1 Closed Operators

1.1 Show that every bounded operator on a Hilbert space is closable and every finite-rank closable operator is bounded.

Proof. For the first part, see Theorem 2.3.12. Now we prove the second part. Suppose that A is a finite-rank closable operator, i.e., if $\{x_n\} \subseteq D(A)$, $x_n \to 0$ and $Ax_n \to y$ then y = 0. If A is not bounded, then there exist $\{y_n\}$ such that $||Ay_n|| \ge n||y_n||$. Let $x_n = y_n/||Ay_n||$, then $||Ax_n|| = 1$ and $||x_n|| \le \frac{1}{n}$. Hence $x_n \to 0$. Note that A is finite-rank and recall that the unit sphere is sequentially compact in a finite dimensional space, thus we can choose a subsequence of $\{x_n\}$, still denoted by x_n , such that $Ax_n \to z$ for some z. Since A is closable, we must have z = 0, which contradicts with $||x_n|| = 1$.

1.2 Show that a linear operator T is closed if and only if D(T) is complete under graph norm.

Proof. It is clear that $\{x_n\}$ is Cauchy in D(T) under graph norm if and only if $\langle x_n, Tx_n \rangle$ is Cauchy in $\mathscr{X} \times \mathscr{Y}$. The conclusion follows immediately.

1.3 Let T be a closable operator. Show that $\overline{T}^* = T^*$.

Proof. It is easy to see that ${}^{\perp}S = {}^{\perp}\overline{S}$ for any $S \subseteq \mathscr{X}$. Hence, $\Gamma(T^*) = {}^{\perp}(V\Gamma(T)) = {}^{\perp}(\overline{V\Gamma(T)}) = {}^{\perp}(V\overline{\Gamma(T)}) =$

- 1.4 Let T be a densely-defined linear symmetric operator on a Hilbert space, show that
 - (1) T is closed $\iff T = T^{**} \subset T^*;$
 - (2) *T* is essentially self-adjoint $\iff T \subset T^{**} = T^*$;
 - (3) T is self-adjoint $\iff T = T^{**} = T^*$.
 - *Proof.* (1) In the proof of 6.1.4, we have seen that $\Gamma(T^{**}) = \overline{\Gamma(T)}$. Hence $T = T^{**} \iff \Gamma(T^{**}) = \Gamma(T) \iff \overline{\Gamma(T)} = \Gamma(T) \iff T$ is closed. From the definition of symmetric operators, $T \subset T^*$ is automatic.
 - (2) `⇒': T is closable implies that $\Gamma(\overline{T}) = \overline{\Gamma(T)} = \Gamma(T^{**})$, and thus $T \subset T^{**}$, and from the previous problem, $\overline{T}^* = T^*$. Also, \overline{T} is self-adjoint, $\overline{T} = \overline{T}^* = T^*$. Taking conjugate on both sides, $\overline{T}^* = T^{**}$, i.e., $T^* = T^{**}$. ` \Leftarrow ': T is symmetric, thus T is closable and $\overline{T} = T^{**}$ (Theorem 6.1.4). Also $T^{**} = T^* = \overline{T}^*$ (Problem 6.1.3), it follows that $\overline{T} = \overline{T}^*$ and \overline{T} is self-adjoint.
 - (3) T is self-adjoint \iff (by definition) $T = T^* \Longrightarrow T^* = T^{**}$.
- 1.5 Let T be a densely-defined operator on Hilbert space \mathscr{H} . Show that $D(T^*) = \{0\}$ if and only if $\Gamma(T)$ is dense in $\mathscr{H} \times \mathscr{H}$.

Proof. It suffices to show that

$$\Gamma(T^*) =^{\perp} (V\Gamma(T)) = \{0\} \iff \Gamma(T) \text{ is dense in } \mathscr{H} \times \mathscr{H},$$

which is obvious, since $^{\perp}(V\Gamma(T)) = \{0\}$ iff $V\Gamma(T)$ is dense iff $\Gamma(T)$ is dense.

1.6 Determine whether the following statement is true: Let T be a densely-defined operator on \mathscr{H} such that (Tx, x) = 0 for all $x \in D(T)$, then Tx = 0 for all $x \in D(T)$.

Proof. This is false. Consider the differential operator $T : x \mapsto \frac{d}{dt}$ defined on $C_0^{\infty}(\mathbb{R})$, which is a dense subset of $L^2(\mathbb{R})$. Suppose $x \in C_0^{\infty}(\mathbb{R})$, then

$$\int_{\mathbb{R}} \left(\frac{dx}{dt} \cdot x \right) dt = x^2 \Big|_{-\infty}^{+\infty} - \left(\int_{\mathbb{R}} x \cdot \frac{dx}{dt} \right) dt = - \left(\int_{\mathbb{R}} x \cdot \frac{dx}{dt} \right) dt,$$

hence $\langle Tx, x \rangle = 0$ for all $x \in C_0^{\infty}(\mathbb{R})$. Obviously $Tx \neq 0$ for some $x \in C_0^{\infty}(\mathbb{R})$.

1.7 Let \mathscr{X} and \mathscr{Y} be Banach spaces, and \mathscr{Y} is reflexive. $T : \mathscr{X} \to \mathscr{Y}$ is a densely-defined operator. Show that T is closable if and only if T^* is densely-defined. Also let $J_{\mathscr{X}} : \mathscr{X} \to \mathscr{X}^{**}$ and $J_{\mathscr{Y}} : \mathscr{Y} \to \mathscr{Y}^{**}$ be natural embeddings, show that when T is closable, $T = J_{\mathscr{Y}}^{-1}T^{**}J_{\mathscr{X}}$.

Proof. `If': Since T^* is densely-defined, T^{**} is a closed operator, and

$$\Gamma(T^{**}) =^{\perp} V\Gamma(T^*) =^{\perp} V^{\perp}V\Gamma(T) =^{\perp} ({}^{\perp}V^2\Gamma(T)) =^{\perp} ({}^{\perp}\Gamma(T)) = \Gamma(\tilde{T}),$$

where $\tilde{T}: \mathscr{X}^{**} \to \mathscr{Y}^{**}$ is the natural lift of $T: \mathscr{X} \to \mathscr{Y}$. It is clear to see that $\Gamma(\tilde{T})$ restricted on im $J_{\mathscr{X}} \times \mathscr{Y}^{**}$ can be brought down to $\mathscr{X} \times \mathscr{Y}$ and become $\overline{\Gamma(T)}$. To summarize, $\overline{T} = J_{\mathscr{Y}}^{-1}T^{**}J_{\mathscr{X}}$.

Only if: Suppose that T is closable. If $D(T^*)$ is not dense, then there exists $y_0 \in \mathscr{Y}^{**}$, $y_0 \neq 0$, such that $y_0 \in^{\perp} D(T^*)$, thus $\langle y_0, 0 \rangle \in^{\perp} \Gamma(T^*)$. Obviously $\langle 0, y_0 \rangle \in^{\perp} V\Gamma(T^*)$, which implies that ${}^{\perp}V\Gamma(T^*)$ can not be a graph of some linear operator. But on the other hand, ${}^{\perp}V\Gamma(T^*) =^{\perp} V{}^{\perp}V\Gamma(T)$, which is, as shown above, the graph of the lift of \overline{T} , contradiction. Therefore T^* is densely-defined.

1.8 Let f be a bounded and measurable function on \mathbb{R}^1 , but $f \notin L^2(\mathbb{R}^1)$. Let

$$D = \left\{ \psi \in L^2(\mathbb{R}^1) : \int |f(x)\psi(x)| dx < \infty \right\}.$$

Suppose that $\psi_0 \in L^2(\mathbb{R}^1)$ and define

$$T\psi = (f, \psi)\psi_0, \quad \forall \psi \in D.$$

Prove that T is densely-defined and find T^* .

Proof. Obviously $C_0^{\infty}(\mathbb{R}) \subset D$ and we know that $C_0^{\infty}(\mathbb{R})$ is dense in $L^2(\mathbb{R})$, therefore D is dense in $L^2(\mathbb{R})$ and T is densely-defined. Let $f_n = f\chi_{[-n,n]}$, then $\langle f, f_n \rangle = \|f_n\|_2^2$. Note that $\|f_n\| \to \infty$ as $n \to \infty$, this implies that (f, x) is not a bounded functional on D. Suppose $y \in D(T^*)$, which requires that there exists M_y such that

$$|(y, Tx)| = |(y, (f, x)\phi_0)| = |(f, x)| |(y, \phi_0)| \le M_y ||x||, \quad \forall x \in D.$$

Since (f, x) is not a bounded functional, we must have $(y, \phi_0) = 0$. It is also easy to see that all y such that $(y, \phi_0) = 0$ is contained in $D(T^*)$, and therefore $D(T^*) = \{y \in L^2 : (y, \phi_0) = 0\}$. Since $(T^*y, x) = (y, Tx) = (f, x)(y, \phi_0) = 0$ for all $x \in D$. Since D is dense, it must hold that $T^*y = 0$. Hence $T^* = 0$. \Box

1.9 Let T be a linear operator in Hilbert space \mathscr{H} . Define its kernel as $N(T) = \{x \in D(T) : Tx = 0\}$. Show that

- (1) If D(T) is dense in $\mathscr X$ then $N(T^*) = R(T)^{\perp} \cap D(T^*)$;
- (2) If T is closed, then $N(T) = R(T^*)^{\perp} \cap D(T)$.
- Proof. (1) `⊆': Let $y^* \in N(T^*)$, then $(y^*, Tx) = (T^*y^*, x)$ for all $x \in D(T)$. Since $T^*y^* = 0$, it follows that $(y^*, Tx) = 0$, which implies that $y^* \perp R(T)$.
 `⊇': Let $y^* \in R(T)^{\perp} \cap D(T^*)$, then $0 = (y^*, Tx) = (T^*y^*, x)$ for all $x \in D(T)$, which means that $T^*y^* \perp D(T)$. Since D(T) is dense, it must hold that $T^*y^* = 0$, i.e., $y^* \in \ker T^*$.

(2) Since T is closed, T^* is densely-defined.

`⊆': Suppose that $x \in R(T^*)^{\perp} \cap D(T)$, then $(T^*y^*, x) = 0$ for all $y^* \in D(T)$. Then $(y^*, Tx) = (T^*y^*, x) = 0$ for all $y^* \in D(T^*)$. Since $D(T^*)$ is dense, we must have Tx = 0, or, $x \in \ker T$. `⊇': Suppose that $x \in \ker T$. Then $0 = (y^*, Tx) = (T^*y^*, x)$ for all $y^* \in D(T)$, which implies that $x \perp R(T^*)$.

- 1.10 Let T be an injective linear operator on \mathcal{H} . Consider some assumptions about T:
 - (1) T is closed;
 - (2) im T is dense;
 - (3) im T is closed;
 - (4) $\exists c > 0$ such that $||Tx|| \ge c||x||$ for all $x \in D(T)$.

Show that

- (1) Conditions (1), (2) and (3) imply (4);
- (2) Conditions (2), (3) and (4) imply (1);
- (3) Conditions (1) and (4) imply (3);
- *Proof.* (1) The conditions (2) and (3) imply that im $T = \mathcal{H}$, since \mathcal{H} is injective, we must have $D(T) = \mathcal{H}$, which is closed. It follows condition (1) and Closed Operator Theorem that T is continuous. Also T is bijective, Open Mapping Theorem asserts that T^{-1} is bounded, which is exactly condition (4).
- (2) From the same argument as in subproblem (1), we know that D(T) is bijective. Condition (4) implies that T^{-1} is continuous. Suppose that $x_n \to x$ and $y_n \to y$, $y_n = Tx_n$, then $x_n = T^{-1}y_n$. Taking limits on both slides yields $x = T^{-1}y$, i.e., y = Tx. Therefore T is closed.
- (3) Suppose that $\{Tx_n\}$ is a Cauchy sequence. Condition (4) implies that $\{x_n\}$ is a Cauchy sequence. Suppose that $Tx_n \to y$ and $x_n \to x$. Condition (1) says that $x \in D(A)$ and $y = Tx \in \text{im } T$, hence im T is closed. \Box

1.11 Let $\mathscr{H} = L^2[0,1], T_1 = i\frac{d}{dt}, T_2 = i\frac{d}{dt}.$

$$\begin{split} D(T_1) &= \{ u \in \mathscr{H} : u \text{ is absolutely continuous} \}, \\ D(T_2) &= \{ u \in \mathscr{H} : u(0) = 0, \ u \text{ is absolutely continuous} \}, \end{split}$$

Show that both T_1 and T_2 are closed operators.

Proof. Suppose that $\{x_n\} \subseteq D(T_2), x_n \to x \text{ and } i \frac{dx_n}{dt} \to iy$. Since x_n is absolutely continuous,

$$x_n(t) = \int_0^t x'_n(s) ds$$

Note that

$$\int_{0}^{t} |x'_{n}(s) - y(s)| ds \le \sqrt{t} \cdot \|x'_{n} - y\|_{2} \le \|x'_{n} - y\|_{2} \to 0, \quad , n \to \infty,$$

it follows that

$$x_n(t) \to \int_0^t y(s) ds$$

uniformly on [0, 1]. Hence $||x_n - \int y||_2 \le ||x_n - \int y||_{\infty}^2 \to 0$. From the uniqueness of limit, we see that

$$x(t) = \int_0^t y(s) ds,$$

which is contained in $D(T_2)$ and $T_2x = iy$. Therefore T_2 is closed.

Now suppose that $\{x_n\} \subseteq D(T_2), x_n \to x$ and $i\frac{dx_n}{dt} \to iy$. Since L^2 convergence implies convergence in measure, and Riesz theorem ensures an a.e. pointwise convergent subsequence in a subsequence of functions converging in measure, we may assume that $x_n \to x$ pointwise a.e. Define $f(t) = \int_0^t y(s) ds$, from the preceding argument, we conclude that $x_n(t) - x_n(0) \to f(t)$ everywhere. Recall that $x_n(t) \to x(t)$ a.e., we must have that $x_n(0) \to a$ for some a and x(t) = f(t) + a a.e.. Note that f(t) is absolutely continuous, hence x(t) is absolutely continuous, too. This implies that T_1 is closed.

1.12 Let \mathscr{X} be a separable Hilbert space and $\{e_n\}_{n=1}^{\infty}$ an orthonormal basis. Suppose that $a \in \mathscr{X}$, a is not a finite linear combination of $\{e_n\}$. Let D be the set of finite combinations of $\{e_n\}$ and a, and define on D

$$T(\beta a + \sum a_i e_i) = \beta a,$$

where in the summand there are only finitely many non-zero a_i 's. Show that $\langle a, a \rangle \in \overline{\Gamma(T)}$, $\langle a, 0 \rangle \in \overline{\Gamma(T)}$ and thus $\Gamma(T)$ is not the graph of any linear operator.

Proof. It is trivial that $\langle a, a \rangle \in \Gamma(T)$. Let $a_n = \sum_{i=1}^n (a, e_i)e_i$, then $a_n \to a$ and $Ta_n = 0$. Hence $\langle a, 0 \rangle \in \overline{\Gamma(T)}$.

1.13 Let $\mathscr{H} = l^2$ and

$$D(T) = \left\{ a \in l^2 : \exists N \text{ such that whenever } n > N, a_n = 0 \text{ and } \sum_{j=0}^N a_j = 0 \right\}.$$

Define $Ta \in l^2$ for $a \in l^2$ as

$$(Ta)_n = i\left(\sum_{j=1}^{n-1} a_j + \sum_{j=1}^n a_j\right).$$

Show that

- (1) T is densely-defined and symmetric;
- (2) R(T+i) is dense in l^2 ;
- (3) $(1,0,0,\ldots) \in D(T^*)$ and $(T^*+i)(1,0,0,\ldots) = 0$.
- *Proof.* (1) To show that D(T) is dense, it suffices to show that D(T) is dense in span $\{e_n\}$, where $\{e_n\}$ is the natural orthonormal basis in l^2 . Furthermore, it suffices to show that each e_n can be approximated by elements in D(T). Take e_1 for example. Let

$$a_n = \left(1 - \frac{1}{n}, \underbrace{-\frac{1}{n}(1 - \frac{1}{n}), \dots, -\frac{1}{n}(1 - \frac{1}{n})}_{n \text{ times}}, 0, 0, \dots\right).$$

Then

$$||a_n - e_1||^2 = \frac{1}{n^2} + n\left(\frac{1}{n}\left(1 - \frac{1}{n}\right)\right)^2 \to 0$$

as $n \to \infty$. We have seen that $a_n \to e_1$. The approximation to general e_m is similar, just right shift $\{a_n\}$ by m positions.

Now we show that (Tx, y) = (x, Ty) for all $x, y \in D(T)$, to prove that T is symmetric. Suppose that N is the maximum of the two N's corresponding to x and y.

$$(Tx,y) = i\sum_{n=1}^{N} \overline{y_n} \left(\sum_{j=1}^{n-1} x_j + \sum_{j=1}^{n} x_j\right)$$

$$= i \left(\sum_{n=1}^{N} \sum_{j=1}^{n-1} x_j \overline{y_n} + \sum_{n=1}^{N} \sum_{j=1}^{n} x_j \overline{y_n} \right)$$
$$= i \left(\sum_{j=1}^{N-1} \sum_{n=j+1}^{N} x_j \overline{y_n} + \sum_{j=1}^{N} \sum_{n=j}^{N} x_j \overline{y_n} \right)$$
$$= i \sum_{j=1}^{N} x_j \left(\sum_{n=j+1}^{N} \overline{y_n} + \sum_{n=j}^{N} \overline{y_n} \right)$$
$$= i \sum_{j=1}^{N} x_j \left(-\sum_{n=1}^{j} \overline{y_n} - \sum_{n=1}^{j-1} \overline{y_n} \right)$$
$$= (x, Ty).$$

- (2) Note that $(T+i)a = 2i(a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_n, \dots)$. Hence $(T+i)(\frac{1}{2i}a) = e_1$, where $a = (1, -1, 0, \dots)$. Similarly we can show that $\{e_n\} \subseteq R(T+i)$, which implies that R(T+i) is dense.
- (3) Let $y^* = (1, 0, 0, ...)$, then $(y^*, Tx) = \overline{(Tx)_1} = -i\overline{x_1}$. Let $x^* = (-i, 0, 0, ...) = -y^*$, then $(x^*, x) = -i\overline{x_1}$. Hence $T^*y^* = -y^*$, $y^* \in D(T^*)$ and $(T+i)y^* = 0$.
- 1.14 Let T be a symmetric operator on \mathscr{X} with domain D. Suppose that $D_1 \subseteq D$ is a dense linear set and $T|_{D_1}$ is T restricted to D_1 . If $T|_{D_1}$ is essential self-adjoint, so is T and $\overline{T} = \overline{T|_{D_1}}$.

Proof. Since D_1 is dense in D, we can use diagonal technique to show that $\overline{\Gamma(T)} = \overline{\Gamma(T|_{D_1})} = \Gamma(\overline{T|_{D_1}})$. Hence T is closable and $\overline{T} = \overline{T|_{D_1}}$. Now we show that \overline{T} is self-adjoint. Since $\overline{T|_{D_1}}$ is self-adjoint, we have that $\overline{T|_{D_1}}^* = \overline{T|_{D_1}}^*$ and therefore $\overline{T}^* = \overline{T|_{D_1}}^* = \overline{T|_{D_1}} = \overline{T}$.

1.15 Let $\mathscr{H} = L^2(\mathbb{R}^1)$ and

$$D(T) = \left\{ u \in \mathscr{H} : \int_{-\infty}^{\infty} x^2 |u(x)|^2 dx < \infty \right\}.$$

Define T as (Tu)(x) = xu(x) for $u \in D(T)$. Show that T is unbounded and closed.

Proof. It is clear that $||T\chi_{[0,n]}|| = \frac{1}{\sqrt{3}}n^{\frac{3}{2}}$ and $||\chi_{[0,n]}|| = \sqrt{n}$, $\frac{||T\chi_{[0,n]}||}{||\chi_{[0,n]}||} \to \infty$ as $n \to \infty$, hence T is unbounded. Suppose that $u_n \to u$ and $xu_n \to v$ in L_2 . We know that $u_n \to u$ in measure and Riesz's Theorem enables us to pick a subsequence, still denoted by u_n , which is convergent to u almost everywhere. So $u_n \to u$ in L^2 and pointwise a.e., thus $xu_n \to xu$ a.e. A similar argument shows that there is a subsequence of $\{xu_n\}$, again denoted by $\{xu_n\}$, converges to v pointwise a.e. Therefore it must hold that xu = v a.e., which implies that T is closed. \Box

1.16 Suppose that T is a densely-defined closed operator on \mathcal{H} . Show that for all $a, b \in \mathcal{X}$, the system of equations

$$-Tx + y = a$$
$$x + T^*y = b$$

has a unique solution $x \in D(T)$ and $y \in D(T^*)$.

Proof. `Existence': Consider the set $S \subseteq \mathscr{H} \times \mathscr{H}$ of all pairs (a, b) which make the system of equations have at least one solution. It is clear that S is a linear set, $V\Gamma(T) \in S$ and $\Gamma(T^*) \in S$. Note that $\Gamma(T^*) = (V\Gamma(T))^{\perp}$. Since $\Gamma(T)$ is closed, we know that $V\Gamma(T)$ is closed and $\Gamma(T^*) + V\Gamma(T) = \mathscr{H}$. Therefore $S = \mathscr{H}$.

'Uniqueness': It suffices to show that

$$-Tx + y = 0$$

$$x + T^*y = 0$$

has solution x = 0, y = 0 only. A solution satisfies $(y, Tx') = (T^*y, x')$ for all $x' \in D(T)$. In particular (x' = x) we have that (y, y) = -(x, x), it must hold that (y, y) = (x, x) = 0 from non-negativity of inner product, and therefore x = 0 and y = 0.

2 Cayley Transform and Spectral Decomposition of Self-Adjoint Operators

2.1 Consider the operator Au = iu' on $L^2(\mathbb{R}^1)$. Define $D(A) = \{u \in l^2(\mathbb{R}) : u \text{ is absolutely continuous and } u' \in L^2(\mathbb{R}^1)\}$. Show that A is self-adjoint.

Proof. It is clear that $C_0^{\infty}(\mathbb{R})$ is contained in D(A) and thus D(A) is dense.

Suppose that $u \in D(A)$ and $\epsilon > 0$. Since $u' \in L^2$ there exists δ_0 such that $\int_x^{x+\delta} |u'|^2 < \epsilon$ for all x and $\delta < \delta_0$. Let $\delta_1 = \min\{\delta_0, \epsilon\}$. Then for all $\delta < \delta_1$,

$$|u(x+\delta) - u(x)| = \left| \int_x^{x+\delta} u'(t) dt \right| \le \sqrt{\delta_1} \sqrt{\int_x^{x+\delta_1} |u'(t)|^2 dt} \le \sqrt{\epsilon} \cdot \sqrt{\epsilon} = \epsilon.$$

Now we are ready to show that $u(\pm\infty) = 0$. If not, without loss of generality, suppose that there exists $\epsilon_0 > 0$ and $x_n \to +\infty$ such that $|u(x_n)| \ge \epsilon_0$ for all n. We have seen that u is uniformly continuous, so we can find δ such that $|u(x) - u(y)| < \frac{\epsilon_0}{2}$ whenever $|x - y| < \delta$. Therefore, we have that $|u(x)| \ge \frac{\epsilon_0}{2}$ on $(x_n - \delta, x_n + \delta)$ for all n. Without loss of generality, assume that $x_{n+1} - x_n \ge 2\delta$. Then

$$\int_{\mathbb{R}} |u|^2 \ge \sum_{n=1}^{\infty} \int_{x_n-\delta}^{x_n+\delta} |u|^2 \ge \sum_{n=1}^{\infty} 2\delta \cdot \frac{\epsilon_0^2}{4} = \infty,$$

which contradicts with $u \in L^2(\mathbb{R})$. Hence $u(\pm \infty) = 0$, then

$$(Au,v) = i \int_{\mathbb{R}} u' \bar{v} = i u \bar{v} \Big|_{-\infty}^{\infty} - i \int u \overline{v'} = -i \int u \overline{v'} = (u, Av).$$

Using the same technique in Problem 6.1.11, we can show that A is closed. It is easy to see that $\ker(A^* + iI) = \{0\}$ as $A \subseteq A^*$ and $\ker(A + iI) = \{0\}$. It follows from Theorem 6.2.4 that A is self-adjoint.

- 2.2 Prove Corollary 6.2.5: Let *A* be a symmetric operator on a Hilbert space, then the following statements are equivalent:
 - (1) A is essentially self-adjoint;
 - (2) $\ker(A^* \pm iI) = \{0\};\$
 - (3) $\overline{R(A \mp iI)} = \mathscr{H}.$

Proof. Theorem 6.2.3 implies that (2) and (3) are equivalent, and a symmetric operator is closable. Now suppose that A is essentially self-adjoint, so \overline{A} is self-adjoint and $\overline{A}^* = A^*$. It follows from Proposition 6.2.1 that ker $(A^* \pm iI) =$ ker $(\overline{A}^* \pm iI) = \{0\}$. Conversely, if (2) holds then it holds that ker $(\overline{A}^* \pm iI) = \{0\}$ and by Theorem 6.2.4 we know that \overline{A} is self-adjoint, which implies that A is essentially self-adjoint.

2.3 Consider Au = iu' as an operator on $L^2[0,\infty)$ with domain $C_0^{\infty}[0,+\infty)$. Is A essentially self-adjoint?

Proof. From Problem 1 we know that A is symmetric. It is easy to see that $e^{-x} \in D(A^*)$ and $D^*e^{-x} = -ie^{-x}$ since $(e^{-x}, u') = (ie^{-x}, u)$ for all $u \in C_0^{\infty}[0, +\infty)$. Therefore $e^{-x} \in \ker(A^* - iI)$ and $\ker(A^* - iI) \neq \{0\}$. Corollary 6.2.5 tells us that A is not essentially self-adjoint.

- 2.4 Let A be a densely-defined symmetric operator, A is positive $((Ax, x) \ge 0 \forall x \in D(A))$, show that
 - (1) $||(A+I)x||^2 \ge ||x||^2 + ||Ax||^2;$
 - (2) A is a closed operator if and only if R(A + I) is a closed set;
 - (3) A is essentially self-adjoint if and only if $A^*y = -y$ has solution y = 0 only.
 - *Proof.* (1) Since A is symmetric, we have that (Ax, x) = (x, Ax). Hence $((A + I)x, (A + I)x) = (Ax, Ax) + 2(Ax, x) + (x, x) \ge (Ax, Ax) + (x, x)$.
 - (2) `Only if': Suppose that A is closed. Let $\{y_n\} \subseteq R(A+I)$ be a Cauchy sequence. Suppose that $y_n = Ax_n + x_n$. From part (1) we know that $\{x_n\}$ and $\{Ax_n\}$ are Cauchy, thus $x_n \to x$ and $Ax_n \to y$ for some x and y. Since A is closed, $x \in D(A)$ and y = Ax, thus $y_n \to (A+I)x \in R(A+I)$. Therefore R(A+I) is closed. `If': Suppose that $x_n \to x$ and $Ax_n \to y$. Then $(A+I)x_n \to x+y \in R(A+I)$, there exists a $z \in D(A)$ such that Az + z = x + y. Hence $(A+I)(x_n - z) \to 0$. From part (1) we see that $x_n \to z$, hence $x = z \in D(A)$ and Az = y, showing that A is closed.
 - (3) `Only if': Suppose that A is essentially self-adjoint, then A is closable and A* = Ā = Ā. Let y ∈ D(Ā) be a solution of A*y = -y. Then (Ā + I)x, y) = (x, (A* + I)y) = 0 for all x ∈ D(Ā). In particular, let x = y, we have ((A + I)y, y) = 0, i.e., 0 = ||y||² + (Ay, y) ≥ ||y||², it must hold that y = 0.

'If': Since T is symmetric and densely-defined, T is closable, thus $\overline{T}^* = T^*$, and $\overline{T} = T^{**} \subseteq (\overline{T})^*$ (because $\overline{T} \subseteq T^*$. Hence \overline{T} is symmetric. It suffices to show that $D(T^*) \subseteq D(\overline{T})$. Let $y \in D(T^*)$ and $x = (T^* + I)y$. For this, we shall first prove that $R(\overline{T} + I)$ is closed. Clearly \overline{T} is positive. Then let $\{y_n\}$ be a Cauchy sequence in $R(\overline{T} + I)$ and suppose that $y_n = (\overline{T} + I)x_n$. Then

$$(y_n, x_n) = ((\bar{T} + I)x_n, x_n) \ge ||x_n||^2,$$

and note the Cauchy-Schwarz Inequality $(y_n, x_n) \le ||y_n|| ||x_n||$ it follows that $||x_n|| \le ||y_n||$. Hence $\{x_n\}$ is bounded as $\{y_n\}$ is bounded. Then

$$||x_n - x_m||^2 \le (y_n - y_m, x_n - x_m) \le (||x_n|| + ||x_m||) ||y_n - y_m||,$$

whence we see that $\{x_n\}$ is Cauchy. Since \overline{T} is closed, we have $x_n \to x$ and $y_n \to (\overline{T} + I)x \in R(\overline{T} + I)$. Note that $\ker(T^* + I) \oplus R(\overline{T} + I) = \mathscr{H}$, it follows from $\ker(T^* + I) = \{0\}$ that $R(\overline{T} + I) = \mathscr{H}$. Thus there exists $y' \in D(\overline{T})$ such that

$$(\bar{T}+I)y' = (\bar{T}^*+I)y' = x = (T^*+I)y$$

Since $T^* + I$ is injective, it must hold that $y = y' \in D(\overline{T})$, and $D(T^*) \subseteq D(\overline{T})$.

2.5 Let

$$\mathscr{H} = \left\{ f(z) = \sum_{n=0}^{\infty} c_n z^n, |z| < 1 : \sum_{n=0}^{\infty} |c_n|^2 < \infty \right\},\$$

then \mathscr{H} is a Hilbert space under the norm $||f|| = (\sum |c_n|^2)^{\frac{1}{2}}$. Define operators U and A on \mathscr{H} as

$$(Uf)(z) = zf(z),$$

$$(Af)(z) = i\frac{1+z}{1-z}f(z).$$

Show that A is a symmetric operator on \mathcal{H} , U is the Cayley transform of A and find R(A + iI) and R(A - iI).

Proof. Suppose that $f(z) = \sum c_n z^n$, then

$$(Af)(z) = i \sum_{n=0}^{\infty} \left(2 \sum_{k=0}^{n-1} c_k + c_n \right) z^n.$$

Since \mathscr{H} is isomorphic to l^2 via $f \leftrightarrow \{c_n\}$, the operator A in this problem corresponds to T in Exercise 6.1.13. We can therefore define D(A) as D(T) in Exercise 6.1.13, and it follows that A is densely-defined and symmetric.

Direct computation shows that

$$(U(A+iI)f)(z) = \left(U\left(\frac{2i}{1-z}f(z)\right)\right)(z) = \frac{2iz}{1-z}f(z)$$
$$((A-iI)f)(z) = \frac{2iz}{1-z}f(z),$$

hence A - iI = U(A + iI). Hence $U = (A - iI)(A + iI)^{-1}$, which is exactly the Cayley transform of A. It is clear that R(A + iI) consists of polynomials, and R(A - iI) polynomials with a zero constant term.

2.6 Let C be a symmetric operator on \mathscr{H} and A a linear operator on \mathscr{H} . Suppose that $A \subset C$ and R(A + iI) = R(C + iI), show that A = C.

Proof. For any $y \in R(C + iI)$ we have $x \in D(C)$ and $z \in D(A)$ such that (C + iI)z = (A + iI)x = y. Since $A \subset C$, we have also (C + iI)x = y. Note that C + iI is injective (Proposition 6.2.1), it must hold that $z = x \in R(A)$. This implies that $R(C) \subseteq R(A)$ and therefore A = C.

2.7 Let A be a symmetric operator on \mathscr{H} , $R(A + iI) = \mathscr{H}$ and $R(A - iI) \neq \mathscr{H}$. Show that A has no self-adjoint extensions.

Proof. Suppose that B is a self-adjoint extension of A, then $B^* \subset A^*$, and $R(B \pm iI) = \mathscr{H}$. It follows from the previous problem that A = B, and thus $R(A - iI) = R(B - iI) = \mathscr{H}$. Contradiction. Therefore A cannot have a self-adjoint extension.

- 2.8 Let V be an isometry on $\mathscr{H}: ||Vx|| = ||x||$ for all $x \in D(V)$. Show that
 - (1) (Vx, Vy) = (x, y) for all $x, y \in D(V)$;
 - (2) If R(I V) is dense in \mathscr{H} then I V is injective;
 - (3) If one of D(V), R(V), $\Gamma(V)$ is closed, so are the other two.

Proof. (1) This is a direct corollary of polarisation identity.

- (2) Suppose that (I V)y = 0, i.e., y = Vy. From part (1), (Vx, Vy) = (x, y) for all $x \in D(V)$. Replacing Vy by y yields (Vx x, y) = 0 for all $y \in D(V)$. Since R(I V) is dense, it must hold that y = 0, i.e., $ker(I V) = \{0\}$.
- (3) It follows easily from ||x|| = ||Vx|| that D(V) is closed if and only if R(V) is closed. The graph norm $||x||_G = ||x|| + ||Vx|| = 2||x||$. Hence $\Gamma(V)$ is closed if and only if D(V) is closed.
- 2.9 Let T be a closed operator on Hilbert space \mathscr{H} . Show that $\rho(T)$ is open. For $z \in \rho(T)$ define $R_z(T) = (zI-T)^{-1}$, show that $R_z(T)$ is an analytic function with respect to t on each connected component of $\rho(T)$ and satisfies the first resolvent formula:

$$R_{z_1}(T) - R_{z_2}(T) = (z_2 - z_1)R_{z_1}(T)R_{z_2}(T).$$

Proof. See the proof of Corollary 2.6.7, Lemma 2.6.8 and Theorem 2.6.9.

2.10 Prove Proposition 6.2.16, 6.2.17 and 6.2.18.

Proposition 6.2.16: Let A be a self-adjoint operator and $\{E_{\lambda}\}$ its spectral family. Then $\lambda_0 \in \sigma_p(A)$ if and only if $E_{\lambda_0} - E_{\lambda_0^-} \neq 0$.

Proof. Note that $\lambda_0 I - A = \int_{\mathbb{R}} (\lambda_0 - \lambda) dE_{\lambda}$ and

$$\|(\lambda_0 I - A)x\|^2 = \int_{\mathbb{R}} (\lambda_0 - \lambda)^2 d\|E_\lambda x\|^2, \quad x \in D(A).$$

Thus by $E_{-\infty} = 0$ and the right continuity of $||E_{\lambda}x||^2$ in λ , we see that $\lambda_0 x = Ax$ iff

$$\begin{split} E_{\lambda}x &= E_{\lambda_{0}^{+}}x = E_{\lambda}x \quad \forall \lambda \geq \lambda_{0} \\ E_{\lambda}x &= E_{\lambda_{0}^{-}}x = 0 \quad \forall \lambda < \lambda_{0}, \end{split}$$

that is, $\lambda_0 x = Ax$ iff $(E_{\lambda_0} - E_{\lambda_0^-})x = x$.

Proposition 6.2.17: Let A be a self-adjoint operator then $\sigma_r(A) = \emptyset$.

Proof. Suppose $\lambda \in \sigma_r(A)$ then λ is real. Since $\overline{R(\lambda I - A)} \neq \mathscr{H}$, there exists $y \neq 0$ such that $y \perp \overline{(\lambda I - A)}$, i.e., $((\lambda I - A)x, y) = 0$ for all $x \in D(A)$. Hence $(Ax, y) = (\lambda x, y) = (x, \lambda y)$ and $y \in D(A^*) = D(A)$ as A is self-adjoint, and $D^*y = \lambda y$. Since $D^* = D$, we find that $y \in \sigma_p(A)$ and thus meet a contradiction. \Box

Proposition 6.2.18: Let A be a self-adjoint operator with spectral family $\{E_{\lambda}\}$, then $\lambda_0 \in \sigma(A)$ if and only if for all $\epsilon > 0$ it holds that $E(\lambda_0 - \epsilon, \lambda_0 + \epsilon) \neq 0$.

Proof. From the previous problem we see that $\rho(A)$ is open, and thus $\sigma(A)$ is closed. The rest of the proof is exactly the same as the proof of Theorem 5.5.19.

2.11 Prove Proposition 6.2.20: Let A be a self-adjoint operator with spectral family $\{E_{\lambda}\}$, then $\lambda_0 \in \sigma_{\text{ess}}(A)$ if and only if, $\forall \epsilon > 0$, dim $R(E(\lambda - \epsilon, \lambda + \epsilon)) = \infty$.

Proof. Only if: Let $\lambda_0 \in \sigma_{ess}(A)$ but dim $R(E(\lambda - \epsilon, \lambda + \epsilon)) < \infty$ for some ϵ . Since $\lambda_0 \in \sigma(A)$, the argument in the proof of Theorem 5.5.21 gives that λ_0 is an isolated point of $\sigma(A)$ and thus belongs to $\sigma_p(A)$ (use Proposition 6.2.16 and 6.2.18), however, $\ker(\lambda_0 I - A) = \dim R(E(\{\lambda_0\})) \leq \dim R(E(\lambda - \epsilon, \lambda + \epsilon)) < \infty$, contradiction with the assumption that $\lambda_0 \in \sigma_{ess}(A)$.

`If': See the proof of Theorem 5.5.21.

3 Spectral Transform of Unbounded Normal Operators

3.1 Suppose that N be a normal operator, show that N^* is a normal operator also.

Proof. Theorem 6.1.4 tells us that $N = \overline{N} = N^{**}$, then $N^{**}N^* = NN^* = N^*N = N^*N^{**}$. From the same theorem we know that N^* is densely defined, and $\Gamma(N^*) = (V\Gamma(N))^{\perp}$ is closed, which implies that N^* is closed. Therefore N^* is normal.

3.2 Suppose that T is a densely-defined closed operator, $D(T) = D(T^*)$, $||Tx|| = ||T^*x||$ for all $x \in D(T)$. Show that T is normal.

Proof. From $D(T) = D(T^*)$ it is easy to see that $D(T^*T) = D(TT^*)$. Since $||Tx|| = ||T^*x||$ for all $x \in D(T)$, it follows from polarisation identity that $\langle Tx, Ty \rangle = \langle T^*x, T^*y \rangle$ for all $x, y \in D(T)$. Then for $x \in D(T^*T)$ and $y \in D(T)$, it is immediate that $(T^*Tx, y) = (TT^*x, y)$. Since D(T) is dense in \mathscr{H} , we must have that $T^*Tx = TT^*x$ for all $x \in D(T^*T)$, which, together with $D(T^*T) = D(TT^*)$, implies that $TT^* = T^*T$ and T is normal.

3.3 Let $L \in L(\mathscr{H})$ and M, N unbounded normal operator on \mathscr{H} . Suppose that $LM \subset NL$, show that $LM^* \subset N^*L$.

Proof. First consider the case where M = N. Let E be the spectral decomposition of M. Then $E(\Delta)L = LE(\Delta)$ for every Borel set Δ (Theorem 6.3.11). It follows that

$$(LM^*x, y) = (M^*x, L^*y) = \int \bar{z}d(E(z)x, L^*y) = \int \bar{z}d(LE(z)x, y) = \int \bar{z}d(E(z)Lx, y) = (M^*Lx, y)$$

for all $x \in D(M^*) = D(M)$ and $y \in \mathscr{H}$. This implies that $LM^* \subseteq M^*L$.

Now we consider the general case. Define \hat{M} on $D(M) \times D(N) \subseteq \mathscr{H} \times \mathscr{H}$ as $\hat{M}(x,y) = (Mx, Ny)$. It is clear that \hat{M} is normal. Also define \hat{L} on $\mathscr{H} \times \mathscr{H}$ as $\hat{L}(x,y) = (Ly,0)$, which is bounded. Then it is easy to verify that $\hat{L}\hat{M} \subset \hat{M}\hat{L}$. Applying the previous case where M = N, we obtain that $\hat{L}\hat{M}^* \subset \hat{M}^*\hat{L}$, that is, $LM^* \subset N^*L$. \Box

- 3.4 Show that a densely-defined closed operator N on \mathcal{H} is an unbounded normal operator if and only if the following conditions hold simultaneously:
 - (1) $D(N) = D(N^*);$
 - (2) $\overline{N+N^*}$, $\overline{i(N-N^*)}$ are self-adjoint, and their spectral families are commutative.
- 3.5 Let N be a densely-defined closed operator on \mathcal{H} . Show that N is normal if and only if there exist decomposition of the form N = A + iB, A, B are self-adjoint, and their spectral families are commutative.

Proof. `Only if': Suppose that N is normal. Let $A = \frac{N+N^*}{2}$ and $B = i\frac{N^*-N}{2}$. Note that $D(N) = D(N^*)$, it follows easily that A, B are self-adjoint and AB = BA.

3.6 Prove that every normal operator N in \mathcal{H} has a polar decomposition

$$N = UP = PU,$$

where U is unitary, P self-adjoint, $P \ge 0$, and D(P) = D(N).

Proof. Put p(z) = |z| and u(z) = z/|z| if $z \neq 0$, u(0) = 1. Then p and u are Borel functions on $\sigma(N)$, $D_{p(z)} = D_z = D(N)$ and $D_{u(z)} = \mathscr{H}$. Put $P = \Phi p$ and $U = \Phi u$. Since $p \ge 0$, we know that $P \ge 0$. Since $u\bar{u} = 1$, $QQ^* = Q^*Q = I$. Since z = p(z)u(z), the relation N = PU = UP would follow immediately from the symbolic calculus.

- 3.7 Suppose that N is an unbounded normal operator and $(\mathbb{C}, \mathscr{B}, E)$ is its spectral family. Show that
 - (1) $z \in \sigma_p(N) \Leftrightarrow E(\{z\}) \neq 0;$
 - (2) $\sigma_r(N) = \emptyset;$
 - (3) $z \in \sigma(N) \Leftrightarrow \forall$ Borel set $\Delta, z \in \Delta$, it holds that $E(\Delta) \neq 0$.

Proof. With the spectral theorem, the proof is almost identical to the case of bounded normal operator. See Problem 2.10, Theorem 5.5.18 and 5.5.19. \Box

3.8 Suppose that N is an unbounded normal operator and E is its spectral family. Let

$$\sigma_{\rm ess}(N) = \{z \in \sigma(N) : z \text{ has a Borel neighbourhood } \Delta \text{ such that } \dim R(E(\Delta)) = +\infty.\},\$$
$$\sigma_d(N) = \sigma(N) \setminus \sigma_{\rm ess}(N),$$

show that $z \in \sigma_d(N)$ if and only if z is a finite isolated eigenvalue, $z \in \sigma_{ess}(N)$ if and only if z is a limit point of $\sigma(N)$ or an infinite eigenvalue.

Proof. See Theorem 5.5.21.

3.9 Suppose that \mathscr{H} is a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ a spectral family and f, g Borel-measurable functions. Show that $\Phi(f)\Phi(g) = \Phi(fg)$ if and only if $D_{fg} \subset D_g$, where $\Phi(f)$ and D_f are defined in (6.3.11) and (6.3.8) respectively.

Proof. Theorem 6.3.4 says that $\Phi(f)\Phi(g) \subset \Phi(fg)$ and $D(\Phi(f)\Phi(g)) = D_g \cap D_{fg}$. `Only if': Suppose that $\Phi(f)\Phi(g) = \Phi(fg)$, then $D(\Phi(f)\Phi(g)) = D(\Phi(fg))$, that is, $D_g \cap D_{fg} = D_{fg}$, hence $D_{fg} \subseteq D_g$.

`If': Suppose that $D_{fg} \subset D_g$, then $D(\Phi(f)\Phi(g)) = D_{fg} = D(\Phi(fg))$, and thus $\Phi(f)\Phi(g) = \Phi(fg)$. \Box

3.10 Let \mathscr{H} be a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ an arbitrary spectral family and f a bounded Borel-measurable function. Show that under the operator norm, the integral

$$\int_{\mathbb{C}} f(z) dE(z)$$

is convergent in the sense of Lebesgue integral, and

$$\Phi(f) = \int_{\mathbb{C}} f(z) dE(z)$$

where $\Phi(f)$ is defined as in (6.3.1).

Proof. See the remark following Theorem 5.5.14.

3.11 Let \mathscr{H} be a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ an arbitrary spectral family and f a Borel-measurable function. Define $\Delta_n = \{z : |f(z)| \le n\}, f_n(z) = \chi_{\Delta_n}(z)f(z)$, show that

$$\Phi(f) = s - \lim \Phi(f_n),$$

where $\Phi(f)$ is defined as in (6.3.11).

Proof. Since f_n is bounded, it holds that $D_f = D_{f-f_n}$. For each $x \in D_f$, it follows from Dominated Convergence Theorem that

$$\|\Phi(f)x - \Phi(f_n)x\| \le \int_{\mathbb{C}} |f - f_n|^2 d\|E(z)x\|^2 \to 0$$

as $n \to \infty$.

4 Extension of Self-Adjoint Operators

4.1 Let A_n be a symmetric operator on a Hilbert space \mathscr{H}_n for n = 1, 2, ... Define

$$D = \left\{ u = (u_1, u_2, \dots) \in \bigoplus_{n=1}^{\infty} \mathscr{H}_n : u_n \in D(A_n), \text{ only finitely many } u_n \text{'s are non-zeroes} \right\}$$

Show that

- (1) $A = \sum_{n=1}^{\infty} A_n$ is symmetric on D;
- (2) $n_{\pm}(A) = \sum_{n=1}^{\infty} n_{\pm}(A_n).$

Proof. (1) It is not difficult to see that D is dense and $A = \sum_{n=1}^{\infty} A_n$ is linear. It is straightforward to verify that (Ax, y) = (x, Ay) for $x, y \in D$, thus A is symmetric.

(2) We only show that $n_+(A) = \sum_{n=1}^{\infty} n_+(A_n)$ ($n_-(A)$ can be proved similarly), for which it suffices to show that

$$\ker(A^* - iI) = \bigoplus_{n=1}^{\infty} \ker(A_n^* - iI).$$

The left-hand side is $R(A+iI)^{\perp}$. Suppose that $v = (v_1, v_2, ...) \in R(A+iI)$, then $\sum ((A_n+iI)u_n, v_n) = 0$ for all $(u_1, u_2, ...) \in D$, which reduces to $((A_n+iI)u_n, v_n) = 0$ for all n and $u_n \in D(A_n)$. This implies that $v_n \in R(A_n+iI)^{\perp} = \ker(A_n^*-iI)$, giving $\ker(A^*-iI) \subseteq \sum_{n=1}^{\infty} \ker(A_n^*-iI)$. Conversely, suppose that $v_n \in \ker(A_n^*-iI) = R(A_n+iI)^{\perp}$, i.e., $((A_n+iI)u_n, v_n) = 0$ for all $u_n \in D(A_n)$, then $\sum ((A_n+iI)u_n, v_n) = 0$ for all $(u_1, u_2, ...) \in D$, indicating that $(v_1, v_2, ...) \in R(A+iI)^{\perp} = \ker(A_n^*-iI)$. Hence $\sum_{n=1}^{\infty} \ker(A_n^*-iI) \subseteq \ker(A^*-iI)$.

Finally consider the decomposition of 0. Suppose that $(A + iI)(u_1, u_2, ...) = 0$, i.e., $(A_1u_1 + iu_1, A_2u_2 + iu_2, ...) = 0$, which implies that $(A_n + iI)u_n = 0$ for all n. Since A_n is symmetric, it must hold that $u_n = 0$. Hence the sum is a direct sum.

4.2 Define $T_1 = i \frac{d}{dx}$ with domain $C_0^{\infty}[0,\infty)$ in $L^2[0,\infty)$ and $T_2 = i \frac{d}{dx}$ with domain $C_0^{\infty}(-\infty,0]$ in $L^2(-\infty,0]$. Show that def $(T_1) = (0,1)$ and def $(T_2) = (1,0)$. Show how to construct a symmetric operator with any given pair of deficiency indices.

Proof. Integration by parts shows that T_1 is symmetric. The range of $T_1 - iI$ contains all functions f of form

$$i\frac{d}{dx}u - iu = f, \quad u \in C_0^{\infty}[0,\infty).$$

Hence $f \in C_0^{\infty}[0,\infty)$. Multiply by e^{-x} ,

$$i\frac{d}{dx}(e^{-x}u) = e^{-x}f$$

Since u has compact support, we obtain that

$$\int_0^\infty e^{-x} f = 0 \tag{1}$$

Conversely, every C_0^{∞} function f satisfying the condition above belongs to the range of $T_1 - iI$ as we can define u by

$$u(x) = -i \int_0^x e^{-(y-x)} f(y) dy$$

It is clear that $u \in C_0^{\infty}[0,\infty)$. Therefore $f \in C_0^{\infty}[0,\infty)$ is contained in $R(T_1-iI)$ if and only if f satisfies (1). Note that $e^{-x} \in L^2[0,\infty)$, it follows that $R(T_1-iI)^{\perp}$ is a one-dimensional subspace spanned by e^{-x} , and $n_-(T_1) = 1$. Now consider the range of $T_1 + iI$. Similarly we conclude that $f \in C_0^{\infty}[0,\infty)$ is contained in $R(T_1 + iI)$ if and only if

$$\int_0^\infty e^x f = 0$$

Since $e^x \notin L^2[0,\infty)$, f satisfies the equation above is dense in $C_0^{\infty}[0,\infty)$. Therefore $R(T_1 + iI)$ is dense and thus $n_+(T_1) = 0$.

A similar argument shows that $def(T_2) = (1, 0)$. Now combining with Problem 1, we see that on

$$D = \left\{ u \in \bigoplus^p L^2[0,\infty) \oplus \bigoplus^q L^2(-\infty,0] : u_i \in C_0^\infty[0,\infty) \text{ for } 1 \le i \le p \text{ and} \\ u_i \in C_0^\infty(-\infty,0] \text{ for } p+1 \le i \le p+q \right\}$$

the operator $\sum^{p+q} i \frac{d}{dx}$ has deficiency indices (p,q).

- 4.3 Suppose that p(x) is a polynomial with real coefficients. Let $A = p(i\frac{d}{dx})$ with domain $C_0^{\infty}[0,\infty)$ in $L^2[0,\infty)$. Show that
 - (1) A is symmetric;
 - (2) if p has no odd powers, then the deficiency indices of A are equal;
 - (3) if the degree of p is odd, then the deficiency indices of A are unequal.

Proof. (1) Straightforward integration by parts.

- (2) If p has no odd-degree terms, then $\overline{(A+iI)u} = (A-iI)\overline{u}$, which implies that R(A+iI) is isomorphic to R(A-iI). The conclusion follows easily.
- (3) The approach is similar to that in Problem 4.2.

The range of A - iI contains all functions f of form Au - iu = f, $u \in C_0^{\infty}[0, \infty)$. From ODE Theory, we conclude that f is contained in the range of A - iI if and only if $\int_0^{\infty} fg = 0$ for all g that are solutions to (A + iI)g = 0, where we formally extend the domain of A to $C^{\infty}[0,\infty) \cap L^2[0,\infty)$. The deficiency index concerns only those g that are contained in L^2 , hence we are only concerned with $\int_0^{\infty} x^k e^{zx} f(x) dx = 0$, where z is the root of p(iz) + i = 0 with $\Re z < 0$. In fact, $n_+(A)$ is the number of the roots of p(iz) + i = 0 lying in $\Re z < 0$. Similarly, $n_-(A)$ is the number of the roots of p(iz) - i = 0 lying in $\Re z > 0$. Note that $p(ix) \pm i = 0$ has no pure imaginary roots, and $z \leftrightarrow -\overline{z}$ is a bijection between the roots of the two equations. We conclude that $n_+ + n_- = \deg g$, which is odd, therefore n_+ and n_- can never be equal.

4.4 Let M and N be two subspaces of \mathscr{H} and dim $M > \dim N$. Show that there exists $u \in M$, ||u|| = 1, such that $u \in N^{\perp}$.

Proof. By considering a subspace of M, if necessary, we can assume that both M and N are finite-dimensional. Take orthonormal basis $\{x_i\}_{i=1}^m$ and $\{y_i\}_{i=1}^n$, m > n, for M and N, respectively. Consider $x = \sum a_i x_i \in M$. We want $(x, y_j) = \sum_j a_i(x_i, y_j) = 0$ for all $1 \le j \le n$. This is a system of linear equations that can be rewritten as Ax = 0, where $A_{ij} = (x_i, y_j)$. Note that A has more rows (m rows) than columns (n columns), the linear system has a non-zero solution.

- 4.5 Let A be a closed symmetric operator. Show that $\sigma(A)$ must be one of the four cases:
 - (1) the closed upper half plane;
 - (2) the closed lower half plane;
 - (3) the entire plane;
 - (4) a subset of the real axis.

Proof. Suppose that $z_0 \in \rho(A)$. First suppose that im $z_0 < 0$, then dim ker $(A^* + zI) = n_- = \dim \ker(A^* + z_0I)$ for all im z < 0. Since $A - z_0I$ is invertible, $R(A - z_0I) = \mathscr{H}$ and $n_- = 0$. Hence ker $(A^* + zI) = \{0\}$ for all im z < 0, that is, $R(A - zI) = \mathscr{H}$ for all im z < 0 (because R(A - zI) is closed when A is closed and symmetric). Note also symmetry of A implies that A - zI is injective. Hence A - zI is bijective for im z < 0, and $z \in \rho(A)$. Similarly, if im $z_0 > 0$ then the entire open half-plane is contained in $\rho(A)$.

4.6 Let A be a closed symmetric operator. If $\rho(A)$ contains a real number then A is self-adjoint.

Proof. Since $\rho(A)$ contains a real number, the spectrum $\sigma(A)$ must be in case (4), that is, $\sigma(A) \subset \mathbb{R}$. Then def(A) = (0, 0) and it follows from von Neumann Theorem that A is self-adjoint. (See also Theorem 6.4.5)

4.7 Let A be a symmetric operator. If A_1 is a symmetric extension of A, then $A_1 \subset A^*$. Define a sesquilinear form on $D(A^*)$ as

$$\{x, y\} = (A^*x, y) - (x, A^*y).$$

Show that $\{x, y\} = 0$ for all $x, y \in D(A_1)$.

Proof. $A \subset A_1 \Rightarrow A_1^* \subset A^*$. Also A_1 is symmetric, $A_1 \subset A_1^*$ and $\{x, y\} = 0$.

4.8 Suppose that A is a symmetric operator and D a linear subspace such that $D(A) \subset D \subset D(A^*)$ and $\{x, y\} = 0$ on $D \times D$. Show that there exists a symmetric extension, denoted A_1 , of A such that $D(A_1) = D$.

Proof. Let $A_1 = A^*|_D$, then it is symmetric because $\{x, y\} = 0$ on $D \times D$. Also, $A \subset A^*$ and $D(A) \subset A$, we see that $A \subset A_1$.

4.9 Let A be a symmetric operator. Define an inner product on $D(A^*)$ as

$$(x, y)_A = (x, y) + (A^*x, A^*y),$$

then $D(A^*)$ with $(\cdot, \cdot)_A$ forms a Hilbert space. Show that

- (1) The sesquilinear form defined in Problem 6.4.7 is continuous under the topology induced by $(\cdot, \cdot)_A$;
- (2) Suppose that A_1 is a restriction of A. Show that A_1 is a closed operator if and only if $D(A_1)$ is closed under the topology induced by $(\cdot, \cdot)_A$.
- *Proof.* (1) Suppose that $x_n \to x$ and $y_n \to y$ under $\|\cdot\|_A$, then $x_n \to x$, $y_n \to y$, $A^*x_n \to A^*x$, $A^*y_n \to A^*y$ (because A^* is closed -- the dual of any densely-defined operator is closed) under the usual norm. It follows that

$$\{x_n, y_n\} = (A^*x_n, y_n) - (x_n, A^*y_n) \to (A^*x, y) - (x, A^*y) = \{x, y\},\$$

where we use the fact that the usual inner product is continuous w.r.t. the usual norm.

- (2) Note that the graph norm of A_1 coincides with $(\cdot, \cdot)_A$.
- 4.10 Let A be a symmetric operator and view $D(A^*)$ as a Hilbert space with inner product $(\cdot, \cdot)_A$. Let S be a subset of $D(A^*)$. We say S is symmetric if $\{x, y\} = 0$ on $S \times S$. Show that there is a one-to-one correspondence between the closed symmetric subspaces of $D(A^*)$ that contain D(A) and all the closed symmetric subspaces of $D_+ \oplus D_-$, where $D_+ = \ker(A^* iI)$ and $D_- = \ker(A^* + iI)$. Moreover, if $D \supset D(A)$ is closed and symmetric and corresponds to \tilde{D} , a closed and symmetric subspace of $D_+ \oplus D_-$, then $D = D(\bar{A}) \oplus \tilde{D}$.

Proof. First it is clear that A is closable, and $\bar{A}^* = A^*$. Observe that any closed subspace of $D(A^*)$ that contains D(A) also contains $D(\bar{A})$, we may assume that A is closed.

Suppose $D \supset D(A)$ is a closed subspace of $D(A^*)$. Note that $D(A^*) = D(A) \oplus D_+ \oplus D_-$, for any $x \in D$ we can write $x = x_A + x_+ + x_-$ in a unique way. Let \tilde{D} be spanned by those x_+ 's and x_- 's. We claim that \tilde{D} is a closed symmetric subspace of $D_+ \oplus D_-$. The closedness of \tilde{D} follows from the closedness of D and D(A). We show that \tilde{D} is symmetric, i.e. (after some algebra), $(x_+, y_+) = (x_-, y_-)$ for all $x, y \in \tilde{D}$. This is not hard to obtain from the symmetry of D, $A^*x = Ax + ix_+ - ix_-$ together with the assumption that A is symmetric. It is clear that $D = D(\bar{A}) \oplus \tilde{D}$ from the construction of \tilde{D} , which implies that $D \leftrightarrow \tilde{D}$ is a one-to-one correspondence.

4.11 Suppose that A is a symmetric operator, A^2 is densely-defined, show that $A^*\overline{A}$ is a Friedrichs self-adjoint extension of A^2 .

Proof. Without loss of generality, assume that A is closed. It is clear that A^2 is symmetric. Define $a(u, v) = (A^2u, v) + (u, v)$, then a(u, v) is a positive-definite sesquilinear form on $D(A^2) \subseteq D(A)$. Consider the completion of $D(A^2)$ with respect to a, denoted by D. Note that $a(u, u) = ||Au||^2 + ||u||^2$ and D(A) is closed under this norm (equivalent to the graph norm), the completion of $D(A^2)$, denoted by D, is the intersection of all subspaces of D(A) that are closed under the graph norm. We shall show that D = D(Q), where D(Q) is defined in Corollary 6.4.21. Then it follows from the uniqueness of the extension (Theorem 6.4.20) that A^*A is the self-adjoint extension of A^2 (Theorem 6.4.21).

Obviously $D \subseteq D(Q)$, thus it suffices to show that $D(Q) \subseteq D$. This is because D(Q) is closed and is dense in D(A).

4.12 Suppose that A is a lower semi-bounded closed symmetric operator, $A \ge -M$. Then dim ker $(A^* - zI)$ is a constant on $\mathbb{C} \setminus [-M, \infty)$.

Proof. The proof is the same as that of Theorem 6.4.4. To connect the upper and lower half-planes, notice that the proof is valid for real $z \in (-\infty, -M)$. In fact, suppose that $u \in D(A)$, (A - zI)u = x,

$$(x, u) = ((A - zI)u, u) \ge (-M - z)||u||^2,$$

implying that

$$\|x\| \ge \sqrt{(-M-z)} \|u\|.$$

4.13 Let A be a closed symmetric operator that is semi-bounded from below. Suppose that $n_+(A) = n_-(A) < \infty$, show that any self-adjoint extension of A is semi-bounded from below.

Proof. Suppose that A_1 is a self-adjoint extension of A. From Problem 4.10, we know that $D(A_1) = D(A) \oplus S$, where S is a finite-dimensional linear space. Suppose that M is the lower bound of A and pick K < M. Then $\dim P_{(-\infty,K]} \leq \dim S$, where P_{Ω} is the projection-valued measure of A_1 . Otherwise, we can find $x \in D(A) \cap R(P_{(-\infty,K]})$, so that

$$(Ax, x) = \int_{\mathbb{R}} zd \|E(z)x\|^2 \le K \|E(K)x\|^2 \le M \|x\|^2,$$

contradicting with $A \ge M$. We have established that dim $P_{(-\infty,K]} < \infty$, this implies that $\sigma(A_1)$ has only finitely many elements in $(-\infty, K]$, and they are eigenvalues. Therefore, A_1 is bounded below.

4.14 Suppose that T is a densely-defined closed operator in a Hilbert space. Show that there exist a positive self-adjoint operator A with D(A) = D(T) and an isometry $V : (\ker T)^{\perp} \to \overline{R(T)}$ such that

$$T = VA.$$

This is called polar decomposition of closed operator.

Proof. Since T is densely-defined and closed, we have that T^*T is positive self-adjoint. Let $A = (T^*T)^{\frac{1}{2}}$. For $x \in D(T^*T)$ we clearly have $||Tx||^2 = (T^*Tx, x) = (A^2x, x) = ||Ax||^2$. Since $D(T^*T)$ is dense in D(T), we can extend A to D(T) by continuity such that ||Tx|| = ||Ax|| for all $x \in D(T)$.

Define $V : R(A) \to R(T)$ such that VAx = Tx, it is clear that V is well-defined and norm preserving. Thus V extends to an isometry from $\overline{R(A)}$ to $\overline{R(T)}$ by continuity. Since A is self-adjoint, $\overline{R(A)} = (\ker A)^{\perp} = (\ker T)^{\perp}$. Suppose that T = V'A' is another decomposition. Then $T^*T = A'^*V'^*VA' = A'^*A' = A'^2$, thus A = A' on $D(T^*T)$ because $\sqrt{T^*T}$ is unique. It follows immediately that A = A' on D(T) and V' = V.

4.15 Let A be a symmetric operator in a Hilbert space. Show that A is essentially self-adjoint if and only if dim ker $(A^* \mp iI) \triangleq n_{\pm} = 0$.

Proof. This is Corollary 6.2.5 (Exercise 6.2.2).

4.16 Denote the Schwartz space by $\mathscr{S}(\mathbb{R}^3)$. Let $K_1(\mathbb{R}^3)$ be the closure of $\mathscr{S}(\mathbb{R}^3)$ under the norm of $\int_{\mathbb{R}^3} |\nabla u|^2 dx$. Let $\mathscr{H} = K_1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$ and define an inner product in \mathscr{H} as

$$(\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle) = \int_{\mathbb{R}^3} (\nabla f_1 \cdot \overline{\nabla g_1} + f_2 \overline{g_2}) dx.$$

Consider the following operator in \mathscr{H} :

$$A = \begin{pmatrix} 0 & I \\ \Delta & 0 \end{pmatrix}, \quad D(A) = \mathscr{S}(\mathbb{R}^3) \times \mathscr{S}(\mathbb{R}^3).$$

Show that

- (1) iA is symmetric;
- (2) iA is essentially self-adjoint.

Proof. (1) For $\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle \in D(A)$, it holds that

$$\begin{split} (iA\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle) &= (i\langle f_2, \Delta f_1 \rangle, \langle g_1, g_2 \rangle) \\ &= i \int_{\mathbb{R}^3} (\nabla f_2 \cdot \overline{\nabla g_1} + \Delta f_1 \cdot \overline{g_2}) dx \\ &= -i \int_{\mathbb{R}^3} (f_2 \cdot \overline{\Delta g_1} + \nabla f_1 \cdot \overline{\nabla g_2}) dx \\ &= (\langle f_1, f_2 \rangle, i\langle g_2, \Delta g_1 \rangle) \\ &= (\langle f_1, f_2 \rangle, iA\langle g_1, g_2 \rangle). \end{split}$$

. .

(2) We shall show that $R(A \pm iI)$ is dense in \mathcal{H} . We first show that R(A + iI) is dense. Note that

$$(A+iI)\langle f_1, f_2 \rangle = i\langle f_2 + f_1, \Delta f_1 + f_2 \rangle,$$

it suffices to show that the system of equations

$$\begin{aligned} v+u &= f\\ \Delta u+v &= g \end{aligned}$$

has solution $u, v \in \mathscr{S}(\mathbb{R}^3)$ if $f, g \in \mathscr{S}(\mathbb{R}^3)$, which can be easily reduced to show that

$$\Delta u - u = h$$

has solution $u \in \mathscr{S}(\mathbb{R}^3)$ if $h \in \mathscr{S}(\mathbb{R}^3)$. Take Fourier transform on both sides,

$$-4\pi^2 |\xi|^2 \hat{u} - \hat{u} = \hat{h}.$$

Solve for \hat{u} ,

$$\hat{u} = -\frac{\hat{h}}{1+4\pi^2 |\xi|^2}$$

which is clearly in $\mathscr{S}(\mathbb{R}^3)$. Hence by taking inverse Fourier transform we obtain a solution $u \in \mathscr{S}(\mathbb{R}^3)$. Similarly, to show that R(A - iI) is dense, it suffices to show that

$$v - u = f$$
$$\Delta u - v = g$$

has solution $u, v \in \mathscr{S}(\mathbb{R}^3)$ if $f, g \in \mathscr{S}(\mathbb{R}^3)$, which reduced to the same problem as above.

Perturbation of Self-Adjoint Operators 5

I

5.1 Let A be self-adjoint and B be symmetric. Suppose that B is A-bounded with relative bound equal to a. Prove that

$$a = \lim_{n \to \infty} \|B(A + in)^{-1}\|$$

Proof. Note that $||(A + in)u||^2 = ||Au||^2 + n^2 ||u||^2$ for all $u \in D(A)$. Since A is self-adjoint, A + in is invertible and $R(A + in) = \mathscr{H}$. Replace u by $(A + in)^{-1}x$,

$$|x||^{2} = ||A(A+in)^{-1}x||^{2} + n^{2}||(A+in)^{-1}x||^{2}.$$
(2)

Suppose that $||Bu||^2 \le a'^2 ||Au|| + b'^2 ||u||^2$ for all $u \in D(A)$. Replace u by $(A + in)^{-1}x$ and use (2),

$$\begin{split} \|B(A+in)^{-1}x\|^2 &\leq a'^2 \|A(A+in)^{-1}x\| + b'^2 \|(A+in)^{-1}x\|^2 \\ &\leq a'^2 (\|x\|^2 - n^2 \|(A+in)^{-1}x\|^2) + b'^2 \|(A+in)^{-1}x\|^2 \\ &\leq a'^2 \|x\|^2 \end{split}$$

when n is large enough. This implies that $a' \ge \overline{\lim} \|B(A+in)^{-1}\|$ and thus $a \ge \overline{\lim} \|B(A+in)^{-1}\|$. The conclusion follows easily if a = 0, so we assume a > 0 henceforth.

On the other hand, By the definition of relative bound, we know that for any $\epsilon > 0$ small enough, b > 0, there exists $u \in D(A)$ such that

$$||Bu||^2 > (a - \epsilon)^2 ||Au||^2 + b^2 ||u||^2$$

Use the same technique as before,

$$||B(A+in)^{-1}x||^2 > (a-\epsilon)^2 ||x||^2 + (b^2 - (a-\epsilon)^2 n^2) ||(A+in)^{-1}x||^2$$

Choose $b = (a - \epsilon)n$, we know that for any $\epsilon > 0$ there exists x such that

$$||B(A+in)^{-1}x||^2 > (a-\epsilon)^2 ||x||^2$$

which implies that $||B(A+in)^{-1}|| \ge a - \epsilon$. This result holds for all n, thus $\underline{\lim} ||B(A+in)^{-1}|| \ge a - \epsilon$, and let $\epsilon \to 0, a \le \underline{\lim} ||B(A+in)^{-1}||$, whence the conclusion follows.

5.2 Let A be a densely defined closed operator and B a closable operator. If $D(A) \subset D(B)$, show that B is A-bounded.

Proof. Since A is closed, $X = (D(A), \|\cdot\|_{\Gamma(A)})$ is a Banach space. Without loss of generality, we may assume that B is closed. To show that B is A-bounded, i.e., B is continuous on X, it suffices to show that $B|_X$ is a closed operator then the Closed Graph Theorem applies. In fact, suppose that $x_n \to x$ in X and $Bx_n \to y$. Then $x_n \to x$ in \mathscr{H} . Since B is closed, we must have Bx = y, which shows that $B|_X$ is closed. \Box

5.3 Suppose that A and B are densely-defined operators in \mathscr{H} , B is A-bounded, then there exist $a, b \ge 0$ such that

$$||Bx|| \le a ||Ax|| + b ||x||, \quad \forall x \in D(A).$$

Show that

- (1) B is (A + B)-bounded and the relative bound is at most $\frac{a}{1-a}$;
- (2) if C is A-bounded with relative bound c, then C is (A + B)-bounded with relative bound at most $\frac{c}{1-a}$.

Proof. (1) Note that

$$||(A+B)x|| \ge ||Ax|| - ||Bx|| \ge ||Ax|| - (a||Ax|| + b||x||) = (1-a)||Ax|| - b||x||$$

Then

$$||Ax|| \le \frac{||(A+B)x|| + b||x||}{1-a}$$
(3)

and

$$||Bx|| \le a||Ax|| + b||x|| \le a \frac{||(A+B)x|| + b||x||}{1-a} + b||x|| = \frac{a}{1-a}||(A+B)x|| + \frac{b(1+a)}{1-a}||x||.$$

(2) For any $\epsilon > 0$ there exists $d \ge 0$ such that

$$||Cx|| \le (c+\epsilon)||Ax|| + d||x|| \le \frac{c+\epsilon}{1-a}||(A+B)x|| + \left(\frac{c+\epsilon}{1-a} + d\right)||x||,$$

thus C is (A+B)-bounded with relative bound at most $\frac{c+\epsilon}{1-a}$. Let $\epsilon \to 0$, completing the proof.

5.4 Let \mathscr{H} be a Hilbert space. Suppose that A is a densely defined closed operator and B is A-bounded such that

$$||Bx|| \le a ||Ax|| + b ||x||.$$

Let $\lambda \in \rho(A)$ such that

$$a\|AR_{\lambda}(A)\| + b\|R_{\lambda}(A)\| < 1,$$

where $R_{\lambda}(A) = (\lambda I - A)^{-1}$ is the resolvent operator of A. Show that A + B is closed, $\lambda \in \rho(A + B)$ and

$$||R_{\lambda}(A+B)|| \le ||R_{\lambda}(A)||(1-a||AR_{\lambda}(A)|| - b||R_{\lambda}(A)||)^{-1}.$$

Proof. First we show that A+B is closed. Suppose that $x_n \to x$ and $(A+B)x_n \to y$. From (3) we see that $\{Ax_n\}$ is Cauchy and thus $Ax_n \to z$ for some z. Since A is closed, we have that $x \in D(A)$ and z = Ax. Thus $Bx_n \to y-z$. Also, since B is A-bounded, it holds that $Bx_n \to Bx$. Therefore y - z = Bx and $(A+B)x_n \to (A+B)x$. Denote $c = a ||AR_\lambda(A)|| + b ||R_\lambda(A)||$. Replacing x by $R_\lambda(A)y$ in $||Bx|| \le a ||Ax|| + b ||x||$, we obtain that

 $||BR_{\lambda}(A)y|| \le a ||AR_{\lambda}(A)y|| + b ||R_{\lambda}(A)y|| \le c ||y||.$

Then

$$\|(A+B-\lambda I)x\| \ge \|(A-\lambda I)x\| - \|Bx\| \ge \|y\| - c\|y\| = (1-c)\|y\| \ge \frac{1-c}{\|R_{\lambda}(A)\|}\|x\|,$$

which implies that $\lambda \in \rho(A+B)$ and $||R_{\lambda}(A+B)|| \leq \frac{||R_{\lambda}(A)||}{1-c}$.

5.5 Let A and B be densely defined operators in \mathscr{H} . Suppose that $A^{-1} \in L(\mathscr{H})$ and B is A-bounded such that

$$||Bx|| \le a ||Ax|| + b ||x||, \quad x \in D(A).$$

Suppose that $a + b \|A^{-1}\| < 1$, prove that

(1) A + B is closed and invertible;

$$(2) ||(A+B)^{-1}|| \le ||A^{-1}||(1-a-b||A^{-1}||)^{-1}, ||(A+B)^{-1}-A^{-1}|| \le ||A^{-1}||(a+b||A^{-1}||)||(1-a-b||A^{-1}||)^{-1}; ||A^{-1}|| \le ||A^{-1}||(1-a-b||A^{-1}||)^{-1}; ||A^{-1}|| \le ||A^{-1}||(1-a-b||A^{-1}||)^{-1}; ||A^{-1}|| \le ||A^{-1}|| \le$$

(3) if A^{-1} is compact, $(A + B)^{-1}$ is also compact.

Proof. It has been proved in the previous exercise that A + B is closed. Similarly, Replacing x by $A^{-1}y$ in $||Bx|| \le a||Ax|| + b||x||$, we obtain that

$$||BA^{-1}y|| \le a||y|| + b||A^{-1}y|| \le c||y||,$$

where $c = a + b ||A^{-1}|| < 1$. Then

$$||(A+B)x|| = ||y+BA^{-1}y|| \ge ||y|| - c||y|| = \frac{1-c}{||A^{-1}||} ||x||,$$

which shows that A + B is invertible and $||(A + B)^{-1}|| \le \frac{||A^{-1}||}{1-c}$. Denote $T = (A + B)^{-1} - A^{-1}$. Now,

$$||T|| \le ||(A+B)^{-1}|| ||(A+B)T|| = ||(A+B)^{-1}|| ||BA^{-1}|| \le ||(A+B)^{-1}||c.$$

Since $||BA^{-1}|| < 1$, we see that $I + BA^{-1}$ is invertible, then $(A + B)^{-1} = A^{-1}(I + BA^{-1})^{-1}$ is compact by Theorem 4.1.2(6).

5.6 Suppose that A and B are densely defined operators, B is A-bounded and dim $R(B) < \infty$. Show that B is A-compact.

Proof. Suppose $\{x_n\}$ and $\{Ax_n\}$ are bounded sequences. Since B is A-bounded, $\{Bx_n\}$ is a bounded sequence, too. Then $\{Bx_n\}$ has a convergent subsequence because R(B) is finite-dimensional.

5.7 Suppose that A and B are symmetric operators, D(A) = D(B) = D, and

$$||(A - B)x|| \le a' ||Ax|| + a'' ||Bx|| + b||x||, \forall x \in D,$$

where 0 < a', a'' < 1, b > 0. Show that A is essentially self-adjoint if and only if B is essentially self-adjoint, and when they are self-adjoint it holds that $D(\overline{A}) = D(\overline{B})$.

Proof. Use Corollary 6.5.12 instead of Theorem 6.5.2 in the proof of Corollary 6.5.4.

- 5.8 Suppose that A is self-adjoint and B is symmetric. Show that B is A-compact if and only if
 - (1) $D(B) \supset D(A);$
 - (2) $\forall \lambda \in \rho(A), B(\lambda I A)^{-1}$ is compact.

Furthermore, the condition (2) can be replaced by

(2') $\exists \lambda \in \rho(A)$ such that $B(\lambda I - A)^{-1}$ is compact.

Proof. If: Suppose that $\{x_n\}$ and $\{Ax_n\}$ are bounded sequences, then $\{(\lambda I - A)x_n\}$ is bounded. Hence $\{Bx_n\} =$ $\{B(\lambda I - A)^{-1}((\lambda I - A)x_n)\}\$ has a convergent subsequence.

`Only if': Suppose that $\{x_n\}$ is a bounded sequence, then $\{(\lambda I - A)^{-1}x_n\}$ is bounded, $\{A(\lambda I - A)^{-1}x_n\}$ is also bounded since $A(\lambda I - A)^{-1} = \lambda(\lambda I - A)^{-1} - I$. Since B is A-compact, $\{B(\lambda I - A)^{-1}x_n\}$ has a convergent subsequence.

It is clear that we need only $\exists \lambda$ instead of $\forall \lambda$ in the `only if' part.

5.9 Let $V \in \mathscr{H} = L^2(\mathbb{R}^3)$ and $\lambda > 0$. Show that

$$\lim_{\lambda \to \infty} \|V(-\Delta + \lambda)^{-1}\| = 0,$$

and that V is $(-\Delta)$ -compact.

Proof. It is easy to see that $-\Delta + \lambda$ is invertible on C_0^{∞} using Fourier Transform and $(-\Delta + \lambda)^{-1}u$ is in Schwartz space for $u \in C_0^{\infty}(\mathbb{R}^3)$. More precisely, using Green's function,

$$((-\Delta+\lambda)^{-1}u)(x) = \int_{\mathbb{R}^3} \frac{e^{-\sqrt{\lambda}|x-y|}}{4\pi|x-y|} u(y)dy,$$

Then

$$((V(-\Delta+\lambda)^{-1})u)(x) = \int_{\mathbb{R}^3} |V(x)| \frac{e^{-\sqrt{\lambda}|x-y|}}{4\pi|x-y|} u(y) dy,$$

where the integral kernel

$$K_{\lambda}(x,y) = |V(x)| \frac{e^{-\sqrt{\lambda}|x-y|}}{4\pi|x-y|} \in L^2(\mathbb{R}^6).$$

Now,

$$\|V((-\Delta+\lambda)^{-1}\| \le \|K_{\lambda}\| \cdot \frac{1}{\lambda} \to 0$$

as $\lambda \to \infty$. Also, since $K_{\lambda}(x, y) \in L^2(\mathbb{R}^6)$, it is a Hilbert-Schmidt kernel and $V(-\Delta + \lambda)^{-1}$ is compact. It follows from the previous problem that V is $(-\Delta)$ -compact.

5.10 Let A be essentially self-adjoint and B bounded symmetric. Show that A + B is essentially self-adjoint.

Proof. Obviously B is A-bounded with relative bound 0. The conclusion follows immediately from Corollary 6.5.12.

5.11 Let A be self-adjoint and B symmetric with $D(A) \subset D(B)$ and $B^2 \leq A^2 + b^2 I$, where b is a constant. Show that A + B is essentially self-adjoint.

Proof. Since

$$||Bx||^{2} = (Bx, Bx) = (B^{2}x, x) \le (A^{2}x, x) + b^{2}(x, x) = (Ax, Ax) + b^{2}||x||^{2} = ||Ax||^{2} + b^{2}||x||^{2}$$

the conclusion follows immediately from Theorem 6.5.14.

5.12 Let \mathscr{H} be a Hilbert space, A self-adjoint, $A \ge 0$, B symmetric with $D(B) \supset D(A)$. Suppose that

$$||Bx|| \le ||Ax||, \quad \forall x \in D(A).$$

Show that $|(Bx, x)| \leq (Ax, x)$.

Proof. For any $t \in (-1, 1)$, tB is symmetric and A-bounded with relative bound |t| < 1. Hence $A + tB \ge 0$ from Theorem 6.5.16. It means that $t(Bx, x) \ge -(Ax, x)$ for all $t \in (-1, 1)$. The conclusion follows from letting $t \to \pm 1$.

5.13 Suppose that $V_1, V_2 \in L^2(\mathbb{R}^3)$ are real-valued functions and view $V_i(x_i)$ (i = 1, 2) as multiplication operator. Show that $-\Delta + V_1(x_1) + V_2(x_2)$ is essentially self-adjoint with domain $C_0^{\infty}(\mathbb{R}^6)$.

Proof. In the proof of Example 6.5.11, we see that given any a > 0 there exists b > 0 such that

$$||u||_{\infty} \le a ||\Delta u||_2 + b ||u||_2$$

for all $u \in C_0^{\infty}(\mathbb{R}^n)$, which is `equivalent' to

$$||u||_{\infty}^{2} \leq a^{2} ||\Delta u||_{2}^{2} + b^{2} ||u||_{2}^{2}.$$

Now let $u \in C_0^{\infty}(\mathbb{R}^6)$,

$$||V_1u||_2^2 \le a^2 \int |-\Delta_1 u(x_1, x_2)|^2 dx_1 dx_2 + b^2 \int |u(x_1, x_2)|^2 dx_1 dx_2$$

= $a^2 \int \left|\sum_{i=1}^3 p_i^2 \hat{u}(p_1, \dots, p_6)\right|^2 dp_1 \cdots dp_6 + b^2 ||u||_2^2$
 $\le a^2 \int \left|\sum_{i=1}^6 p_i^2 \hat{u}(p_1, \dots, p_6)\right|^2 dp_1 \cdots dp_6 + b^2 ||u||_2^2$
= $a^2 ||-\Delta u||_2^2 + b^2 ||u||_2^2$,

A result with the same right-hand side holds for V_2u . It follows that

$$||V_1(x_1)u + V_2(x_2)u||^2 \le 2a^2 || - \Delta u||_2^2 + 2b^2 ||u||_2^2.$$

Since we can choose a as small as we want, $V_1(x_1) + V_2(x_2)$ is infinitesimally small with respect to $-\Delta$. Thus, by Kato-Rellich Theorem, $-\Delta + V_1(x_1) + V_2(x_2)$ is essentially self-adjoint on $C_0^{\infty}(\mathbb{R}^6)$.

5.14 Let A be a self-adjoint operator and B a bounded symmetric operator. Show that A + B is self-adjoint, and

$$d(\sigma(A), \sigma(A+B)) \le ||B||,$$

i.e.,

$$\sup_{\lambda \in \sigma(A)} d(\lambda, \sigma(A+B)) \le \|B\|, \tag{4}$$

$$\sup_{\lambda \in \sigma(A+B)} d(\sigma(A), \lambda) \le \|B\|.$$
(5)

Proof. It is clear that A + B is symmetric. Also $D(A^* + B^*) = D(A^*) = D(A) = D(A + B)$ because B is defined or can be extended to the entire \mathscr{H} . Therefore A + B is self-adjoint.

To show (4), it suffices to show that for any $\lambda \in \sigma(A)$ and $\epsilon > 0$, it holds that

$$(\lambda - \|B\| - \epsilon, \lambda + \|B\| + \epsilon) \cap \sigma(A + B) \neq \emptyset.$$

Suppose it holds that

$$(\lambda - \|B\| - \epsilon, \lambda + \|B\| + \epsilon) \subset \rho(A + B)$$

then

$$\begin{aligned} \|(\lambda I - A - B)x\|^2 &= \int_{\mathbb{R}} (\lambda - \zeta)^2 d\|E_{\zeta}^{A+B}x\|^2 \\ &= \int_{\mathbb{R} \setminus (\lambda - \|B\| - \epsilon, \lambda + \|B\| + \epsilon)} (\lambda - \zeta)^2 d\|E_{\zeta}^{A+B}x\|^2 \\ &\geq (\|B\| + \epsilon)^2 \|x\|^2. \end{aligned}$$

So

$$\|(\lambda I - A - B)^{-1}\| \le \frac{1}{\|B\| + \epsilon},$$

and $||B(\lambda I - A - B)^{-1}|| < 1$, hence $I + B(\lambda I - A - B)^{-1}$ is invertible and so is

$$\lambda I - A = (I + B(\lambda I - A - B)^{-1})(\lambda I - A - B).$$

Contradiction.

For the second half, just notice that (5) is (4) applied to (A + B) + (-B) = A.

5.15 Let A be a self-adjoint operator, $D \subset \mathbb{C}$ be a Borel-measurable set with smooth boundary $\Gamma = \partial D$. Suppose that $\Gamma \subset \rho(A)$, show that

$$E(D) = \frac{1}{2\pi i} \oint_{\Gamma} (zI - A)^{-1} dz,$$

where E is the spectral family of A.

Proof. Note that $\rho(A)$ is an open set and $\sigma(A) \subset \mathbb{R}$, hence such a boundary Γ separates $\sigma(A)$. Then the proof follows the same line as in Exercise 5.5.15.

5.16 Let A be a self-adjoint operator and C a compact operator, then

$$\sigma_{\rm ess}(A) = \sigma_{\rm ess}(A+C).$$

5.17 Suppose that $V \in L^2(\mathbb{R}^3)$ is real-valued, show that $\sigma_{\text{ess}}(-\Delta + V) = [0, \infty)$.

Proof. Using Fourier transform we can easily obtain that $\sigma_{ess}(-\Delta) = [0, \infty)$. Since V is symmetric (because it is real-valued) and $(-\Delta)$ -compact (Exercise 5.9), it immediately follows from Weyl's Theorem that $\sigma_{ess}(-\Delta + V) = [0, \infty)$.

6 Convergence of Unbounded Operators

6.1 Let A_n and A be self-adjoint operators and suppose that for all $x, y \in \mathscr{H}$ and all λ with im $\lambda \neq 0$, $(R_{\lambda}(A_n)x, y) \rightarrow (R_{\lambda}(A)x, y)$. Prove that $A_n \rightarrow A$ s.r.s.

Proof.

$$\begin{aligned} \|(R_{\lambda}(A_n) - R_{\lambda}(A))x\|^2 &= ((R_{\lambda}(A_n) - R_{\lambda}(A))x, (R_{\lambda}(A_n) - R_{\lambda}(A))x) \\ &= (R_{\lambda}(A_n)x, R_{\lambda}(A_n)x) - 2\Re(R_{\lambda}(A_n)x, R_{\lambda}(A)x) + (R_{\lambda}(A)x, R_{\lambda}(A)x). \end{aligned}$$

Since $A_n \to A$ w.r.s, it is clear that $(R_\lambda(A_n)x, R_\lambda(A)x) \to (R_\lambda(A)x, R_\lambda(A)x)$. Also,

$$(R_{\lambda}(A_n)x, R_{\lambda}(A_n)x) = (R_{\bar{\lambda}}(A_n)R_{\lambda}(A_n)x, x)$$
$$= \left(-\frac{R_{\bar{\lambda}}(A_n) - R_{\lambda}(A_n)}{\bar{\lambda} - \lambda}x, x\right)$$
$$\rightarrow \left(-\frac{R_{\bar{\lambda}}(A) - R_{\lambda}(A)}{\bar{\lambda} - \lambda}x, x\right)$$
$$= (R_{\bar{\lambda}}(A)R_{\lambda}(A)x, x)$$
$$= (R_{\lambda}(A)x, R_{\lambda}(A)x)$$

Therefore,

$$\|(R_{\lambda}(A_n) - R_{\lambda}(A))x\|^2 \to 0.$$

Remark. This problem is exactly weak resolvent convergence implies strong resolvent convergence.

6.2 Let A_n and A be positive self-adjoint operators, show that $A_n \to A$ s.r.s if and only if $(A_n + I)^{-1} \to (A + I)^{-1}$ strongly.

Proof. If: Let $\lambda_0 = -1$. Examine the proof of Theorem 6.6.3, we see that the power series

$$R_{\lambda}(A) = \sum_{k=0}^{\infty} (\lambda_0 - \lambda)^k (R_{-1}(A))^{k+1}$$
(6)

converges in norm in $|\lambda - \lambda_0| < 1$, because $\sigma(A) \subset [0, \infty)$. So does the power series of $R_{\lambda}(A_n)$. Hence there exists λ , im $\lambda \neq 0$ such that $R_{\lambda}(A_n) \rightarrow R_{\lambda}(A)$ strongly. Theorem 6.6.3 then applies.

`Only if': Note that $\lambda_0 = -1 + i$ is contained in $\rho(A_n)$ and $\rho(A)$. The power series (6) converges in norm in $|\lambda - \lambda_0| < \sqrt{2}$ because $\sigma(A) \subset [0, \infty)$. So does the power series of $R_\lambda(A_n)$. Hence $R_\lambda(A_n) \to R_\lambda(A)$ s.r.s in $|\lambda - \lambda_0| < \sqrt{2}$. Let $\lambda = -1$.

6.3 Let A be a self-adjoint operator. Show that

- (1) N.R.S-lim_{$t\to t_0$} $tA = t_0A$, where $t_0 \neq 0$;
- (2) $\lim_{t\to t_0} ||e^{itA} e^{it_0A}|| = 0$ if and only if A is bounded.

Proof. (1) Let $\lambda \in \mathbb{C}$ with im $\lambda \neq 0$. Then

$$\begin{aligned} \|R_{\lambda}(t_{0}A) - R_{\lambda}(tA)\| &= \|(\lambda I - tA)^{-1})(t_{0}A - tA)(\lambda I - t_{0}A)^{-1}\| \\ &\leq \|(\lambda I - tA)^{-1})\| \|t_{0}A - tA\| \|(\lambda I - t_{0}A)^{-1}\| \\ &= \left\|t^{-1} \left(\frac{\lambda}{t}I - A\right)^{-1}\right\| \|t_{0} - t\| \|A\| \|(\lambda I - t_{0}A)^{-1}\| \\ &\leq |t^{-1}| |\operatorname{im} \lambda/t|^{-1} |t_{0} - t| \|A\| \|(\lambda I - t_{0}A)^{-1}\| \to 0. \end{aligned}$$

(2) `If': Suppose that E is the spectral family of A. Since A is bounded, $\sigma(A)$ is compact. Suppose that $\sigma(A) \subset [-N, N]$ and $|t - t_0| < 1/N$. It follows from

$$\begin{aligned} \|e^{itA}x - e^{it_0A}x\|^2 &= \int_{\mathbb{R}} |e^{it\lambda} - e^{it_0\lambda}|^2 d\|E_{\lambda}x\|^2 \\ &= \int_{-N}^{N} |e^{i(t-t_0)\lambda} - 1|^2 d\|E_{\lambda}x\|^2 \\ &= 2\int_{-N}^{N} (1 - \cos((t-t_0)\lambda)) d\|E_{\lambda}x\|^2 \\ &\leq 2(1 - \cos((t-t_0)N)) \int_{\mathbb{R}} d\|E_{\lambda}x\|^2 \\ &= 2(1 - \cos((t-t_0)N)) \|x\|^2 \end{aligned}$$

that

$$||e^{itA} - e^{it_0A}|| \le \sqrt{2(1 - \cos((t - t_0)N))} \to 0$$

as $t \to t_0$.

'Only if': Assume that $t_0 = 0$ for simplicity. For any operator Z that differs from I by an operator of norm < 1 we can define

$$\ln Z = \ln(I + (Z - I)) = Z - I - \frac{(Z - I)^2}{2} + \cdots$$

Since $||e^{itA} - I|| \to 0$, there exists t such that $||e^{itA} - I|| < \frac{1}{3}$. We can define $\ln e^{itA}$ according to the expansion of $\ln Z$ above. Then $\ln e^{itA}$ is bounded. On the other hand, from functional calculus we see that $\ln e^{itA} = itA$. Therefore A is bounded. \Box

6.4 Let A_n and A be uniformly bounded self-adjoint operators. Show that

$$A_n \to A \text{ s.r.s} \iff A_n \to A \text{ strongly.}$$

Proof. ` \Rightarrow ': Suppose that $A_n \to A$ s.r.s, then for all λ , im $\lambda \neq 0$ and all x, $(R_\lambda(A_n) - R_\lambda(A))x \to 0$. Note that

$$A - A_n = (\lambda I - A_n) - (\lambda I - A) = (\lambda I - A_n)(R_\lambda(A) - R_\lambda(A_n))(\lambda I - A),$$

hence

$$\begin{aligned} \|Ax - A_n x\| &\leq \|(\lambda I - A_n)\| \left\| (R_\lambda(A) - R_\lambda(A_n))(\lambda I - A)x \right\| \\ &\leq (M + |\lambda|) \| (R_\lambda(A) - R_\lambda(A_n))(\lambda I - A)x \| \to 0, \end{aligned}$$

where M is the uniform bound of A_n .

` \Leftarrow ': Suppose that $A_n \to A$ strongly. For any x, there exists $y \in D(A)$ such that $x = (\lambda I - A)y$. Then

$$(\lambda I - A)^{-1}x - (\lambda I - A_n)^{-1}x = (\lambda I - A_n)^{-1}(A - A_n)y \to 0$$

because

$$\|(\lambda I - A_n)^{-1}\| \le |\operatorname{im} \lambda|^{-1}.$$

Therefore $(\lambda I - A_n)^{-1} \to (\lambda I - A)^{-1}$ strongly.

6.5 Show that if $A_n \to A$ s.r.s then $e^{itA_n} \to e^{itA}$ uniformly strongly for t in any finite interval.

Proof. Let $f_s(t) = e^{its}$. A careful examination of the proof of Theorem 6.6.6(2) reveals that we need to prove

$$||f_s(A_n)g_{m_0}(t)x - f_s(A)g_{m_0}(t)x|| < \epsilon/3$$

for all s in a finite interval when n is big enough. Since $|f_s(t)| = 1$ regardless of s and t, the other lines in the proof of Theorem 6.6.6(2) still carries through for s in a finite interval.

Fix *m*. Note that $f_s(t)g_m(t) = e^{-\frac{t^2}{m} + its}$ and

$$\begin{split} \sup_{t \in \mathbb{R}} |f_{s_1}(t)g_m(t) - f_{s_2}(t)g_m(t)| &= \sup_{t \in \mathbb{R}} e^{-\frac{t^2}{m}} |e^{i(s_1 - s_2)t} - 1| \\ &= \sup_{t \in \mathbb{R}} \sqrt{2} e^{-\frac{t^2}{m}} \sqrt{1 - 2\cos(s_1 - s_2)t} \end{split}$$

By splitting \mathbb{R} into |t| < T and $|t| \ge T$, it is easy to see that

$$\sup_{t\in\mathbb{R}}|f_{s_1}(t)g_m(t)-f_{s_2}(t)g_m(t)|<\epsilon$$

for $|s_1 - s_2|$ small enough (depending on ϵ and independent of s_1 or s_2). This fact shows that the following line in the proof of Theorem 6.6.6

$$\sup_{x\in\mathbb{R}^1} \left| f_s(x)g_{m_0}(x) - P\left(\frac{1}{x+i}, \frac{1}{x-i}\right) \right| \le \frac{\epsilon}{3}.$$

holds for all s inside any interval with a small length $L(\epsilon)$. Consequently, for any of such interval, there exists N such that whenever n > N it holds that

$$\|f_s(A_n)x - f(A)x\| \le \epsilon$$

holds for all s inside the small interval. The final step is to divide a finite interval into pieces, each has length $L(\epsilon)$.

6.6 Let A_n and A be uniformly bounded self-adjoint operators. Suppose that $A_n \to A$ weakly but not strongly. Does $A_n \to A$ w.r.s?

Proof. No. If $A_n \to A$ w.r.s, then $A_n \to A$ s.r.s and thus $A_n \to A$ strongly by Exercise 6.6.4.

6.7 Let A_n and A be positive self-adjoint operators. Suppose that $e^{-tA_n} \to e^{-tA}$ strongly for all t > 0. Show that s.r.s-lim_{$n\to\infty$} $A_n = A$.

Proof. One can show that for positive self-adjoint operator A,

$$\phi(A) = \int_0^\infty \phi(\lambda) dE_\lambda$$

for Borel measurable ϕ that is bounded on $[0,\infty)$. Then following the same outline of Example 6.6.7, we obtain that

$$R_{-1}(A)u = -\int_0^\infty e^{-t}e^{-tA}udt,$$

and thus

$$||R_{-1}(A_n)u - R_{-1}(A)u|| \le \int_0^\infty e^{-t} ||e^{-tA_n}u - e^{-tA}u|| dt.$$

It follows from Dominated Convergence Theorem that $R_{-1}(A_n) \to R_{-1}(A)$ strongly, and thence $A_n \to A$ s.r.s by Problem 6.2.

6.8 Let $\{A_n\}$ be a sequence of symmetric operators. Define $D_{\infty}^S = \{x : \exists y \in \mathscr{H}, \langle x, y \rangle \in \Gamma_{\infty}^S\}$. If D_{∞}^S is dense in \mathscr{H} , show that $\{A_n\}$ has a strong graph limit and the limit operator is also symmetric. Moreover, the limit operator is closed.

Proof. First we show that Γ_{∞}^{S} is the graph of an operator, for which we need only to show that the operator is welldefined, i.e., suppose $x_n, x'_n \in D(A_n)$ and $x_n \to x, x'_n \to x', A_n x_n \to y$ and $A_n x'_n \to y'$, we must have y = y'. Indeed, let u be an arbitrary element in D_{∞}^{S} , then there exists $u_n \in D(A_n)$ such that $u_n \to u$ and $Au_n \to v$. Thus,

$$(y - y', u) = \lim_{n \to \infty} (A_n(x_n - x'_n), u_n) = \lim_{n \to \infty} (x_n - x'_n, A_n u_n) = 0.$$
(7)

Since D_{∞}^{S} is dense, it follows immediately that y = y'. So $\{A_n\}$ has a strong graph limit, say A.

Now we show that A is symmetric. Let $x, y \in D_{\infty}^{S}$. There exist $u_n \to x$ and $v_n \to y$ such that $u_n, v_n \in D(A_n)$, $A_n u_n \to Ax$ for some Ax and $A_n v_n \to Ay$ for some Ay. Then

$$(x, Ay) = \lim_{n \to \infty} (u_n, A_n v_n) = \lim_{n \to \infty} (A_n u_n, v_n) = (Ax, y).$$
(8)

Moreover, A is closed: suppose that $x_n \to x$ and $Ax_n \to y$. There exist $x_{nm} \to x_n$ and $A_m x_{nm} \to Ax_n$ for each n. We can pick $x_{n_m m} \to x$ and $A_m x_{n_m m} \to y$, hence $x \in D(A)$ and y = Ax.

6.9 Let $\{A_n\}$ be a sequence of operators on \mathscr{H} . Define $\Gamma_{\infty}^w = \{\langle u, v \rangle \in \mathscr{H} \times \mathscr{H} : \exists u_n \in D(A_n), u_n \to u, A_n u_n \to v\}$. If Γ_{∞}^w is the graph of some linear operator A, we say A is the weak graph limit of $\{A_n\}$, denoted by $A = \text{wg-lim}_{n\to\infty} A_n$. Suppose that A_n and A are uniformly bounded self-adjoint operators, show that $A = \text{wg-lim}_{n\to\infty} A_n$ if and only if $A_n \to A$ weakly.

Proof. Suppose that the uniform bound of A_n and A is M.

`Only if': We want to prove that $A_n u \rightharpoonup Au$ for all u. There exist u_n such that $u_n \rightarrow u$ and $A_n u_n \rightharpoonup Au$. Since A_n and A are bounded, they can be extended to the entire \mathscr{H} . Notice that

$$|(A_nu - A_nu_n, y)| \le M ||u - u_n|| \, ||y|| \to 0, \quad \forall y \in \mathscr{H}$$

it follows immediately that

$$\lim_{n \to \infty} (A_n u, y) = \lim_{n \to \infty} (A_n u_n, y) = (Au, y), \quad \forall y \in \mathcal{H}$$

or, $A_n u \rightharpoonup A u$.

If: Suppose that $A_n u \rightharpoonup Au$ for all u. We want to find $\{u_n\}$ such that $u_n \rightarrow u$ and $A_n u_n \rightharpoonup Au$. Note that $D(A_n)$ is dense, we can easily find $u_n \in D(A_n)$ such that $u_n \rightarrow u$. Now, as above, it automatically holds that

$$\lim_{n \to \infty} (A_n u_n, y) = \lim_{n \to \infty} (A_n u, y) = (Au, y), \quad \forall y \in \mathscr{H}.$$

6.10 Let $\{A_n\}$ be a sequence of symmetric operators. Define $D_{\infty}^w = \{x : \exists y \in \mathcal{H}, \langle x, y \rangle \in \Gamma_{\infty}^w\}$. If D_{∞}^S is dense in \mathcal{H} , show that Γ_{∞}^w is the graph of some symmetric operator.

Proof. The proof follows the same line as that of Exercise 6.8. Recall Exercise 2.5.18: If $a_n \rightharpoonup a$ and $b_n \rightarrow b$ then $(a_n, b_n) \rightarrow (a, b)$. Hence (7) and (8) still hold.