series for 0 ≤ k ≤ m follows from the absolute conver-
gence of series expansion of (1 + z)p for |z| ≤ 1. Note that r2(m) corresponds to
z = −1.

We remark that one can continue from (10.9) to bound
∑
sBsm

s .p 1/mp.
Hence G1 +G2 ' 1/mp, and thus the gap in (9.2) is Θp(1/2mmp) with the constant
dependent on p only.
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11. Proofs related to even p. Now we prove Lemma 9.3. Since our new
Mm,k is symmetric, the singular values are the absolute values of the eigenvalues. For
0 < k < m, −ei + em (i = k+ 1, . . . ,m− 1) are eigenvectors of eigenvalue −1. Hence
there are m − k − 1 singular values of 1. Observe that the bottom m − k + 1 rows
of Mm,k are linearly independent, so the rank(Mm,k) = m− k+ 1, and there are two
more nonzero eigenvalues. Using the trace and Frobenius norm as in the case of the
Mm,k for noneven p, we find that the other two eigenvalues λ1(k) and λ2(k) satisfy
λ1(k) + λ2(k) = m − 1 and λ2

1(k) + λ2
2(k) = (m − 1)2 + 2k. Therefore, the singular

values r1,2(k) = |λ1,2(k)| = 1
2 (
√

(m− 1)2 + 4k± (m− 1)). Formally define r1,2(k) for
k = 0 and k = m. When k = 0, the singular values are actually r1(0) and r2(m), and
when k = m, the singular values are r1(m) and r2(0). Since k = 0 and k = m happen
with the same probability, this “swap” of singular values does not affect the sum. We
can proceed, pretending that r1,2(k) are correct for k = 0 and k = m.

Recall that the gap is 1
2m−1 (G1 +G2), where G1 and G2 are as defined in (10.1)

(we do not need to replace p/2 with p here). It remains to show again that G1+G2 6= 0
if and only if m ≤ [p/2].

Proof of Lemma 9.3. Applying the binomial theorem, we obtain

rp1(k) + rp2(k) = 1
2p−1

∑
i:2|(p−i)

(
p

i

)
(m− 1)i((m− 1)2 + 4k)

p−i
2

= 1
2p−1

∑
i:2|(p−i)

(
p

i

)
(m− 1)i

p−i
2∑
j=0

(p−i
2
j

)
(m− 1)2j4

p−i
2 −jk

p−i
2 −j .

Therefore

G1 +G2 = (−1)mm!
∑

i:2|(p−i)

(
p

i

)
(m− 1)i ·

p−i
2∑
j=0

(p−i
2
j

)
(m− 1)2j4

p−i
2 −j

{p−i
2
m

}
.

Note that all terms are of the same sign (interpreting 0 as any sign), and the sum
vanishes only when

{ p−i
2
m

}
= 0 for all i, that is, when m > [ p2 ].

Although when p is even we have G1 + G2 = 0, we can, however, show that
G1, G2 6= 0, which will be useful for some applications in section 13.

Lemma 11.1. When p is even, G1 6= 0 and G2 6= 0, provided that m is large
enough.

Proof. First, we have

rp2(k) = (m− 1)p

2p
∞∑
s=0

p∑
i=0

(
p

i

)
(−1)i

(
i/2
s

)
4s

(m− 1)2s k
s.

When s > p/2, the binomial coefficient
(
i/2
s

)
vanishes if i is an even integer. Plugging

in (10.6), we obtain that

G2 = − (m− 1)pm!
2p

∑
s≥m

{
s

m

}
4s

(m− 1)2s

∑
odd i

1≤i≤p−1

(
p

i

)(
i/2
j

)
.
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Hence it suffices to show that
∑
sBs 6= 0, where

Bs =
{
s

m

}
4s

(m− 1)2s

∑
odd i

1≤i≤p−1

(
p

i

)(
i/2
s

)
.

Note that Bs has alternating signs, so it suffices to show that |Bs+1| < |Bs|. Indeed,{
s+1
m

} 4s+1

(m−1)2(s+1){
s
m

} 4s

(m−1)2s

= 4
(m− 1)2 ·

{
s+1
m

}{
s
m

} ≤ 8m
(m− 1)2 < 1

when m is large enough, and ∣∣∣∣∣
(
i/2
s+1
)(

i/2
s

) ∣∣∣∣∣ =

∣∣∣∣∣s− i
2

s+ 1

∣∣∣∣∣ < 1.

The proof is now complete.
It also follows from the proof that for the same large m, the gap from ri(k) has

the same sign for all even p up to some p0 depending on m. This implies that when
f is an even polynomial, the gap contribution from ri(k) is nonzero.

12. Algorithm for even p and sparse matrices. First, we recall the classic
result on Count-Sketch [20].

Theorem 12.1 (Count-Sketch). There is a randomized linear function M :
Rn → RS with S = O(w log(n/δ)), and a recovery algorithm A satisfying the follow-
ing. For any x ∈ Rn, with probability ≥ 1− δ, A reads Mx and outputs x̃ ∈ Rn such
that ‖x̃− x‖2∞ ≤ ‖x‖22/w.

We also need a result on `2-sampling. We say x is an (c, δ)-approximator to y if
(1− c)y − δ ≤ x ≤ (1 + c)y + δ.

Theorem 12.2 (precision sampling [5]). Fix 0 < ε < 1/3. There is a randomized
linear function M : Rn → RS, with S = O(ε−2 log3 n), and an “`p-sampling algorithm
A” satisfying the following. For any nonzero x ∈ Rn, there is a distribution Dx on [n]
such that Dx(i) is an (ε, 1/poly(n))-approximator to |xi|2/‖x‖22. Then A generates
a pair (i, v) such that i is drawn from Dx (using the randomness of the function M
only), and v is an (ε, 0)-approximator to |xi|2.

The basic idea is to choose u1, . . . , un with ui ∼ Unif(0, 1) and hash yi = xi/
√
ui

using a Count-Sketch structure of size Θ(w logn) (where w = Θ(ε−1 logn+ ε−2)),
and recover the heaviest yi and thus xi if yi is the unique entry satisfying yi ≥
C‖x‖22/ε for some absolute constant C, which happens with the desired probability
|xi|2/‖x‖22 ± 1/ poly(n). The estimate error of xi follows from the Count-Sketch
guarantee.

Now we turn to our algorithm. Let A = (aij) be an integer matrix, and suppose
that the rows of A are a1, a2, . . . . There are O(1) nonzero entries in each row and each
column. Assume p ≥ 4. We use the structure for `2 sampling on n rows while using
a bigger underlying Count-Sketch structure to hash all n2 elements of a matrix.

For simplicity, we present our algorithm in Algorithm 12.1 with the assumption
that u1, . . . , un are i.i.d. Unif(0, 1). The randomness can be reduced using the same
technique in [5], which uses O(logn) seeds.



1684 YI LI, HUY L. NGUYỄN, AND DAVID P. WOODRUFF

Algorithm 12.1. Algorithm for even p and sparse matrices.
Assume that matrix A ∈ Rn×n has at most k = O(1) nonzero entries per row and
per column.

1: T ← Θ(n1−2/p/ε2)
2: R← Θ(logn)
3: w ← O(ε−1 logn+ ε−2)
4: Is ← ∅ is a multiset for s = 1, . . . , p/2
5: Choose i.i.d. u1, . . . , un with ui ∼ Unif(0, 1)
6: D ← diag{1/√u1, . . . , 1/

√
un}

7: In parallel, maintain p/2 Count-Sketch structures Ss (s ∈ [p]) of size
Θ(ε−1T logn)

8: Maintain a sketch for estimating ‖A‖2F and obtain a (1 ± ε)-approximation L as
in [2]

9: In parallel, maintain pT/2 structures Ps,t ((s, t) ∈ [p/2] × [T ]); each has R
repetitions of the Precision Sampling structure for all n2 entries of B = DA,
t = 1, . . . , T . The Precision Sampling structure uses a Count-Sketch structure
of size O(w logn)

10: Maintain a sketch for estimating ‖B‖2F and obtain a (1± ε)-approximation L′ as
in [2]

11: for s← 1 to p/2 do
12: for t← 1 to T do
13: for r ← 1 to R do
14: Use the rth repetition of the Ps,t to obtain estimates b̃i′1, . . . , b̃i′n for

all i′ and form rows b̃i′ = (bi′1, . . . , bi′n).
15: If there exists a unique i′ such that ‖b̃′i‖22 ≥ C ′L/ε for some appropriate

absolute constant C ′, return i′ and exit the inner loop
16: end for
17: Retain only entries of bi′ that are at least 2L′/

√
w.

18: ãi′ ←
√
ui′ b̃i′

19: Is ← Is ∪ {i′}
20: end for
21: end for
22: for s← 1 to p/2 do
23: Use Ss to obtain estimates ã′i′1, . . . , ã

′
i′n for all i′ and form rows ã′i′ =

(a′i′1, . . . , a′i′n)
24: Find all i such that ‖ã′i′‖22 ≥ L/(10T ), and retain O(T ) of them corresponding

to the largest ‖ã′i′‖22, making a set Ks

25: ãi ← ã′i for all i ∈ Ks

26: Is = Is ∪Ks

27: end for
28: Return Y as defined in (12.4)

Theorem 12.3. Let ε ∈ (0, 1). For a sparse matrix A ∈ Rn×n with O(1) nonzero
entries per row and per column, Algorithm 12.1 returns a value that is a (1 + ε)-
approximation to ‖A‖pp with constant probability, using space Op(n1−2/p poly(1/ε, logn)).

Proof. It is the guarantee from the underlying Count-Sketch structure of size
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Θ(w logn) (where w = O(ε−1 logn+ ε−2)) that

b̃i′j = bi′j ±
√
‖B‖2F
w

for all j. Since there are only O(1) nonzero entries in bi′ , we can use a constant-factor
larger size w′ = O(w) for Count-Sketch such that

b̃i′j = bi′j ±
√
‖B‖2F
w′

,

and thus

(12.1) ‖b̃i′‖22 = ‖bi′‖22 ±
‖B‖2F
w

.

Since each row i is scaled by the same factor 1/√ui, we can apply the proof of
Theorem 12.2 to the vector of row norms {‖ai‖2} and {‖bi‖2}, which still remains
valid because of the error guarantee (12.1), which is analogous to the 1-dimensional
case. It follows that with probability ≥ 1− 1/n (since there are Θ(logn) repetitions
in each of the T structures), an i′ is returned from the inner for-loop such that

(12.2) Pr{i′ = i} = (1± ε) ‖ai‖
2
2

‖A‖2F
± 1

poly(n) .

Next we analyze the estimation error. It holds w.h.p. that ‖B‖2F ≤ w‖A‖2F . Since
ai (and thus bi) has O(1)-elements, the heaviest element ai′j′ (resp., bi′j′) has weight
at least a constant fraction of ‖ai‖2 (resp., ‖bi‖2). It follows from the thresholding
condition of the returned ‖bi‖2 that we can use a constant big enough for w′ = O(w)
to obtain

ãi′j′ =
√
ui′ · b̃i′j′ = (1± ε)ai′j′ ,

Suppose that the heaviest element is bij . Similarly, if |ai`| ≥ η|aij | (where η is a
small constant to be determined later), making w′ = Ω(w/η), we can recover

ãi` =
√
ui · b̃i` = ai` ± εηaij = (1± ε)ai`.

Note that there are O(1) nonzero entries ai` such that |ai`| ≤ η|aij |. and each of
them has at most a Θ(εηaij) additive error by the threshold in step 17; the approxi-
mation ãi to ai therefore satisfies

‖ãi − ai‖22 ≤ ε2‖ai‖22 +O(1) · ε2η2‖ai‖22 ≤ 2ε2‖ai‖22
by choosing an η small enough. It follows that ‖ãi‖2 is a (1±Θ(ε))-approximation to
‖ai‖2, and |〈ãi, ãj〉| = |〈ai, aj〉| ±Θ(ε)‖ai‖2‖aj‖2.

Similarly, by a standard heavy hitter argument, with probability Ω(1), the set Ks

contains all i such that ‖ai‖22 ≥ ε‖A‖2F /T if we choose the size of the Count-Sketch
structure with a large enough heading constant. This implies that if i ∈ Is \Ks, then
‖ai‖22 ≤ ε‖A‖2F /T , where (and henceforth in the proof) Is is taken to be its value at
the beginning of step 28.

Next we show that our estimate is desirable. First, we observe that the additive
1/poly(n) term in (12.2) can be dropped at the cost of increasing the total failure
probability by 1/poly(n). Hence we may assume in our analysis that

(12.3) Pr{i′ = i} = (1± ε) ‖ai‖
2
2

‖A‖2F
.
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For notational simplicity, let q = p/2, and let `i = ‖ãi‖22 if i is a sampled row.
For is ∈ Is, define

τ(is) =
{

1, is ∈ Ks,

‖A‖2F /‖ais‖22, otherwise,
τ̃(is) =

{
1, is ∈ Ks,

L/`is , otherwise,

and for (i1, . . . , iq) ∈ I1 × · · · × Iq, define

τ(i1, . . . , iq) = τ(i1) · · · τ(iq),
τ̃(i1, . . . , iq) = τ̃(i1) · · · τ̃(iq),

and

X(i1, . . . , iq) =
q∏
j=1
〈aii , aij+1〉τ(i1) · · · τ(iq),

X̃(i1, . . . , iq) =
q∏
j=1
〈ãii , ãij+1〉τ̃(i1) · · · τ̃(iq),

where it is understood that aiq+1 = ai1 . Also let

ps,t(i) = Pr{row i gets sampled in (s, t)th precision sampling}.

We claim that

‖A‖pp =
∑

1≤i1,...,iq≤n

q∏
j=1
〈aij , aij+1〉.

When q = p/2 is odd,

‖A‖pp = ‖ (ATA) · · · (ATA)︸ ︷︷ ︸
(q−1)/2 times

AT ‖2F

=
∑
k,`

∑
i1,...,iq−1

(ATk,i1Ai1,i2A
T
i2,i3Ai3,i4 · · ·Aiq−2,iq−1A

T
iq−1,`)

2

=
∑
k,`

∑
i1,...,iq−1
j1,...,jq−1

Ai1,kAj1,kAi1,i2Aj1,j2 · · ·A`,iq−1A`,jq−1

=
∑
〈ai1 , aj1〉·

∏
odd t

1≤t≤q−2

〈ait , ait+2〉〈ajt
, ajt+2〉·〈aiq−2 , a`〉〈ajq−2 , a`〉,

which is a “cyclic” form of inner products, and the rightmost sum is taken over all
appearing variables (it, jt, and `) in the expression. A similar argument works when
q is even.

Our estimator is

(12.4) Y =
∑

i1∈I1,...,iq∈Iq

1
Tσ(i1,...,iq) X̃(i1, . . . , iq),

where
σ(i1, . . . , iq) = |{s : is 6∈ Ks}|.
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Then

∣∣EY − ‖A‖pp∣∣ ≤ ∑
i1,...,iq

∣∣∣∣∣∣Pr{i1 ∈ I1} · · ·Pr{iq ∈ Iq}
Tσ

X̃(i1, . . . , iq)−
q∏
j=1
〈aii , aij+1〉

∣∣∣∣∣∣ .
For i ∈ Is \Ks, we have

Pr{i ∈ Is} = 1−
T∏
t=1

(1− ps,t(i)) = (1±O(ε)) T

τ(i) ,

where we used the fact that ps(is) = (1 ± ε)/τ(i) and 1/τ(i) ≤ ε/T for i ∈ Is \Ks.
For is ∈ Ks, we have

Pr{i ∈ Is} = 1
τ(i) = 1.

Hence

Pr{i1 ∈ I1} · · ·Pr{iq ∈ Iq}
Tσ

= (1±O(ε)) 1
τ(i1) · · · τ(is)

= (1±O(ε)) 1
τ̃(i1) · · · τ̃(is)

and
Pr{i1 ∈ I1} · · ·Pr{iq ∈ Iq}

Tσ
X̃(i1, . . . , iq) = (1±O(ε))

q∏
j=1
〈ãij , ãij+1〉.

It follows that

∣∣EY − ‖A‖pp∣∣ ≤ ∑
i1,...,iq


∣∣∣∣∣∣
q∏
j=1
〈ãij , ãij+1〉 −

q∏
j=1
〈aii , aij+1〉

∣∣∣∣∣∣+O(ε)

∣∣∣∣∣∣
q∏
j=1
〈ãij , ãij+1〉

∣∣∣∣∣∣
 .

The key observation is that each ai has only O(1) rows with overlapping support,
since each row and each column has only O(1) nonzero entries. The same claim holds
for ãi, which is due to our threshold in step 17: for an entry to be retained, it must
be larger than ‖B‖F /

√
w (the uniform additive error from Count-Sketch), which

is impossible for zero entries. Therefore each row i appears in O(1) contributing
summands. Each contributing summand is bounded by

Θ(1) · ε
q∏
j=1
‖aij‖22 ≤ Θ(1) · εmax{‖ai1‖

2q
2 , . . . , ‖aiq‖

2q
2 }.

Therefore

(12.5)
∣∣EY − ‖A‖pp∣∣ . ε

∑
i

‖ai‖2q2 ≤ ε‖A‖
2q
2q,

as desired, where the last inequality follows from the fact of Schatten r-norms (r ≥ 1)
that ‖M‖rr ≥

∑n
i=1 |Mii|r and choosing M = ATA and r = q.

Next we bound the variance:

EY 2 = E
∑

i1∈I1,...,iq∈Iq

j1∈I1,...,jq∈Iq

1
Tσ(i1,...,iq)Tσ(j1,...,jq) X̃(i1, . . . , iq)X̃(j1, . . . , jq).



1688 YI LI, HUY L. NGUYỄN, AND DAVID P. WOODRUFF

Similarly to before, the right-hand side can be simplified as

(12.6)
q∑
r=0

∑
i1∈I1,...,iq∈Iq

j1∈I1,...,jq∈Iq

|{s:is=js 6∈Ks}|=r

(1 +O(ε))
∏
s:is=js 6∈Ks

τ(is)
T r

q∏
s=1
〈ãis , ãis+1〉

q∏
s=1
〈ãjs

, ãjs+1〉.

We can upper bound each individual summand as∣∣∣∣∣(1 +O(ε))
∏
s:is=js 6∈Ks

τ(is)
T r

q∏
s=1
〈ãis , ãis+1〉

q∏
s=1
〈ãjs

, ãjs+1〉

∣∣∣∣∣
.

1
T r

‖A‖2rF∏
s:is=js 6∈Ks

‖ais‖22

q∏
s=1
‖ais‖22 ·

q∏
s=1
‖ajs
‖22

≤ 1
T r
‖A‖2rF

(
max
i
‖ai‖22

)2q−r
.

Now, note that the terms corresponding to r = 0 in (12.6) are covered by the expansion
of (EY )2. Also, by the same argument as before, each is or js appears in O(1)
contributing summands, and we have that

EY 2 − (EY )2 .
q∑
r=1

1
T r
‖A‖2rF ‖A‖2p−2r

p ≤
q∑
r=1

1
T r
nr(1−

2
p )‖A‖2pp ,

which implies that
EY 2 − (EY )2 ≤ ε2‖A‖2pp

if the constant C in T = Cn1−2/p/ε2 is large enough.
13. General functions and applications. The following is a direct corollary

of Theorem 9.2.
Theorem 13.1. Let f be a diagonally block-additive function. Suppose that f(x) '

xp for x near 0 or x near infinity, where p > 0 is not an even integer. For any even
integer t, there exists a constant c = c(t) > 0 such that any streaming algorithm
that approximates f(X) within a factor 1± c with constant error probability must use
Ωt(N1−1/t) bits of space.

Proof. Suppose that f(x) ∼ αxp for x near 0; that is, for any η > 0, there exists
δ = δ(η) > 0 such that α(1− η)f(x) ≤ xp ≤ α(1 + η)f(x) for all x ∈ [0, δ).

Let c0 be the approximation ratio parameter in Theorem 9.2 for the Schatten
p-norm. Let ε be sufficiently small (it could depend on t and thus m) such that the
singular values of εM are at most δ(c0/3), whereM is the hard instance matrix used
in Theorem 9.2. Then α(1− c0/3)f(εM) ≤ ‖εM‖pp ≤ α(1 + c0/3)f(εM). Therefore,
any algorithm that approximates f(εM) within a factor of (1± c0/3) can produce a
(1± c0)-approximation of ‖εM‖pp. The lower bound follows from Theorem 9.2.

When f(x) ' xp for x near infinity, a similar argument works for λM, where λ
is sufficiently large.

The following is a corollary of Lemma 9.3.
Theorem 13.2. Suppose that f admits a Taylor expansion near 0 that has infin-

itely many even-order terms of nonzero coefficients. Then for any arbitrary large m,
there exists c = c(m) ∈ (0, 1) such that any data stream algorithm which outputs, with
constant error probability, a (1 + c)-approximation to ‖X‖pp requires Ω(N1−1/m) bits
of space.
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Table 13.1
Application of Theorem 13.1 and Theorem 13.2 to some M-estimators from [73].

Function ρ(x) Apply Function ρ(x) Apply
2(
√

1 + 1
2x

2 − 1) Theorem 13.1 x2/2
1+x2 Theorem 13.1

c2(x
c
− ln(1 + x

c
)) Theorem 13.1 c2

2 (1− exp(−x
2

c2 )) Theorem 13.2{
x2/2, x ≤ k;
k(x− k/2), x > k

Theorem 13.1
{
c2

6 (1− (1− x2

c2 )3), x ≤ c;
c2

6 , x > c

Remark after
Lemma 11.1

c2

2 ln(1 + x2

c2 ) Theorem 13.2

Proof. If the expansion has an odd-order term with a nonzero coefficient, apply
Theorem 13.1 with the lowest nonzero odd-order term. Hence we may assume that
all terms are of even order. For any given m, there exists p > 2m such that the xp
term in the Taylor expansion of f has a nonzero coefficient ap. Let p be the lowest
order of such a term, and write

f(x) =
p−1∑
i=0

aix
i−1 + apx

p +O(xp+1).

Let ε > 0 be a small constant, to be determined later, and consider the matrix εM,
where M is our hard instance matrix used in Lemma 9.3. Lemma 9.3 guarantees a
gap of f(εM), which is then apεpG+R(ε), where G is the gap for xp on the unscaled
hard instance M and |R(ε)| ≤ Kεp+1 for some constant K depending only on f(x),
m, and p. Choosing ε < apG/K guarantees that the gap apεpG+R(ε) 6= 0.

Now we are ready to prove the lower bound for some eigenvalue shrinkers and
M -estimators. The following are the three optimal eigenvalue shrinkers from [36]:

η1(x) =
{

1
x

√
(x2 − α− 1)2 − 4α, x ≥ 1 +

√
α,

0, x < 1 +
√
α,

η2(x) =
{

1√
2

√
x2 − α− 1 +

√
(x2−α−1)2 − 4α, x ≥ 1 +

√
α,

0, x < 1 +
√
α,

η3(x) = 1
xη2

2(x) max
{
η4

2(x)− α− αxη2(x), 0
}
,

where we assume that 0 · ∞ = 0. Since ηi(x) ' x when x is large, the lower bound
follows from Theorem 13.1.

Some commonly used influence functions ρ(x) can be found in [73]; we sum-
marize them in Table 13.1. Several are asymptotically linear when x is large and
Theorem 13.1 applies. Some are covered by Theorem 13.2. For the last function,
notice that it is a constant on [c,+∞), we can rescale our hard instance matrix M
such that the larger root r1(k) falls in [c,+∞) and the smaller root r2(k) in [0, c]. The
larger root r1(k) therefore has no contribution to the gap. The contribution from the
smaller root r2(k) is nonzero by the remark following the proof of Lemma 11.1.

Finally, we consider functions of the form

Fk(X) =
k∑
i=1

f(σi(X))

and prove the following theorem.



1690 YI LI, HUY L. NGUYỄN, AND DAVID P. WOODRUFF

Theorem 13.3. Let α > 0 be a small constant. Suppose that f is strictly in-
creasing. There exists N0 and c0 such that for all N ≥ N0, k ≤ αN, and c ∈ (0, c0),
any data stream algorithm which outputs, with constant error probability, a (1 + c)-
approximation to Fk(X) of X ∈ RN×N requires Ωα(N1−Θ(α2/3)) bits of space.

Proof. Similarly to Theorem 9.1, we reduce the problem from the BHH0
n problem.

Let m = t be the largest integer such that c1/(2t3/2) ≥ α, where c1 > 0 is some
constant to be specified later. Then m = t = Θ(α2/3). We analyze the largest
k singular values of M as defined in (9.3). Recall that q1, . . . , qn/m are divided
into N/(2m) groups. Let X1, . . . , XN/(2m) be the larger qi’s in each group; then
X1, . . . , XN/(2m) are i.i.d. random variables. In the even case, they are defined on
{m/2,m/2 + 2, . . . ,m} subject to the distribution

Pr
{
X1 = m

2 + j
}

=
{
pm(m2 ), j = 0,
2pm(m2 + j), j > 0,

j = 0, 2, . . . , m2 .

In the odd case, they are defined on {m/2 + 1,m/2 + 3, . . . ,m− 1} with probability
density function

Pr
{
X1 = m

2 + j
}

= 2pm
(m

2 + j
)
, j = 1, 3, . . . , m2 − 1.

With probability at least c1/
√
m, Xi = m in the even case and Xi = m/2− 1 in the

odd case. It immediately follows from a Chernoff bound that w.h.p., it holds that
Xi = m (resp., Xi = m−1) for at least (N/2m)(c1/

√
m)(1−δ) = (1−δ)c1N/(m

√
m)

different i’s in the even case (resp., odd case). Since r1(m − 1) < r1(m) and f is
strictly increasing, the value Fk(X), when k ≤ αN ≤ (1 − δ)c1N/(m

√
m), w.h.p.,

exhibits a gap of size at least c0 ·k for some constant c0 between the even and the odd
cases. Since Fk(M) = Θ(k) w.h.p., the lower bound for the Ky Fan k-norm follows
from the lower bound for BHH0

n.
The lower bound for the Ky Fan k-norm follows immediately. For k ≤ αN

it follows from the preceding theorem with f(x) = x; for k > αN , the lower bound
follows from our lower bound for the Schatten 1-norm by embedding the hard instance
of dimension αN × αN into the N ×N matrix X, padded with zeros.

As the final result of the paper, we show an Ω(n1−1/t) lower bound for SVD
entropy function of matrices in the following subsection.

13.1. SVD entropy. Let h(x) = x2 ln x2. For X ∈ RN×N , we define its SVD
entropy H(X) as

H(X) =
∑
i

h

(
σi(X)
‖X‖F

)
.

For notational convenience, we also write h(X) =
∑
i h(σi(X)) (singular values un-

normalized by ‖X‖F ).
In this subsection, our goal is to show the following theorem.
Theorem 13.4. Let t be an even integer, and let X ∈ RN×N , where N is suf-

ficiently large. There exists c = c(t) such that estimating the matrix entropy H(X)
within an additive error of c requires Ωt(N1−1/t) bits of space.

This theorem will follow easily from the next lemma, whose proof is postponed
to later in this subsection. It is based on Theorem 9.1, with the same hard instance
used by Theorem 9.2.
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Lemma 13.5. Let t be an even integer, and let X ∈ RN×N , where N is sufficiently
large. There exists a constant c = c(t) > 0 such that any algorithm that approximates
H(X) within a factor 1± c with constant probability in the streaming model must use
Ωt(N1−1/t) bits of space.

Proof of Theorem 13.4. Let X be the matrix in the hard instance for estimating
h(X), which is the same hard instance used by Theorem 9.2. Then X consists of
smaller diagonal blocks of size m = m(t), and ‖X‖2F = CN , where C = C(m, t) is a
constant depending on t and m only. It is also easy to see that K1N ≤ h(X) ≤ K2N
for some constants K1, K2 depending only on m and t.

Now we show that an additive c-approximation toH(X) can yield a multiplicative
(1 ± c′)-approximation to H(X). Recall that H(X) = ln ‖X‖2F − h(X)/‖X‖2F =
ln(CN)−h(X)/(CN). Suppose that Z is an additive c-approximation to H(X); then
we compute X̂ = CN ln(CN)− CNZ. Since Z ≤ H(Y ) + c,

X̂ ≥ CN ln(CN)− CN(h(X) + c) = h(X)− cCN ≥
(

1− cC

K1

)
h(Y ).

Similarly, it can be shown that X̂≤(1+ cC
K2

)h(X), and thus choosing c′=Cc/max{K1,K2}
suffices.

The lower bound follows from Lemma 13.5.
We devote the rest of this subsection to the proof of Lemma 13.5, for which we

apply Theorem 9.1 to h(x).
Proof of Lemma 13.5. Following the same argument as in the proof of Theo-

rem 9.2, our goal is to show that

G1 +G2 6= 0,

where

Gi =
∑
k

(−1)k
(
m

k

)
h(
√
ri(k)) =

∑
k

(−1)k
(
m

k

)
r1(k) ln r1(k), i = 1, 2.

Taking γ = 1 in the definition of Mm,k in (9.1), we obtain (see subsection 10.2) that

r1(k) = m2 +
∞∑
j=1

(−1)j−1 Cj−1m
jkj

(m2 − 1)2j−1 ,(13.1)

r2(k) = 1 +
∞∑
j=1

(−1)j Cj−1m
jkj

(m2 − 1)2j−1 ,(13.2)

where Cj denotes the jth Catalan number. Plugging (13.2) into

(1 + x) ln(1 + x) = x+
∑
n≥2

(−1)n xn

n(n− 1) , |x| ≤ 1,

and arranging the terms as in subsection 10.2 yields that

r2(k) ln r2(k) =
∑
s

Bsk
s,
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where

Bs = (−1)sms

s(m2 − 1)2s

(
(m2 − 1)

(
2s− 2
s− 1

)
+

s∑
i=2

(m2 − 1)i(−1)i

(i− 1)

(
2s− i− 1
s− 1

))
, s ≥ 2.

Let
Di = xi

i− 1

(
2s− i− 1
s− 1

)
;

then
Di+1

Di
= (i− 1)(s− i)

i(2s− i− 1) x.

Let i∗ = maxiDi. One can obtain by solving Di+1/Di ≥ 1 that i∗ = dx−2
x−1se. Hence

i∗ = s for s ≤ m2 − 3, and
∑

(−1)iDi ' (−1)sDs when s < αm2 for some α ∈ (0, 1).
Note that Bs has the same sign for s ≤ αm2 because (m2 − 1)

(2s−2
s−1

)
is negligible

compared with Ds. The partial sum (choosing even m)

αm2∑
s=m

Bs

{
s

m

}
m! &

αm2∑
s=m

ms

s(m2 − 1)2s ·
(m2 − 1)s

s− 1

{
s

m

}
m! & 1

m2em
.

Next we show that G2 & 1/mm+2.
Write
s∑
i=2

(m2 − 1)i(−1)i

i− 1

(
2s− i− 1
s− 1

)
= (m2 − 1)2

(
2s− 3
s− 1

)
3F2

(
1, 1, 2− s
2, 3− 2s ; 1−m2

)
.

We can write (see, e.g., [71])

3F2

(
1, 1, 2− s
2, 3− 2s ; 1−m2

)
= 1
m2 − 1

∫ 0

1−m2
2F1

(
1, 2− s
3− 2s ;x

)
dx.

Arranging the terms, we can write

Bs = (−1)sms

s(m2 − 1)2s (m2 − 1)
(

2s− 2
s− 1

)
B′s,

where
B′s = 1 + 1

2

∫ 0

1−m2
2F1

(
1, 2− s
3− 2s ;x

)
dx.

It is shown in [30, Theorem 3.1] that 2F1(1, 2 − s; 3 − 2s;x) has no real root on
(−∞, 0] when s is even and has a single root on (−∞, 0] when s is odd. Therefore
B′s > 0 when s is even, and thus Bs > 0. Note that (see, e.g., [9, eq. (2.5.1)])

d

dx
2F1

(
1, 2− s
3− 2s ;x

)
= s− 2

2s− 3 2F1

(
2, 3− s
4− 2s ;x

)
.

Again applying [30, Theorem 3.1] gives that 2F1(2, 3 − s; 4 − 2s;x) > 0 on (−∞, 0]
when s is odd. Hence 2F1(1, 2− s; 3− 2s;x) is increasing on (−∞, 0] when s is odd,
and

B′s ≤ 1 + 1
2

∫ 0

1−m2
1 dx = m2 + 1

2 .
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Let I = {odd s : B′s > 0}. Since we showed above that Bs has the same sign for
s ≤ αm2, we know that∣∣∣∣∣∑

s∈I
Bs

{
s

m

}
m!

∣∣∣∣∣ ≤∑
s∈I
|Bs|ms ≤

∑
s∈I

m2 + 1
2

m2s

(m2 − 1)2s (m2 − 1)4s . 1
mαm2−6 .

For odd s 6∈ I it holds that Bs > 0. Therefore

G2 =
∑
s≥m

Bs

{
s

m

}
m!

=
αm2∑
s=m

Bs

{
s

m

}
m! +

∑
s>αm2

s6∈I

Bs

{
s

m

}
m! +

∑
s∈I

Bs

{
s

m

}
m!

&
1

m2em
+ 0− 1

mαm2−6

&
1

m2em
,

provided that m is large enough.
Next we analyze the contribution from r1(k). Plugging (13.1) into

(m2 + x) ln(m2 + x) = m2 lnm2 + x lnm2 + x+
∞∑
i=2

(−1)i xi

i(i− 1)m2(i−1)

gives that

r1(k) ln r1(k) = 2m2 lnm2 + (lnm2)
∑
j

(−1)j−1Cj−1m
jkj

(m2 − 1)2j−1 +
∑

Ask
s,

where

As = (−1)sms

s(m2 − 1)2s

(
(m2 − 1)

(
2s− 2
s− 1

)
+

s∑
i=2

(m2 − 1)i

(i− 1)m2(i−1)

(
2s− i− 1
s− 1

))
.

Therefore

G1 = (−1)mm!(lnm2)

∑
j≥m

{
j

m

}
(−1)jmj

(m2 − 1)2j−1 +
∑
s≥m

As

{
s

m

} ,
whence it follows that

|G1| ≤ ln(m2)

 ∞∑
j=m

(2m)2j

(m2 − 1)2j−1 +
∑
s≥m

msm22s

s(m2 − 1)2s ·m
s

 .
ln(m2)
m2m−2 ,

which is negligible compared with G2. We conclude that G1 +G2 6= 0.
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