
1 Closed Operators
1.1 Show that every bounded operator on a Hilbert space is closable and every finite-rank closable operator is bounded.

Proof. For the first part, see eorem 2.3.12. Now we prove the second part. Suppose thatA is a finite-rank closable
operator, i.e., if {xn} ⊆ D(A), xn → 0 and Axn → y then y = 0. If A is not bounded, then there exist {yn} such
that ∥Ayn∥ ≥ n∥yn∥. Let xn = yn/∥Ayn∥, then ∥Axn∥ = 1 and ∥xn∥ ≤ 1

n . Hence xn → 0. Note that A is
finite-rank and recall that the unit sphere is sequentially compa in a finite dimensional space, thus we can choose a
subsequence of {xn}, still denoted by xn, such that Axn → z for some z. Since A is closable, we must have z = 0,
which contradis with ∥xn∥ = 1.

1.2 Show that a linear operator T is closed if and only if D(T ) is complete under graph norm.

Proof. It is clear that {xn} is Cauchy in D(T ) under graph norm if and only if ⟨xn, Txn⟩ is Cauchy in X × Y .
e conclusion follows immediately.

1.3 Let T be a closable operator. Show that T ∗
= T ∗.

Proof. It is easy to see that⊥S =⊥ S for anyS ⊆ X . Hence, Γ(T ∗) =⊥ (V Γ(T )) =⊥ (V Γ(T )) =⊥ (V Γ(T )) =⊥

(V Γ(T )) = Γ(T
∗
), which implies that T ∗

= T ∗.

1.4 Let T be a densely-defined linear symmetric operator on a Hilbert space, show that

(1) T is closed ⇐⇒ T = T ∗∗ ⊂ T ∗;
(2) T is essentially self-adjoint ⇐⇒ T ⊂ T ∗∗ = T ∗;
(3) T is self-adjoint ⇐⇒ T = T ∗∗ = T ∗.

Proof. (1) In the proof of 6.1.4, we have seen that Γ(T ∗∗) = Γ(T ). Hence T = T ∗∗ ⇐⇒ Γ(T ∗∗) = Γ(T ) ⇐⇒
Γ(T ) = Γ(T ) ⇐⇒ T is closed. From the definition of symmetric operators, T ⊂ T ∗ is automatic.

(2) `⇒': T is closable implies that Γ(T ) = Γ(T ) = Γ(T ∗∗), and thus T ⊂ T ∗∗, and from the previous problem,
T

∗
= T ∗. Also, T is self-adjoint, T = T

∗
= T ∗. Taking conjugate on both sides, T ∗

= T ∗∗, i.e., T ∗ = T ∗∗.
`⇐': T is symmetric, thus T is closable and T = T ∗∗ (eorem 6.1.4). Also T ∗∗ = T ∗ = T

∗ (Problem 6.1.3),
it follows that T = T

∗ and T is self-adjoint.
(3) T is self-adjoint ⇐⇒ (by definition) T = T ∗ =⇒ T ∗ = T ∗∗.

1.5 Let T be a densely-defined operator on Hilbert space H . Show that D(T ∗) = {0} if and only if Γ(T ) is dense in
H × H .

Proof. It suffices to show that

Γ(T ∗) =⊥ (V Γ(T )) = {0} ⇐⇒ Γ(T ) is dense in H × H ,

which is obvious, since ⊥(V Γ(T )) = {0} iff V Γ(T ) is dense iff Γ(T ) is dense.

1.6 Determine whether the following statement is true: Let T be a densely-defined operator on H such that (Tx, x) =
0 for all x ∈ D(T ), then Tx = 0 for all x ∈ D(T ).
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Proof. is is false. Consider the differential operator T : x 7→ d
dt defined on C∞

0 (R), which is a dense subset of
L2(R). Suppose x ∈ C∞

0 (R), then∫
R

(
dx

dt
· x
)
dt = x2

∣∣∣+∞

−∞
−
(∫

R
x · dx

dt

)
dt = −

(∫
R
x · dx

dt

)
dt,

hence ⟨Tx, x⟩ = 0 for all x ∈ C∞
0 (R). Obviously Tx ̸= 0 for some x ∈ C∞

0 (R).

1.7 Let X and Y be Banach spaces, and Y is reflexive. T : X → Y is a densely-defined operator. Show that
T is closable if and only if T ∗ is densely-defined. Also let JX : X → X ∗∗ and JY : Y → Y ∗∗ be natural
embeddings, show that when T is closable, T = J−1

Y T ∗∗JX .

Proof. `If ': Since T ∗ is densely-defined, T ∗∗ is a closed operator, and

Γ(T ∗∗) =⊥ V Γ(T ∗) =⊥ V ⊥V Γ(T ) =⊥ (⊥V 2Γ(T )) =⊥ (⊥Γ(T )) = Γ(T̃ ),

where T̃ : X ∗∗ → Y ∗∗ is the natural lift of T : X → Y . It is clear to see that Γ(T̃ ) restried on im JX × Y ∗∗

can be brought down to X × Y and become Γ(T ). To summarize, T = J−1
Y T ∗∗JX .

`Only if ': Suppose that T is closable. If D(T ∗) is not dense, then there exists y0 ∈ Y ∗∗, y0 ̸= 0, such that
y0 ∈⊥ D(T ∗), thus ⟨y0, 0⟩ ∈⊥ Γ(T ∗). Obviously ⟨0, y0⟩ ∈⊥ V Γ(T ∗), which implies that ⊥V Γ(T ∗) can not be
a graph of some linear operator. But on the other hand, ⊥V Γ(T ∗) =⊥ V ⊥V Γ(T ), which is, as shown above, the
graph of the lift of T , contradiion. erefore T ∗ is densely-defined.

1.8 Let f be a bounded and measurable funion on R1, but f ̸∈ L2(R1). Let

D =

{
ψ ∈ L2(R1) :

∫
|f(x)ψ(x)|dx <∞

}
.

Suppose that ψ0 ∈ L2(R1) and define

Tψ = (f, ψ)ψ0, ∀ψ ∈ D.

Prove that T is densely-defined and find T ∗.

Proof. Obviously C∞
0 (R) ⊂ D and we know that C∞

0 (R) is dense in L2(R), therefore D is dense in L2(R) and T
is densely-defined. Let fn = fχ[−n,n], then ⟨f, fn⟩ = ∥fn∥22. Note that ∥fn∥ → ∞ as n → ∞, this implies that
(f, x) is not a bounded funional on D. Suppose y ∈ D(T ∗), which requires that there existsMy such that

|(y, Tx)| = |(y, (f, x)ϕ0)| = |(f, x)| |(y, ϕ0)| ≤My∥x∥, ∀x ∈ D.

Since (f, x) is not a bounded funional, we must have (y, ϕ0) = 0. It is also easy to see that all y such that
(y, ϕ0) = 0 is contained in D(T ∗), and therefore D(T ∗) = {y ∈ L2 : (y, ϕ0) = 0}. Since (T ∗y, x) = (y, Tx) =
(f, x)(y, ϕ0) = 0 for all x ∈ D. Since D is dense, it must hold that T ∗y = 0. Hence T ∗ = 0.

1.9 Let T be a linear operator in Hilbert space H . Define its kernel as N(T ) = {x ∈ D(T ) : Tx = 0}. Show that

(1) If D(T ) is dense in X then N(T ∗) = R(T )⊥ ∩D(T ∗);
(2) If T is closed, then N(T ) = R(T ∗)⊥ ∩D(T ).

Proof. (1) `⊆': Let y∗ ∈ N(T ∗), then (y∗, Tx) = (T ∗y∗, x) for all x ∈ D(T ). Since T ∗y∗ = 0, it follows that
(y∗, Tx) = 0, which implies that y∗ ⊥ R(T ).
`⊇': Let y∗ ∈ R(T )⊥ ∩ D(T ∗), then 0 = (y∗, Tx) = (T ∗y∗, x) for all x ∈ D(T ), which means that
T ∗y∗ ⊥ D(T ). Since D(T ) is dense, it must hold that T ∗y∗ = 0, i.e., y∗ ∈ kerT ∗.
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(2) Since T is closed, T ∗ is densely-defined.
`⊆': Suppose that x ∈ R(T ∗)⊥∩D(T ), then (T ∗y∗, x) = 0 for all y∗ ∈ D(T ). en (y∗, Tx) = (T ∗y∗, x) =
0 for all y∗ ∈ D(T ∗). Since D(T ∗) is dense, we must have Tx = 0, or, x ∈ kerT .
`⊇': Suppose that x ∈ kerT . en 0 = (y∗, Tx) = (T ∗y∗, x) for all y∗ ∈ D(T ), which implies that
x ⊥ R(T ∗).

1.10 Let T be an injeive linear operator on H . Consider some assumptions about T :

(1) T is closed;
(2) imT is dense;
(3) imT is closed;
(4) ∃c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ D(T ).

Show that

(1) Conditions (1), (2) and (3) imply (4);
(2) Conditions (2), (3) and (4) imply (1);
(3) Conditions (1) and (4) imply (3);

Proof. (1) e conditions (2) and (3) imply that imT = H , since H is injeive, we must have D(T ) = H ,
which is closed. It follows condition (1) and Closed Operator eorem that T is continuous. Also T is
bijeive, Open Mapping eorem asserts that T−1 is bounded, which is exaly condition (4).

(2) From the same argument as in subproblem (1), we know that D(T ) is bijeive. Condition (4) implies that
T−1 is continuous. Suppose that xn → x and yn → y, yn = Txn, then xn = T−1yn. Taking limits on both
slides yields x = T−1y, i.e., y = Tx. erefore T is closed.

(3) Suppose that {Txn} is a Cauchy sequence. Condition (4) implies that {xn} is a Cauchy sequence. Suppose
that Txn → y and xn → x. Condition (1) says that x ∈ D(A) and y = Tx ∈ imT , hence imT is closed.

1.11 Let H = L2[0, 1], T1 = i d
dt , T2 = i d

dt .

D(T1) = {u ∈ H : u is absolutely continuous},
D(T2) = {u ∈ H : u(0) = 0, u is absolutely continuous},

Show that both T1 and T2 are closed operators.

Proof. Suppose that {xn} ⊆ D(T2), xn → x and idxn

dt → iy. Since xn is absolutely continuous,

xn(t) =

∫ t

0

x′n(s)ds.

Note that ∫ t

0

|x′n(s)− y(s)|ds ≤
√
t · ∥x′n − y∥2 ≤ ∥x′n − y∥2 → 0, , n→ ∞,

it follows that
xn(t) →

∫ t

0

y(s)ds

uniformly on [0, 1]. Hence ∥xn −
∫
y∥2 ≤ ∥xn −

∫
y∥2∞ → 0. From the uniqueness of limit, we see that

x(t) =

∫ t

0

y(s)ds,
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which is contained in D(T2) and T2x = iy. erefore T2 is closed.
Now suppose that {xn} ⊆ D(T2), xn → x and idxn

dt → iy. Since L2 convergence implies convergence in measure,
and Riesz theorem ensures an a.e. pointwise convergent subsequence in a subsequence of funions converging in
measure, we may assume that xn → x pointwise a.e. Define f(t) =

∫ t

0
y(s)ds, from the preceding argument, we

conclude that xn(t)− xn(0) → f(t) everywhere. Recall that xn(t) → x(t) a.e., we must have that xn(0) → a for
some a and x(t) = f(t) + a a.e.. Note that f(t) is absolutely continuous, hence x(t) is absolutely continuous, too.
is implies that T1 is closed.

1.12 Let X be a separable Hilbert space and {en}∞n=1 an orthonormal basis. Suppose that a ∈ X , a is not a finite linear
combination of {en}. Let D be the set of finite combinations of {en} and a, and define on D

T (βa+
∑

aiei) = βa,

where in the summand there are only finitely many non-zero ai's. Show that ⟨a, a⟩ ∈ Γ(T ), ⟨a, 0⟩ ∈ Γ(T ) and
thus Γ(T ) is not the graph of any linear operator.

Proof. It is trivial that ⟨a, a⟩ ∈ Γ(T ). Let an =
∑n

i=1(a, ei)ei, then an → a and Tan = 0. Hence ⟨a, 0⟩ ∈
Γ(T ).

1.13 Let H = l2 and

D(T ) =

a ∈ l2 : ∃N such that whenever n > N, an = 0 and
N∑
j=0

aj = 0

 .

Define Ta ∈ l2 for a ∈ l2 as

(Ta)n = i

n−1∑
j=1

aj +
n∑

j=1

aj

 .

Show that

(1) T is densely-defined and symmetric;
(2) R(T + i) is dense in l2;
(3) (1, 0, 0, . . . ) ∈ D(T ∗) and (T ∗ + i)(1, 0, 0, . . . ) = 0.

Proof. (1) To show that D(T ) is dense, it suffices to show that D(T ) is dense in span{en}, where {en} is the
natural orthonormal basis in l2. Furthermore, it suffices to show that each en can be approximated by elements
in D(T ). Take e1 for example. Let

an =
(
1− 1

n
,− 1

n
(1− 1

n
), . . . ,− 1

n
(1− 1

n
)︸ ︷︷ ︸

n times

, 0, 0, . . .
)
.

en
∥an − e1∥2 =

1

n2
+ n

( 1
n

(
1− 1

n

))2
→ 0

as n → ∞. We have seen that an → e1. e approximation to general em is similar, just right shift {an} by
m positions.
Now we show that (Tx, y) = (x, Ty) for all x, y ∈ D(T ), to prove that T is symmetric. Suppose that N is
the maximum of the two N 's corresponding to x and y.

(Tx, y) = i

N∑
n=1

yn

n−1∑
j=1

xj +

n∑
j=1

xj


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= i

 N∑
n=1

n−1∑
j=1

xjyn +
N∑

n=1

n∑
j=1

xjyn


= i

N−1∑
j=1

N∑
n=j+1

xjyn +
N∑
j=1

N∑
n=j

xjyn


= i

N∑
j=1

xj

 N∑
n=j+1

yn +
N∑

n=j

yn


= i

N∑
j=1

xj

(
−

j∑
n=1

yn −
j−1∑
n=1

yn

)
= (x, Ty).

(2) Note that (T + i)a = 2i(a1, a1 + a2, . . . , a1 + a2 + · · · + an, . . . ). Hence (T + i)( 1
2ia) = e1, where

a = (1,−1, 0, . . . ). Similarly we can show that {en} ⊆ R(T + i), which implies that R(T + i) is dense.
(3) Let y∗ = (1, 0, 0, . . . ), then (y∗, Tx) = (Tx)1 = −ix1. Let x∗ = (−i, 0, 0, . . . ) = −y∗, then (x∗, x) =

−ix1. Hence T ∗y∗ = −y∗, y∗ ∈ D(T ∗) and (T + i)y∗ = 0.

1.14 Let T be a symmetric operator on X with domain D. Suppose that D1 ⊆ D is a dense linear set and T |D1 is T
restried to D1. If T |D1 is essential self-adjoint, so is T and T = T |D1 .

Proof. SinceD1 is dense inD, we can use diagonal technique to show thatΓ(T ) = Γ(T |D1) = Γ(T |D1). Hence T is
closable and T = T |D1 . Now we show that T is self-adjoint. Since T |D1 is self-adjoint, we have that T |D1

∗
= T |D1

and therefore T ∗
= T |D1

∗
= T |D1 = T .

1.15 Let H = L2(R1) and

D(T ) =

{
u ∈ H :

∫ ∞

−∞
x2|u(x)|2dx <∞

}
.

Define T as (Tu)(x) = xu(x) for u ∈ D(T ). Show that T is unbounded and closed.

Proof. It is clear that ∥Tχ[0,n]∥ = 1√
3
n

3
2 and ∥χ[0,n]∥ =

√
n, ∥Tχ[0,n]∥

∥χ[0,n]∥
→ ∞ as n→ ∞, hence T is unbounded.

Suppose that un → u and xun → v in L2. We know that un → u in measure and Riesz's eorem enables us
to pick a subsequence, still denoted by un, which is convergent to u almost everywhere. So un → u in L2 and
pointwise a.e., thus xun → xu a.e. A similar argument shows that there is a subsequence of {xun}, again denoted
by {xun}, converges to v pointwise a.e. erefore it must hold that xu = v a.e., which implies that T is closed.

1.16 Suppose that T is a densely-defined closed operator on H . Show that for all a, b ∈ X , the system of equations

−Tx+ y = a

x+ T ∗y = b

has a unique solution x ∈ D(T ) and y ∈ D(T ∗).

Proof. `Existence': Consider the set S ⊆ H × H of all pairs (a, b) which make the system of equations have at
least one solution. It is clear that S is a linear set, V Γ(T ) ∈ S and Γ(T ∗) ∈ S. Note that Γ(T ∗) = (V Γ(T ))⊥.
Since Γ(T ) is closed, we know that V Γ(T ) is closed and Γ(T ∗) + V Γ(T ) = H . erefore S = H .
`Uniqueness': It suffices to show that

−Tx+ y = 0
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x+ T ∗y = 0

has solution x = 0, y = 0 only. A solution satisfies (y, Tx′) = (T ∗y, x′) for all x′ ∈ D(T ). In particular (x′ = x)
we have that (y, y) = −(x, x), it must hold that (y, y) = (x, x) = 0 from non-negativity of inner produ, and
therefore x = 0 and y = 0.

2 Cayley Transform and Speral Decomposition of Self-Adjoint Operators
2.1 Consider the operator Au = iu′ on L2(R1). Define D(A) = {u ∈ l2(R) : u is absolutely continuous and u′ ∈

L2(R1)}. Show that A is self-adjoint.

Proof. It is clear that C∞
0 (R) is contained in D(A) and thus D(A) is dense.

Suppose that u ∈ D(A) and ϵ > 0. Since u′ ∈ L2 there exists δ0 such that
∫ x+δ

x
|u′|2 < ϵ for all x and δ < δ0. Let

δ1 = min{δ0, ϵ}. en for all δ < δ1,

|u(x+ δ)− u(x)| =

∣∣∣∣∣
∫ x+δ

x

u′(t)dt

∣∣∣∣∣ ≤√δ1
√∫ x+δ1

x

|u′(t)|2dt ≤
√
ϵ ·

√
ϵ = ϵ.

Now we are ready to show that u(±∞) = 0. If not, without loss of generality, suppose that there exists ϵ0 > 0 and
xn → +∞ such that |u(xn)| ≥ ϵ0 for all n. We have seen that u is uniformly continuous, so we can find δ such
that |u(x)− u(y)| < ϵ0

2 whenever |x− y| < δ. erefore, we have that |u(x)| ≥ ϵ0
2 on (xn − δ, xn + δ) for all n.

Without loss of generality, assume that xn+1 − xn ≥ 2δ. en∫
R
|u|2 ≥

∞∑
n=1

∫ xn+δ

xn−δ

|u|2 ≥
∞∑

n=1

2δ · ϵ
2
0

4
= ∞,

which contradis with u ∈ L2(R). Hence u(±∞) = 0, then

(Au, v) = i

∫
R
u′v̄ = iuv

∣∣∣∞
−∞

− i

∫
uv′ = −i

∫
uv′ = (u,Av).

Using the same technique in Problem 6.1.11, we can show thatA is closed. It is easy to see that ker(A∗+ iI) = {0}
as A ⊆ A∗ and ker(A+ iI) = {0}. It follows from eorem 6.2.4 that A is self-adjoint.

2.2 Prove Corollary 6.2.5: Let A be a symmetric operator on a Hilbert space, then the following statements are equiv-
alent:

(1) A is essentially self-adjoint;
(2) ker(A∗ ± iI) = {0};
(3) R(A∓ iI) = H .

Proof. eorem 6.2.3 implies that (2) and (3) are equivalent, and a symmetric operator is closable. Now suppose that
A is essentially self-adjoint, soA is self-adjoint andA∗

= A∗. It follows from Proposition 6.2.1 that ker(A∗±iI) =
ker(A∗± iI) = {0}. Conversely, if (2) holds then it holds that ker(A∗± iI) = {0} and by eorem 6.2.4 we know
that A is self-adjoint, which implies that A is essentially self-adjoint.

2.3 Consider Au = iu′ as an operator on L2[0,∞) with domain C∞
0 [0,+∞). Is A essentially self-adjoint?

Proof. From Problem 1 we know that A is symmetric. It is easy to see that e−x ∈ D(A∗) and D∗e−x = −ie−x

since (e−x, u′) = (ie−x, u) for all u ∈ C∞
0 [0,+∞). erefore e−x ∈ ker(A∗ − iI) and ker(A∗ − iI) ̸= {0}.

Corollary 6.2.5 tells us that A is not essentially self-adjoint.
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2.4 Let A be a densely-defined symmetric operator, A is positive ((Ax, x) ≥ 0 ∀x ∈ D(A)), show that

(1) ∥(A+ I)x∥2 ≥ ∥x∥2 + ∥Ax∥2;
(2) A is a closed operator if and only if R(A+ I) is a closed set;
(3) A is essentially self-adjoint if and only if A∗y = −y has solution y = 0 only.

Proof. (1) Since A is symmetric, we have that (Ax, x) = (x,Ax). Hence ((A + I)x, (A + I)x) = (Ax,Ax) +
2(Ax, x) + (x, x) ≥ (Ax,Ax) + (x, x).

(2) `Only if ': Suppose thatA is closed. Let {yn} ⊆ R(A+I) be aCauchy sequence. Suppose that yn = Axn+xn.
From part (1) we know that {xn} and {Axn} are Cauchy, thus xn → x and Axn → y for some x and y.
Since A is closed, x ∈ D(A) and y = Ax, thus yn → (A+ I)x ∈ R(A+ I). erefore R(A+ I) is closed.
`If ': Suppose that xn → x andAxn → y. en (A+I)xn → x+y ∈ R(A+I), there exists a z ∈ D(A) such
that Az+ z = x+ y. Hence (A+ I)(xn − z) → 0. From part (1) we see that xn → z, hence x = z ∈ D(A)
and Az = y, showing that A is closed.

(3) `Only if ': Suppose that A is essentially self-adjoint, then A is closable and A∗ = A
∗
= A. Let y ∈ D(A) be

a solution of A∗y = −y. en (A+ I)x, y) = (x, (A∗ + I)y) = 0 for all x ∈ D(A). In particular, let x = y,
we have ((A+ I)y, y) = 0, i.e., 0 = ∥y∥2 + (Ay, y) ≥ ∥y∥2, it must hold that y = 0.
`If ': Since T is symmetric and densely-defined, T is closable, thus T̄ ∗ = T ∗, and T̄ = T ∗∗ ⊆ (T̄ )∗ (because
T ⊆ T ∗. Hence T̄ is symmetric. It suffices to show thatD(T ∗) ⊆ D(T̄ ). Let y ∈ D(T ∗) and x = (T ∗+I)y.
For this, we shall first prove thatR(T̄ +I) is closed. Clearly T̄ is positive. en let {yn} be a Cauchy sequence
in R(T̄ + I) and suppose that yn = (T̄ + I)xn. en

(yn, xn) = ((T̄ + I)xn, xn) ≥ ∥xn∥2,

and note the Cauchy-Schwarz Inequality (yn, xn) ≤ ∥yn∥ ∥xn∥ it follows that ∥xn∥ ≤ ∥yn∥. Hence {xn} is
bounded as {yn} is bounded. en

∥xn − xm∥2 ≤ (yn − ym, xn − xm) ≤ (∥xn∥+ ∥xm∥)∥yn − ym∥,

whence we see that {xn} is Cauchy. Since T̄ is closed, we have xn → x and yn → (T̄ + I)x ∈ R(T̄ + I).
Note that ker(T ∗ + I) ⊕ R(T̄ + I) = H , it follows from ker(T ∗ + I) = {0} that R(T̄ + I) = H . us
there exists y′ ∈ D(T̄ ) such that

(T̄ + I)y′ = (T̄ ∗ + I)y′ = x = (T ∗ + I)y.

Since T ∗ + I is injeive, it must hold that y = y′ ∈ D(T̄ ), and D(T ∗) ⊆ D(T̄ ).

2.5 Let

H =

{
f(z) =

∞∑
n=0

cnz
n, |z| < 1 :

∞∑
n=0

|cn|2 <∞

}
,

then H is a Hilbert space under the norm ∥f∥ = (
∑

|cn|2)
1
2 . Define operators U and A on H as

(Uf)(z) = zf(z),

(Af)(z) = i
1 + z

1− z
f(z).

Show that A is a symmetric operator on H , U is the Cayley transform of A and find R(A+ iI) and R(A− iI).

Proof. Suppose that f(z) =
∑
cnz

n, then

(Af)(z) = i
∞∑

n=0

(
2
n−1∑
k=0

ck + cn

)
zn.
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Since H is isomorphic to l2 via f ↔ {cn}, the operatorA in this problem corresponds to T in Exercise 6.1.13. We
can therefore define D(A) as D(T ) in Exercise 6.1.13, and it follows that A is densely-defined and symmetric.
Dire computation shows that

(U(A+ iI)f)(z) =
(
U
( 2i

1− z
f(z)

))
(z) =

2iz

1− z
f(z)

((A− iI)f)(z) =
2iz

1− z
f(z),

hence A− iI = U(A+ iI). Hence U = (A− iI)(A+ iI)−1, which is exaly the Cayley transform of A.
It is clear that R(A+ iI) consists of polynomials, and R(A− iI) polynomials with a zero constant term.

2.6 Let C be a symmetric operator on H and A a linear operator on H . Suppose that A ⊂ C and R(A + iI) =
R(C + iI), show that A = C.

Proof. For any y ∈ R(C + iI) we have x ∈ D(C) and z ∈ D(A) such that (C + iI)z = (A + iI)x = y.
Since A ⊂ C, we have also (C + iI)x = y. Note that C + iI is injeive (Proposition 6.2.1), it must hold that
z = x ∈ R(A). is implies that R(C) ⊆ R(A) and therefore A = C.

2.7 Let A be a symmetric operator on H , R(A + iI) = H and R(A − iI) ̸= H . Show that A has no self-adjoint
extensions.

Proof. Suppose that B is a self-adjoint extension of A, then B∗ ⊂ A∗, and R(B ± iI) = H . It follows from the
previous problem that A = B, and thus R(A− iI) = R(B − iI) = H . Contradiion. erefore A cannot have
a self-adjoint extension.

2.8 Let V be an isometry on H : ∥V x∥ = ∥x∥ for all x ∈ D(V ). Show that

(1) (V x, V y) = (x, y) for all x, y ∈ D(V );
(2) If R(I − V ) is dense in H then I − V is injeive;
(3) If one of D(V ), R(V ), Γ(V ) is closed, so are the other two.

Proof. (1) is is a dire corollary of polarisation identity.
(2) Suppose that (I − V )y = 0, i.e., y = V y. From part (1), (V x, V y) = (x, y) for all x ∈ D(V ). Replacing

V y by y yields (V x − x, y) = 0 for all y ∈ D(V ). Since R(I − V ) is dense, it must hold that y = 0, i.e.,
ker(I − V ) = {0}.

(3) It follows easily from ∥x∥ = ∥V x∥ that D(V ) is closed if and only if R(V ) is closed. e graph norm
∥x∥G = ∥x∥+ ∥V x∥ = 2∥x∥. Hence Γ(V ) is closed if and only if D(V ) is closed.

2.9 Let T be a closed operator on Hilbert space H . Show that ρ(T ) is open. For z ∈ ρ(T ) defineRz(T ) = (zI−T )−1,
show that Rz(T ) is an analytic funion with respe to t on each conneed component of ρ(T ) and satisfies the
first resolvent formula:

Rz1(T )−Rz2(T ) = (z2 − z1)Rz1(T )Rz2(T ).

Proof. See the proof of Corollary 2.6.7, Lemma 2.6.8 and eorem 2.6.9.

2.10 Prove Proposition 6.2.16, 6.2.17 and 6.2.18.
Proposition 6.2.16: Let A be a self-adjoint operator and {Eλ} its speral family. en λ0 ∈ σp(A) if and only if
Eλ0 − Eλ−

0
̸= 0.
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Proof. Note that λ0I −A =
∫
R(λ0 − λ)dEλ and

∥(λ0I −A)x∥2 =

∫
R
(λ0 − λ)2d∥Eλx∥2, x ∈ D(A).

us by E−∞ = 0 and the right continuity of ∥Eλx∥2 in λ, we see that λ0x = Ax iff

Eλx = Eλ+
0
x = Eλx ∀λ ≥ λ0

Eλx = Eλ−
0
x = 0 ∀λ < λ0,

that is, λ0x = Ax iff (Eλ0 − Eλ−
0
)x = x.

Proposition 6.2.17: Let A be a self-adjoint operator then σr(A) = ∅.

Proof. Suppose λ ∈ σr(A) then λ is real. Since R(λI −A) ̸= H , there exists y ̸= 0 such that y ⊥ (λI −A),
i.e., ((λI − A)x, y) = 0 for all x ∈ D(A). Hence (Ax, y) = (λx, y) = (x, λy) and y ∈ D(A∗) = D(A) as A is
self-adjoint, and D∗y = λy. Since D∗ = D, we find that y ∈ σp(A) and thus meet a contradiion.

Proposition 6.2.18: Let A be a self-adjoint operator with speral family {Eλ}, then λ0 ∈ σ(A) if and only if for
all ϵ > 0 it holds that E(λ0 − ϵ, λ0 + ϵ) ̸= 0.

Proof. From the previous problem we see that ρ(A) is open, and thus σ(A) is closed. e rest of the proof is exaly
the same as the proof of eorem 5.5.19.

2.11 Prove Proposition 6.2.20: Let A be a self-adjoint operator with speral family {Eλ}, then λ0 ∈ σess(A) if and only
if, ∀ϵ > 0, dimR(E(λ− ϵ, λ+ ϵ)) = ∞.

Proof. `Only if ': Let λ0 ∈ σess(A) but dimR(E(λ− ϵ, λ+ ϵ)) <∞ for some ϵ. Since λ0 ∈ σ(A), the argument in
the proof of eorem 5.5.21 gives that λ0 is an isolated point of σ(A) and thus belongs to σp(A) (use Proposition
6.2.16 and 6.2.18), however, ker(λ0I − A) = dimR(E({λ0})) ≤ dimR(E(λ − ϵ, λ + ϵ)) < ∞, contradiion
with the assumption that λ0 ∈ σess(A).
`If ': See the proof of eorem 5.5.21.

3 Speral Transform of Unbounded Normal Operators
3.1 Suppose that N be a normal operator, show that N∗ is a normal operator also.

Proof. eorem 6.1.4 tells us that N = N = N∗∗, then N∗∗N∗ = NN∗ = N∗N = N∗N∗∗. From the same
theorem we know that N∗ is densely defined, and Γ(N∗) = (V Γ(N))⊥ is closed, which implies that N∗ is closed.
erefore N∗ is normal.

3.2 Suppose that T is a densely-defined closed operator, D(T ) = D(T ∗), ∥Tx∥ = ∥T ∗x∥ for all x ∈ D(T ). Show
that T is normal.

Proof. From D(T ) = D(T ∗) it is easy to see that D(T ∗T ) = D(TT ∗). Since ∥Tx∥ = ∥T ∗x∥ for all x ∈ D(T ),
it follows from polarisation identity that ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ for all x, y ∈ D(T ). en for x ∈ D(T ∗T )
and y ∈ D(T ), it is immediate that (T ∗Tx, y) = (TT ∗x, y). Since D(T ) is dense in H , we must have that
T ∗Tx = TT ∗x for all x ∈ D(T ∗T ), which, together with D(T ∗T ) = D(TT ∗), implies that TT ∗ = T ∗T and T
is normal.

3.3 Let L ∈ L(H ) andM,N unbounded normal operator on H . Suppose that LM ⊂ NL, show that LM∗ ⊂ N∗L.
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Proof. First consider the case whereM = N . Let E be the speral decomposition ofM . en E(∆)L = LE(∆)
for every Borel set ∆ (eorem 6.3.11). It follows that

(LM∗x, y) = (M∗x, L∗y) =

∫
z̄d(E(z)x, L∗y) =

∫
z̄d(LE(z)x, y) =

∫
z̄d(E(z)Lx, y) = (M∗Lx, y)

for all x ∈ D(M∗) = D(M) and y ∈ H . is implies that LM∗ ⊆M∗L.
Now we consider the general case. Define M̂ on D(M)×D(N) ⊆ H × H as M̂(x, y) = (Mx,Ny). It is clear
that M̂ is normal. Also define L̂ on H ×H as L̂(x, y) = (Ly, 0), which is bounded. en it is easy to verify that
L̂M̂ ⊂ M̂L̂. Applying the previous case whereM = N , we obtain that L̂M̂∗ ⊂ M̂∗L̂, that is, LM∗ ⊂ N∗L.

3.4 Show that a densely-defined closed operatorN on H is an unbounded normal operator if and only if the following
conditions hold simultaneously:

(1) D(N) = D(N∗);
(2) N +N∗, i(N −N∗) are self-adjoint, and their speral families are commutative.

3.5 Let N be a densely-defined closed operator on H . Show that N is normal if and only if there exist decomposition
of the form N = A+ iB, A, B are self-adjoint, and their speral families are commutative.

Proof. `Only if ': Suppose that N is normal. Let A = N+N∗

2 and B = iN
∗−N
2 . Note that D(N) = D(N∗), it

follows easily that A,B are self-adjoint and AB = BA.

3.6 Prove that every normal operator N in H has a polar decomposition

N = UP = PU,

where U is unitary, P self-adjoint, P ≥ 0, and D(P ) = D(N).

Proof. Put p(z) = |z| and u(z) = z/|z| if z ̸= 0, u(0) = 1. en p and u are Borel funions on σ(N), Dp(z) =
Dz = D(N) and Du(z) = H . Put P = Φp and U = Φu. Since p ≥ 0, we know that P ≥ 0. Since uū = 1,
QQ∗ = Q∗Q = I . Since z = p(z)u(z), the relationN = PU = UP would follow immediately from the symbolic
calculus.

3.7 Suppose that N is an unbounded normal operator and (C,B, E) is its speral family. Show that

(1) z ∈ σp(N) ⇔ E({z}) ̸= 0;
(2) σr(N) = ∅;
(3) z ∈ σ(N) ⇔ ∀ Borel set ∆, z ∈ ∆, it holds that E(∆) ̸= 0.

Proof. With the speral theorem, the proof is almost identical to the case of bounded normal operator. See Problem
2.10, eorem 5.5.18 and 5.5.19.

3.8 Suppose that N is an unbounded normal operator and E is its speral family. Let

σess(N) = {z ∈ σ(N) : z has a Borel neighbourhood ∆ such that dimR(E(∆)) = +∞.},
σd(N) = σ(N) \ σess(N),

show that z ∈ σd(N) if and only if z is a finite isolated eigenvalue, z ∈ σess(N) if and only if z is a limit point of
σ(N) or an infinite eigenvalue.

Proof. See eorem 5.5.21.
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3.9 Suppose that H is a Hilbert space, (C,B, E) a speral family and f, g Borel-measurable funions. Show that
Φ(f)Φ(g) = Φ(fg) if and only if Dfg ⊂ Dg, where Φ(f) and Df are defined in (6.3.11) and (6.3.8) respeively.

Proof. eorem 6.3.4 says that Φ(f)Φ(g) ⊂ Φ(fg) and D(Φ(f)Φ(g)) = Dg ∩Dfg.
`Only if ': Suppose that Φ(f)Φ(g) = Φ(fg), then D(Φ(f)Φ(g)) = D(Φ(fg)), that is, Dg ∩Dfg = Dfg, hence
Dfg ⊆ Dg.
`If ': Suppose that Dfg ⊂ Dg, then D(Φ(f)Φ(g)) = Dfg = D(Φ(fg)), and thus Φ(f)Φ(g) = Φ(fg).

3.10 Let H be a Hilbert space, (C,B, E) an arbitrary speral family and f a bounded Borel-measurable funion. Show
that under the operator norm, the integral ∫

C
f(z)dE(z)

is convergent in the sense of Lebesgue integral, and

Φ(f) =

∫
C
f(z)dE(z),

where Φ(f) is defined as in (6.3.1).

Proof. See the remark following eorem 5.5.14.

3.11 Let H be a Hilbert space, (C,B, E) an arbitrary speral family and f a Borel-measurable funion. Define
∆n = {z : |f(z)| ≤ n}, fn(z) = χ∆n(z)f(z), show that

Φ(f) = s− limΦ(fn),

where Φ(f) is defined as in (6.3.11).

Proof. Since fn is bounded, it holds thatDf = Df−fn . For each x ∈ Df , it follows from Dominated Convergence
eorem that

∥Φ(f)x− Φ(fn)x∥ ≤
∫
C
|f − fn|2d∥E(z)x∥2 → 0

as n→ ∞.

4 Extension of Self-Adjoint Operators
4.1 Let An be a symmetric operator on a Hilbert space Hn for n = 1, 2, . . . . Define

D =

{
u = (u1, u2, . . . ) ∈

∞⊕
n=1

Hn : un ∈ D(An), only finitely many un's are non-zeroes
}
.

Show that

(1) A =
∑∞

n=1An is symmetric on D;
(2) n±(A) =

∑∞
n=1 n±(An).

Proof. (1) It is not difficult to see that D is dense and A =
∑∞

n=1An is linear. It is straightforward to verify that
(Ax, y) = (x,Ay) for x, y ∈ D, thus A is symmetric.
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(2) We only show that n+(A) =
∑∞

n=1 n+(An) (n−(A) can be proved similarly), for which it suffices to show
that

ker(A∗ − iI) =
∞⊕

n=1

ker(A∗
n − iI).

e left-hand side isR(A+iI)⊥. Suppose that v = (v1, v2, . . . ) ∈ R(A+iI), then
∑

((An+iI)un, vn) = 0
for all (u1, u2, . . . ) ∈ D, which reduces to ((An + iI)un, vn) = 0 for all n and un ∈ D(An). is implies
that vn ∈ R(An + iI)⊥ = ker(A∗

n − iI), giving ker(A∗ − iI) ⊆
∑∞

n=1 ker(A∗
n − iI).

Conversely, suppose that vn ∈ ker(A∗
n− iI) = R(An+ iI)

⊥, i.e., ((An+ iI)un, vn) = 0 for all un ∈ D(An),
then

∑
((An + iI)un, vn) = 0 for all (u1, u2, . . . ) ∈ D, indicating that (v1, v2, . . . ) ∈ R(A + iI)⊥ =

ker(A∗ − iI). Hence
∑∞

n=1 ker(A∗
n − iI) ⊆ ker(A∗ − iI).

Finally consider the decomposition of 0. Suppose that (A+ iI)(u1, u2, . . . ) = 0, i.e., (A1u1 + iu1, A2u2 +
iu2, . . . ) = 0, which implies that (An+ iI)un = 0 for all n. SinceAn is symmetric, it must hold that un = 0.
Hence the sum is a dire sum.

4.2 Define T1 = i d
dx with domain C∞

0 [0,∞) in L2[0,∞) and T2 = i d
dx with domain C∞

0 (−∞, 0] in L2(−∞, 0].
Show that def(T1) = (0, 1) and def(T2) = (1, 0). Show how to constru a symmetric operator with any given pair
of deficiency indices.

Proof. Integration by parts shows that T1 is symmetric. e range of T1 − iI contains all funions f of form

i
d

dx
u− iu = f, u ∈ C∞

0 [0,∞).

Hence f ∈ C∞
0 [0,∞). Multiply by e−x,

i
d

dx
(e−xu) = e−xf.

Since u has compa support, we obtain that ∫ ∞

0

e−xf = 0 (1)

Conversely, every C∞
0 funion f satisfying the condition above belongs to the range of T1 − iI as we can define u

by

u(x) = −i
∫ x

0

e−(y−x)f(y)dy.

It is clear that u ∈ C∞
0 [0,∞). erefore f ∈ C∞

0 [0,∞) is contained inR(T1−iI) if and only if f satisfies (1). Note
that e−x ∈ L2[0,∞), it follows thatR(T1− iI)⊥ is a one-dimensional subspace spanned by e−x, and n−(T1) = 1.
Now consider the range of T1 + iI . Similarly we conclude that f ∈ C∞

0 [0,∞) is contained in R(T1 + iI) if and
only if ∫ ∞

0

exf = 0

Since ex ̸∈ L2[0,∞), f satisfies the equation above is dense in C∞
0 [0,∞). erefore R(T1 + iI) is dense and thus

n+(T1) = 0.
A similar argument shows that def(T2) = (1, 0). Now combining with Problem 1, we see that on

D =

{
u ∈

p⊕
L2[0,∞)⊕

q⊕
L2(−∞, 0] : ui ∈ C∞

0 [0,∞) for 1 ≤ i ≤ p and

ui ∈ C∞
0 (−∞, 0] for p+ 1 ≤ i ≤ p+ q}

the operator
p+q∑

i
d

dx
has deficiency indices (p, q).
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4.3 Suppose that p(x) is a polynomial with real coefficients. Let A = p(i d
dx ) with domain C∞

0 [0,∞) in L2[0,∞).
Show that

(1) A is symmetric;
(2) if p has no odd powers, then the deficiency indices of A are equal;
(3) if the degree of p is odd, then the deficiency indices of A are unequal.

Proof. (1) Straightforward integration by parts.
(2) If p has no odd-degree terms, then (A+ iI)u = (A − iI)u, which implies that R(A + iI) is isomorphic to

R(A− iI). e conclusion follows easily.
(3) e approach is similar to that in Problem 4.2.

e range of A − iI contains all funions f of form Au − iu = f , u ∈ C∞
0 [0,∞). From ODE eory, we

conclude that f is contained in the range of A − iI if and only if
∫∞
0
fg = 0 for all g that are solutions to

(A + iI)g = 0, where we formally extend the domain of A to C∞[0,∞) ∩ L2[0,∞). e deficiency index
concerns only those g that are contained in L2, hence we are only concerned with

∫∞
0
xkezxf(x)dx = 0,

where z is the root of p(iz) + i = 0 with ℜz < 0. In fa, n+(A) is the number of the roots of p(iz) + i = 0
lying in ℜz < 0. Similarly, n−(A) is the number of the roots of p(iz) − i = 0 lying in ℜz > 0. Note that
p(ix)± i = 0 has no pure imaginary roots, and z ↔ −z̄ is a bijeion between the roots of the two equations.
We conclude that n+ + n− = deg g, which is odd, therefore n+ and n− can never be equal.

4.4 Let M and N be two subspaces of H and dimM > dimN . Show that there exists u ∈ M , ∥u∥ = 1, such that
u ∈ N⊥.

Proof. By considering a subspace of M , if necessary, we can assume that both M and N are finite-dimensional.
Take orthonormal basis {xi}mi=1 and {yi}ni=1,m > n, forM andN , respeively. Consider x =

∑
aixi ∈M . We

want (x, yj) =
∑

j ai(xi, yj) = 0 for all 1 ≤ j ≤ n. is is a system of linear equations that can be rewritten as
Ax = 0, where Aij = (xi, yj). Note that A has more rows (m rows) than columns (n columns), the linear system
has a non-zero solution.

4.5 Let A be a closed symmetric operator. Show that σ(A) must be one of the four cases:

(1) the closed upper half plane;
(2) the closed lower half plane;
(3) the entire plane;
(4) a subset of the real axis.

Proof. Suppose that z0 ∈ ρ(A). First suppose that im z0 < 0, then dim ker(A∗ + zI) = n− = dim ker(A∗ + z0I)
for all im z < 0. Since A − z0I is invertible, R(A − z0I) = H and n− = 0. Hence ker(A∗ + zI) = {0} for all
im z < 0, that is, R(A− zI) = H for all im z < 0 (because R(A− zI) is closed when A is closed and symmetric).
Note also symmetry of A implies that A − zI is injeive. Hence A − zI is bijeive for im z < 0, and z ∈ ρ(A).
Similarly, if im z0 > 0 then the entire open half-plane is contained in ρ(A).

4.6 Let A be a closed symmetric operator. If ρ(A) contains a real number then A is self-adjoint.

Proof. Since ρ(A) contains a real number, the sperum σ(A)must be in case (4), that is, σ(A) ⊂ R. en def(A) =
(0, 0) and it follows from von Neumann eorem that A is self-adjoint. (See also eorem 6.4.5)

4.7 Let A be a symmetric operator. If A1 is a symmetric extension of A, then A1 ⊂ A∗. Define a sesquilinear form on
D(A∗) as

{x, y} = (A∗x, y)− (x,A∗y).

Show that {x, y} = 0 for all x, y ∈ D(A1).
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Proof. A ⊂ A1 ⇒ A∗
1 ⊂ A∗. Also A1 is symmetric, A1 ⊂ A∗

1 and {x, y} = 0.

4.8 Suppose that A is a symmetric operator andD a linear subspace such thatD(A) ⊂ D ⊂ D(A∗) and {x, y} = 0 on
D ×D. Show that there exists a symmetric extension, denoted A1, of A such that D(A1) = D.

Proof. Let A1 = A∗|D, then it is symmetric because {x, y} = 0 on D ×D. Also, A ⊂ A∗ and D(A) ⊂ A, we see
that A ⊂ A1.

4.9 Let A be a symmetric operator. Define an inner produ on D(A∗) as

(x, y)A = (x, y) + (A∗x,A∗y),

then D(A∗) with (·, ·)A forms a Hilbert space. Show that

(1) e sesquilinear form defined in Problem 6.4.7 is continuous under the topology induced by (·, ·)A;
(2) Suppose that A1 is a restriion of A. Show that A1 is a closed operator if and only if D(A1) is closed under

the topology induced by (·, ·)A.

Proof. (1) Suppose that xn → x and yn → y under ∥ · ∥A, then xn → x, yn → y, A∗xn → A∗x, A∗yn → A∗y
(because A∗ is closed -- the dual of any densely-defined operator is closed) under the usual norm. It follows
that

{xn, yn} = (A∗xn, yn)− (xn, A
∗yn) → (A∗x, y)− (x,A∗y) = {x, y},

where we use the fa that the usual inner produ is continuous w.r.t. the usual norm.
(2) Note that the graph norm of A1 coincides with (·, ·)A.

4.10 Let A be a symmetric operator and view D(A∗) as a Hilbert space with inner produ (·, ·)A. Let S be a subset of
D(A∗). We say S is symmetric if {x, y} = 0 on S×S. Show that there is a one-to-one correspondence between the
closed symmetric subspaces ofD(A∗) that containD(A) and all the closed symmetric subspaces ofD+⊕D−, where
D+ = ker(A∗ − iI) and D− = ker(A∗ + iI). Moreover, if D ⊃ D(A) is closed and symmetric and corresponds
to D̃, a closed and symmetric subspace of D+ ⊕D−, then D = D(Ā)⊕ D̃.

Proof. First it is clear that A is closable, and Ā∗ = A∗. Observe that any closed subspace of D(A∗) that contains
D(A) also contains D(Ā), we may assume that A is closed.
SupposeD ⊃ D(A) is a closed subspace ofD(A∗). Note thatD(A∗) = D(A)⊕D+ ⊕D−, for any x ∈ D we can
write x = xA + x+ + x− in a unique way. Let D̃ be spanned by those x+'s and x−'s. We claim that D̃ is a closed
symmetric subspace ofD+ ⊕D−. e closedness of D̃ follows from the closedness ofD andD(A). We show that
D̃ is symmetric, i.e. (after some algebra), (x+, y+) = (x−, y−) for all x, y ∈ D̃. is is not hard to obtain from
the symmetry of D, A∗x = Ax + ix+ − ix− together with the assumption that A is symmetric. It is clear that
D = D(Ā)⊕ D̃ from the construion of D̃, which implies that D ↔ D̃ is a one-to-one correspondence.

4.11 Suppose thatA is a symmetric operator, A2 is densely-defined, show thatA∗Ā is a Friedrichs self-adjoint extension
of A2.

Proof. Without loss of generality, assume that A is closed. It is clear that A2 is symmetric. Define a(u, v) =
(A2u, v)+(u, v), then a(u, v) is a positive-definite sesquilinear form onD(A2) ⊆ D(A). Consider the completion
ofD(A2) with respe to a, denoted byD. Note that a(u, u) = ∥Au∥2+∥u∥2 andD(A) is closed under this norm
(equivalent to the graph norm), the completion ofD(A2), denoted byD, is the interseion of all subspaces ofD(A)
that are closed under the graph norm. We shall show that D = D(Q), where D(Q) is defined in Corollary 6.4.21.
en it follows from the uniqueness of the extension (eorem 6.4.20) that A∗A is the self-adjoint extension of A2

(eorem 6.4.21).
Obviously D ⊆ D(Q), thus it suffices to show that D(Q) ⊆ D. is is because D(Q) is closed and is dense in
D(A).
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4.12 Suppose thatA is a lower semi-bounded closed symmetric operator,A ≥ −M . en dim ker(A∗−zI) is a constant
on C \ [−M,∞).

Proof. e proof is the same as that of eorem 6.4.4. To conne the upper and lower half-planes, notice that the
proof is valid for real z ∈ (−∞,−M). In fa, suppose that u ∈ D(A), (A− zI)u = x,

(x, u) = ((A− zI)u, u) ≥ (−M − z)∥u∥2,

implying that
∥x∥ ≥

√
(−M − z)∥u∥.

4.13 Let A be a closed symmetric operator that is semi-bounded from below. Suppose that n+(A) = n−(A) < ∞,
show that any self-adjoint extension of A is semi-bounded from below.

Proof. Suppose that A1 is a self-adjoint extension of A. From Problem 4.10, we know that D(A1) = D(A) ⊕ S,
where S is a finite-dimensional linear space. Suppose that M is the lower bound of A and pick K < M . en
dimP(−∞,K] ≤ dimS, where PΩ is the projeion-valued measure of A1. Otherwise, we can find x ∈ D(A) ∩
R(P(−∞,K]), so that

(Ax, x) =

∫
R
zd∥E(z)x∥2 ≤ K∥E(K)x∥2 ≤M∥x∥2,

contradiing with A ≥M . We have established that dimP(−∞,K] <∞, this implies that σ(A1) has only finitely
many elements in (−∞,K], and they are eigenvalues. erefore, A1 is bounded below.

4.14 Suppose that T is a densely-defined closed operator in a Hilbert space. Show that there exist a positive self-adjoint
operator A with D(A) = D(T ) and an isometry V : (kerT )⊥ → R(T ) such that

T = V A.

is is called polar decomposition of closed operator.

Proof. Since T is densely-defined and closed, we have that T ∗T is positive self-adjoint. Let A = (T ∗T )
1
2 . For

x ∈ D(T ∗T ) we clearly have ∥Tx∥2 = (T ∗Tx, x) = (A2x, x) = ∥Ax∥2. SinceD(T ∗T ) is dense inD(T ), we can
extend A to D(T ) by continuity such that ∥Tx∥ = ∥Ax∥ for all x ∈ D(T ).
Define V : R(A) → R(T ) such that V Ax = Tx, it is clear that V is well-defined and norm preserving. us V
extends to an isometry from R(A) to R(T ) by continuity. Since A is self-adjoint, R(A) = (kerA)⊥ = (kerT )⊥.
Suppose that T = V ′A′ is another decomposition. en T ∗T = A′∗V ′∗V A′ = A′∗A′ = A′2, thus A = A′ on
D(T ∗T ) because

√
T ∗T is unique. It follows immediately that A = A′ on D(T ) and V ′ = V .

4.15 LetA be a symmetric operator in a Hilbert space. Show thatA is essentially self-adjoint if and only if dim ker(A∗∓
iI) , n± = 0.

Proof. is is Corollary 6.2.5 (Exercise 6.2.2).

4.16 Denote the Schwartz space by S (R3). LetK1(R3) be the closure of S (R3) under the norm of
∫
R3 |∇u|2dx. Let

H = K1(R3)× L2(R3) and define an inner produ in H as

(⟨f1, f2⟩, ⟨g1, g2⟩) =
∫
R3

(∇f1 · ∇g1 + f2g2)dx.

Consider the following operator in H :

A =

(
0 I
∆ 0

)
, D(A) = S (R3)× S (R3).

Show that
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(1) iA is symmetric;
(2) iA is essentially self-adjoint.

Proof. (1) For ⟨f1, f2⟩, ⟨g1, g2⟩ ∈ D(A), it holds that

(iA⟨f1, f2⟩, ⟨g1, g2⟩) = (i⟨f2,∆f1⟩, ⟨g1, g2⟩)

= i

∫
R3

(∇f2 · ∇g1 +∆f1 · g2)dx

= −i
∫
R3

(f2 ·∆g1 +∇f1 · ∇g2)dx

= (⟨f1, f2⟩, i⟨g2,∆g1⟩)
= (⟨f1, f2⟩, iA⟨g1, g2⟩).

(2) We shall show that R(A± iI) is dense in H . We first show that R(A+ iI) is dense. Note that

(A+ iI)⟨f1, f2⟩ = i⟨f2 + f1,∆f1 + f2⟩,

it suffices to show that the system of equations

v + u = f

∆u+ v = g

has solution u, v ∈ S (R3) if f, g ∈ S (R3), which can be easily reduced to show that

∆u− u = h

has solution u ∈ S (R3) if h ∈ S (R3). Take Fourier transform on both sides,

−4π2|ξ|2û− û = ĥ.

Solve for û,

û = − ĥ

1 + 4π2|ξ|2
,

which is clearly in S (R3). Hence by taking inverse Fourier transform we obtain a solution u ∈ S (R3).
Similarly, to show that R(A− iI) is dense, it suffices to show that

v − u = f

∆u− v = g

has solution u, v ∈ S (R3) if f, g ∈ S (R3), which reduced to the same problem as above.

5 Perturbation of Self-Adjoint Operators
5.1 LetA be self-adjoint andB be symmetric. Suppose thatB isA-bounded with relative bound equal to a. Prove that

a = lim
n→∞

∥B(A+ in)−1∥.

Proof. Note that ∥(A+ in)u∥2 = ∥Au∥2 + n2∥u∥2 for all u ∈ D(A). Since A is self-adjoint, A+ in is invertible
and R(A+ in) = H . Replace u by (A+ in)−1x,

∥x∥2 = ∥A(A+ in)−1x∥2 + n2∥(A+ in)−1x∥2. (2)
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Suppose that ∥Bu∥2 ≤ a′2∥Au∥+ b′2∥u∥2 for all u ∈ D(A). Replace u by (A+ in)−1x and use (2),

∥B(A+ in)−1x∥2 ≤ a′2∥A(A+ in)−1x∥+ b′2∥(A+ in)−1x∥2

≤ a′2(∥x∥2 − n2∥(A+ in)−1x∥2) + b′2∥(A+ in)−1x∥2

≤ a′2∥x∥2

when n is large enough. is implies that a′ ≥ lim ∥B(A + in)−1∥ and thus a ≥ lim ∥B(A + in)−1∥. e
conclusion follows easily if a = 0, so we assume a > 0 henceforth.
On the other hand, By the definition of relative bound, we know that for any ϵ > 0 small enough, b > 0, there
exists u ∈ D(A) such that

∥Bu∥2 > (a− ϵ)2∥Au∥2 + b2∥u∥2.
Use the same technique as before,

∥B(A+ in)−1x∥2 > (a− ϵ)2∥x∥2 + (b2 − (a− ϵ)2n2)∥(A+ in)−1x∥2

Choose b = (a− ϵ)n, we know that for any ϵ > 0 there exists x such that

∥B(A+ in)−1x∥2 > (a− ϵ)2∥x∥2

which implies that ∥B(A+ in)−1∥ ≥ a− ϵ. is result holds for all n, thus lim ∥B(A+ in)−1∥ ≥ a− ϵ, and let
ϵ→ 0, a ≤ lim ∥B(A+ in)−1∥, whence the conclusion follows.

5.2 LetA be a densely defined closed operator andB a closable operator. IfD(A) ⊂ D(B), show thatB isA-bounded.

Proof. Since A is closed, X = (D(A), ∥ · ∥Γ(A)) is a Banach space. Without loss of generality, we may assume
that B is closed. To show that B is A-bounded, i.e., B is continuous on X , it suffices to show that B|X is a closed
operator then the Closed Graph eorem applies. In fa, suppose that xn → x inX andBxn → y. en xn → x
in H . Since B is closed, we must have Bx = y, which shows that B|X is closed.

5.3 Suppose that A and B are densely-defined operators in H , B is A-bounded, then there exist a, b ≥ 0 such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥, ∀x ∈ D(A).

Show that

(1) B is (A+B)-bounded and the relative bound is at most a
1−a ;

(2) if C is A-bounded with relative bound c, then C is (A+B)-bounded with relative bound at most c
1−a .

Proof. (1) Note that

∥(A+B)x∥ ≥ ∥Ax∥ − ∥Bx∥ ≥ ∥Ax∥ − (a∥Ax∥+ b∥x∥) = (1− a)∥Ax∥ − b∥x∥

en
∥Ax∥ ≤ ∥(A+B)x∥+ b∥x∥

1− a
(3)

and

∥Bx∥ ≤ a∥Ax∥+ b∥x∥ ≤ a
∥(A+B)x∥+ b∥x∥

1− a
+ b∥x∥ =

a

1− a
∥(A+B)x∥+ b(1 + a)

1− a
∥x∥.

(2) For any ϵ > 0 there exists d ≥ 0 such that

∥Cx∥ ≤ (c+ ϵ)∥Ax∥+ d∥x∥ ≤ c+ ϵ

1− a
∥(A+B)x∥+

(
c+ ϵ

1− a
+ d

)
∥x∥,

thus C is (A+B)-bounded with relative bound at most c+ϵ
1−a . Let ϵ→ 0, completing the proof.
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5.4 Let H be a Hilbert space. Suppose that A is a densely defined closed operator and B is A-bounded such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥.

Let λ ∈ ρ(A) such that
a∥ARλ(A)∥+ b∥Rλ(A)∥ < 1,

where Rλ(A) = (λI −A)−1 is the resolvent operator of A. Show that A+B is closed, λ ∈ ρ(A+B) and

∥Rλ(A+B)∥ ≤ ∥Rλ(A)∥(1− a∥ARλ(A)∥ − b∥Rλ(A)∥)−1.

Proof. First we show thatA+B is closed. Suppose that xn → x and (A+B)xn → y. From (3) we see that {Axn} is
Cauchy and thusAxn → z for some z. SinceA is closed, we have that x ∈ D(A) and z = Ax. usBxn → y−z.
Also, since B is A-bounded, it holds that Bxn → Bx. erefore y − z = Bx and (A+B)xn → (A+B)x.
Denote c = a∥ARλ(A)∥+ b∥Rλ(A)∥. Replacing x by Rλ(A)y in ∥Bx∥ ≤ a∥Ax∥+ b∥x∥, we obtain that

∥BRλ(A)y∥ ≤ a∥ARλ(A)y∥+ b∥Rλ(A)y∥ ≤ c∥y∥.

en
∥(A+B − λI)x∥ ≥ ∥(A− λI)x∥ − ∥Bx∥ ≥ ∥y∥ − c∥y∥ = (1− c)∥y∥ ≥ 1− c

∥Rλ(A)∥
∥x∥,

which implies that λ ∈ ρ(A+B) and ∥Rλ(A+B)∥ ≤ ∥Rλ(A)∥
1−c .

5.5 Let A and B be densely defined operators in H . Suppose that A−1 ∈ L(H ) and B is A-bounded such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥, x ∈ D(A).

Suppose that a+ b∥A−1∥ < 1, prove that

(1) A+B is closed and invertible;
(2) ∥(A+B)−1∥ ≤ ∥A−1∥(1−a−b∥A−1∥)−1, ∥(A+B)−1−A−1∥ ≤ ∥A−1∥(a+b∥A−1∥)∥(1−a−b∥A−1∥)−1;
(3) if A−1 is compa, (A+B)−1 is also compa.

Proof. It has been proved in the previous exercise that A+B is closed. Similarly, Replacing x by A−1y in ∥Bx∥ ≤
a∥Ax∥+ b∥x∥, we obtain that

∥BA−1y∥ ≤ a∥y∥+ b∥A−1y∥ ≤ c∥y∥,

where c = a+ b∥A−1∥ < 1. en

∥(A+B)x∥ = ∥y +BA−1y∥ ≥ ∥y∥ − c∥y∥ =
1− c

∥A−1∥
∥x∥,

which shows that A+B is invertible and ∥(A+B)−1∥ ≤ ∥A−1∥
1−c . Denote T = (A+B)−1 −A−1. Now,

∥T∥ ≤ ∥(A+B)−1∥∥(A+B)T∥ = ∥(A+B)−1∥∥BA−1∥ ≤ ∥(A+B)−1∥c.

Since ∥BA−1∥ < 1, we see that I + BA−1 is invertible, then (A + B)−1 = A−1(I + BA−1)−1 is compa by
eorem 4.1.2(6).

5.6 Suppose that A and B are densely defined operators, B is A-bounded and dimR(B) < ∞. Show that B is
A-compa.

Proof. Suppose {xn} and {Axn} are bounded sequences. Since B is A-bounded, {Bxn} is a bounded sequence,
too. en {Bxn} has a convergent subsequence because R(B) is finite-dimensional.
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5.7 Suppose that A and B are symmetric operators, D(A) = D(B) = D, and

∥(A−B)x∥ ≤ a′∥Ax∥+ a′′∥Bx∥+ b∥x∥, ∀x ∈ D,

where 0 < a′, a′′ < 1, b > 0. Show that A is essentially self-adjoint if and only if B is essentially self-adjoint, and
when they are self-adjoint it holds that D(Ā) = D(B̄).

Proof. Use Corollary 6.5.12 instead of eorem 6.5.2 in the proof of Corollary 6.5.4.

5.8 Suppose that A is self-adjoint and B is symmetric. Show that B is A-compa if and only if

(1) D(B) ⊃ D(A);
(2) ∀λ ∈ ρ(A), B(λI −A)−1 is compa.

Furthermore, the condition (2) can be replaced by

(2') ∃λ ∈ ρ(A) such that B(λI −A)−1 is compa.

Proof. `If ': Suppose that {xn} and {Axn} are bounded sequences, then {(λI−A)xn} is bounded. Hence {Bxn} =
{B(λI −A)−1((λI −A)xn)} has a convergent subsequence.
`Only if ': Suppose that {xn} is a bounded sequence, then {(λI −A)−1xn} is bounded, {A(λI −A)−1xn} is also
bounded since A(λI − A)−1 = λ(λI − A)−1 − I . Since B is A-compa, {B(λI − A)−1xn} has a convergent
subsequence.
It is clear that we need only ∃λ instead of ∀λ in the `only if ' part.

5.9 Let V ∈ H = L2(R3) and λ > 0. Show that

lim
λ→∞

∥V (−∆+ λ)−1∥ = 0,

and that V is (−∆)-compa.

Proof. It is easy to see that −∆+ λ is invertible on C∞
0 using Fourier Transform and (−∆+ λ)−1u is in Schwartz

space for u ∈ C∞
0 (R3). More precisely, using Green's funion,

((−∆+ λ)−1u)(x) =

∫
R3

e−
√
λ|x−y|

4π|x− y|
u(y)dy,

en

((V (−∆+ λ)−1)u)(x) =

∫
R3

|V (x)|e
−
√
λ|x−y|

4π|x− y|
u(y)dy,

where the integral kernel

Kλ(x, y) = |V (x)|e
−
√
λ|x−y|

4π|x− y|
∈ L2(R6).

Now,
∥V ((−∆+ λ)−1∥ ≤ ∥Kλ∥ ·

1

λ
→ 0

as λ→ ∞. Also, sinceKλ(x, y) ∈ L2(R6), it is a Hilbert-Schmidt kernel and V (−∆+λ)−1 is compa. It follows
from the previous problem that V is (−∆)-compa.

5.10 Let A be essentially self-adjoint and B bounded symmetric. Show that A+B is essentially self-adjoint.
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Proof. ObviouslyB isA-bounded with relative bound 0. e conclusion follows immediately fromCorollary 6.5.12.

5.11 Let A be self-adjoint and B symmetric withD(A) ⊂ D(B) and B2 ≤ A2 + b2I , where b is a constant. Show that
A+B is essentially self-adjoint.

Proof. Since

∥Bx∥2 = (Bx,Bx) = (B2x, x) ≤ (A2x, x) + b2(x, x) = (Ax,Ax) + b2∥x∥2 = ∥Ax∥2 + b2∥x∥2,

the conclusion follows immediately from eorem 6.5.14.

5.12 Let H be a Hilbert space, A self-adjoint, A ≥ 0, B symmetric with D(B) ⊃ D(A). Suppose that

∥Bx∥ ≤ ∥Ax∥, ∀x ∈ D(A).

Show that |(Bx, x)| ≤ (Ax, x).

Proof. For any t ∈ (−1, 1), tB is symmetric and A-bounded with relative bound |t| < 1. Hence A + tB ≥ 0
from eorem 6.5.16. It means that t(Bx, x) ≥ −(Ax, x) for all t ∈ (−1, 1). e conclusion follows from letting
t→ ±1.

5.13 Suppose that V1, V2 ∈ L2(R3) are real-valued funions and view Vi(xi) (i = 1, 2) as multiplication operator. Show
that −∆+ V1(x1) + V2(x2) is essentially self-adjoint with domain C∞

0 (R6).

Proof. In the proof of Example 6.5.11, we see that given any a > 0 there exists b > 0 such that

∥u∥∞ ≤ a∥∆u∥2 + b∥u∥2

for all u ∈ C∞
0 (Rn), which is `equivalent' to

∥u∥2∞ ≤ a2∥∆u∥22 + b2∥u∥22.

Now let u ∈ C∞
0 (R6),

∥V1u∥22 ≤ a2
∫

| −∆1u(x1, x2)|2dx1dx2 + b2
∫

|u(x1, x2)|2dx1dx2

= a2
∫ ∣∣∣∣∣

3∑
i=1

p2i û(p1, . . . , p6)

∣∣∣∣∣
2

dp1 · · · dp6 + b2∥u∥22

≤ a2
∫ ∣∣∣∣∣

6∑
i=1

p2i û(p1, . . . , p6)

∣∣∣∣∣
2

dp1 · · · dp6 + b2∥u∥22

= a2∥ −∆u∥22 + b2∥u∥22,

A result with the same right-hand side holds for V2u. It follows that

∥V1(x1)u+ V2(x2)u∥2 ≤ 2a2∥ −∆u∥22 + 2b2∥u∥22.

Since we can choose a as small as we want, V1(x1) + V2(x2) is infinitesimally small with respe to −∆. us, by
Kato-Rellich eorem, −∆+ V1(x1) + V2(x2) is essentially self-adjoint on C∞

0 (R6).
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5.14 Let A be a self-adjoint operator and B a bounded symmetric operator. Show that A+B is self-adjoint, and

d(σ(A), σ(A+B)) ≤ ∥B∥,

i.e.,

sup
λ∈σ(A)

d(λ, σ(A+B)) ≤ ∥B∥, (4)

sup
λ∈σ(A+B)

d(σ(A), λ) ≤ ∥B∥. (5)

Proof. It is clear thatA+B is symmetric. AlsoD(A∗+B∗) = D(A∗) = D(A) = D(A+B) becauseB is defined
or can be extended to the entire H . erefore A+B is self-adjoint.
To show (4), it suffices to show that for any λ ∈ σ(A) and ϵ > 0, it holds that

(λ− ∥B∥ − ϵ, λ+ ∥B∥+ ϵ) ∩ σ(A+B) ̸= ∅.

Suppose it holds that
(λ− ∥B∥ − ϵ, λ+ ∥B∥+ ϵ) ⊂ ρ(A+B),

then

∥(λI −A−B)x∥2 =

∫
R
(λ− ζ)2d∥EA+B

ζ x∥2

=

∫
R\(λ−∥B∥−ϵ,λ+∥B∥+ϵ)

(λ− ζ)2d∥EA+B
ζ x∥2

≥ (∥B∥+ ϵ)2∥x∥2.

So
∥(λI −A−B)−1∥ ≤ 1

∥B∥+ ϵ
,

and ∥B(λI −A−B)−1∥ < 1, hence I +B(λI −A−B)−1 is invertible and so is

λI −A = (I +B(λI −A−B)−1)(λI −A−B).

Contradiion.
For the second half, just notice that (5) is (4) applied to (A+B) + (−B) = A.

5.15 Let A be a self-adjoint operator, D ⊂ C be a Borel-measurable set with smooth boundary Γ = ∂D. Suppose that
Γ ⊂ ρ(A), show that

E(D) =
1

2πi

∮
Γ

(zI −A)−1dz,

where E is the speral family of A.

Proof. Note that ρ(A) is an open set and σ(A) ⊂ R, hence such a boundary Γ separates σ(A). en the proof
follows the same line as in Exercise 5.5.15.

5.16 Let A be a self-adjoint operator and C a compa operator, then

σess(A) = σess(A+ C).

5.17 Suppose that V ∈ L2(R3) is real-valued, show that σess(−∆+ V ) = [0,∞).

Proof. Using Fourier transform we can easily obtain that σess(−∆) = [0,∞). Since V is symmetric (because it is
real-valued) and (−∆)-compa (Exercise 5.9), it immediately follows from Weyl's eorem that σess(−∆+ V ) =
[0,∞).
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6 Convergence of Unbounded Operators
6.1 LetAn andA be self-adjoint operators and suppose that for all x, y ∈ H and all λwith imλ ̸= 0, (Rλ(An)x, y) →

(Rλ(A)x, y). Prove that An → A ...

Proof.

∥(Rλ(An)−Rλ(A))x∥2 = ((Rλ(An)−Rλ(A))x, (Rλ(An)−Rλ(A))x)

= (Rλ(An)x,Rλ(An)x)− 2ℜ(Rλ(An)x,Rλ(A)x) + (Rλ(A)x,Rλ(A)x).

Since An → A .., it is clear that (Rλ(An)x,Rλ(A)x) → (Rλ(A)x,Rλ(A)x). Also,

(Rλ(An)x,Rλ(An)x) = (Rλ̄(An)Rλ(An)x, x)

=

(
−Rλ̄(An)−Rλ(An)

λ̄− λ
x, x

)
→
(
−Rλ̄(A)−Rλ(A)

λ̄− λ
x, x

)
= (Rλ̄(A)Rλ(A)x, x)

= (Rλ(A)x,Rλ(A)x)

erefore,
∥(Rλ(An)−Rλ(A))x∥2 → 0.

Remark. is problem is exaly weak resolvent convergence implies strong resolvent convergence.

6.2 Let An and A be positive self-adjoint operators, show that An → A .. if and only if (An + I)−1 → (A+ I)−1

strongly.

Proof. `If ': Let λ0 = −1. Examine the proof of eorem 6.6.3, we see that the power series

Rλ(A) =
∞∑
k=0

(λ0 − λ)k(R−1(A))
k+1 (6)

converges in norm in |λ − λ0| < 1, because σ(A) ⊂ [0,∞). So does the power series of Rλ(An). Hence there
exists λ, imλ ̸= 0 such that Rλ(An) → Rλ(A) strongly. eorem 6.6.3 then applies.
`Only if ': Note that λ0 = −1 + i is contained in ρ(An) and ρ(A). e power series (6) converges in norm in
|λ − λ0| <

√
2 because σ(A) ⊂ [0,∞). So does the power series of Rλ(An). Hence Rλ(An) → Rλ(A) .. in

|λ− λ0| <
√
2. Let λ = −1.

6.3 Let A be a self-adjoint operator. Show that

(1) ..-limt→t0 tA = t0A, where t0 ̸= 0;
(2) limt→t0 ∥eitA − eit0A∥ = 0 if and only if A is bounded.

Proof. (1) Let λ ∈ C with imλ ̸= 0. en

∥Rλ(t0A)−Rλ(tA)∥ = ∥(λI − tA)−1)(t0A− tA)(λI − t0A)
−1∥

≤ ∥(λI − tA)−1)∥ ∥t0A− tA∥ ∥(λI − t0A)
−1∥

=

∥∥∥∥∥t−1

(
λ

t
I −A

)−1
∥∥∥∥∥ |t0 − t| ∥A∥ ∥(λI − t0A)

−1∥

≤ |t−1| | imλ/t|−1 |t0 − t| ∥A∥ ∥(λI − t0A)
−1∥ → 0.
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(2) `If ': Suppose that E is the speral family of A. Since A is bounded, σ(A) is compa. Suppose that σ(A) ⊂
[−N,N ] and |t− t0| < 1/N . It follows from

∥eitAx− eit0Ax∥2 =

∫
R
|eitλ − eit0λ|2d∥Eλx∥2

=

∫ N

−N

|ei(t−t0)λ − 1|2d∥Eλx∥2

= 2

∫ N

−N

(1− cos((t− t0)λ))d∥Eλx∥2

≤ 2(1− cos((t− t0)N))

∫
R
d∥Eλx∥2

= 2(1− cos((t− t0)N))∥x∥2

that
∥eitA − eit0A∥ ≤

√
2(1− cos((t− t0)N)) → 0

as t→ t0.
`Only if ': Assume that t0 = 0 for simplicity. For any operator Z that differs from I by an operator of norm
< 1 we can define

lnZ = ln(I + (Z − I)) = Z − I − (Z − I)2

2
+ · · · .

Since ∥eitA − I∥ → 0, there exists t such that ∥eitA − I∥ < 1
3 . We can define ln eitA according to the

expansion of lnZ above. en ln eitA is bounded. On the other hand, from funional calculus we see that
ln eitA = itA. erefore A is bounded.

6.4 Let An and A be uniformly bounded self-adjoint operators. Show that

An → A .. ⇐⇒ An → A strongly.

Proof. `⇒': Suppose that An → A .., then for all λ, imλ ̸= 0 and all x, (Rλ(An)−Rλ(A))x→ 0. Note that

A−An = (λI −An)− (λI −A) = (λI −An)(Rλ(A)−Rλ(An))(λI −A),

hence

∥Ax−Anx∥ ≤ ∥(λI −An)∥ ∥(Rλ(A)−Rλ(An))(λI −A)x∥
≤ (M + |λ|)∥(Rλ(A)−Rλ(An))(λI −A)x∥ → 0,

whereM is the uniform bound of An.
`⇐': Suppose that An → A strongly. For any x, there exists y ∈ D(A) such that x = (λI −A)y. en

(λI −A)−1x− (λI −An)
−1x = (λI −An)

−1(A−An)y → 0

because
∥(λI −An)

−1∥ ≤ | imλ|−1.

erefore (λI −An)
−1 → (λI −A)−1 strongly.

6.5 Show that if An → A .. then eitAn → eitA uniformly strongly for t in any finite interval.
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Proof. Let fs(t) = eits. A careful examination of the proof of eorem 6.6.6(2) reveals that we need to prove

∥fs(An)gm0(t)x− fs(A)gm0(t)x∥ < ϵ/3

for all s in a finite interval when n is big enough. Since |fs(t)| = 1 regardless of s and t, the other lines in the proof
of eorem 6.6.6(2) still carries through for s in a finite interval.

Fixm. Note that fs(t)gm(t) = e−
t2

m+its and

sup
t∈R

|fs1(t)gm(t)− fs2(t)gm(t)| = sup
t∈R

e−
t2

m |ei(s1−s2)t − 1|

= sup
t∈R

√
2e−

t2

m

√
1− 2 cos(s1 − s2)t

By splitting R into |t| < T and |t| ≥ T , it is easy to see that

sup
t∈R

|fs1(t)gm(t)− fs2(t)gm(t)| < ϵ

for |s1 − s2| small enough (depending on ϵ and independent of s1 or s2). is fa shows that the following line in
the proof of eorem 6.6.6

sup
x∈R1

∣∣∣∣fs(x)gm0(x)− P

(
1

x+ i
,

1

x− i

)∣∣∣∣ ≤ ϵ

3
.

holds for all s inside any interval with a small length L(ϵ). Consequently, for any of such interval, there exists N
such that whenever n > N it holds that

∥fs(An)x− f(A)x∥ ≤ ϵ

holds for all s inside the small interval. e final step is to divide a finite interval into pieces, each has length
L(ϵ).

6.6 Let An and A be uniformly bounded self-adjoint operators. Suppose that An → A weakly but not strongly. Does
An → A ..?

Proof. No. If An → A .., then An → A .. and thus An → A strongly by Exercise 6.6.4.

6.7 Let An and A be positive self-adjoint operators. Suppose that e−tAn → e−tA strongly for all t > 0. Show that
..-limn→∞An = A.

Proof. One can show that for positive self-adjoint operator A,

ϕ(A) =

∫ ∞

0

ϕ(λ)dEλ

for Borel measurable ϕ that is bounded on [0,∞). en following the same outline of Example 6.6.7, we obtain
that

R−1(A)u = −
∫ ∞

0

e−te−tAudt,

and thus
∥R−1(An)u−R−1(A)u∥ ≤

∫ ∞

0

e−t∥e−tAnu− e−tAu∥dt.

It follows from Dominated Convergence eorem that R−1(An) → R−1(A) strongly, and thence An → A ..
by Problem 6.2.
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6.8 Let {An} be a sequence of symmetric operators. Define DS
∞ = {x : ∃y ∈ H , ⟨x, y⟩ ∈ ΓS

∞}. If DS
∞ is dense in

H , show that {An} has a strong graph limit and the limit operator is also symmetric. Moreover, the limit operator
is closed.

Proof. First we show that ΓS
∞ is the graph of an operator, for which we need only to show that the operator is well-

defined, i.e., suppose xn, x′n ∈ D(An) and xn → x, x′n → x′, Anxn → y and Anx
′
n → y′, we must have y = y′.

Indeed, let u be an arbitrary element inDS
∞, then there exists un ∈ D(An) such that un → u andAun → v. us,

(y − y′, u) = lim
n→∞

(An(xn − x′n), un) = lim
n→∞

(xn − x′n, Anun) = 0. (7)

Since DS
∞ is dense, it follows immediately that y = y′. So {An} has a strong graph limit, say A.

Now we show that A is symmetric. Let x, y ∈ DS
∞. ere exist un → x and vn → y such that un, vn ∈ D(An),

Anun → Ax for some Ax and Anvn → Ay for some Ay. en

(x,Ay) = lim
n→∞

(un, Anvn) = lim
n→∞

(Anun, vn) = (Ax, y). (8)

Moreover, A is closed: suppose that xn → x and Axn → y. ere exist xnm → xn and Amxnm → Axn for each
n. We can pick xnmm → x and Amxnmm → y, hence x ∈ D(A) and y = Ax.

6.9 Let {An} be a sequence of operators on H . Define Γw
∞ = {⟨u, v⟩ ∈ H × H : ∃un ∈ D(An), un →

u,Anun ⇀ v}. If Γw
∞ is the graph of some linear operator A, we say A is the weak graph limit of {An}, de-

noted by A = wg- limn→∞An. Suppose that An and A are uniformly bounded self-adjoint operators, show that
A = wg- limn→∞An if and only if An → A weakly.

Proof. Suppose that the uniform bound of An and A isM .
`Only if ': We want to prove that Anu ⇀ Au for all u. ere exist un such that un → u and Anun ⇀ Au. Since
An and A are bounded, they can be extended to the entire H . Notice that

|(Anu−Anun, y)| ≤M∥u− un∥ ∥y∥ → 0, ∀y ∈ H

it follows immediately that

lim
n→∞

(Anu, y) = lim
n→∞

(Anun, y) = (Au, y), ∀y ∈ H

or, Anu ⇀ Au.
`If ': Suppose that Anu ⇀ Au for all u. We want to find {un} such that un → u and Anun ⇀ Au. Note that
D(An) is dense, we can easily find un ∈ D(An) such that un → u. Now, as above, it automatically holds that

lim
n→∞

(Anun, y) = lim
n→∞

(Anu, y) = (Au, y), ∀y ∈ H .

6.10 Let {An} be a sequence of symmetric operators. Define Dw
∞ = {x : ∃y ∈ H , ⟨x, y⟩ ∈ Γw

∞}. If DS
∞ is dense in

H , show that Γw
∞ is the graph of some symmetric operator.

Proof. e proof follows the same line as that of Exercise 6.8. Recall Exercise 2.5.18: If an ⇀ a and bn → b then
(an, bn) → (a, b). Hence (7) and (8) still hold.
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