

MH7009 Homework 3

AY25/26 Semester 2

due in class on Tuesday, 7th April

Problem 1 (Matrix moment inequality for PSD matrices, 3 marks). Let $p \geq 1$ and W_1, \dots, W_m be independent, $n \times n$ symmetric PSD matrices. Show that

$$\left(\mathbb{E} \left\| \sum_i W_i \right\|_{op}^p \right)^{1/p} \leq C \left[\left\| \sum_i \mathbb{E} W_i \right\|_{op} + \max\{p, \ln n\} \cdot \left(\mathbb{E} \max_i \|W_i\|_{op}^p \right)^{1/p} \right].$$

for some absolute constant $C > 0$.

Problem 2 (3 marks). Show that the conclusion in Slepian's Lemma cannot be changed to $\mathbb{E} \sup_t |X_t| \leq \mathbb{E} \sup_t |Y_t|$, even when X and Y are independent. (Hint: There is a counterexample when $|T| = 2$, that is, X and Y are two-dimensional gaussian vectors.)

Problem 3 (3 marks). Let $u, v, w, z \in \mathbb{S}^{n-1}$. Show that $\|uv^T - wz^T\|_F^2 \leq \|u - w\|_2^2 + \|v - z\|_2^2$.

Problem 4 (Gaussian orthogonal ensemble, 3 marks). Let A be a symmetric random matrix, in which the above-diagonal entries are i.i.d. $N(0, 1)$ and the diagonal entries are i.i.d. $N(0, 2)$. The diagonal entries and the above-diagonal ones are independent. This distribution of such A is called the Gaussian orthogonal ensemble (GOE). Show that $\mathbb{E} \|A\|_{op} \leq 2\sqrt{n} + C$ for some absolute constant C .

Problem 5 (3 marks). In this problem we verify (a weaker version of) the bullet point (4) in the remark after the NCKI for the operator norm.

Let A be a symmetric $n \times n$ random matrix ($n \geq 2$), in which the above-diagonal entries are i.i.d. Rademacher variables and the diagonal entries are zeroes. Our goal is to show that there exist absolute constants $C, c > 0$ such that $c\sqrt{n} \leq \|A\|_{op} \leq C\sqrt{n}$.

- (i) Show that $\|A\|_{op} \geq (1 - o(1))\sqrt{n}$, where $o(1)$ represents a quantity which tends to 0 as $n \rightarrow \infty$.
- (ii) Show that $\|A\|_{op} \leq C\sqrt{n}$ for some absolute constant C . Find the value of your C . Make C as small as possible.

Problem 6 (Dudley's integral: tail bound, 3 marks). Let $\{X_t\}_{t \in T}$ be as in the theorem of Dudley's integral in class. Show that it holds with probability at least $1 - C_1 \exp(-u^2)$ that

$$\sup_{t, s \in T} |X_t - X_s| \leq C_2 \left[\int_0^\infty \sqrt{\ln N(T, d, \epsilon)} d\epsilon + u \cdot \text{diam}(T) \right],$$

where $C_1, C_2 > 0$ are absolute constants.

Problem 7 (Generalized Dudley's integral, 5 marks). Follow the approach in class and prove the following generalized Dudley's integral.

Let $\psi : [0, \infty) \rightarrow \mathbb{R}$ be an increasing convex function such that

- (i) $\psi(0) = 0$;
- (ii) $\lim_{x \rightarrow +\infty} \psi(x) = +\infty$;
- (iii) $\psi^{-1}(xy) \leq C(\psi^{-1}(x) + \psi^{-1}(y))$ for $x, y \geq 1$ and some constant C ;

(iv) $\int_0^a \psi^{-1}(1/x)dx < \infty$ for some $a > 0$,

where ψ^{-1} is the inverse function of ψ . For a random variable X , define its ψ -norm to be

$$\|X\|_\psi = \inf\{c : \mathbb{E} \psi(|X|/c) \leq 1\}.$$

Let (T, d) be a compact metric space. Suppose that $\{X_t\}_{t \in T}$ is a *centred* stochastic process indexed by $t \in T$ with incremental condition

$$\|X_s - X_t\|_\psi \leq d(s, t),$$

for any $s, t \in T$. Prove that

$$\mathbb{E} \sup_{t \in T} X_t \leq L \int_0^{\text{diam}(T)} \psi^{-1}(N(T, d, \epsilon)) d\epsilon.$$

for some absolute constant $L > 0$.

Problem 8 (3 marks). Show that when T is finite and $|T| \geq T_0$ for some absolute constant T_0 , it holds that

$$\sum_{k \geq 0} 2^{k/2} e_k(T) \lesssim \gamma_2(T, d) \cdot \log \log |T|.$$

Problem 9 (3 marks). Show that when $T \subseteq \mathbb{R}^n$ and the metric d on T is induced by a norm, that is, $d(x, y) = \|x - y\|$ for some norm $\|\cdot\|$, it holds that

$$\sum_{k \geq 0} 2^{k/2} e_k(T) \lesssim \gamma_2(T, d) \cdot \ln(n + 1).$$

(Hint: show that nothing interesting happens after $k \geq \log_2 n + C \log_2 \log_2 n$ for some (large) absolute constant $C > 0$.)

Problem 10 (3 marks). Construct nets $T_0, T_1, \dots \subseteq T = B_{\ell_1}^n$ such that $|T_k| \leq 2^{2^k}$ and

$$\sup_{x \in B_{\ell_1}^n} \sum_{k=0}^{\infty} 2^{\frac{k}{2}} d(x, T_k) \leq C \sqrt{\log n}.$$

Problem 11 (Higher-dimensional Hanson-Wright, 3 marks). Let X_1, X_2, \dots, X_n be independent, mean zero, subgaussian random vectors in \mathbb{R}^d . Let $A = (a_{ij})$ be an $n \times n$ matrix with zero diagonal entries. Show that for $t \geq 0$,

$$\Pr \left\{ \left| \sum_{\substack{1 \leq i, j \leq n \\ i \neq j}} a_{ij} \langle X_i, X_j \rangle \right| > t \right\} \leq 2 \exp \left(-c \min \left\{ \frac{t^2}{K^4 d \|A\|_F^2}, \frac{t}{K^2 \|A\|_{op}} \right\} \right),$$

where $K = \max_i \|X_i\|_{\Psi_2}$.