1 Closed Operators

1.1 Show that every bounded operator on a Hilbert space is closable and every finite-rank closable operator is bounded.

Proof. For the first part, see Theorem 2.3.12. Now we prove the second part. Suppose that A is a finite-rank closable operator, i.e., if $\left\{x_{n}\right\} \subseteq D(A), x_{n} \rightarrow 0$ and $A x_{n} \rightarrow y$ then $y=0$. If A is not bounded, then there exist $\left\{y_{n}\right\}$ such that $\left\|A y_{n}\right\| \geq n\left\|y_{n}\right\|$. Let $x_{n}=y_{n} /\left\|A y_{n}\right\|$, then $\left\|A x_{n}\right\|=1$ and $\left\|x_{n}\right\| \leq \frac{1}{n}$. Hence $x_{n} \rightarrow 0$. Note that A is finite-rank and recall that the unit sphere is sequentially compact in a finite dimensional space, thus we can choose a subsequence of $\left\{x_{n}\right\}$, still denoted by x_{n}, such that $A x_{n} \rightarrow z$ for some z. Since A is closable, we must have $z=0$, which contradicts with $\left\|x_{n}\right\|=1$.
1.2 Show that a linear operator T is closed if and only if $D(T)$ is complete under graph norm.

Proof. It is clear that $\left\{x_{n}\right\}$ is Cauchy in $D(T)$ under graph norm if and only if $\left\langle x_{n}, T x_{n}\right\rangle$ is Cauchy in $\mathscr{X} \times \mathscr{Y}$. The conclusion follows immediately.
1.3 Let T be a closable operator. Show that $\bar{T}^{*}=T^{*}$.

Proof. It is easy to see that ${ }^{\perp} S={ }^{\perp} \bar{S}$ for any $S \subseteq \mathscr{X}$. Hence, $\Gamma\left(T^{*}\right)=^{\perp}(V \Gamma(T))=^{\perp}(\overline{V \Gamma(T)})={ }^{\perp}(V \overline{\Gamma(T)})=^{\perp}$ $(V \Gamma(\bar{T}))=\Gamma\left(\bar{T}^{*}\right)$, which implies that $\bar{T}^{*}=T^{*}$.
1.4 Let T be a densely-defined linear symmetric operator on a Hilbert space, show that
(1) T is closed $\Longleftrightarrow T=T^{* *} \subset T^{*}$;
(2) T is essentially self-adjoint $\Longleftrightarrow T \subset T^{* *}=T^{*}$;
(3) T is self-adjoint $\Longleftrightarrow T=T^{* *}=T^{*}$.

Proof. (1) In the proof of 6.1.4, we have seen that $\Gamma\left(T^{* *}\right)=\overline{\Gamma(T)}$. Hence $T=T^{* *} \Longleftrightarrow \Gamma\left(T^{* *}\right)=\Gamma(T) \Longleftrightarrow$ $\overline{\Gamma(T)}=\Gamma(T) \Longleftrightarrow T$ is closed. From the definition of symmetric operators, $T \subset T^{*}$ is automatic.
(2) ' \Rightarrow ': T is closable implies that $\Gamma(\bar{T})=\overline{\Gamma(T)}=\Gamma\left(T^{* *}\right)$, and thus $T \subset T^{* *}$, and from the previous problem, $\bar{T}^{*}=T^{*}$. Also, \bar{T} is self-adjoint, $\bar{T}=\bar{T}^{*}=T^{*}$. Taking conjugate on both sides, $\bar{T}^{*}=T^{* *}$, i.e., $T^{*}=T^{* *}$. ${ }^{`} \digamma^{\prime}: T$ is symmetric, thus T is closable and $\bar{T}=T^{* *}$ (Theorem 6.1.4). Also $T^{* *}=T^{*}=\bar{T}^{*}$ (Problem 6.1.3), it follows that $\bar{T}=\bar{T}^{*}$ and \bar{T} is self-adjoint.
(3) T is self-adjoint \Longleftrightarrow (by definition) $T=T^{*} \Longrightarrow T^{*}=T^{* *}$.
1.5 Let T be a densely-defined operator on Hilbert space \mathscr{H}. Show that $D\left(T^{*}\right)=\{0\}$ if and only if $\Gamma(T)$ is dense in $\mathscr{H} \times \mathscr{H}$.

Proof. It suffices to show that

$$
\Gamma\left(T^{*}\right)=^{\perp}(V \Gamma(T))=\{0\} \Longleftrightarrow \Gamma(T) \text { is dense in } \mathscr{H} \times \mathscr{H}
$$

which is obvious, since ${ }^{\perp}(V \Gamma(T))=\{0\}$ iff $V \Gamma(T)$ is dense iff $\Gamma(T)$ is dense.
1.6 Determine whether the following statement is true: Let T be a densely-defined operator on \mathscr{H} such that $(T x, x)=$ 0 for all $x \in D(T)$, then $T x=0$ for all $x \in D(T)$.

Proof. This is false. Consider the differential operator $T: x \mapsto \frac{d}{d t}$ defined on $C_{0}^{\infty}(\mathbb{R})$, which is a dense subset of $L^{2}(\mathbb{R})$. Suppose $x \in C_{0}^{\infty}(\mathbb{R})$, then

$$
\int_{\mathbb{R}}\left(\frac{d x}{d t} \cdot x\right) d t=\left.x^{2}\right|_{-\infty} ^{+\infty}-\left(\int_{\mathbb{R}} x \cdot \frac{d x}{d t}\right) d t=-\left(\int_{\mathbb{R}} x \cdot \frac{d x}{d t}\right) d t
$$

hence $\langle T x, x\rangle=0$ for all $x \in C_{0}^{\infty}(\mathbb{R})$. Obviously $T x \neq 0$ for some $x \in C_{0}^{\infty}(\mathbb{R})$.
1.7 Let \mathscr{X} and \mathscr{Y} be Banach spaces, and \mathscr{Y} is reflexive. $T: \mathscr{X} \rightarrow \mathscr{Y}$ is a densely-defined operator. Show that T is closable if and only if T^{*} is densely-defined. Also let $J_{\mathscr{X}}: \mathscr{X} \rightarrow \mathscr{X}^{* *}$ and $J_{\mathscr{Y}}: \mathscr{Y} \rightarrow \mathscr{Y}^{* *}$ be natural embeddings, show that when T is closable, $T=J_{\mathscr{Y}}^{-1} T^{* *} J_{\mathscr{X}}$.

Proof. `If': Since T^{*} is densely-defined, $T^{* *}$ is a closed operator, and

$$
\Gamma\left(T^{* *}\right)=^{\perp} V \Gamma\left(T^{*}\right)=^{\perp} V^{\perp} V \Gamma(T)=^{\perp}\left({ }^{\perp} V^{2} \Gamma(T)\right)=^{\perp}\left({ }^{\perp} \Gamma(T)\right)=\overline{\Gamma(\tilde{T})},
$$

where $\tilde{T}: \mathscr{X}^{* *} \rightarrow \mathscr{Y}^{* *}$ is the natural lift of $T: \mathscr{X} \rightarrow \mathscr{Y}$. It is clear to see that $\overline{\Gamma(\tilde{T})}$ restricted on im $J_{\mathscr{X}} \times \mathscr{Y}^{* *}$ can be brought down to $\mathscr{X} \times \mathscr{Y}$ and become $\overline{\Gamma(T)}$. To summarize, $\bar{T}=J_{\mathscr{Y}}^{-1} T^{* *} J_{\mathscr{X}}$.
'Only if': Suppose that T is closable. If $D\left(T^{*}\right)$ is not dense, then there exists $y_{0} \in \mathscr{Y}^{* *}, y_{0} \neq 0$, such that $y_{0} \in^{\perp} D\left(T^{*}\right)$, thus $\left\langle y_{0}, 0\right\rangle \in^{\perp} \Gamma\left(T^{*}\right)$. Obviously $\left\langle 0, y_{0}\right\rangle \in^{\perp} V \Gamma\left(T^{*}\right)$, which implies that ${ }^{\perp} V \Gamma\left(T^{*}\right)$ can not be a graph of some linear operator. But on the other hand, ${ }^{\perp} V \Gamma\left(T^{*}\right)=^{\perp} V^{\perp} V \Gamma(T)$, which is, as shown above, the graph of the lift of \bar{T}, contradiction. Therefore T^{*} is densely-defined.
1.8 Let f be a bounded and measurable function on \mathbb{R}^{1}, but $f \notin L^{2}\left(\mathbb{R}^{1}\right)$. Let

$$
D=\left\{\psi \in L^{2}\left(\mathbb{R}^{1}\right): \int|f(x) \psi(x)| d x<\infty\right\}
$$

Suppose that $\psi_{0} \in L^{2}\left(\mathbb{R}^{1}\right)$ and define

$$
T \psi=(f, \psi) \psi_{0}, \quad \forall \psi \in D
$$

Prove that T is densely-defined and find T^{*}.
Proof. Obviously $C_{0}^{\infty}(\mathbb{R}) \subset D$ and we know that $C_{0}^{\infty}(\mathbb{R})$ is dense in $L^{2}(\mathbb{R})$, therefore D is dense in $L^{2}(\mathbb{R})$ and T is densely-defined. Let $f_{n}=f \chi_{[-n, n]}$, then $\left\langle f, f_{n}\right\rangle=\left\|f_{n}\right\|_{2}^{2}$. Note that $\left\|f_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$, this implies that (f, x) is not a bounded functional on D. Suppose $y \in D\left(T^{*}\right)$, which requires that there exists M_{y} such that

$$
|(y, T x)|=\left|\left(y,(f, x) \phi_{0}\right)\right|=|(f, x)|\left|\left(y, \phi_{0}\right)\right| \leq M_{y}\|x\|, \quad \forall x \in D .
$$

Since (f, x) is not a bounded functional, we must have $\left(y, \phi_{0}\right)=0$. It is also easy to see that all y such that $\left(y, \phi_{0}\right)=0$ is contained in $D\left(T^{*}\right)$, and therefore $D\left(T^{*}\right)=\left\{y \in L^{2}:\left(y, \phi_{0}\right)=0\right\}$. Since $\left(T^{*} y, x\right)=(y, T x)=$ $(f, x)\left(y, \phi_{0}\right)=0$ for all $x \in D$. Since D is dense, it must hold that $T^{*} y=0$. Hence $T^{*}=0$.
1.9 Let T be a linear operator in Hilbert space \mathscr{H}. Define its kernel as $N(T)=\{x \in D(T): T x=0\}$. Show that
(1) If $D(T)$ is dense in \mathscr{X} then $N\left(T^{*}\right)=R(T)^{\perp} \cap D\left(T^{*}\right)$;
(2) If T is closed, then $N(T)=R\left(T^{*}\right)^{\perp} \cap D(T)$.

Proof. (1) ` \(\subseteq\) ': Let \(y^{*} \in N\left(T^{*}\right)\), then \(\left(y^{*}, T x\right)=\left(T^{*} y^{*}, x\right)\) for all \(x \in D(T)\). Since \(T^{*} y^{*}=0\), it follows that \(\left(y^{*}, T x\right)=0\), which implies that \(y^{*} \perp R(T)\). \({ }^{`}\) ': Let $y^{*} \in R(T)^{\perp} \cap D\left(T^{*}\right)$, then $0=\left(y^{*}, T x\right)=\left(T^{*} y^{*}, x\right)$ for all $x \in D(T)$, which means that $T^{*} y^{*} \perp D(T)$. Since $D(T)$ is dense, it must hold that $T^{*} y^{*}=0$, i.e., $y^{*} \in \operatorname{ker} T^{*}$.
(2) Since T is closed, T^{*} is densely-defined.
\subseteq^{\prime} ': Suppose that $x \in R\left(T^{*}\right)^{\perp} \cap D(T)$, then $\left(T^{*} y^{*}, x\right)=0$ for all $y^{*} \in D(T)$. Then $\left(y^{*}, T x\right)=\left(T^{*} y^{*}, x\right)=$ 0 for all $y^{*} \in D\left(T^{*}\right)$. Since $D\left(T^{*}\right)$ is dense, we must have $T x=0$, or, $x \in \operatorname{ker} T$.
${ }^{`} \supseteq$ ': Suppose that $x \in \operatorname{ker} T$. Then $0=\left(y^{*}, T x\right)=\left(T^{*} y^{*}, x\right)$ for all $y^{*} \in D(T)$, which implies that $x \perp R\left(T^{*}\right)$.
1.10 Let T be an injective linear operator on \mathscr{H}. Consider some assumptions about T :
(1) T is closed;
(2) $\operatorname{im} T$ is dense;
(3) im T is closed;
(4) $\exists c>0$ such that $\|T x\| \geq c\|x\|$ for all $x \in D(T)$.

Show that
(1) Conditions (1), (2) and (3) imply (4);
(2) Conditions (2), (3) and (4) imply (1);
(3) Conditions (1) and (4) imply (3);

Proof. (1) The conditions (2) and (3) imply that $\operatorname{im} T=\mathscr{H}$, since \mathscr{H} is injective, we must have $D(T)=\mathscr{H}$, which is closed. It follows condition (1) and Closed Operator Theorem that T is continuous. Also T is bijective, Open Mapping Theorem asserts that T^{-1} is bounded, which is exactly condition (4).
(2) From the same argument as in subproblem (1), we know that $D(T)$ is bijective. Condition (4) implies that T^{-1} is continuous. Suppose that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y, y_{n}=T x_{n}$, then $x_{n}=T^{-1} y_{n}$. Taking limits on both slides yields $x=T^{-1} y$, i.e., $y=T x$. Therefore T is closed.
(3) Suppose that $\left\{T x_{n}\right\}$ is a Cauchy sequence. Condition (4) implies that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose that $T x_{n} \rightarrow y$ and $x_{n} \rightarrow x$. Condition (1) says that $x \in D(A)$ and $y=T x \in \operatorname{im} T$, hence $\operatorname{im} T$ is closed.
1.11 Let $\mathscr{H}=L^{2}[0,1], T_{1}=i \frac{d}{d t}, T_{2}=i \frac{d}{d t}$.

$$
\begin{gathered}
D\left(T_{1}\right)=\{u \in \mathscr{H}: u \text { is absolutely continuous }\} \\
D\left(T_{2}\right)=\{u \in \mathscr{H}: u(0)=0, u \text { is absolutely continuous }\},
\end{gathered}
$$

Show that both T_{1} and T_{2} are closed operators.
Proof. Suppose that $\left\{x_{n}\right\} \subseteq D\left(T_{2}\right), x_{n} \rightarrow x$ and $i \frac{d x_{n}}{d t} \rightarrow i y$. Since x_{n} is absolutely continuous,

$$
x_{n}(t)=\int_{0}^{t} x_{n}^{\prime}(s) d s
$$

Note that

$$
\int_{0}^{t}\left|x_{n}^{\prime}(s)-y(s)\right| d s \leq \sqrt{t} \cdot\left\|x_{n}^{\prime}-y\right\|_{2} \leq\left\|x_{n}^{\prime}-y\right\|_{2} \rightarrow 0, \quad, n \rightarrow \infty
$$

it follows that

$$
x_{n}(t) \rightarrow \int_{0}^{t} y(s) d s
$$

uniformly on $[0,1]$. Hence $\left\|x_{n}-\int y\right\|_{2} \leq\left\|x_{n}-\int y\right\|_{\infty}^{2} \rightarrow 0$. From the uniqueness of limit, we see that

$$
x(t)=\int_{0}^{t} y(s) d s
$$

which is contained in $D\left(T_{2}\right)$ and $T_{2} x=i y$. Therefore T_{2} is closed.
Now suppose that $\left\{x_{n}\right\} \subseteq D\left(T_{2}\right), x_{n} \rightarrow x$ and $i \frac{d x_{n}}{d t} \rightarrow i y$. Since L^{2} convergence implies convergence in measure, and Riesz theorem ensures an a.e. pointwise convergent subsequence in a subsequence of functions converging in measure, we may assume that $x_{n} \rightarrow x$ pointwise a.e. Define $f(t)=\int_{0}^{t} y(s) d s$, from the preceding argument, we conclude that $x_{n}(t)-x_{n}(0) \rightarrow f(t)$ everywhere. Recall that $x_{n}(t) \rightarrow x(t)$ a.e., we must have that $x_{n}(0) \rightarrow a$ for some a and $x(t)=f(t)+a$ a.e.. Note that $f(t)$ is absolutely continuous, hence $x(t)$ is absolutely continuous, too. This implies that T_{1} is closed.
1.12 Let \mathscr{X} be a separable Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ an orthonormal basis. Suppose that $a \in \mathscr{X}, a$ is not a finite linear combination of $\left\{e_{n}\right\}$. Let D be the set of finite combinations of $\left\{e_{n}\right\}$ and a, and define on D

$$
T\left(\beta a+\sum a_{i} e_{i}\right)=\beta a
$$

where in the summand there are only finitely many non-zero a_{i} 's. Show that $\langle a, a\rangle \in \overline{\Gamma(T)},\langle a, 0\rangle \in \overline{\Gamma(T)}$ and thus $\Gamma(T)$ is not the graph of any linear operator.

Proof. It is trivial that $\langle a, a\rangle \in \Gamma(T)$. Let $a_{n}=\sum_{i=1}^{n}\left(a, e_{i}\right) e_{i}$, then $a_{n} \rightarrow a$ and $T a_{n}=0$. Hence $\langle a, 0\rangle \in$ $\overline{\Gamma(T)}$.
1.13 Let $\mathscr{H}=l^{2}$ and

$$
D(T)=\left\{a \in l^{2}: \exists N \text { such that whenever } n>N, a_{n}=0 \text { and } \sum_{j=0}^{N} a_{j}=0\right\}
$$

Define $T a \in l^{2}$ for $a \in l^{2}$ as

$$
(T a)_{n}=i\left(\sum_{j=1}^{n-1} a_{j}+\sum_{j=1}^{n} a_{j}\right)
$$

Show that
(1) T is densely-defined and symmetric;
(2) $R(T+i)$ is dense in l^{2};
(3) $(1,0,0, \ldots) \in D\left(T^{*}\right)$ and $\left(T^{*}+i\right)(1,0,0, \ldots)=0$.

Proof. (1) To show that $D(T)$ is dense, it suffices to show that $D(T)$ is dense in span $\left\{e_{n}\right\}$, where $\left\{e_{n}\right\}$ is the natural orthonormal basis in l^{2}. Furthermore, it suffices to show that each e_{n} can be approximated by elements in $D(T)$. Take e_{1} for example. Let

$$
a_{n}=(1-\frac{1}{n}, \underbrace{-\frac{1}{n}\left(1-\frac{1}{n}\right), \ldots,-\frac{1}{n}\left(1-\frac{1}{n}\right)}_{n \text { times }}, 0,0, \ldots) .
$$

Then

$$
\left\|a_{n}-e_{1}\right\|^{2}=\frac{1}{n^{2}}+n\left(\frac{1}{n}\left(1-\frac{1}{n}\right)\right)^{2} \rightarrow 0
$$

as $n \rightarrow \infty$. We have seen that $a_{n} \rightarrow e_{1}$. The approximation to general e_{m} is similar, just right shift $\left\{a_{n}\right\}$ by m positions.
Now we show that $(T x, y)=(x, T y)$ for all $x, y \in D(T)$, to prove that T is symmetric. Suppose that N is the maximum of the two N 's corresponding to x and y.

$$
(T x, y)=i \sum_{n=1}^{N} \overline{y_{n}}\left(\sum_{j=1}^{n-1} x_{j}+\sum_{j=1}^{n} x_{j}\right)
$$

$$
\begin{aligned}
& =i\left(\sum_{n=1}^{N} \sum_{j=1}^{n-1} x_{j} \overline{y_{n}}+\sum_{n=1}^{N} \sum_{j=1}^{n} x_{j} \overline{y_{n}}\right) \\
& =i\left(\sum_{j=1}^{N-1} \sum_{n=j+1}^{N} x_{j} \overline{y_{n}}+\sum_{j=1}^{N} \sum_{n=j}^{N} x_{j} \overline{y_{n}}\right) \\
& =i \sum_{j=1}^{N} x_{j}\left(\sum_{n=j+1}^{N} \overline{y_{n}}+\sum_{n=j}^{N} \overline{y_{n}}\right) \\
& =i \sum_{j=1}^{N} x_{j}\left(-\sum_{n=1}^{j} \overline{y_{n}}-\sum_{n=1}^{j-1} \overline{y_{n}}\right) \\
& =(x, T y) .
\end{aligned}
$$

(2) Note that $(T+i) a=2 i\left(a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{n}, \ldots\right)$. Hence $(T+i)\left(\frac{1}{2 i} a\right)=e_{1}$, where $a=(1,-1,0, \ldots)$. Similarly we can show that $\left\{e_{n}\right\} \subseteq R(T+i)$, which implies that $R(T+i)$ is dense.
(3) Let $y^{*}=(1,0,0, \ldots)$, then $\left(y^{*}, T x\right)=\overline{(T x)_{1}}=-i \overline{x x_{1}}$. Let $x^{*}=(-i, 0,0, \ldots)=-y^{*}$, then $\left(x^{*}, x\right)=$ $-i \overline{x_{1}}$. Hence $T^{*} y^{*}=-y^{*}, y^{*} \in D\left(T^{*}\right)$ and $(T+i) y^{*}=0$.
1.14 Let T be a symmetric operator on \mathscr{X} with domain D. Suppose that $D_{1} \subseteq D$ is a dense linear set and $\left.T\right|_{D_{1}}$ is T restricted to D_{1}. If $\left.T\right|_{D_{1}}$ is essential self-adjoint, so is T and $\bar{T}=\left.\bar{T}\right|_{D_{1}}$.

Proof. Since D_{1} is dense in D, we can use diagonal technique to show that $\overline{\Gamma(T)}=\overline{\Gamma\left(\left.T\right|_{D_{1}}\right)}=\Gamma\left(\overline{\left.T\right|_{D_{1}}}\right)$. Hence T is closable and $\bar{T}=\overline{\left.T\right|_{D_{1}}}$. Now we show that \bar{T} is self-adjoint. Since $\overline{\left.T\right|_{D_{1}}}$ is self-adjoint, we have that $\overline{\left.T\right|_{D_{1}}}{ }^{*}=\overline{\left.T\right|_{D_{1}}}$ and therefore $\bar{T}^{*}=\overline{\left.T\right|_{D_{1}}}{ }^{*}=\overline{\left.T\right|_{D_{1}}}=\bar{T}$.
1.15 Let $\mathscr{H}=L^{2}\left(\mathbb{R}^{1}\right)$ and

$$
D(T)=\left\{u \in \mathscr{H}: \int_{-\infty}^{\infty} x^{2}|u(x)|^{2} d x<\infty\right\} .
$$

Define T as $(T u)(x)=x u(x)$ for $u \in D(T)$. Show that T is unbounded and closed.
Proof. It is clear that $\left\|T \chi_{[0, n]}\right\|=\frac{1}{\sqrt{3}} n^{\frac{3}{2}}$ and $\left\|\chi_{[0, n]}\right\|=\sqrt{n}, \frac{\left\|T \chi_{[0, n}\right\|}{\left\|\chi_{[0, n]}\right\|} \rightarrow \infty$ as $n \rightarrow \infty$, hence T is unbounded. Suppose that $u_{n} \rightarrow u$ and $x u_{n} \rightarrow v$ in L_{2}. We know that $u_{n} \rightarrow u$ in measure and Riesz's Theorem enables us to pick a subsequence, still denoted by u_{n}, which is convergent to u almost everywhere. So $u_{n} \rightarrow u$ in L^{2} and pointwise a.e., thus $x u_{n} \rightarrow x u$ a.e. A similar argument shows that there is a subsequence of $\left\{x u_{n}\right\}$, again denoted by $\left\{x u_{n}\right\}$, converges to v pointwise a.e. Therefore it must hold that $x u=v$ a.e., which implies that T is closed.
1.16 Suppose that T is a densely-defined closed operator on \mathscr{H}. Show that for all $a, b \in \mathscr{X}$, the system of equations

$$
\begin{aligned}
-T x+y & =a \\
x+T^{*} y & =b
\end{aligned}
$$

has a unique solution $x \in D(T)$ and $y \in D\left(T^{*}\right)$.
Proof. `Existence': Consider the set \(S \subseteq \mathscr{H} \times \mathscr{H}\) of all pairs \((a, b)\) which make the system of equations have at least one solution. It is clear that \(S\) is a linear set, \(V \Gamma(T) \in S\) and \(\Gamma\left(T^{*}\right) \in S\). Note that \(\Gamma\left(T^{*}\right)=(V \Gamma(T))^{\perp}\). Since \(\Gamma(T)\) is closed, we know that \(V \Gamma(T)\) is closed and \(\Gamma\left(T^{*}\right)+V \Gamma(T)=\mathscr{H}\). Therefore \(S=\mathscr{H}\). `Uniqueness': It suffices to show that

$$
-T x+y=0
$$

$$
x+T^{*} y=0
$$

has solution $x=0, y=0$ only. A solution satisfies $\left(y, T x^{\prime}\right)=\left(T^{*} y, x^{\prime}\right)$ for all $x^{\prime} \in D(T)$. In particular ($\left.x^{\prime}=x\right)$ we have that $(y, y)=-(x, x)$, it must hold that $(y, y)=(x, x)=0$ from non-negativity of inner product, and therefore $x=0$ and $y=0$.

2 Cayley Transform and Spectral Decomposition of Self-Adjoint Operators

2.1 Consider the operator $A u=i u^{\prime}$ on $L^{2}\left(\mathbb{R}^{1}\right)$. Define $D(A)=\left\{u \in l^{2}(\mathbb{R}): u\right.$ is absolutely continuous and $u^{\prime} \in$ $\left.L^{2}\left(\mathbb{R}^{1}\right)\right\}$. Show that A is self-adjoint.

Proof. It is clear that $C_{0}^{\infty}(\mathbb{R})$ is contained in $D(A)$ and thus $D(A)$ is dense.
Suppose that $u \in D(A)$ and $\epsilon>0$. Since $u^{\prime} \in L^{2}$ there exists δ_{0} such that $\int_{x}^{x+\delta}\left|u^{\prime}\right|^{2}<\epsilon$ for all x and $\delta<\delta_{0}$. Let $\delta_{1}=\min \left\{\delta_{0}, \epsilon\right\}$. Then for all $\delta<\delta_{1}$,

$$
|u(x+\delta)-u(x)|=\left|\int_{x}^{x+\delta} u^{\prime}(t) d t\right| \leq \sqrt{\delta_{1}} \sqrt{\int_{x}^{x+\delta_{1}}\left|u^{\prime}(t)\right|^{2} d t} \leq \sqrt{\epsilon} \cdot \sqrt{\epsilon}=\epsilon
$$

Now we are ready to show that $u(\pm \infty)=0$. If not, without loss of generality, suppose that there exists $\epsilon_{0}>0$ and $x_{n} \rightarrow+\infty$ such that $\left|u\left(x_{n}\right)\right| \geq \epsilon_{0}$ for all n. We have seen that u is uniformly continuous, so we can find δ such that $|u(x)-u(y)|<\frac{\epsilon_{0}}{2}$ whenever $|x-y|<\delta$. Therefore, we have that $|u(x)| \geq \frac{\epsilon_{0}}{2}$ on $\left(x_{n}-\delta, x_{n}+\delta\right)$ for all n. Without loss of generality, assume that $x_{n+1}-x_{n} \geq 2 \delta$. Then

$$
\int_{\mathbb{R}}|u|^{2} \geq \sum_{n=1}^{\infty} \int_{x_{n}-\delta}^{x_{n}+\delta}|u|^{2} \geq \sum_{n=1}^{\infty} 2 \delta \cdot \frac{\epsilon_{0}^{2}}{4}=\infty
$$

which contradicts with $u \in L^{2}(\mathbb{R})$. Hence $u(\pm \infty)=0$, then

$$
(A u, v)=i \int_{\mathbb{R}} u^{\prime} \bar{v}=\left.i u \bar{v}\right|_{-\infty} ^{\infty}-i \int u \overline{v^{\prime}}=-i \int u \overline{v^{\prime}}=(u, A v) .
$$

Using the same technique in Problem 6.1.11, we can show that A is closed. It is easy to see that $\operatorname{ker}\left(A^{*}+i I\right)=\{0\}$ as $A \subseteq A^{*}$ and $\operatorname{ker}(A+i I)=\{0\}$. It follows from Theorem 6.2.4 that A is self-adjoint.
2.2 Prove Corollary 6.2.5: Let A be a symmetric operator on a Hilbert space, then the following statements are equivalent:
(1) A is essentially self-adjoint;
(2) $\operatorname{ker}\left(A^{*} \pm i I\right)=\{0\}$;
(3) $\overline{R(A \mp i I)}=\mathscr{H}$.

Proof. Theorem 6.2.3 implies that (2) and (3) are equivalent, and a symmetric operator is closable. Now suppose that A is essentially self-adjoint, so \bar{A} is self-adjoint and $\bar{A}^{*}=A^{*}$. It follows from Proposition 6.2.1 that $\operatorname{ker}\left(A^{*} \pm i I\right)=$ $\operatorname{ker}\left(\bar{A}^{*} \pm i I\right)=\{0\}$. Conversely, if (2) holds then it holds that $\operatorname{ker}\left(\bar{A}^{*} \pm i I\right)=\{0\}$ and by Theorem 6.2.4 we know that \bar{A} is self-adjoint, which implies that A is essentially self-adjoint.
2.3 Consider $A u=i u^{\prime}$ as an operator on $L^{2}[0, \infty)$ with domain $C_{0}^{\infty}[0,+\infty)$. Is A essentially self-adjoint?

Proof. From Problem 1 we know that A is symmetric. It is easy to see that $e^{-x} \in D\left(A^{*}\right)$ and $D^{*} e^{-x}=-i e^{-x}$ since $\left(e^{-x}, u^{\prime}\right)=\left(i e^{-x}, u\right)$ for all $u \in C_{0}^{\infty}[0,+\infty)$. Therefore $e^{-x} \in \operatorname{ker}\left(A^{*}-i I\right)$ and $\operatorname{ker}\left(A^{*}-i I\right) \neq\{0\}$. Corollary 6.2.5 tells us that A is not essentially self-adjoint.
2.4 Let A be a densely-defined symmetric operator, A is positive $((A x, x) \geq 0 \forall x \in D(A))$, show that
(1) $\|(A+I) x\|^{2} \geq\|x\|^{2}+\|A x\|^{2}$;
(2) A is a closed operator if and only if $R(A+I)$ is a closed set;
(3) A is essentially self-adjoint if and only if $A^{*} y=-y$ has solution $y=0$ only.

Proof. (1) Since A is symmetric, we have that $(A x, x)=(x, A x)$. Hence $((A+I) x,(A+I) x)=(A x, A x)+$ $2(A x, x)+(x, x) \geq(A x, A x)+(x, x)$.
(2) 'Only if': Suppose that A is closed. Let $\left\{y_{n}\right\} \subseteq R(A+I)$ be a Cauchy sequence. Suppose that $y_{n}=A x_{n}+x_{n}$. From part (1) we know that $\left\{x_{n}\right\}$ and $\left\{A x_{n}\right\}$ are Cauchy, thus $x_{n} \rightarrow x$ and $A x_{n} \rightarrow y$ for some x and y. Since A is closed, $x \in D(A)$ and $y=A x$, thus $y_{n} \rightarrow(A+I) x \in R(A+I)$. Therefore $R(A+I)$ is closed. 'If': Suppose that $x_{n} \rightarrow x$ and $A x_{n} \rightarrow y$. Then $(A+I) x_{n} \rightarrow x+y \in R(A+I)$, there exists a $z \in D(A)$ such that $A z+z=x+y$. Hence $(A+I)\left(x_{n}-z\right) \rightarrow 0$. From part (1) we see that $x_{n} \rightarrow z$, hence $x=z \in D(A)$ and $A z=y$, showing that A is closed.
(3) 'Only if': Suppose that A is essentially self-adjoint, then A is closable and $A^{*}=\bar{A}^{*}=\bar{A}$. Let $y \in D(\bar{A})$ be a solution of $A^{*} y=-y$. Then $\left.(\bar{A}+I) x, y\right)=\left(x,\left(A^{*}+I\right) y\right)=0$ for all $x \in D(\bar{A})$. In particular, let $x=y$, we have $((A+I) y, y)=0$, i.e., $0=\|y\|^{2}+(A y, y) \geq\|y\|^{2}$, it must hold that $y=0$.
'If': Since T is symmetric and densely-defined, T is closable, thus $\bar{T}^{*}=T^{*}$, and $\bar{T}=T^{* *} \subseteq(\bar{T})^{*}$ (because $\bar{T} \subseteq T^{*}$. Hence \bar{T} is symmetric. It suffices to show that $D\left(T^{*}\right) \subseteq D(\bar{T})$. Let $y \in D\left(T^{*}\right)$ and $x=\left(T^{*}+I\right) y$. For this, we shall first prove that $R(\bar{T}+I)$ is closed. Clearly \bar{T} is positive. Then let $\left\{y_{n}\right\}$ be a Cauchy sequence in $R(\bar{T}+I)$ and suppose that $y_{n}=(\bar{T}+I) x_{n}$. Then

$$
\left(y_{n}, x_{n}\right)=\left((\bar{T}+I) x_{n}, x_{n}\right) \geq\left\|x_{n}\right\|^{2},
$$

and note the Cauchy-Schwarz Inequality $\left(y_{n}, x_{n}\right) \leq\left\|y_{n}\right\|\left\|x_{n}\right\|$ it follows that $\left\|x_{n}\right\| \leq\left\|y_{n}\right\|$. Hence $\left\{x_{n}\right\}$ is bounded as $\left\{y_{n}\right\}$ is bounded. Then

$$
\left\|x_{n}-x_{m}\right\|^{2} \leq\left(y_{n}-y_{m}, x_{n}-x_{m}\right) \leq\left(\left\|x_{n}\right\|+\left\|x_{m}\right\|\right)\left\|y_{n}-y_{m}\right\|,
$$

whence we see that $\left\{x_{n}\right\}$ is Cauchy. Since \bar{T} is closed, we have $x_{n} \rightarrow x$ and $y_{n} \rightarrow(\bar{T}+I) x \in R(\bar{T}+I)$. Note that $\operatorname{ker}\left(T^{*}+I\right) \oplus R(\bar{T}+I)=\mathscr{H}$, it follows from $\operatorname{ker}\left(T^{*}+I\right)=\{0\}$ that $R(\bar{T}+I)=\mathscr{H}$. Thus there exists $y^{\prime} \in D(\bar{T})$ such that

$$
(\bar{T}+I) y^{\prime}=\left(\bar{T}^{*}+I\right) y^{\prime}=x=\left(T^{*}+I\right) y .
$$

Since $T^{*}+I$ is injective, it must hold that $y=y^{\prime} \in D(\bar{T})$, and $D\left(T^{*}\right) \subseteq D(\bar{T})$.
2.5 Let

$$
\mathscr{H}=\left\{f(z)=\sum_{n=0}^{\infty} c_{n} z^{n},|z|<1: \sum_{n=0}^{\infty}\left|c_{n}\right|^{2}<\infty\right\},
$$

then \mathscr{H} is a Hilbert space under the norm $\|f\|=\left(\sum\left|c_{n}\right|^{2}\right)^{\frac{1}{2}}$. Define operators U and A on \mathscr{H} as

$$
\begin{gathered}
(U f)(z)=z f(z) \\
(A f)(z)=i \frac{1+z}{1-z} f(z)
\end{gathered}
$$

Show that A is a symmetric operator on \mathscr{H}, U is the Cayley transform of A and find $R(A+i I)$ and $R(A-i I)$.
Proof. Suppose that $f(z)=\sum c_{n} z^{n}$, then

$$
(A f)(z)=i \sum_{n=0}^{\infty}\left(2 \sum_{k=0}^{n-1} c_{k}+c_{n}\right) z^{n} .
$$

Since \mathscr{H} is isomorphic to l^{2} via $f \leftrightarrow\left\{c_{n}\right\}$, the operator A in this problem corresponds to T in Exercise 6.1.13. We can therefore define $D(A)$ as $D(T)$ in Exercise 6.1.13, and it follows that A is densely-defined and symmetric.

Direct computation shows that

$$
\begin{gathered}
(U(A+i I) f)(z)=\left(U\left(\frac{2 i}{1-z} f(z)\right)\right)(z)=\frac{2 i z}{1-z} f(z) \\
((A-i I) f)(z)=\frac{2 i z}{1-z} f(z)
\end{gathered}
$$

hence $A-i I=U(A+i I)$. Hence $U=(A-i I)(A+i I)^{-1}$, which is exactly the Cayley transform of A. It is clear that $R(A+i I)$ consists of polynomials, and $R(A-i I)$ polynomials with a zero constant term.
2.6 Let C be a symmetric operator on \mathscr{H} and A a linear operator on \mathscr{H}. Suppose that $A \subset C$ and $R(A+i I)=$ $R(C+i I)$, show that $A=C$.

Proof. For any $y \in R(C+i I)$ we have $x \in D(C)$ and $z \in D(A)$ such that $(C+i I) z=(A+i I) x=y$. Since $A \subset C$, we have also $(C+i I) x=y$. Note that $C+i I$ is injective (Proposition 6.2.1), it must hold that $z=x \in R(A)$. This implies that $R(C) \subseteq R(A)$ and therefore $A=C$.
2.7 Let A be a symmetric operator on $\mathscr{H}, R(A+i I)=\mathscr{H}$ and $R(A-i I) \neq \mathscr{H}$. Show that A has no self-adjoint extensions.

Proof. Suppose that B is a self-adjoint extension of A, then $B^{*} \subset A^{*}$, and $R(B \pm i I)=\mathscr{H}$. It follows from the previous problem that $A=B$, and thus $R(A-i I)=R(B-i I)=\mathscr{H}$. Contradiction. Therefore A cannot have a self-adjoint extension.
2.8 Let V be an isometry on $\mathscr{H}:\|V x\|=\|x\|$ for all $x \in D(V)$. Show that
(1) $(V x, V y)=(x, y)$ for all $x, y \in D(V)$;
(2) If $R(I-V)$ is dense in \mathscr{H} then $I-V$ is injective;
(3) If one of $D(V), R(V), \Gamma(V)$ is closed, so are the other two.

Proof. (1) This is a direct corollary of polarisation identity.
(2) Suppose that $(I-V) y=0$, i.e., $y=V y$. From part (1), $(V x, V y)=(x, y)$ for all $x \in D(V)$. Replacing $V y$ by y yields $(V x-x, y)=0$ for all $y \in D(V)$. Since $R(I-V)$ is dense, it must hold that $y=0$, i.e., $\operatorname{ker}(I-V)=\{0\}$.
(3) It follows easily from $\|x\|=\|V x\|$ that $D(V)$ is closed if and only if $R(V)$ is closed. The graph norm $\|x\|_{G}=\|x\|+\|V x\|=2\|x\|$. Hence $\Gamma(V)$ is closed if and only if $D(V)$ is closed.
2.9 Let T be a closed operator on Hilbert space \mathscr{H}. Show that $\rho(T)$ is open. For $z \in \rho(T)$ define $R_{z}(T)=(z I-T)^{-1}$, show that $R_{z}(T)$ is an analytic function with respect to t on each connected component of $\rho(T)$ and satisfies the first resolvent formula:

$$
R_{z_{1}}(T)-R_{z_{2}}(T)=\left(z_{2}-z_{1}\right) R_{z_{1}}(T) R_{z_{2}}(T)
$$

Proof. See the proof of Corollary 2.6.7, Lemma 2.6.8 and Theorem 2.6.9.
2.10 Prove Proposition 6.2.16, 6.2.17 and 6.2.18.

Proposition 6.2.16: Let A be a self-adjoint operator and $\left\{E_{\lambda}\right\}$ its spectral family. Then $\lambda_{0} \in \sigma_{p}(A)$ if and only if $E_{\lambda_{0}}-E_{\lambda_{0}^{-}} \neq 0$.

Proof. Note that $\lambda_{0} I-A=\int_{\mathbb{R}}\left(\lambda_{0}-\lambda\right) d E_{\lambda}$ and

$$
\left\|\left(\lambda_{0} I-A\right) x\right\|^{2}=\int_{\mathbb{R}}\left(\lambda_{0}-\lambda\right)^{2} d\left\|E_{\lambda} x\right\|^{2}, \quad x \in D(A)
$$

Thus by $E_{-\infty}=0$ and the right continuity of $\left\|E_{\lambda} x\right\|^{2}$ in λ, we see that $\lambda_{0} x=A x$ iff

$$
\begin{gathered}
E_{\lambda} x=E_{\lambda_{0}^{+}} x=E_{\lambda} x \quad \forall \lambda \geq \lambda_{0} \\
E_{\lambda} x=E_{\lambda_{0}^{-}} x=0 \quad \forall \lambda<\lambda_{0}
\end{gathered}
$$

that is, $\lambda_{0} x=A x$ iff $\left(E_{\lambda_{0}}-E_{\lambda_{0}^{-}}\right) x=x$.
Proposition 6.2.17: Let A be a self-adjoint operator then $\sigma_{r}(A)=\emptyset$.
Proof. Suppose $\lambda \in \sigma_{r}(A)$ then λ is real. Since $\overline{R(\lambda I-A)} \neq \mathscr{H}$, there exists $y \neq 0$ such that $y \perp \overline{(\lambda I-A)}$, i.e., $((\lambda I-A) x, y)=0$ for all $x \in D(A)$. Hence $(A x, y)=(\lambda x, y)=(x, \lambda y)$ and $y \in D\left(A^{*}\right)=D(A)$ as A is self-adjoint, and $D^{*} y=\lambda y$. Since $D^{*}=D$, we find that $y \in \sigma_{p}(A)$ and thus meet a contradiction.

Proposition 6.2.18: Let A be a self-adjoint operator with spectral family $\left\{E_{\lambda}\right\}$, then $\lambda_{0} \in \sigma(A)$ if and only if for all $\epsilon>0$ it holds that $E\left(\lambda_{0}-\epsilon, \lambda_{0}+\epsilon\right) \neq 0$.

Proof. From the previous problem we see that $\rho(A)$ is open, and thus $\sigma(A)$ is closed. The rest of the proof is exactly the same as the proof of Theorem 5.5.19.
2.11 Prove Proposition 6.2.20: Let A be a self-adjoint operator with spectral family $\left\{E_{\lambda}\right\}$, then $\lambda_{0} \in \sigma_{\text {ess }}(A)$ if and only if, $\forall \epsilon>0, \operatorname{dim} R(E(\lambda-\epsilon, \lambda+\epsilon))=\infty$.

Proof. `Only if': Let $\lambda_{0} \in \sigma_{\text {ess }}(A)$ but $\operatorname{dim} R(E(\lambda-\epsilon, \lambda+\epsilon))<\infty$ for some ϵ. Since $\lambda_{0} \in \sigma(A)$, the argument in the proof of Theorem 5.5.21 gives that λ_{0} is an isolated point of $\sigma(A)$ and thus belongs to $\sigma_{p}(A)$ (use Proposition 6.2.16 and 6.2.18), however, $\operatorname{ker}\left(\lambda_{0} I-A\right)=\operatorname{dim} R\left(E\left(\left\{\lambda_{0}\right\}\right)\right) \leq \operatorname{dim} R(E(\lambda-\epsilon, \lambda+\epsilon))<\infty$, contradiction with the assumption that $\lambda_{0} \in \sigma_{\text {ess }}(A)$.
'If': See the proof of Theorem 5.5.21.

3 Spectral Transform of Unbounded Normal Operators

3.1 Suppose that N be a normal operator, show that N^{*} is a normal operator also.

Proof. Theorem 6.1.4 tells us that $N=\bar{N}=N^{* *}$, then $N^{* *} N^{*}=N N^{*}=N^{*} N=N^{*} N^{* *}$. From the same theorem we know that N^{*} is densely defined, and $\Gamma\left(N^{*}\right)=(V \Gamma(N))^{\perp}$ is closed, which implies that N^{*} is closed. Therefore N^{*} is normal.
3.2 Suppose that T is a densely-defined closed operator, $D(T)=D\left(T^{*}\right),\|T x\|=\left\|T^{*} x\right\|$ for all $x \in D(T)$. Show that T is normal.

Proof. From $D(T)=D\left(T^{*}\right)$ it is easy to see that $D\left(T^{*} T\right)=D\left(T T^{*}\right)$. Since $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in D(T)$, it follows from polarisation identity that $\langle T x, T y\rangle=\left\langle T^{*} x, T^{*} y\right\rangle$ for all $x, y \in D(T)$. Then for $x \in D\left(T^{*} T\right)$ and $y \in D(T)$, it is immediate that $\left(T^{*} T x, y\right)=\left(T T^{*} x, y\right)$. Since $D(T)$ is dense in \mathscr{H}, we must have that $T^{*} T x=T T^{*} x$ for all $x \in D\left(T^{*} T\right)$, which, together with $D\left(T^{*} T\right)=D\left(T T^{*}\right)$, implies that $T T^{*}=T^{*} T$ and T is normal.
3.3 Let $L \in L(\mathscr{H})$ and M, N unbounded normal operator on \mathscr{H}. Suppose that $L M \subset N L$, show that $L M^{*} \subset N^{*} L$.

Proof. First consider the case where $M=N$. Let E be the spectral decomposition of M. Then $E(\Delta) L=L E(\Delta)$ for every Borel set Δ (Theorem 6.3.11). It follows that

$$
\left(L M^{*} x, y\right)=\left(M^{*} x, L^{*} y\right)=\int \bar{z} d\left(E(z) x, L^{*} y\right)=\int \bar{z} d(L E(z) x, y)=\int \bar{z} d(E(z) L x, y)=\left(M^{*} L x, y\right)
$$

for all $x \in D\left(M^{*}\right)=D(M)$ and $y \in \mathscr{H}$. This implies that $L M^{*} \subseteq M^{*} L$.
Now we consider the general case. Define \hat{M} on $D(M) \times D(N) \subseteq \mathscr{H} \times \mathscr{H}$ as $\hat{M}(x, y)=(M x, N y)$. It is clear that \hat{M} is normal. Also define \hat{L} on $\mathscr{H} \times \mathscr{H}$ as $\hat{L}(x, y)=(L y, 0)$, which is bounded. Then it is easy to verify that $\hat{L} \hat{M} \subset \hat{M} \hat{L}$. Applying the previous case where $M=N$, we obtain that $\hat{L} \hat{M}^{*} \subset \hat{M}^{*} \hat{L}$, that is, $L M^{*} \subset N^{*} L$.
3.4 Show that a densely-defined closed operator N on \mathscr{H} is an unbounded normal operator if and only if the following conditions hold simultaneously:
(1) $D(N)=D\left(N^{*}\right)$;
(2) $\overline{N+N^{*}}, \overline{i\left(N-N^{*}\right)}$ are self-adjoint, and their spectral families are commutative.
3.5 Let N be a densely-defined closed operator on \mathscr{H}. Show that N is normal if and only if there exist decomposition of the form $N=A+i B, A, B$ are self-adjoint, and their spectral families are commutative.

Proof. 'Only if': Suppose that N is normal. Let $A=\frac{N+N^{*}}{2}$ and $B=i \frac{N^{*}-N}{2}$. Note that $D(N)=D\left(N^{*}\right)$, it follows easily that A, B are self-adjoint and $A B=B A$.
3.6 Prove that every normal operator N in \mathscr{H} has a polar decomposition

$$
N=U P=P U
$$

where U is unitary, P self-adjoint, $P \geq 0$, and $D(P)=D(N)$.
Proof. Put $p(z)=|z|$ and $u(z)=z /|z|$ if $z \neq 0, u(0)=1$. Then p and u are Borel functions on $\sigma(N), D_{p(z)}=$ $D_{z}=D(N)$ and $D_{u(z)}=\mathscr{H}$. Put $P=\Phi p$ and $U=\Phi u$. Since $p \geq 0$, we know that $P \geq 0$. Since $u \bar{u}=1$, $Q Q^{*}=Q^{*} Q=I$. Since $z=p(z) u(z)$, the relation $N=P U=U P$ would follow immediately from the symbolic calculus.
3.7 Suppose that N is an unbounded normal operator and $(\mathbb{C}, \mathscr{B}, E)$ is its spectral family. Show that
(1) $z \in \sigma_{p}(N) \Leftrightarrow E(\{z\}) \neq 0$;
(2) $\sigma_{r}(N)=\emptyset$;
(3) $z \in \sigma(N) \Leftrightarrow \forall$ Borel set $\Delta, z \in \Delta$, it holds that $E(\Delta) \neq 0$.

Proof. With the spectral theorem, the proof is almost identical to the case of bounded normal operator. See Problem 2.10, Theorem 5.5.18 and 5.5.19.
3.8 Suppose that N is an unbounded normal operator and E is its spectral family. Let

$$
\begin{gathered}
\sigma_{\text {ess }}(N)=\{z \in \sigma(N): z \text { has a Borel neighbourhood } \Delta \text { such that } \operatorname{dim} R(E(\Delta))=+\infty .\} \\
\sigma_{d}(N)=\sigma(N) \backslash \sigma_{\text {ess }}(N)
\end{gathered}
$$

show that $z \in \sigma_{d}(N)$ if and only if z is a finite isolated eigenvalue, $z \in \sigma_{\text {ess }}(N)$ if and only if z is a limit point of $\sigma(N)$ or an infinite eigenvalue.

Proof. See Theorem 5.5.21.
3.9 Suppose that \mathscr{H} is a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ a spectral family and f, g Borel-measurable functions. Show that $\Phi(f) \Phi(g)=\Phi(f g)$ if and only if $D_{f g} \subset D_{g}$, where $\Phi(f)$ and D_{f} are defined in (6.3.11) and (6.3.8) respectively.

Proof. Theorem 6.3.4 says that $\Phi(f) \Phi(g) \subset \Phi(f g)$ and $D(\Phi(f) \Phi(g))=D_{g} \cap D_{f g}$.
'Only if': Suppose that $\Phi(f) \Phi(g)=\Phi(f g)$, then $D(\Phi(f) \Phi(g))=D(\Phi(f g))$, that is, $D_{g} \cap D_{f g}=D_{f g}$, hence $D_{f g} \subseteq D_{g}$.
`If': Suppose that $D_{f g} \subset D_{g}$, then $D(\Phi(f) \Phi(g))=D_{f g}=D(\Phi(f g))$, and thus $\Phi(f) \Phi(g)=\Phi(f g)$.
3.10 Let \mathscr{H} be a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ an arbitrary spectral family and f a bounded Borel-measurable function. Show that under the operator norm, the integral

$$
\int_{\mathbb{C}} f(z) d E(z)
$$

is convergent in the sense of Lebesgue integral, and

$$
\Phi(f)=\int_{\mathbb{C}} f(z) d E(z)
$$

where $\Phi(f)$ is defined as in (6.3.1).
Proof. See the remark following Theorem 5.5.14.
3.11 Let \mathscr{H} be a Hilbert space, $(\mathbb{C}, \mathscr{B}, E)$ an arbitrary spectral family and f a Borel-measurable function. Define $\Delta_{n}=\{z:|f(z)| \leq n\}, f_{n}(z)=\chi_{\Delta_{n}}(z) f(z)$, show that

$$
\Phi(f)=s-\lim \Phi\left(f_{n}\right),
$$

where $\Phi(f)$ is defined as in (6.3.11).
Proof. Since f_{n} is bounded, it holds that $D_{f}=D_{f-f_{n}}$. For each $x \in D_{f}$, it follows from Dominated Convergence Theorem that

$$
\left\|\Phi(f) x-\Phi\left(f_{n}\right) x\right\| \leq \int_{\mathbb{C}}\left|f-f_{n}\right|^{2} d\|E(z) x\|^{2} \rightarrow 0
$$

as $n \rightarrow \infty$.

4 Extension of Self-Adjoint Operators

4.1 Let A_{n} be a symmetric operator on a Hilbert space \mathscr{H}_{n} for $n=1,2, \ldots$ Define

$$
D=\left\{u=\left(u_{1}, u_{2}, \ldots\right) \in \bigoplus_{n=1}^{\infty} \mathscr{H}_{n}: u_{n} \in D\left(A_{n}\right), \text { only finitely many } u_{n} \text { 's are non-zeroes }\right\} .
$$

Show that
(1) $A=\sum_{n=1}^{\infty} A_{n}$ is symmetric on D;
(2) $n_{ \pm}(A)=\sum_{n=1}^{\infty} n_{ \pm}\left(A_{n}\right)$.

Proof. (1) It is not difficult to see that D is dense and $A=\sum_{n=1}^{\infty} A_{n}$ is linear. It is straightforward to verify that $(A x, y)=(x, A y)$ for $x, y \in D$, thus A is symmetric.
(2) We only show that $n_{+}(A)=\sum_{n=1}^{\infty} n_{+}\left(A_{n}\right)\left(n_{-}(A)\right.$ can be proved similarly), for which it suffices to show that

$$
\operatorname{ker}\left(A^{*}-i I\right)=\bigoplus_{n=1}^{\infty} \operatorname{ker}\left(A_{n}^{*}-i I\right)
$$

The left-hand side is $R(A+i I)^{\perp}$. Suppose that $v=\left(v_{1}, v_{2}, \ldots\right) \in R(A+i I)$, then $\sum\left(\left(A_{n}+i I\right) u_{n}, v_{n}\right)=0$ for all $\left(u_{1}, u_{2}, \ldots\right) \in D$, which reduces to $\left(\left(A_{n}+i I\right) u_{n}, v_{n}\right)=0$ for all n and $u_{n} \in D\left(A_{n}\right)$. This implies that $v_{n} \in R\left(A_{n}+i I\right)^{\perp}=\operatorname{ker}\left(A_{n}^{*}-i I\right)$, giving $\operatorname{ker}\left(A^{*}-i I\right) \subseteq \sum_{n=1}^{\infty} \operatorname{ker}\left(A_{n}^{*}-i I\right)$.
Conversely, suppose that $v_{n} \in \operatorname{ker}\left(A_{n}^{*}-i I\right)=R\left(A_{n}+i I\right)^{\perp}$, i.e., $\left(\left(A_{n}+i I\right) u_{n}, v_{n}\right)=0$ for all $u_{n} \in D\left(A_{n}\right)$, then $\sum\left(\left(A_{n}+i I\right) u_{n}, v_{n}\right)=0$ for all $\left(u_{1}, u_{2}, \ldots\right) \in D$, indicating that $\left(v_{1}, v_{2}, \ldots\right) \in R(A+i I)^{\perp}=$ $\operatorname{ker}\left(A^{*}-i I\right)$. Hence $\sum_{n=1}^{\infty} \operatorname{ker}\left(A_{n}^{*}-i I\right) \subseteq \operatorname{ker}\left(A^{*}-i I\right)$.
Finally consider the decomposition of 0 . Suppose that $(A+i I)\left(u_{1}, u_{2}, \ldots\right)=0$, i.e., $\left(A_{1} u_{1}+i u_{1}, A_{2} u_{2}+\right.$ $\left.i u_{2}, \ldots\right)=0$, which implies that $\left(A_{n}+i I\right) u_{n}=0$ for all n. Since A_{n} is symmetric, it must hold that $u_{n}=0$. Hence the sum is a direct sum.
4.2 Define $T_{1}=i \frac{d}{d x}$ with domain $C_{0}^{\infty}[0, \infty)$ in $L^{2}[0, \infty)$ and $T_{2}=i \frac{d}{d x}$ with domain $C_{0}^{\infty}(-\infty, 0]$ in $L^{2}(-\infty, 0]$. Show that $\operatorname{def}\left(T_{1}\right)=(0,1)$ and $\operatorname{def}\left(T_{2}\right)=(1,0)$. Show how to construct a symmetric operator with any given pair of deficiency indices.

Proof. Integration by parts shows that T_{1} is symmetric. The range of $T_{1}-i I$ contains all functions f of form

$$
i \frac{d}{d x} u-i u=f, \quad u \in C_{0}^{\infty}[0, \infty)
$$

Hence $f \in C_{0}^{\infty}[0, \infty)$. Multiply by e^{-x},

$$
i \frac{d}{d x}\left(e^{-x} u\right)=e^{-x} f
$$

Since u has compact support, we obtain that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} f=0 \tag{1}
\end{equation*}
$$

Conversely, every C_{0}^{∞} function f satisfying the condition above belongs to the range of $T_{1}-i I$ as we can define u by

$$
u(x)=-i \int_{0}^{x} e^{-(y-x)} f(y) d y
$$

It is clear that $u \in C_{0}^{\infty}[0, \infty)$. Therefore $f \in C_{0}^{\infty}[0, \infty)$ is contained in $R\left(T_{1}-i I\right)$ if and only if f satisfies (1). Note that $e^{-x} \in L^{2}[0, \infty)$, it follows that $R\left(T_{1}-i I\right)^{\perp}$ is a one-dimensional subspace spanned by e^{-x}, and $n_{-}\left(T_{1}\right)=1$. Now consider the range of $T_{1}+i I$. Similarly we conclude that $f \in C_{0}^{\infty}[0, \infty)$ is contained in $R\left(T_{1}+i I\right)$ if and only if

$$
\int_{0}^{\infty} e^{x} f=0
$$

Since $e^{x} \notin L^{2}[0, \infty), f$ satisfies the equation above is dense in $C_{0}^{\infty}[0, \infty)$. Therefore $R\left(T_{1}+i I\right)$ is dense and thus $n_{+}\left(T_{1}\right)=0$.
A similar argument shows that $\operatorname{def}\left(T_{2}\right)=(1,0)$. Now combining with Problem 1, we see that on

$$
\begin{aligned}
& D=\left\{u \in \bigoplus^{p} L^{2}[0, \infty) \oplus \bigoplus^{q} L^{2}(-\infty, 0]: u_{i} \in C_{0}^{\infty}[0, \infty) \text { for } 1 \leq i \leq p\right. \text { and } \\
& \left.\qquad u_{i} \in C_{0}^{\infty}(-\infty, 0] \text { for } p+1 \leq i \leq p+q\right\}
\end{aligned}
$$

the operator $\sum^{p+q} i \frac{d}{d x}$ has deficiency indices (p, q).
4.3 Suppose that $p(x)$ is a polynomial with real coefficients. Let $A=p\left(i \frac{d}{d x}\right)$ with domain $C_{0}^{\infty}[0, \infty)$ in $L^{2}[0, \infty)$. Show that
(1) A is symmetric;
(2) if p has no odd powers, then the deficiency indices of A are equal;
(3) if the degree of p is odd, then the deficiency indices of A are unequal.

Proof. (1) Straightforward integration by parts.
(2) If p has no odd-degree terms, then $\overline{(A+i I) u}=(A-i I) \bar{u}$, which implies that $R(A+i I)$ is isomorphic to $R(A-i I)$. The conclusion follows easily.
(3) The approach is similar to that in Problem 4.2.

The range of $A-i I$ contains all functions f of form $A u-i u=f, u \in C_{0}^{\infty}[0, \infty)$. From ODE Theory, we conclude that f is contained in the range of $A-i I$ if and only if $\int_{0}^{\infty} f g=0$ for all g that are solutions to $(A+i I) g=0$, where we formally extend the domain of A to $C^{\infty}[0, \infty) \cap L^{2}[0, \infty)$. The deficiency index concerns only those g that are contained in L^{2}, hence we are only concerned with $\int_{0}^{\infty} x^{k} e^{z x} f(x) d x=0$, where z is the root of $p(i z)+i=0$ with $\Re z<0$. In fact, $n_{+}(A)$ is the number of the roots of $p(i z)+i=0$ lying in $\Re z<0$. Similarly, $n_{-}(A)$ is the number of the roots of $p(i z)-i=0$ lying in $\Re z>0$. Note that $p(i x) \pm i=0$ has no pure imaginary roots, and $z \leftrightarrow-\bar{z}$ is a bijection between the roots of the two equations. We conclude that $n_{+}+n_{-}=\operatorname{deg} g$, which is odd, therefore n_{+}and n_{-}can never be equal.
4.4 Let M and N be two subspaces of \mathscr{H} and $\operatorname{dim} M>\operatorname{dim} N$. Show that there exists $u \in M,\|u\|=1$, such that $u \in N^{\perp}$.

Proof. By considering a subspace of M, if necessary, we can assume that both M and N are finite-dimensional. Take orthonormal basis $\left\{x_{i}\right\}_{i=1}^{m}$ and $\left\{y_{i}\right\}_{i=1}^{n}, m>n$, for M and N, respectively. Consider $x=\sum a_{i} x_{i} \in M$. We want $\left(x, y_{j}\right)=\sum_{j} a_{i}\left(x_{i}, y_{j}\right)=0$ for all $1 \leq j \leq n$. This is a system of linear equations that can be rewritten as $A x=0$, where $A_{i j}=\left(x_{i}, y_{j}\right)$. Note that A has more rows (m rows) than columns (n columns), the linear system has a non-zero solution.
4.5 Let A be a closed symmetric operator. Show that $\sigma(A)$ must be one of the four cases:
(1) the closed upper half plane;
(2) the closed lower half plane;
(3) the entire plane;
(4) a subset of the real axis.

Proof. Suppose that $z_{0} \in \rho(A)$. First suppose that $\operatorname{im} z_{0}<0$, then $\operatorname{dim} \operatorname{ker}\left(A^{*}+z I\right)=n_{-}=\operatorname{dim} \operatorname{ker}\left(A^{*}+z_{0} I\right)$ for all $\operatorname{im} z<0$. Since $A-z_{0} I$ is invertible, $R\left(A-z_{0} I\right)=\mathscr{H}$ and $n_{-}=0$. Hence $\operatorname{ker}\left(A^{*}+z I\right)=\{0\}$ for all $\operatorname{im} z<0$, that is, $R(A-z I)=\mathscr{H}$ for all $\operatorname{im} z<0$ (because $R(A-z I)$ is closed when A is closed and symmetric). Note also symmetry of A implies that $A-z I$ is injective. Hence $A-z I$ is bijective for $\operatorname{im} z<0$, and $z \in \rho(A)$. Similarly, if im $z_{0}>0$ then the entire open half-plane is contained in $\rho(A)$.
4.6 Let A be a closed symmetric operator. If $\rho(A)$ contains a real number then A is self-adjoint.

Proof. Since $\rho(A)$ contains a real number, the spectrum $\sigma(A)$ must be in case (4), that is, $\sigma(A) \subset \mathbb{R}$. Then $\operatorname{def}(A)=$ $(0,0)$ and it follows from von Neumann Theorem that A is self-adjoint. (See also Theorem 6.4.5)
4.7 Let A be a symmetric operator. If A_{1} is a symmetric extension of A, then $A_{1} \subset A^{*}$. Define a sesquilinear form on $D\left(A^{*}\right)$ as

$$
\{x, y\}=\left(A^{*} x, y\right)-\left(x, A^{*} y\right) .
$$

Show that $\{x, y\}=0$ for all $x, y \in D\left(A_{1}\right)$.

Proof. $A \subset A_{1} \Rightarrow A_{1}^{*} \subset A^{*}$. Also A_{1} is symmetric, $A_{1} \subset A_{1}^{*}$ and $\{x, y\}=0$.
4.8 Suppose that A is a symmetric operator and D a linear subspace such that $D(A) \subset D \subset D\left(A^{*}\right)$ and $\{x, y\}=0$ on $D \times D$. Show that there exists a symmetric extension, denoted A_{1}, of A such that $D\left(A_{1}\right)=D$.

Proof. Let $A_{1}=\left.A^{*}\right|_{D}$, then it is symmetric because $\{x, y\}=0$ on $D \times D$. Also, $A \subset A^{*}$ and $D(A) \subset A$, we see that $A \subset A_{1}$.
4.9 Let A be a symmetric operator. Define an inner product on $D\left(A^{*}\right)$ as

$$
(x, y)_{A}=(x, y)+\left(A^{*} x, A^{*} y\right)
$$

then $D\left(A^{*}\right)$ with $(\cdot, \cdot)_{A}$ forms a Hilbert space. Show that
(1) The sesquilinear form defined in Problem 6.4.7 is continuous under the topology induced by $(\cdot, \cdot)_{A}$;
(2) Suppose that A_{1} is a restriction of A. Show that A_{1} is a closed operator if and only if $D\left(A_{1}\right)$ is closed under the topology induced by $(\cdot, \cdot)_{A}$.

Proof. (1) Suppose that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ under $\|\cdot\|_{A}$, then $x_{n} \rightarrow x, y_{n} \rightarrow y, A^{*} x_{n} \rightarrow A^{*} x, A^{*} y_{n} \rightarrow A^{*} y$ (because A^{*} is closed -- the dual of any densely-defined operator is closed) under the usual norm. It follows that

$$
\left\{x_{n}, y_{n}\right\}=\left(A^{*} x_{n}, y_{n}\right)-\left(x_{n}, A^{*} y_{n}\right) \rightarrow\left(A^{*} x, y\right)-\left(x, A^{*} y\right)=\{x, y\}
$$

where we use the fact that the usual inner product is continuous w.r.t. the usual norm.
(2) Note that the graph norm of A_{1} coincides with $(\cdot, \cdot)_{A}$.
4.10 Let A be a symmetric operator and view $D\left(A^{*}\right)$ as a Hilbert space with inner product $(\cdot, \cdot)_{A}$. Let S be a subset of $D\left(A^{*}\right)$. We say S is symmetric if $\{x, y\}=0$ on $S \times S$. Show that there is a one-to-one correspondence between the closed symmetric subspaces of $D\left(A^{*}\right)$ that contain $D(A)$ and all the closed symmetric subspaces of $D_{+} \oplus D_{-}$, where $D_{+\tilde{\sim}}=\operatorname{ker}\left(A^{*}-i I\right)$ and $D_{-}=\operatorname{ker}\left(A^{*}+i I\right)$. Moreover, if $D \supset D(A)$ is closed and symmetric and corresponds to \tilde{D}, a closed and symmetric subspace of $D_{+} \oplus D_{-}$, then $D=D(\bar{A}) \oplus \tilde{D}$.

Proof. First it is clear that A is closable, and $\bar{A}^{*}=A^{*}$. Observe that any closed subspace of $D\left(A^{*}\right)$ that contains $D(A)$ also contains $D(\bar{A})$, we may assume that A is closed.
Suppose $D \supset D(A)$ is a closed subspace of $D\left(A_{\tilde{D}}^{*}\right)$. Note that $D\left(A^{*}\right)=D(A) \oplus D_{+} \oplus D_{-}$, for any $x \in D$ we can write $x=x_{A}+x_{+}+x_{-}$in a unique way. Let \tilde{D} be spanned by those x_{+}'s and x_{-}'s. We claim that \tilde{D} is a closed symmetric subspace of $D_{+} \oplus D_{-}$. The closedness of \tilde{D} follows from the closedness of D and $D(A)$. We show that \tilde{D} is symmetric, i.e. (after some algebra), $\left(x_{+}, y_{+}\right)=\left(x_{-}, y_{-}\right)$for all $x, y \in \tilde{D}$. This is not hard to obtain from the symmetry of $D, A^{*} x=A x+i x_{+}-i x_{-}$together with the assumption that A is symmetric. It is clear that $D=D(\bar{A}) \oplus \tilde{D}$ from the construction of \tilde{D}, which implies that $D \leftrightarrow \hat{D}$ is a one-to-one correspondence.
4.11 Suppose that A is a symmetric operator, A^{2} is densely-defined, show that $A^{*} \bar{A}$ is a Friedrichs self-adjoint extension of A^{2}.

Proof. Without loss of generality, assume that A is closed. It is clear that A^{2} is symmetric. Define $a(u, v)=$ $\left(A^{2} u, v\right)+(u, v)$, then $a(u, v)$ is a positive-definite sesquilinear form on $D\left(A^{2}\right) \subseteq D(A)$. Consider the completion of $D\left(A^{2}\right)$ with respect to a, denoted by D. Note that $a(u, u)=\|A u\|^{2}+\|u\|^{2}$ and $D(A)$ is closed under this norm (equivalent to the graph norm), the completion of $D\left(A^{2}\right)$, denoted by D, is the intersection of all subspaces of $D(A)$ that are closed under the graph norm. We shall show that $D=D(Q)$, where $D(Q)$ is defined in Corollary 6.4.21. Then it follows from the uniqueness of the extension (Theorem 6.4.20) that $A^{*} A$ is the self-adjoint extension of A^{2} (Theorem 6.4.21).
Obviously $D \subseteq D(Q)$, thus it suffices to show that $D(Q) \subseteq D$. This is because $D(Q)$ is closed and is dense in $D(A)$.
4.12 Suppose that A is a lower semi-bounded closed symmetric operator, $A \geq-M$. Then $\operatorname{dim} \operatorname{ker}\left(A^{*}-z I\right)$ is a constant on $\mathbb{C} \backslash[-M, \infty)$.

Proof. The proof is the same as that of Theorem 6.4.4. To connect the upper and lower half-planes, notice that the proof is valid for real $z \in(-\infty,-M)$. In fact, suppose that $u \in D(A),(A-z I) u=x$,

$$
(x, u)=((A-z I) u, u) \geq(-M-z)\|u\|^{2}
$$

implying that

$$
\|x\| \geq \sqrt{(-M-z)}\|u\|
$$

4.13 Let A be a closed symmetric operator that is semi-bounded from below. Suppose that $n_{+}(A)=n_{-}(A)<\infty$, show that any self-adjoint extension of A is semi-bounded from below.

Proof. Suppose that A_{1} is a self-adjoint extension of A. From Problem 4.10, we know that $D\left(A_{1}\right)=D(A) \oplus S$, where S is a finite-dimensional linear space. Suppose that M is the lower bound of A and pick $K<M$. Then $\operatorname{dim} P_{(-\infty, K]} \leq \operatorname{dim} S$, where P_{Ω} is the projection-valued measure of A_{1}. Otherwise, we can find $x \in D(A) \cap$ $R\left(P_{(-\infty, K]}\right)$, so that

$$
(A x, x)=\int_{\mathbb{R}} z d\|E(z) x\|^{2} \leq K\|E(K) x\|^{2} \leq M\|x\|^{2}
$$

contradicting with $A \geq M$. We have established that $\operatorname{dim} P_{(-\infty, K]}<\infty$, this implies that $\sigma\left(A_{1}\right)$ has only finitely many elements in $(-\infty, K]$, and they are eigenvalues. Therefore, A_{1} is bounded below.
4.14 Suppose that T is a densely-defined closed operator in a Hilbert space. Show that there exist a positive self-adjoint operator A with $D(A)=D(T)$ and an isometry $V:(\operatorname{ker} T)^{\perp} \rightarrow \overline{R(T)}$ such that

$$
T=V A
$$

This is called polar decomposition of closed operator.
Proof. Since T is densely-defined and closed, we have that $T^{*} T$ is positive self-adjoint. Let $A=\left(T^{*} T\right)^{\frac{1}{2}}$. For $x \in D\left(T^{*} T\right)$ we clearly have $\|T x\|^{2}=\left(T^{*} T x, x\right)=\left(A^{2} x, x\right)=\|A x\|^{2}$. Since $D\left(T^{*} T\right)$ is dense in $D(T)$, we can extend A to $D(T)$ by continuity such that $\|T x\|=\|A x\|$ for all $x \in D(T)$.
Define $V: R(A) \rightarrow R(T)$ such that $V A x=T x$, it is clear that V is well-defined and norm preserving. Thus V extends to an isometry from $\overline{R(A)}$ to $\overline{R(T)}$ by continuity. Since A is self-adjoint, $\overline{R(A)}=(\operatorname{ker} A)^{\perp}=(\operatorname{ker} T)^{\perp}$. Suppose that $T=V^{\prime} A^{\prime}$ is another decomposition. Then $T^{*} T=A^{* *} V^{*} V A^{\prime}=A^{*} A^{\prime}=A^{\prime 2}$, thus $A=A^{\prime}$ on $D\left(T^{*} T\right)$ because $\sqrt{T^{*} T}$ is unique. It follows immediately that $A=A^{\prime}$ on $D(T)$ and $V^{\prime}=V$.
4.15 Let A be a symmetric operator in a Hilbert space. Show that A is essentially self-adjoint if and only if $\operatorname{dim} \operatorname{ker}\left(A^{*} \mp\right.$ $i I) \triangleq n_{ \pm}=0$.

Proof. This is Corollary 6.2.5 (Exercise 6.2.2).
4.16 Denote the Schwartz space by $\mathscr{S}\left(\mathbb{R}^{3}\right)$. Let $K_{1}\left(\mathbb{R}^{3}\right)$ be the closure of $\mathscr{S}\left(\mathbb{R}^{3}\right)$ under the norm of $\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x$. Let $\mathscr{H}=K_{1}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$ and define an inner product in \mathscr{H} as

$$
\left(\left\langle f_{1}, f_{2}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle\right)=\int_{\mathbb{R}^{3}}\left(\nabla f_{1} \cdot \overline{\nabla g_{1}}+f_{2} \overline{g_{2}}\right) d x
$$

Consider the following operator in \mathscr{H} :

$$
A=\left(\begin{array}{ll}
0 & I \\
\Delta & 0
\end{array}\right), \quad D(A)=\mathscr{S}\left(\mathbb{R}^{3}\right) \times \mathscr{S}\left(\mathbb{R}^{3}\right)
$$

Show that
(1) $i A$ is symmetric;
(2) $i A$ is essentially self-adjoint.

Proof. (1) For $\left\langle f_{1}, f_{2}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle \in D(A)$, it holds that

$$
\begin{aligned}
\left(i A\left\langle f_{1}, f_{2}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle\right) & =\left(i\left\langle f_{2}, \Delta f_{1}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle\right) \\
& =i \int_{\mathbb{R}^{3}}\left(\nabla f_{2} \cdot \overline{\nabla g_{1}}+\Delta f_{1} \cdot \overline{g_{2}}\right) d x \\
& =-i \int_{\mathbb{R}^{3}}\left(f_{2} \cdot \overline{\Delta g_{1}}+\nabla f_{1} \cdot \overline{\nabla g_{2}}\right) d x \\
& =\left(\left\langle f_{1}, f_{2}\right\rangle, i\left\langle g_{2}, \Delta g_{1}\right\rangle\right) \\
& =\left(\left\langle f_{1}, f_{2}\right\rangle, i A\left\langle g_{1}, g_{2}\right\rangle\right) .
\end{aligned}
$$

(2) We shall show that $R(A \pm i I)$ is dense in \mathscr{H}. We first show that $R(A+i I)$ is dense. Note that

$$
(A+i I)\left\langle f_{1}, f_{2}\right\rangle=i\left\langle f_{2}+f_{1}, \Delta f_{1}+f_{2}\right\rangle,
$$

it suffices to show that the system of equations

$$
\begin{aligned}
v+u & =f \\
\Delta u+v & =g
\end{aligned}
$$

has solution $u, v \in \mathscr{S}\left(\mathbb{R}^{3}\right)$ if $f, g \in \mathscr{S}\left(\mathbb{R}^{3}\right)$, which can be easily reduced to show that

$$
\Delta u-u=h
$$

has solution $u \in \mathscr{S}\left(\mathbb{R}^{3}\right)$ if $h \in \mathscr{S}\left(\mathbb{R}^{3}\right)$. Take Fourier transform on both sides,

$$
-4 \pi^{2}|\xi|^{2} \hat{u}-\hat{u}=\hat{h}
$$

Solve for \hat{u},

$$
\hat{u}=-\frac{\hat{h}}{1+4 \pi^{2}|\xi|^{2}},
$$

which is clearly in $\mathscr{S}\left(\mathbb{R}^{3}\right)$. Hence by taking inverse Fourier transform we obtain a solution $u \in \mathscr{S}\left(\mathbb{R}^{3}\right)$. Similarly, to show that $R(A-i I)$ is dense, it suffices to show that

$$
\begin{aligned}
v-u & =f \\
\Delta u-v & =g
\end{aligned}
$$

has solution $u, v \in \mathscr{S}\left(\mathbb{R}^{3}\right)$ if $f, g \in \mathscr{S}\left(\mathbb{R}^{3}\right)$, which reduced to the same problem as above.

5 Perturbation of Self-Adjoint Operators

5.1 Let A be self-adjoint and B be symmetric. Suppose that B is A-bounded with relative bound equal to a. Prove that

$$
a=\lim _{n \rightarrow \infty}\left\|B(A+i n)^{-1}\right\| .
$$

Proof. Note that $\|(A+i n) u\|^{2}=\|A u\|^{2}+n^{2}\|u\|^{2}$ for all $u \in D(A)$. Since A is self-adjoint, $A+i n$ is invertible and $R(A+i n)=\mathscr{H}$. Replace u by $(A+i n)^{-1} x$,

$$
\begin{equation*}
\|x\|^{2}=\left\|A(A+i n)^{-1} x\right\|^{2}+n^{2}\left\|(A+i n)^{-1} x\right\|^{2} \tag{2}
\end{equation*}
$$

Suppose that $\|B u\|^{2} \leq a^{\prime 2}\|A u\|+b^{\prime 2}\|u\|^{2}$ for all $u \in D(A)$. Replace u by $(A+i n)^{-1} x$ and use (2),

$$
\begin{aligned}
\left\|B(A+i n)^{-1} x\right\|^{2} & \leq a^{\prime 2}\left\|A(A+i n)^{-1} x\right\|+b^{\prime 2}\left\|(A+i n)^{-1} x\right\|^{2} \\
& \leq a^{\prime 2}\left(\|x\|^{2}-n^{2}\left\|(A+i n)^{-1} x\right\|^{2}\right)+b^{\prime 2}\left\|(A+i n)^{-1} x\right\|^{2} \\
& \leq a^{\prime 2}\|x\|^{2}
\end{aligned}
$$

when n is large enough. This implies that $a^{\prime} \geq \overline{\lim }\left\|B(A+i n)^{-1}\right\|$ and thus $a \geq \overline{\lim }\left\|B(A+i n)^{-1}\right\|$. The conclusion follows easily if $a=0$, so we assume $a>0$ henceforth.
On the other hand, By the definition of relative bound, we know that for any $\epsilon>0$ small enough, $b>0$, there exists $u \in D(A)$ such that

$$
\|B u\|^{2}>(a-\epsilon)^{2}\|A u\|^{2}+b^{2}\|u\|^{2}
$$

Use the same technique as before,

$$
\left\|B(A+i n)^{-1} x\right\|^{2}>(a-\epsilon)^{2}\|x\|^{2}+\left(b^{2}-(a-\epsilon)^{2} n^{2}\right)\left\|(A+i n)^{-1} x\right\|^{2}
$$

Choose $b=(a-\epsilon) n$, we know that for any $\epsilon>0$ there exists x such that

$$
\left\|B(A+i n)^{-1} x\right\|^{2}>(a-\epsilon)^{2}\|x\|^{2}
$$

 $\epsilon \rightarrow 0, a \leq \underline{\lim }\left\|B(A+i n)^{-1}\right\|$, whence the conclusion follows.
5.2 Let A be a densely defined closed operator and B a closable operator. If $D(A) \subset D(B)$, show that B is A-bounded.

Proof. Since A is closed, $X=\left(D(A),\|\cdot\|_{\Gamma(A)}\right)$ is a Banach space. Without loss of generality, we may assume that B is closed. To show that B is A-bounded, i.e., B is continuous on X, it suffices to show that $\left.B\right|_{X}$ is a closed operator then the Closed Graph Theorem applies. In fact, suppose that $x_{n} \rightarrow x$ in X and $B x_{n} \rightarrow y$. Then $x_{n} \rightarrow x$ in \mathscr{H}. Since B is closed, we must have $B x=y$, which shows that $\left.B\right|_{X}$ is closed.
5.3 Suppose that A and B are densely-defined operators in \mathscr{H}, B is A-bounded, then there exist $a, b \geq 0$ such that

$$
\|B x\| \leq a\|A x\|+b\|x\|, \quad \forall x \in D(A)
$$

Show that
(1) B is $(A+B)$-bounded and the relative bound is at most $\frac{a}{1-a}$;
(2) if C is A-bounded with relative bound c, then C is $(A+B)$-bounded with relative bound at most $\frac{c}{1-a}$.

Proof. (1) Note that

$$
\|(A+B) x\| \geq\|A x\|-\|B x\| \geq\|A x\|-(a\|A x\|+b\|x\|)=(1-a)\|A x\|-b\|x\|
$$

Then

$$
\begin{equation*}
\|A x\| \leq \frac{\|(A+B) x\|+b\|x\|}{1-a} \tag{3}
\end{equation*}
$$

and

$$
\|B x\| \leq a\|A x\|+b\|x\| \leq a \frac{\|(A+B) x\|+b\|x\|}{1-a}+b\|x\|=\frac{a}{1-a}\|(A+B) x\|+\frac{b(1+a)}{1-a}\|x\| .
$$

(2) For any $\epsilon>0$ there exists $d \geq 0$ such that

$$
\|C x\| \leq(c+\epsilon)\|A x\|+d\|x\| \leq \frac{c+\epsilon}{1-a}\|(A+B) x\|+\left(\frac{c+\epsilon}{1-a}+d\right)\|x\|
$$

thus C is $(A+B)$-bounded with relative bound at most $\frac{c+\epsilon}{1-a}$. Let $\epsilon \rightarrow 0$, completing the proof.
5.4 Let \mathscr{H} be a Hilbert space. Suppose that A is a densely defined closed operator and B is A-bounded such that

$$
\|B x\| \leq a\|A x\|+b\|x\| .
$$

Let $\lambda \in \rho(A)$ such that

$$
a\left\|A R_{\lambda}(A)\right\|+b\left\|R_{\lambda}(A)\right\|<1
$$

where $R_{\lambda}(A)=(\lambda I-A)^{-1}$ is the resolvent operator of A. Show that $A+B$ is closed, $\lambda \in \rho(A+B)$ and

$$
\left\|R_{\lambda}(A+B)\right\| \leq\left\|R_{\lambda}(A)\right\|\left(1-a\left\|A R_{\lambda}(A)\right\|-b\left\|R_{\lambda}(A)\right\|\right)^{-1}
$$

Proof. First we show that $A+B$ is closed. Suppose that $x_{n} \rightarrow x$ and $(A+B) x_{n} \rightarrow y$. From (3) we see that $\left\{A x_{n}\right\}$ is Cauchy and thus $A x_{n} \rightarrow z$ for some z. Since A is closed, we have that $x \in D(A)$ and $z=A x$. Thus $B x_{n} \rightarrow y-z$. Also, since B is A-bounded, it holds that $B x_{n} \rightarrow B x$. Therefore $y-z=B x$ and $(A+B) x_{n} \rightarrow(A+B) x$.
Denote $c=a\left\|A R_{\lambda}(A)\right\|+b\left\|R_{\lambda}(A)\right\|$. Replacing x by $R_{\lambda}(A) y$ in $\|B x\| \leq a\|A x\|+b\|x\|$, we obtain that

$$
\left\|B R_{\lambda}(A) y\right\| \leq a\left\|A R_{\lambda}(A) y\right\|+b\left\|R_{\lambda}(A) y\right\| \leq c\|y\| .
$$

Then

$$
\|(A+B-\lambda I) x\| \geq\|(A-\lambda I) x\|-\|B x\| \geq\|y\|-c\|y\|=(1-c)\|y\| \geq \frac{1-c}{\left\|R_{\lambda}(A)\right\|}\|x\|
$$

which implies that $\lambda \in \rho(A+B)$ and $\left\|R_{\lambda}(A+B)\right\| \leq \frac{\left\|R_{\lambda}(A)\right\|}{1-c}$.
5.5 Let A and B be densely defined operators in \mathscr{H}. Suppose that $A^{-1} \in L(\mathscr{H})$ and B is A-bounded such that

$$
\|B x\| \leq a\|A x\|+b\|x\|, \quad x \in D(A)
$$

Suppose that $a+b\left\|A^{-1}\right\|<1$, prove that
(1) $A+B$ is closed and invertible;
(2) $\left\|(A+B)^{-1}\right\| \leq\left\|A^{-1}\right\|\left(1-a-b\left\|A^{-1}\right\|\right)^{-1},\left\|(A+B)^{-1}-A^{-1}\right\| \leq\left\|A^{-1}\right\|\left(a+b\left\|A^{-1}\right\|\right) \|\left(1-a-b\left\|A^{-1}\right\|\right)^{-1}$;
(3) if A^{-1} is compact, $(A+B)^{-1}$ is also compact.

Proof. It has been proved in the previous exercise that $A+B$ is closed. Similarly, Replacing x by $A^{-1} y$ in $\|B x\| \leq$ $a\|A x\|+b\|x\|$, we obtain that

$$
\left\|B A^{-1} y\right\| \leq a\|y\|+b\left\|A^{-1} y\right\| \leq c\|y\|,
$$

where $c=a+b\left\|A^{-1}\right\|<1$. Then

$$
\|(A+B) x\|=\left\|y+B A^{-1} y\right\| \geq\|y\|-c\|y\|=\frac{1-c}{\left\|A^{-1}\right\|}\|x\|,
$$

which shows that $A+B$ is invertible and $\left\|(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-c}$. Denote $T=(A+B)^{-1}-A^{-1}$. Now,

$$
\|T\| \leq\left\|(A+B)^{-1}\right\|\|(A+B) T\|=\left\|(A+B)^{-1}\right\|\left\|B A^{-1}\right\| \leq\left\|(A+B)^{-1}\right\| c
$$

Since $\left\|B A^{-1}\right\|<1$, we see that $I+B A^{-1}$ is invertible, then $(A+B)^{-1}=A^{-1}\left(I+B A^{-1}\right)^{-1}$ is compact by Theorem 4.1.2(6).
5.6 Suppose that A and B are densely defined operators, B is A-bounded and $\operatorname{dim} R(B)<\infty$. Show that B is A-compact.

Proof. Suppose $\left\{x_{n}\right\}$ and $\left\{A x_{n}\right\}$ are bounded sequences. Since B is A-bounded, $\left\{B x_{n}\right\}$ is a bounded sequence, too. Then $\left\{B x_{n}\right\}$ has a convergent subsequence because $R(B)$ is finite-dimensional.
5.7 Suppose that A and B are symmetric operators, $D(A)=D(B)=D$, and

$$
\|(A-B) x\| \leq a^{\prime}\|A x\|+a^{\prime \prime}\|B x\|+b\|x\|, \forall x \in D
$$

where $0<a^{\prime}, a^{\prime \prime}<1, b>0$. Show that A is essentially self-adjoint if and only if B is essentially self-adjoint, and when they are self-adjoint it holds that $D(\bar{A})=D(\bar{B})$.

Proof. Use Corollary 6.5.12 instead of Theorem 6.5.2 in the proof of Corollary 6.5.4.
5.8 Suppose that A is self-adjoint and B is symmetric. Show that B is A-compact if and only if
(1) $D(B) \supset D(A)$;
(2) $\forall \lambda \in \rho(A), B(\lambda I-A)^{-1}$ is compact.

Furthermore, the condition (2) can be replaced by
(2') $\exists \lambda \in \rho(A)$ such that $B(\lambda I-A)^{-1}$ is compact.
Proof. `If': Suppose that \(\left\{x_{n}\right\}\) and \(\left\{A x_{n}\right\}\) are bounded sequences, then \(\left\{(\lambda I-A) x_{n}\right\}\) is bounded. Hence \(\left\{B x_{n}\right\}=\) \(\left\{B(\lambda I-A)^{-1}\left((\lambda I-A) x_{n}\right)\right\}\) has a convergent subsequence. 'Only if': Suppose that \(\left\{x_{n}\right\}\) is a bounded sequence, then \(\left\{(\lambda I-A)^{-1} x_{n}\right\}\) is bounded, \(\left\{A(\lambda I-A)^{-1} x_{n}\right\}\) is also bounded since \(A(\lambda I-A)^{-1}=\lambda(\lambda I-A)^{-1}-I\). Since \(B\) is \(A\)-compact, \(\left\{B(\lambda I-A)^{-1} x_{n}\right\}\) has a convergent subsequence. It is clear that we need only \(\exists \lambda\) instead of \(\forall \lambda\) in the `only if' part.
5.9 Let $V \in \mathscr{H}=L^{2}\left(\mathbb{R}^{3}\right)$ and $\lambda>0$. Show that

$$
\lim _{\lambda \rightarrow \infty}\left\|V(-\Delta+\lambda)^{-1}\right\|=0
$$

and that V is $(-\Delta)$-compact.
Proof. It is easy to see that $-\Delta+\lambda$ is invertible on C_{0}^{∞} using Fourier Transform and $(-\Delta+\lambda)^{-1} u$ is in Schwartz space for $u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. More precisely, using Green's function,

$$
\left((-\Delta+\lambda)^{-1} u\right)(x)=\int_{\mathbb{R}^{3}} \frac{e^{-\sqrt{\lambda}|x-y|}}{4 \pi|x-y|} u(y) d y
$$

Then

$$
\left(\left(V(-\Delta+\lambda)^{-1}\right) u\right)(x)=\int_{\mathbb{R}^{3}}|V(x)| \frac{e^{-\sqrt{\lambda}|x-y|}}{4 \pi|x-y|} u(y) d y
$$

where the integral kernel

$$
K_{\lambda}(x, y)=|V(x)| \frac{e^{-\sqrt{\lambda}|x-y|}}{4 \pi|x-y|} \in L^{2}\left(\mathbb{R}^{6}\right)
$$

Now,

$$
\| V\left((-\Delta+\lambda)^{-1}\|\leq\| K_{\lambda} \| \cdot \frac{1}{\lambda} \rightarrow 0\right.
$$

as $\lambda \rightarrow \infty$. Also, since $K_{\lambda}(x, y) \in L^{2}\left(\mathbb{R}^{6}\right)$, it is a Hilbert-Schmidt kernel and $V(-\Delta+\lambda)^{-1}$ is compact. It follows from the previous problem that V is $(-\Delta)$-compact.
5.10 Let A be essentially self-adjoint and B bounded symmetric. Show that $A+B$ is essentially self-adjoint.

Proof. Obviously B is A-bounded with relative bound 0 . The conclusion follows immediately from Corollary 6.5.12.
5.11 Let A be self-adjoint and B symmetric with $D(A) \subset D(B)$ and $B^{2} \leq A^{2}+b^{2} I$, where b is a constant. Show that $A+B$ is essentially self-adjoint.

Proof. Since

$$
\|B x\|^{2}=(B x, B x)=\left(B^{2} x, x\right) \leq\left(A^{2} x, x\right)+b^{2}(x, x)=(A x, A x)+b^{2}\|x\|^{2}=\|A x\|^{2}+b^{2}\|x\|^{2},
$$

the conclusion follows immediately from Theorem 6.5.14.
5.12 Let \mathscr{H} be a Hilbert space, A self-adjoint, $A \geq 0, B$ symmetric with $D(B) \supset D(A)$. Suppose that

$$
\|B x\| \leq\|A x\|, \quad \forall x \in D(A)
$$

Show that $|(B x, x)| \leq(A x, x)$.
Proof. For any $t \in(-1,1), t B$ is symmetric and A-bounded with relative bound $|t|<1$. Hence $A+t B \geq 0$ from Theorem 6.5.16. It means that $t(B x, x) \geq-(A x, x)$ for all $t \in(-1,1)$. The conclusion follows from letting $t \rightarrow \pm 1$.
5.13 Suppose that $V_{1}, V_{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ are real-valued functions and view $V_{i}\left(x_{i}\right)(i=1,2)$ as multiplication operator. Show that $-\Delta+V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)$ is essentially self-adjoint with domain $C_{0}^{\infty}\left(\mathbb{R}^{6}\right)$.

Proof. In the proof of Example 6.5.11, we see that given any $a>0$ there exists $b>0$ such that

$$
\|u\|_{\infty} \leq a\|\Delta u\|_{2}+b\|u\|_{2}
$$

for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, which is 'equivalent' to

$$
\|u\|_{\infty}^{2} \leq a^{2}\|\Delta u\|_{2}^{2}+b^{2}\|u\|_{2}^{2}
$$

Now let $u \in C_{0}^{\infty}\left(\mathbb{R}^{6}\right)$,

$$
\begin{aligned}
\left\|V_{1} u\right\|_{2}^{2} & \leq a^{2} \int\left|-\Delta_{1} u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2}+b^{2} \int\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} \\
& =a^{2} \int\left|\sum_{i=1}^{3} p_{i}^{2} \hat{u}\left(p_{1}, \ldots, p_{6}\right)\right|^{2} d p_{1} \cdots d p_{6}+b^{2}\|u\|_{2}^{2} \\
& \leq a^{2} \int\left|\sum_{i=1}^{6} p_{i}^{2} \hat{u}\left(p_{1}, \ldots, p_{6}\right)\right|^{2} d p_{1} \cdots d p_{6}+b^{2}\|u\|_{2}^{2} \\
& =a^{2}\|-\Delta u\|_{2}^{2}+b^{2}\|u\|_{2}^{2},
\end{aligned}
$$

A result with the same right-hand side holds for $V_{2} u$. It follows that

$$
\left\|V_{1}\left(x_{1}\right) u+V_{2}\left(x_{2}\right) u\right\|^{2} \leq 2 a^{2}\|-\Delta u\|_{2}^{2}+2 b^{2}\|u\|_{2}^{2}
$$

Since we can choose a as small as we want, $V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)$ is infinitesimally small with respect to $-\Delta$. Thus, by Kato-Rellich Theorem, $-\Delta+V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)$ is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{6}\right)$.
5.14 Let A be a self-adjoint operator and B a bounded symmetric operator. Show that $A+B$ is self-adjoint, and

$$
d(\sigma(A), \sigma(A+B)) \leq\|B\|
$$

i.e.,

$$
\begin{align*}
& \sup _{\lambda \in \sigma(A)} d(\lambda, \sigma(A+B)) \leq\|B\|, \tag{4}\\
& \sup _{\lambda \in \sigma(A+B)} d(\sigma(A), \lambda) \leq\|B\| . \tag{5}
\end{align*}
$$

Proof. It is clear that $A+B$ is symmetric. Also $D\left(A^{*}+B^{*}\right)=D\left(A^{*}\right)=D(A)=D(A+B)$ because B is defined or can be extended to the entire \mathscr{H}. Therefore $A+B$ is self-adjoint.
To show (4), it suffices to show that for any $\lambda \in \sigma(A)$ and $\epsilon>0$, it holds that

$$
(\lambda-\|B\|-\epsilon, \lambda+\|B\|+\epsilon) \cap \sigma(A+B) \neq \emptyset
$$

Suppose it holds that

$$
(\lambda-\|B\|-\epsilon, \lambda+\|B\|+\epsilon) \subset \rho(A+B)
$$

then

$$
\begin{aligned}
\|(\lambda I-A-B) x\|^{2} & =\int_{\mathbb{R}}(\lambda-\zeta)^{2} d\left\|E_{\zeta}^{A+B} x\right\|^{2} \\
& =\int_{\mathbb{R} \backslash(\lambda-\|B\|-\epsilon, \lambda+\|B\|+\epsilon)}(\lambda-\zeta)^{2} d\left\|E_{\zeta}^{A+B} x\right\|^{2} \\
& \geq(\|B\|+\epsilon)^{2}\|x\|^{2} .
\end{aligned}
$$

So

$$
\left\|(\lambda I-A-B)^{-1}\right\| \leq \frac{1}{\|B\|+\epsilon}
$$

and $\left\|B(\lambda I-A-B)^{-1}\right\|<1$, hence $I+B(\lambda I-A-B)^{-1}$ is invertible and so is

$$
\lambda I-A=\left(I+B(\lambda I-A-B)^{-1}\right)(\lambda I-A-B)
$$

Contradiction.
For the second half, just notice that (5) is (4) applied to $(A+B)+(-B)=A$.
5.15 Let A be a self-adjoint operator, $D \subset \mathbb{C}$ be a Borel-measurable set with smooth boundary $\Gamma=\partial D$. Suppose that $\Gamma \subset \rho(A)$, show that

$$
E(D)=\frac{1}{2 \pi i} \oint_{\Gamma}(z I-A)^{-1} d z
$$

where E is the spectral family of A.
Proof. Note that $\rho(A)$ is an open set and $\sigma(A) \subset \mathbb{R}$, hence such a boundary Γ separates $\sigma(A)$. Then the proof follows the same line as in Exercise 5.5.15.
5.16 Let A be a self-adjoint operator and C a compact operator, then

$$
\sigma_{\mathrm{ess}}(A)=\sigma_{\mathrm{ess}}(A+C)
$$

5.17 Suppose that $V \in L^{2}\left(\mathbb{R}^{3}\right)$ is real-valued, show that $\sigma_{\text {ess }}(-\Delta+V)=[0, \infty)$.

Proof. Using Fourier transform we can easily obtain that $\sigma_{\text {ess }}(-\Delta)=[0, \infty)$. Since V is symmetric (because it is real-valued) and $(-\Delta)$-compact (Exercise 5.9), it immediately follows from Weyl's Theorem that $\sigma_{\text {ess }}(-\Delta+V)=$ $[0, \infty)$.

6 Convergence of Unbounded Operators

6.1 Let A_{n} and A be self-adjoint operators and suppose that for all $x, y \in \mathscr{H}$ and all λ with im $\lambda \neq 0,\left(R_{\lambda}\left(A_{n}\right) x, y\right) \rightarrow$ $\left(R_{\lambda}(A) x, y\right)$. Prove that $A_{n} \rightarrow A$ s.R.s.

Proof.

$$
\begin{aligned}
\left\|\left(R_{\lambda}\left(A_{n}\right)-R_{\lambda}(A)\right) x\right\|^{2} & =\left(\left(R_{\lambda}\left(A_{n}\right)-R_{\lambda}(A)\right) x,\left(R_{\lambda}\left(A_{n}\right)-R_{\lambda}(A)\right) x\right) \\
& =\left(R_{\lambda}\left(A_{n}\right) x, R_{\lambda}\left(A_{n}\right) x\right)-2 \Re\left(R_{\lambda}\left(A_{n}\right) x, R_{\lambda}(A) x\right)+\left(R_{\lambda}(A) x, R_{\lambda}(A) x\right)
\end{aligned}
$$

Since $A_{n} \rightarrow A$ w.R.s, it is clear that $\left(R_{\lambda}\left(A_{n}\right) x, R_{\lambda}(A) x\right) \rightarrow\left(R_{\lambda}(A) x, R_{\lambda}(A) x\right)$. Also,

$$
\begin{aligned}
\left(R_{\lambda}\left(A_{n}\right) x, R_{\lambda}\left(A_{n}\right) x\right) & =\left(R_{\bar{\lambda}}\left(A_{n}\right) R_{\lambda}\left(A_{n}\right) x, x\right) \\
& =\left(-\frac{R_{\bar{\lambda}}\left(A_{n}\right)-R_{\lambda}\left(A_{n}\right)}{\bar{\lambda}-\lambda} x, x\right) \\
& \rightarrow\left(-\frac{R_{\bar{\lambda}}(A)-R_{\lambda}(A)}{\bar{\lambda}-\lambda} x, x\right) \\
& =\left(R_{\bar{\lambda}}(A) R_{\lambda}(A) x, x\right) \\
& =\left(R_{\lambda}(A) x, R_{\lambda}(A) x\right)
\end{aligned}
$$

Therefore,

$$
\left\|\left(R_{\lambda}\left(A_{n}\right)-R_{\lambda}(A)\right) x\right\|^{2} \rightarrow 0
$$

Remark. This problem is exactly weak resolvent convergence implies strong resolvent convergence.
6.2 Let A_{n} and A be positive self-adjoint operators, show that $A_{n} \rightarrow A$ s.R.s if and only if $\left(A_{n}+I\right)^{-1} \rightarrow(A+I)^{-1}$ strongly.

Proof. `If': Let $\lambda_{0}=-1$. Examine the proof of Theorem 6.6.3, we see that the power series

$$
\begin{equation*}
R_{\lambda}(A)=\sum_{k=0}^{\infty}\left(\lambda_{0}-\lambda\right)^{k}\left(R_{-1}(A)\right)^{k+1} \tag{6}
\end{equation*}
$$

converges in norm in $\left|\lambda-\lambda_{0}\right|<1$, because $\sigma(A) \subset[0, \infty)$. So does the power series of $R_{\lambda}\left(A_{n}\right)$. Hence there exists $\lambda, \operatorname{im} \lambda \neq 0$ such that $R_{\lambda}\left(A_{n}\right) \rightarrow R_{\lambda}(A)$ strongly. Theorem 6.6.3 then applies.
'Only if': Note that $\lambda_{0}=-1+i$ is contained in $\rho\left(A_{n}\right)$ and $\rho(A)$. The power series (6) converges in norm in $\left|\lambda-\lambda_{0}\right|<\sqrt{2}$ because $\sigma(A) \subset[0, \infty)$. So does the power series of $R_{\lambda}\left(A_{n}\right)$. Hence $R_{\lambda}\left(A_{n}\right) \rightarrow R_{\lambda}(A)$ s.r.s in $\left|\lambda-\lambda_{0}\right|<\sqrt{2}$. Let $\lambda=-1$.
6.3 Let A be a self-adjoint operator. Show that
(1) N.R.s- $\lim _{t \rightarrow t_{0}} t A=t_{0} A$, where $t_{0} \neq 0$;
(2) $\lim _{t \rightarrow t_{0}}\left\|e^{i t A}-e^{i t_{0} A}\right\|=0$ if and only if A is bounded.

Proof. (1) Let $\lambda \in \mathbb{C}$ with $\operatorname{im} \lambda \neq 0$. Then

$$
\begin{aligned}
\left\|R_{\lambda}\left(t_{0} A\right)-R_{\lambda}(t A)\right\| & \left.=\|(\lambda I-t A)^{-1}\right)\left(t_{0} A-t A\right)\left(\lambda I-t_{0} A\right)^{-1} \| \\
& \left.\leq \|(\lambda I-t A)^{-1}\right)\left\|\left\|t_{0} A-t A\right\|\right\|\left(\lambda I-t_{0} A\right)^{-1} \| \\
& =\left\|t^{-1}\left(\frac{\lambda}{t} I-A\right)^{-1}\right\|\left|t_{0}-t\right|\|A\|\left\|\left(\lambda I-t_{0} A\right)^{-1}\right\| \\
& \leq\left|t^{-1}\right||\operatorname{im} \lambda / t|^{-1}\left|t_{0}-t\right|\|A\|\left\|\left(\lambda I-t_{0} A\right)^{-1}\right\| \rightarrow 0 .
\end{aligned}
$$

(2) 'If': Suppose that E is the spectral family of A. Since A is bounded, $\sigma(A)$ is compact. Suppose that $\sigma(A) \subset$ $[-N, N]$ and $\left|t-t_{0}\right|<1 / N$. It follows from

$$
\begin{aligned}
\left\|e^{i t A} x-e^{i t_{0} A} x\right\|^{2} & =\int_{\mathbb{R}}\left|e^{i t \lambda}-e^{i t_{0} \lambda}\right|^{2} d\left\|E_{\lambda} x\right\|^{2} \\
& =\int_{-N}^{N}\left|e^{i\left(t-t_{0}\right) \lambda}-1\right|^{2} d\left\|E_{\lambda} x\right\|^{2} \\
& =2 \int_{-N}^{N}\left(1-\cos \left(\left(t-t_{0}\right) \lambda\right)\right) d\left\|E_{\lambda} x\right\|^{2} \\
& \leq 2\left(1-\cos \left(\left(t-t_{0}\right) N\right)\right) \int_{\mathbb{R}} d\left\|E_{\lambda} x\right\|^{2} \\
& =2\left(1-\cos \left(\left(t-t_{0}\right) N\right)\right)\|x\|^{2}
\end{aligned}
$$

that

$$
\left\|e^{i t A}-e^{i t_{0} A}\right\| \leq \sqrt{2\left(1-\cos \left(\left(t-t_{0}\right) N\right)\right)} \rightarrow 0
$$

as $t \rightarrow t_{0}$.
'Only if': Assume that $t_{0}=0$ for simplicity. For any operator Z that differs from I by an operator of norm <1 we can define

$$
\ln Z=\ln (I+(Z-I))=Z-I-\frac{(Z-I)^{2}}{2}+\cdots
$$

Since $\left\|e^{i t A}-I\right\| \rightarrow 0$, there exists t such that $\left\|e^{i t A}-I\right\|<\frac{1}{3}$. We can define $\ln e^{i t A}$ according to the expansion of $\ln Z$ above. Then $\ln e^{i t A}$ is bounded. On the other hand, from functional calculus we see that $\ln e^{i t A}=i t A$. Therefore A is bounded.
6.4 Let A_{n} and A be uniformly bounded self-adjoint operators. Show that

$$
A_{n} \rightarrow A \text { s.r.s } \Longleftrightarrow A_{n} \rightarrow A \text { strongly. }
$$

Proof. ${ }^{\prime} \Rightarrow$ ': Suppose that $A_{n} \rightarrow A$ s.r.s, then for all λ, im $\lambda \neq 0$ and all $x,\left(R_{\lambda}\left(A_{n}\right)-R_{\lambda}(A)\right) x \rightarrow 0$. Note that

$$
A-A_{n}=\left(\lambda I-A_{n}\right)-(\lambda I-A)=\left(\lambda I-A_{n}\right)\left(R_{\lambda}(A)-R_{\lambda}\left(A_{n}\right)\right)(\lambda I-A),
$$

hence

$$
\begin{aligned}
\left\|A x-A_{n} x\right\| & \leq\left\|\left(\lambda I-A_{n}\right)\right\|\left\|\left(R_{\lambda}(A)-R_{\lambda}\left(A_{n}\right)\right)(\lambda I-A) x\right\| \\
& \leq(M+|\lambda|)\left\|\left(R_{\lambda}(A)-R_{\lambda}\left(A_{n}\right)\right)(\lambda I-A) x\right\| \rightarrow 0,
\end{aligned}
$$

where M is the uniform bound of A_{n}.
${ }^{\bullet} \Leftarrow$ ': Suppose that $A_{n} \rightarrow A$ strongly. For any x, there exists $y \in D(A)$ such that $x=(\lambda I-A) y$. Then

$$
(\lambda I-A)^{-1} x-\left(\lambda I-A_{n}\right)^{-1} x=\left(\lambda I-A_{n}\right)^{-1}\left(A-A_{n}\right) y \rightarrow 0
$$

because

$$
\left\|\left(\lambda I-A_{n}\right)^{-1}\right\| \leq|\operatorname{im} \lambda|^{-1}
$$

Therefore $\left(\lambda I-A_{n}\right)^{-1} \rightarrow(\lambda I-A)^{-1}$ strongly.
6.5 Show that if $A_{n} \rightarrow A$ s.R.s then $e^{i t A_{n}} \rightarrow e^{i t A}$ uniformly strongly for t in any finite interval.

Proof. Let $f_{s}(t)=e^{i t s}$. A careful examination of the proof of Theorem 6.6.6(2) reveals that we need to prove

$$
\left\|f_{s}\left(A_{n}\right) g_{m_{0}}(t) x-f_{s}(A) g_{m_{0}}(t) x\right\|<\epsilon / 3
$$

for all s in a finite interval when n is big enough. Since $\left|f_{s}(t)\right|=1$ regardless of s and t, the other lines in the proof of Theorem 6.6.6(2) still carries through for s in a finite interval.
Fix m. Note that $f_{s}(t) g_{m}(t)=e^{-\frac{t^{2}}{m}+i t s}$ and

$$
\begin{aligned}
\sup _{t \in \mathbb{R}}\left|f_{s_{1}}(t) g_{m}(t)-f_{s_{2}}(t) g_{m}(t)\right| & =\sup _{t \in \mathbb{R}} e^{-\frac{t^{2}}{m}}\left|e^{i\left(s_{1}-s_{2}\right) t}-1\right| \\
& =\sup _{t \in \mathbb{R}} \sqrt{2} e^{-\frac{t^{2}}{m}} \sqrt{1-2 \cos \left(s_{1}-s_{2}\right) t}
\end{aligned}
$$

By splitting \mathbb{R} into $|t|<T$ and $|t| \geq T$, it is easy to see that

$$
\sup _{t \in \mathbb{R}}\left|f_{s_{1}}(t) g_{m}(t)-f_{s_{2}}(t) g_{m}(t)\right|<\epsilon
$$

for $\left|s_{1}-s_{2}\right|$ small enough (depending on ϵ and independent of s_{1} or s_{2}). This fact shows that the following line in the proof of Theorem 6.6.6

$$
\sup _{x \in \mathbb{R}^{1}}\left|f_{s}(x) g_{m_{0}}(x)-P\left(\frac{1}{x+i}, \frac{1}{x-i}\right)\right| \leq \frac{\epsilon}{3}
$$

holds for all s inside any interval with a small length $L(\epsilon)$. Consequently, for any of such interval, there exists N such that whenever $n>N$ it holds that

$$
\left\|f_{s}\left(A_{n}\right) x-f(A) x\right\| \leq \epsilon
$$

holds for all s inside the small interval. The final step is to divide a finite interval into pieces, each has length $L(\epsilon)$.
6.6 Let A_{n} and A be uniformly bounded self-adjoint operators. Suppose that $A_{n} \rightarrow A$ weakly but not strongly. Does $A_{n} \rightarrow A$ w.r.s?

Proof. No. If $A_{n} \rightarrow A$ w.r.s, then $A_{n} \rightarrow A$ s.r.s and thus $A_{n} \rightarrow A$ strongly by Exercise 6.6.4.
6.7 Let A_{n} and A be positive self-adjoint operators. Suppose that $e^{-t A_{n}} \rightarrow e^{-t A}$ strongly for all $t>0$. Show that s.R.s- $\lim _{n \rightarrow \infty} A_{n}=A$.

Proof. One can show that for positive self-adjoint operator A,

$$
\phi(A)=\int_{0}^{\infty} \phi(\lambda) d E_{\lambda}
$$

for Borel measurable ϕ that is bounded on $[0, \infty)$. Then following the same outline of Example 6.6.7, we obtain that

$$
R_{-1}(A) u=-\int_{0}^{\infty} e^{-t} e^{-t A} u d t
$$

and thus

$$
\left\|R_{-1}\left(A_{n}\right) u-R_{-1}(A) u\right\| \leq \int_{0}^{\infty} e^{-t}\left\|e^{-t A_{n}} u-e^{-t A} u\right\| d t
$$

It follows from Dominated Convergence Theorem that $R_{-1}\left(A_{n}\right) \rightarrow R_{-1}(A)$ strongly, and thence $A_{n} \rightarrow A$ s.R.s by Problem 6.2.
6.8 Let $\left\{A_{n}\right\}$ be a sequence of symmetric operators. Define $D_{\infty}^{S}=\left\{x: \exists y \in \mathscr{H},\langle x, y\rangle \in \Gamma_{\infty}^{S}\right\}$. If D_{∞}^{S} is dense in \mathscr{H}, show that $\left\{A_{n}\right\}$ has a strong graph limit and the limit operator is also symmetric. Moreover, the limit operator is closed.

Proof. First we show that Γ_{∞}^{S} is the graph of an operator, for which we need only to show that the operator is welldefined, i.e., suppose $x_{n}, x_{n}^{\prime} \in D\left(A_{n}\right)$ and $x_{n} \rightarrow x, x_{n}^{\prime} \rightarrow x^{\prime}, A_{n} x_{n} \rightarrow y$ and $A_{n} x_{n}^{\prime} \rightarrow y^{\prime}$, we must have $y=y^{\prime}$. Indeed, let u be an arbitrary element in D_{∞}^{S}, then there exists $u_{n} \in D\left(A_{n}\right)$ such that $u_{n} \rightarrow u$ and $A u_{n} \rightarrow v$. Thus,

$$
\begin{equation*}
\left(y-y^{\prime}, u\right)=\lim _{n \rightarrow \infty}\left(A_{n}\left(x_{n}-x_{n}^{\prime}\right), u_{n}\right)=\lim _{n \rightarrow \infty}\left(x_{n}-x_{n}^{\prime}, A_{n} u_{n}\right)=0 . \tag{7}
\end{equation*}
$$

Since D_{∞}^{S} is dense, it follows immediately that $y=y^{\prime}$. So $\left\{A_{n}\right\}$ has a strong graph limit, say A.
Now we show that A is symmetric. Let $x, y \in D_{\infty}^{S}$. There exist $u_{n} \rightarrow x$ and $v_{n} \rightarrow y$ such that $u_{n}, v_{n} \in D\left(A_{n}\right)$, $A_{n} u_{n} \rightarrow A x$ for some $A x$ and $A_{n} v_{n} \rightarrow A y$ for some $A y$. Then

$$
\begin{equation*}
(x, A y)=\lim _{n \rightarrow \infty}\left(u_{n}, A_{n} v_{n}\right)=\lim _{n \rightarrow \infty}\left(A_{n} u_{n}, v_{n}\right)=(A x, y) \tag{8}
\end{equation*}
$$

Moreover, A is closed: suppose that $x_{n} \rightarrow x$ and $A x_{n} \rightarrow y$. There exist $x_{n m} \rightarrow x_{n}$ and $A_{m} x_{n m} \rightarrow A x_{n}$ for each n. We can pick $x_{n_{m} m} \rightarrow x$ and $A_{m} x_{n_{m} m} \rightarrow y$, hence $x \in D(A)$ and $y=A x$.
6.9 Let $\left\{A_{n}\right\}$ be a sequence of operators on \mathscr{H}. Define $\Gamma_{\infty}^{w}=\left\{\langle u, v\rangle \in \mathscr{H} \times \mathscr{H}: \exists u_{n} \in D\left(A_{n}\right), u_{n} \rightarrow\right.$ $\left.u, A_{n} u_{n} \rightharpoonup v\right\}$. If Γ_{∞}^{w} is the graph of some linear operator A, we say A is the weak graph limit of $\left\{A_{n}\right\}$, denoted by $A=\mathrm{wg}-\lim _{n \rightarrow \infty} A_{n}$. Suppose that A_{n} and A are uniformly bounded self-adjoint operators, show that $A=\mathrm{wg}-\lim _{n \rightarrow \infty} A_{n}$ if and only if $A_{n} \rightarrow A$ weakly.

Proof. Suppose that the uniform bound of A_{n} and A is M.
`Only if': We want to prove that $A_{n} u \rightharpoonup A u$ for all u. There exist u_{n} such that $u_{n} \rightarrow u$ and $A_{n} u_{n} \rightharpoonup A u$. Since A_{n} and A are bounded, they can be extended to the entire \mathscr{H}. Notice that

$$
\left|\left(A_{n} u-A_{n} u_{n}, y\right)\right| \leq M\left\|u-u_{n}\right\|\|y\| \rightarrow 0, \quad \forall y \in \mathscr{H}
$$

it follows immediately that

$$
\lim _{n \rightarrow \infty}\left(A_{n} u, y\right)=\lim _{n \rightarrow \infty}\left(A_{n} u_{n}, y\right)=(A u, y), \quad \forall y \in \mathscr{H}
$$

or, $A_{n} u \rightharpoonup A u$.
'If': Suppose that $A_{n} u \rightharpoonup A u$ for all u. We want to find $\left\{u_{n}\right\}$ such that $u_{n} \rightarrow u$ and $A_{n} u_{n} \rightharpoonup A u$. Note that $D\left(A_{n}\right)$ is dense, we can easily find $u_{n} \in D\left(A_{n}\right)$ such that $u_{n} \rightarrow u$. Now, as above, it automatically holds that

$$
\lim _{n \rightarrow \infty}\left(A_{n} u_{n}, y\right)=\lim _{n \rightarrow \infty}\left(A_{n} u, y\right)=(A u, y), \quad \forall y \in \mathscr{H} .
$$

6.10 Let $\left\{A_{n}\right\}$ be a sequence of symmetric operators. Define $D_{\infty}^{w}=\left\{x: \exists y \in \mathscr{H},\langle x, y\rangle \in \Gamma_{\infty}^{w}\right\}$. If D_{∞}^{S} is dense in \mathscr{H}, show that Γ_{∞}^{w} is the graph of some symmetric operator.

Proof. The proof follows the same line as that of Exercise 6.8. Recall Exercise 2.5.18: If $a_{n} \rightharpoonup a$ and $b_{n} \rightarrow b$ then $\left(a_{n}, b_{n}\right) \rightarrow(a, b)$. Hence (7) and (8) still hold.

