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Show that every bounded operator on a Hilbert space is closable and every finite-rank closable operator is bounded.

Proof: For the firt part, see Theorem 2.3.12. Now we prove the second part. Suppose that A is a finite-rank closable
operator, i.e., if {z,} C D(A), x,, — 0 and Az,, — y then y = 0. If A is not bounded, then there exi& {y, } such
that ||Ay,|| > nllyal|. Let 2, = yn/[|Ayn||, then || Az, | = 1 and ||lz,,|| < L. Hence ,, — 0. Note that A is
finite-rank and recall that the unit sphere is sequentially compact in a finite dimensional space, thus we can choose a
subsequence of {x,,}, §till denoted by z,,, such that Ax,, — z for some z. Since A is closable, we must have z = 0,
which contradi&s with ||z, || = 1. O

Show that a linear operator T is closed if and only if D(T') is complete under graph norm.

Proof- It is clear that {z,,} is Cauchy in D(T') under graph norm if and only if (z,,, T'z,,) is Cauchy in 2" x %

'The conclusion follows immediately. O

Let T be a closable operator. Show that T =T~
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Proof. Itiseasytosee that -.S =1 Sforany S C 2. Hence, I'(T*) =1 (VI(T)) =+ (VI(T
(VI(T)) = I(T"), which implies that T~ = T*.

Let T be a densely-defined linear symmetric operator on a Hilbert space, show that

(1) Tisclosed <= T = T** C T*
(2) T is essentially self-adjoint <= T C T** = T,
(3) Tisself-adjoint <= T = T = T*.

Proof. (1) In the proof of 6.1.4, we have seen that I'(T"*) = I'(T'). Hence T' = T** <= I'(T"*) =T (T) <~
I(T) =T(T) <= T is closed. From the definition of symmetric operators, ' C T™ is automatic.
(2) =" T is closable implies that I'(T') = I'(T) = I'(T**), and thus T" C T**, and from the previous problem,
T =T*. Also, T is self-adjoint, T' = T =T~ Taking conjugate on both sides, T =T* e, T* =T*".
*«<=": T is symmetric, thus 7" is closable and T' = T** (Theorem 6.1.4). Also T** = T* = T" (Problem 6.1.3),
it follows that T =T and T is self-adjoint.
(3) T is self-adjoint <= (by definition) T' = T™* = T = T™*. O

Let T be a densely-defined operator on Hilbert space 5. Show that D(T™*) = {0} if and only if T'(T") is dense in
H X .

Proof. It suffices to show that
[(T*) =+ (VI(T)) = {0} <= I'(T) is dense in H# x A,
which is obvious, since - (VT(T)) = {0} iff VT'(T) is dense iff ['(T') is dense. O

Determine whether the following §tatement is true: Let T be a densely-defined operator on ¢ such that (T'z, ) =
Oforallz € D(T), then Tz = 0 forallx € D(T).
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Proof. 'This is false. Consider the differential operator T' : x — % defined on C§°(R), which is a dense subset of
L?(R). Suppose = € C§°(R), then

+oo
L Jamet ([ D)o ([ 4)o
r \ dt —oo R dt R dt
hence (Tx,xz) = 0 for all z € C§°(R). Obviously Tx # 0 for some z € C§°(R). O
Let 2" and % be Banach spaces, and % is reflexive. T' : & — % is a densely-defined operator. Show that
T is closable if and only if 7™ is densely-defined. Also let Jo : & — Z** and Jo : # — #** be natural
embeddings, show that when 7" is closable, 1" = Jg_le**J 2.

Proof. “If": Since T™ is densely-defined, 7 is a closed operator, and

D(T*) =+ VI(T*) =+ VIVI(T) =+ (FV2I(T)) =* (*T(T)) = I(T),

where T : 27** — &** is the natural lift of T : 2" — & Itis clear to see that I'(T') reétricted on im J g x &
can be brought down to 2~ x % and become I'(T). To summarize, T = J,' T** J .

*Only if": Suppose that T is closable. If D(T™) is not dense, then there exifts yo € #™**, yo # 0, such that
yo €L D(T™), thus (yo,0) €+ T'(T*). Obviously (0, yo) €t VI'(T*), which implies that LV I'(T*) can not be
a graph of some linear operator. But on the other hand, 1 VI'(T*) =+ VL-VT(T), which is, as shown above, the
graph of the lift of T, contradi¢tion. Therefore T* is densely-defined. O

Let f be a bounded and measurable funtion on RY, but f ¢ L?(R'). Let

D= {¢ € L2(RY) - /|f(x)w(x)|dx < oo}.
Suppose that 1g € L?(R!) and define

Ty = (f,¢)¢o, Vi €D.
Prove that T" is densely-defined and find 7.

Proof: Obviously C5°(R) C D and we know that C§°(R) is dense in L?(RR), therefore D is dense in L?(R) and T’
is densely-defined. Let f,, = fX[—n,n), then (f, fn) = ||f2]]3. Note that || f,|| — oo as n — oo, this implies that
(f, ) is not a bounded fun&ional on D. Suppose y € D(T™*), which requires that there exists M, such that

|y, Tz)| = |(y, (f, 2)p0)| = [(f, 2)[ [y, do)| < Myllz|l, Vx e D.

Since (f, ) is not a bounded functional, we mus$t have (y,¢9) = 0. It is also easy to see that all y such that
(y, ¢o) = 0 is contained in D(T™*), and therefore D(T*) = {y € L? : (y,¢o) = 0}. Since (T*y,z) = (y,Tz) =
(f,2)(y,¢0) = 0forall z € D. Since D is dense, it must hold that T*y = 0. Hence T* = 0. O

Let T be a linear operator in Hilbert space .. Define its kernel as N(T') = {z € D(T) : Tz = 0}. Show that
(1) If D(T) is dense in 2" then N(T*) = R(T)*+ N D(T*);
(2) If T is closed, then N(T') = R(T*)* n D(T).

Proof. (1) “C": Lety* € N(T*), then (y*,Tx) = (T*y*,x) for all z € D(T'). Since T*y* = 0, it follows that
(y*,Tz) = 0, which implies that y* L R(T).
D% Lety* € R(T)* N D(T*), then 0 = (y*,Tx) = (T*y*,z) for all z € D(T), which means that
T*y* L D(T). Since D(T) is dense, it musét hold that T*y* = 0, i.e., y* € ker T*.



(2) Since T is closed, T* is densely-defined.
*C": Suppose that z € R(T*)-ND(T), then (T*y*,x) = 0 forally* € D(T). Then (y*, Tx) = (T*y*,x) =
0 for all y* € D(T™). Since D(T™) is dense, we musét have Tx = 0, or, x € ker T
D" Suppose that z € kerT. Then 0 = (y*,Tz) = (T*y*, z) for all y* € D(T'), which implies that
x L R(T™). O

1.10 Let T be an injetive linear operator on 5. Consider some assumptions about T":

ey
)
3)
(4) Je > 0 such that ||Tz|| > c||z|| for all z € D(T).

T is closed;
im T is dense;

im T is closed;

Show that

(1) Conditions (1), (2) and (3) imply (4);
(2) Conditions (2), (3) and (4) imply (1);
(3) Conditions (1) and (4) imply (3);

Proof. (1) The conditions (2) and (3) imply that imT' = 7, since J# is injective, we must have D(T') = J7,
which is closed. It follows condition (1) and Closed Operator Theorem that T is continuous. Also T is
bijective, Open Mapping Theorem asserts that 7! is bounded, which is exaétly condition (4).

(2) From the same argument as in subproblem (1), we know that D(T') is bije&tive. Condition (4) implies that
T~ is continuous. Suppose that z,, — z and y,, — v, ¥, = T'xy, then x,, = T~ 'y,,. Taking limits on both
slides yields z = T~ 1y, i.e., y = T'x. Therefore T is closed.

(3) Suppose that {T'z,} is a Cauchy sequence. Condition (4) implies that {x,,} is a Cauchy sequence. Suppose
that Tx,, — y and z,, — 2. Condition (1) says thatz € D(A)andy = Tz € im T, hence im T'is closed. [J

111 Let o2 = L2[0,1], T} = i4 T, =i 4.

D(Ty) = {u € A : u is absolutely continuous},
Ty) = {u € A : u(0) = 0, u is absolutely continuous},

Show that both 77 and 7% are closed operators.

Proof: Suppose that {x,, } € D(T3), z,, — x and zd”" — 1y. Since z,, is absolutely continuous,

Note that
[ 10409 w(6)ds < VE- Byl < vl 0, s

0 [ o

uniformly on [0, 1]. Hence ||z, — [y|l2 < ||z, — [y||% — 0. From the uniqueness of limit, we see that

it follows that
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which is contained in D(7T%) and Tox = iy. Therefore T5 is closed.

Now suppose that {z,,} C D(73), x, — x and idjt” — iy. Since L? convergence implies convergence in measure,

and Riesz theorem ensures an a.e. pointwise convergent subsequence ina subsequence of func¢tions converging in

measure, we may assume that x,, — = pointwise a.e. Define f(t) = fot y(s)ds, from the preceding argument, we
conclude that z,, (t) — x,(0) — f(t) everywhere. Recall that x,,(t) — x(t) a.e., we mu$t have that x,,(0) — a for
some ¢ and x(t) = f(t) + a a.e.. Note that f() is absolutely continuous, hence x(t) is absolutely continuous, too.

'This implies that 77 is closed. O

Let 2 be a separable Hilbert space and {e,, }52 ; an orthonormal basis. Suppose thata € £, a is not a finite linear
combination of {e,, }. Let D be the set of finite combinations of {e,, } and a, and define on D

T(Ba+ Za,;e,-) = Ba,

where in the summand there are only finitely many non-zero a;'s. Show that (a,a) € I'(T), (a,0) € I'(T) and
thus I'(7T') is not the graph of any linear operator.

Proof: It is trivial that (a,a) € I'(T). Leta, = Y. ,(a,¢;)e;, then a, — a and T'a,, = 0. Hence (a,0) €
(7). O

Let 57 = [? and

N
D(T) = { a € I : AN such that whenever n > N, a,, = 0 and Zaj =0
j=0

Define Ta € I? for a € {2 as

n—1 n
(Ta), =1 Zaj —|—Za3
j=1 j=1

Show that

(1) T is densely-defined and symmetric;
(2) R(T + i) is dense in 1%
(3) (1,0,0,...) € D(T*) and (T* +4)(1,0,0,...) = 0.

Proof. (1) To show that D(T) is dense, it suffices to show that D(T') is dense in span{e, }, where {e, } is the
natural orthonormal basis in /2. Furthermore, it suffices to show that each e,, can be approximated by elements
in D(T). Take e; for example. Let

11, 1 11
L= 1_7’_71_7"”’_71_77070’”.)
n times
Then ) ) L2
Jan = el = =5 +n(=(1-2)) =0
n n n

as n — 0o. We have seen that a,, — e1. The approximation to general e,, is similar, just right shift {a,,} by
m positions.

Now we show that (T'z,y) = (z,Ty) for all z,y € D(T), to prove that T is symmetric. Suppose that N is
the maximum of the two N's corresponding to x and y.

N n—1 n
(Tw,y):iZng ij—&-ij
n=1 j=1 j=1
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= (z,Ty).

(2) Note that (T + i)a = 2i(a1,a1 + az,...,a1 + az + -+ + an,...). Hence (T + i)(5;a) = ey, where
a = (1,-1,0,...). Similarly we can show that {e,} C R(T + i), which implies that R(T + i) is dense.

(3) Lety* = (1,0,0,...), then (y*, Tx) = (Tx); = —iZT7. Let 2* = (—4,0,0,...) = —y*, then (z*,2) =
—iZ1. Hence T*y* = —y*, y* € D(T™*) and (T + i)y* = 0. O

Let T be a symmetric operator on £~ with domain D. Suppose that D; C D is a dense linear set and T'|p, is T
restricted to Dy. If T'|p, is essential self-adjoint, so is T and T = T| p, .

Proof. Since Ds is dense in D, we can use diagonal technique to show that I'(T') = I'(T'|p,) = I'(T'|p, ). Hence T'is
closable and T' = T'|p, . Now we show that T is self-adjoint. Since T|p, is self-adjoint, we have that m* =T|p
and therefore T~ = T|D1* =T|p, =T.

1

O

Let ## = L*(R') and
D(T) = {u € / 22 |u(z)Pdx < oo} .
Define T as (T'u)(x) = zu(z) for u € D(T). Show that T is unbounded and closed.

17X [0,nl
’ HX[O,n]”

Proof. Tt is clear that || T'x[o || = %n% and || x[0,.[| = v — 00 as n — 00, hence 7' is unbounded.

Suppose that u,, — w and zu,, — v in Ly. We know that u,, — u in measure and Riesz's Theorem enables us
to pick a subsequence, till denoted by w,,, which is convergent to u almost everywhere. So u,, — u in L? and
pointwise a.e., thus zu,, — zu a.e. A similar argument shows that there is a subsequence of {xu,, }, again denoted
by {zuy, }, converges to v pointwise a.e. Therefore it must hold that xu = v a.e., which implies that 7" is closed. [

Suppose that T is a densely-defined closed operator on 7. Show that for all a,b € 27, the sy§tem of equations
-Tx+y=a
x+T"y =10

has a unique solution x € D(T') and y € D(T™).

Proof. “Exitence': Consider the set S C J x J of all pairs (a, b) which make the sy§tem of equations have at
leadt one solution. It is clear that S is a linear set, VI'(T) € S and T'(T*) € S. Note that T'(T*) = (VI(T))*+.
Since T'(T) is closed, we know that VI'(T) is closed and I'(T*) + VI'(T') = 4. Therefore S = 5.

“Uniqueness': It suffices to show that

—Tz+y=0



x+T'y=0

has solution © = 0, y = 0 only. A solution satisfies (y,T2’) = (T™*y, 2’) for all 2’ € D(T'). In particular (z’ = z)
we have that (y,y) = —(z, ), it mu$t hold that (y,y) = (z,2) = 0 from non-negativity of inner produ&, and
therefore x = 0 and y = 0. O

2 Cayley Transform and Spectral Decomposition of Self-Adjoint Operators

2.1

2.2

2.3

Consider the operator Au = iu' on L?(R'). Define D(A) = {u € [*(R) : u is absolutely continuous and v’ €
L?(R1Y)}. Show that A is self-adjoint.
Proof: It is clear that C§°(R) is contained in D(A) and thus D(A) is dense.

Suppose that u € D(A) and € > 0. Since u’ € L? there exists d; such that f;-i_& |u'|? < eforallz and § < dp. Let
01 = min{dg, €}. Then for all 6 < 4y,
T+
/ o' (t)dt

Now we are ready to show that u(+00) = 0. If not, without loss of generality, suppose that there exists ¢g > 0 and
2y — 400 such that |u(x,)| > € for all n. We have seen that u is uniformly continuous, so we can find ¢ such
that |u(z) — u(y)| < 5 whenever |z — y| < d. Therefore, we have that [u(x)| > 2 on (z,, — 0,2, + 9) for all n.
Without loss of generality, assume that £, 41 — @, > 2J. Then

o0 Tp+0 oo 62
JATEES S RS SEUE S
R n=1"%n=0 n=1 4

which contradiéts with u € L?(R). Hence u(+00) = 0, then

z+01
lu(x +6) — u(x)| =

3\/5/

x

W (t)|2dt < Ve e=¢e.

oo

—i [ w = —i/uF: (u, Av).

—0o0

(Au,v) = 2/ u'v = iuﬁ‘
R

Using the same technique in Problem 6.1.11, we can show that A is closed. It is easy to see that ker(A* +:I) = {0}
as A C A* and ker(A + iI) = {0}. It follows from Theorem 6.2.4 that A is self-adjoint. O

Prove Corollary 6.2.5: Let A be a symmetric operator on a Hilbert space, then the following §tatements are equiv-
alent:

(1) A is essentially self-adjoint;
(2) ker(A* +il) = {0};
(B) R(AFil) = 2.

Proof. Theorem 6.2.3 implies that (2) and (3) are equivalent, and a symmetric operator is closable. Now suppose that
Ais essentially self-adjoint, so 4 is self-adjointand A" = A*. It follows from Proposition 6.2.1 that ker(A* +iI) =
ker(Z: +iI) = {0}. Conversely, if (2) holds then it holds that ker(A~ +4I) = {0} and by Theorem 6.2.4 we know
that A is self-adjoint, which implies that A is essentially self-adjoint. O

Consider Au = iu’ as an operator on L?[0, c0) with domain C§°[0, +00). Is A essentially self-adjoint?
Proof. From Problem 1 we know that A is symmetric. It is easy to see that e™® € D(A*) and D*e™" = —ie™”

since (e~ %, u’) = (ie™%,u) for all u € C§°[0,4+00). Therefore e=* € ker(A* — il) and ker(A* —iI) # {0}.
Corollary 6.2.5 tells us that A is not essentially self-adjoint. O



2.4 Let A be a densely-defined symmetric operator, A is positive ((Az, z) > 0 Vo € D(A)), show that

oY)

1A+ Dal* = [l]® + || Az

(2) Ais aclosed operator if and only if R(A + I) is a closed set;

(3) A is essentially self-adjoint if and only if A*y = —y has solution y = 0 only.

Proof (1) Since A is symmetric, we have that (Az, z) = (z, Az). Hence ((A+ Iz, (A + I)z) = (Az, Az) +

2(Azx,z) + (z,z) > (Az, Az) + (v, z).

(2) “Onlyif'": Suppose that A is closed. Let {y,,} € R(A+I) be a Cauchysequence. Suppose thaty,, = Az, +z,.

From part (1) we know that {z,,} and {Ax,} are Cauchy, thus z,, — = and Az,, — y for some z and y.
Since A is closed, © € D(A) and y = Az, thus y,, = (A + I)x € R(A + I). Therefore R(A + I) is closed.
“If": Suppose that x,, — x and Az,, — y. Then (A+1)z,, — v+y € R(A+1), there exiStsa z € D(A) such
that Az + z =  +y. Hence (A+ I)(zy,, — 2) — 0. From part (1) we see that x,, — z, hence x = z € D(A)
and Az = y, showing that A is closed.

(3) "Only if": Suppose that A is essentially self-adjoint, then A is closable and A* = A=A Let y € D(A) be

2.5 Let

a solution of A*y = —y. Then (A + I)x,y) = (z,(A* + I)y) = 0 forallz € D(A). In particular, let z = y,
we have ((A + I)y,y) = 0,i.e., 0 = |ly||*> + (Ay,y) > ||y||, it must hold that y = 0.

*If": Since 7T is symmetric and densely-defined, T is closable, thus 7* = T*, and T = T** C (T)* (because
T C T*. Hence T is symmetric. It suffices to show that D(T*) C D(T). Lety € D(T*) andz = (T* +1)y.
For this, we shall first prove that R(T + ) is closed. Clearly T is positive. Then let {y,,} be a Cauchy sequence
in R(T + I) and suppose that y,, = (T + I)x,,. Then

and note the Cauchy-Schwarz Inequality (yn, Zn) < ||yn|| ||x || it follows that ||z, || < ||y, ||. Hence {x,,} is
bounded as {y,, } is bounded. Then

llzn — $m|‘2 < Yn = Yms T — Tm) < ([[Zall + lZmlDllyn — Ymlls

whence we see that {x,,} is Cauchy. Since T is closed, we have x,, — z and y,, — (T + Iz € R(T + I).
Note that ker(T* + I) @ R(T + I) = A, it follows from ker(T* + I) = {0} that R(T + I) = 4. Thus

there exi§ts ¢y’ € D(T) such that
(T+ Dy =T+ 1)y =x=(T"+1)y.

Since T* + I is injective, it must hold that y = 3 € D(T), and D(T*) C D(T). O

H = {f(z)chz",|z <12 enl <oo},

n=0 n=0

then .7 is a Hilbert space under the norm || f|| = (3 |¢n|?) 2. Define operators U and A on .7 as

U)(2) = 2f(2),

(Af)(=) = i1 7 (2).

Show that A is a symmetric operator on ., U is the Cayley transform of A and find R(A + i) and R(A —iI).

Proof: Suppose that f(z) = > ¢, 2", then

oo n—1
(Af)(z) =1 Z (2 Z cr + cn> 2",
n=0 k=0
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Since 57 is isomorphic to [? via f <+ {cy}, the operator A in this problem corresponds to 7" in Exercise 6.1.13. We
can therefore define D(A) as D(T') in Exercise 6.1.13, and it follows that A is densely-defined and symmetric.

Dire¢t computation shows that

(UA+i)f)(z) = (U(lz_izf(z)))(Z) = fizzf(z)
(A—iDf)(2) = =2 (2),

1—=z2

hence A — il = U(A +il). Hence U = (A — iI)(A + iI)~!, which is exally the Cayley transform of A.
It is clear that R(A + ¢I) consiéts of polynomials, and R(A — ¢I) polynomials with a zero conétant term. O

Let C be a symmetric operator on .7 and A a linear operator on J#. Suppose that A C C' and R(A +il) =
R(C +iI), show that A = C.

Proof. For any y € R(C + iI) we have v € D(C) and z € D(A) such that (C +il)z = (A+ i)z = y.
Since A C C, we have also (C + il)x = y. Note that C' + i is inje&tive (Proposition 6.2.1), it must hold that
z =x € R(A). This implies that R(C') C R(A) and therefore A = C. O

Let A be a symmetric operator on 7, R(A +il) = 5 and R(A —iI) # 5. Show that A has no self-adjoint

extensions.

Proof: Suppose that B is a self-adjoint extension of A, then B* C A*, and R(B +iI) = J. It follows from the
previous problem that A = B, and thus R(A — iI) = R(B — il) = . Contradi&tion. Therefore A cannot have

a self-adjoint extension. O

Let V be an isometry on 5 ||Vz|| = ||z|| for all z € D(V'). Show that

(1) (Va,Vy) = (z,y) forallz,y € D(V);
(2) If R(I — V) is dense in . then I — V is inje&tive;
(3) Ifone of D(V), R(V), I'(V) is closed, so are the other two.

Proof. (1) 'This is a dire&t corollary of polarisation identity.

(2) Suppose that (I — V)y = 0, i.e.,, y = Vy. From part (1), (Vz,Vy) = (x,y) forall z € D(V). Replacing
Vy by yyields (Vz —z,y) = 0 forall y € D(V). Since R(I — V) is dense, it musét hold that y = 0, i.e.,
ker(I — V) = {0}.

(3) It follows easily from ||z|| = ||Vz|| that D(V) is closed if and only if R(V') is closed. The graph norm
Izl = ||lz]| + ||Vz| = 2||z|. Hence I'(V) is closed if and only if D(V') is closed. O

Let T be a closed operator on Hilbert space 7. Show that p(T') is open. For z € p(T) define R, (T') = (2I—-T)71,
show that R,(T') is an analytic fun&ion with respect to ¢ on each conne&ted component of p(T") and satisfies the
firét resolvent formula:

R, (T) - R, (T) = (22 - Zl)Rzl (T)RZ2 (T)
Proof. See the proof of Corollary 2.6.7, Lemma 2.6.8 and Theorem 2.6.9. O

Prove Proposition 6.2.16, 6.2.17 and 6.2.18.

Proposition 6.2.16: Let A be a self-adjoint operator and {E} } its spectral family. Then A\g € 0, (A) if and only if
Ey, — E,- #0.
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Proof. Note that \ogJ — A = [, (Ao — A)dE) and
1ol — A)z]? = / (o — N2d|Exz|?, € D(A).
R

Thus by E_ ., = 0 and the right continuity of || Exz||? in ), we see that Aoz = Ax iff

E)\l' = E/\Srl‘ = E,\l‘ VA Z )\0
Eyxz = E)\az =0 VA<,

thatis, Agx = Az iff (E), — E\- )r = x. O

Proposition 6.2.17: Let A be a self-adjoint operator then o,.(A4) = 0.

Proof. Suppose A € 0,.(A) then X is real. Since R(A — A) # JZ, there exists y # 0 such thaty L (A — A),
ie., (M —A)z,y) =0forallz € D(A). Hence (Ax,y) = (A\z,y) = (z,A\y) andy € D(A*) = D(A)as A is
self-adjoint, and D*y = Ay. Since D* = D, we find that y € 0,(A) and thus meet a contradiGtion. O

Proposition 6.2.18: Let A be a self-adjoint operator with speétral family {E\ }, then Ag € o(A) if and only if for
all € > 0 it holds that (A — €, Ao + €) # 0.

Proof: From the previous problem we see that p(A) is open, and thus o (A) is closed. The rest of the proof is exactly
the same as the proof of Theorem 5.5.19. O

Prove Proposition 6.2.20: Let A be a self-adjoint operator with spectral family { Ey }, then Ao € 0es(A) if and only
if, Ve > 0, dim R(E(A — ¢, A 4+ ¢€)) = 0.

Proof: *Onlyif'": Let \g € 0ess(A) but dim R(E(X —€, A +€)) < oo for some €. Since A\g € o(A), the argument in
the proof of Theorem 5.5.21 gives that A¢ is an isolated point of ¢(A) and thus belongs to o, (A) (use Proposition
6.2.16 and 6.2.18), however, ker(Ag] — A) = dim R(E({A\o})) < dim R(E(X — €, A + €)) < o0, contradi¢tion
with the assumption that Ay € 0eis(A).

“If": See the proof of Theorem 5.5.21. O

3 Speltral Transform of Unbounded Normal Operators

3.1

3.2

3.3

Suppose that /N be a normal operator, show that N* is a normal operator also.

Proogf. Theorem 6.1.4 tells us that N = N = N** then N**N* = NN* = N*N = N*N**. From the same
theorem we know that N* is densely defined, and T'(N*) = (VI'(N))~ is closed, which implies that N* is closed.
Therefore N* is normal. O

Suppose that T is a densely-defined closed operator, D(T') = D(T™*), |[Tz|| = || T*z|| for all x € D(T'). Show
that 7" is normal.

Proof. From D(T') = D(T*) it is easy to see that D(T*T) = D(TT*). Since ||Tz| = || T*x| for all z € D(T),
it follows from polarisation identity that (Tx,Ty) = (T*xz,T*y) for all z,y € D(T). 'Then for x € D(T*T)
and y € D(T), it is immediate that (T*Tz,y) = (TT*z,y). Since D(T') is dense in %, we must have that
T*Tx = TT*x for all z € D(T*T), which, together with D(T*T') = D(TT™), implies that TT* = T*T and T

is normal. O

Let L € L(#) and M, N unbounded normal operator on 5. Suppose that LM C N L, show that LM* C N*L.



3.4

3.5

3.6

3.7

3.8

Proof. Fir§t consider the case where M = N. Let E be the speCtral decomposition of M. Then E(A)L = LE(A)
for every Borel set A (Theorem 6.3.11). It follows that

(LM*2,y) = (M*z, L*y) = / d(E(2)z, L'y) = / Sd(LE(2)z,y) = / sd(E(2)La,y) = (M* Lz, y)

forallz € D(M*) = D(M) and y € 2. 'This implies that LM* C M*L.

Now we consider the general case. Define M on D(M) x D(N) C # x # as M(x,y) = (Mxz, Ny). Itis clear
that M is normal. Also define L on 5 x € as L(z,y) = (Ly, 0), which is bounded. Then it is easy to verify that
LM c ML. Applying the previous case where M = N, we obtain that LM* ¢ M*L, thatis, LM* C N*L. [

Show that a densely-defined closed operator N on .7# is an unbounded normal operator if and only if the following
conditions hold simultaneously:

(1) D(N) = D(N*);

(2) N+ N*,i(N — N*) are self-adjoint, and their spectral families are commutative.

Let N be a densely-defined closed operator on . Show that IV is normal if and only if there exi§t decomposition
of the form N = A +iB, A, B are self-adjoint, and their spectral families are commutative.

Progf. *Only if": Suppose that IV is normal. Let A = N+TN* and B = ZN*T_N Note that D(N) = D(N*), it
follows easily that A, B are self-adjoint and AB = BA. O

Prove that every normal operator NV in 5 has a polar decomposition
N =UP = PU,

where U is unitary, P self-adjoint, P > 0, and D(P) = D(N).

Progf. Put p(z) = |z| and u(z) = 2/|z| if z # 0, u(0) = 1. Then p and u are Borel functions on o(N), D))
D, = D(N)and D,y = 5. Put P = ®p and U = ®u. Since p > 0, we know that P > 0. Since uu = 1,
QQ* = Q*Q = I. Since z = p(z)u(z), the relation N = PU = U P would follow immediately from the symbolic

calculus. O

Suppose that N is an unbounded normal operator and (C, &, E) is its spectral family. Show that

(1) ze0p(N) & E({z}) # 05
2) on(N) =10
(3) z€ o(N) & VBorel set A, z € A, it holds that E(A) # 0.

Proof: With the spectral theorem, the proof is almost identical to the case of bounded normal operator. See Problem
2.10, Theorem 5.5.18 and 5.5.19. O

Suppose that NV is an unbounded normal operator and E is its spectral family. Let

Oess(N) = {2z € 0(N) : z has a Borel neighbourhood A such that dim R(E(A)) = +0.},
0d(N) = 0(N) \ 0ess(N),

show that z € 04(N) if and only if z is a finite isolated eigenvalue, z € 0 (V) if and only if z is a limit point of
o(N) or an infinite eigenvalue.

Progf. See Theorem 5.5.21. O
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3.9 Suppose that .7 is a Hilbert space, (C, %, F) a spe€tral family and f, g Borel-measurable fun&ions. Show that
O(f)®(g9) = ®(fg) ifand only if Dy, C D, where ®(f) and Dy are defined in (6.3.11) and (6.3.8) respectively.

Proof: Theorem 6.3.4 says that ®(f)®(g) C ®(fg) and D(®(f)P(g)) = Dg N Dy,.

“Only if": Suppose that ®(f)P(g) = ®(fg), then D(®(f)®(g)) = D(®(fg)), thatis, Dy N Dy = Dy, hence
ng - Dg.
“If": Suppose that Dy C Dy, then D(®(f)®(g)) = Dy = D(®(fg)), and thus ®(f)®(g) = ®(f9g). O

3.10 Let.## be a Hilbert space, (C, %, E) an arbitrary spectral family and f a bounded Borel-measurable fun&ion. Show

that under the operator norm, the integral
REEE

is convergent in the sense of Lebesgue integral, and
#(1) = [ 1B,
where ®(f) is defined as in (6.3.1).

Proof. See the remark following Theorem 5.5.14. O

3.11 Let 5 be a Hilbert space, (C, %, E) an arbitrary spectral family and f a Borel-measurable fun&ion. Define
Ap ={z:f(2)] <n}, fu(z) = xa, (2)f(2), show that

O(f) = s —lim ®(fn),
where ®(f) is defined as in (6.3.11).

Proof. Since f,, is bounded, it holds that Dy = Dy_y, . Foreach z € Dy, it follows from Dominated Convergence
Theorem that

10()a — B (fa)a]| < /C = FalPd)E(2)]? 0

as 1 — o0. O

4 Extension of Self-Adjoint Operators

4.1 Let A,, be a symmetric operator on a Hilbert space 7, forn =1,2,.... Define

n=1

o0
D= {u = (uy,ug,...) € @Jﬁ tun € D(A,,), only finitely many u,,'s are non—zeroes} )

Show that
(1) A=, A, is symmetric on D;
(2) ne(A) =300 ne(An).

Proof. (1) Itis not difficult to see that D is dense and A = ) ° | A,, is linear. It is §traightforward to verify that
(Az,y) = (x, Ay) for z,y € D, thus A is symmetric.

11



(2) We only show that ny(4) = >, ni(A,) (n_(A) can be proved similarly), for which it suffices to show
that

ker(A* —il) = P ker(A}, —il).
n=1

The left-hand side is R(A+4I)*. Suppose thatv = (vy,va,...) € R(A+il), then > ((An+il)uy,v,) =0
for all (uq,ue,...) € D, which reduces to ((A,, + iI)uy,v,) = 0 for all n and u,, € D(A,). This implies
that v, € R(A, +iI)* = ker(A}, —il), giving ker(A* —iI) C 37 ker(A}, —il).

Conversely, suppose that v,, € ker(A¥ —il) = R(A, +il)*,ie., ((An+il)up,v,) = 0forallu, € D(A,),
then > ((A, + il)up,v,) = 0 for all (uy,uz,...) € D, indicating that (vy,vs,...) € R(A + i)+ =
ker(A* —4I). Hence >~ ker(A% — il) C ker(A* — ).

Finally consider the decomposition of 0. Suppose that (A + iI)(u1,us,...) = 0, i.e., (Ajus + duq, Agug +
iug, ...) = 0, which implies that (A,, + I )u,, = 0 for all n. Since A,, is symmetric, it must hold that u,, = 0.
Hence the sum is a dire¢t sum. O

4.2 Define Ty = i-L with domain C§°[0, 00) in L?[0,00) and T = i-& with domain C§°(—00,0] in L?(—00,0].
Show that def(T}) = (0,1) and def(T%2) = (1,0). Show how to constru& a symmetric operator with any given pair
of deficiency indices.

Proof. Integration by parts shows that T} is symmetric. The range of T; — ¢I contains all functions f of form

. d . o
zﬁu—zu:f, u € C§°[0, 00).

Hence f € C§°[0, 00). Multiply by e ™7,

i%(efzu) =e *f.
Since u has compat support, we obtain that
/ e f=0 (1)
0

Conversely, every C§° fun&tion f satisfying the condition above belongs to the range of T — i/ as we can define u

by
u(r) = —i/0 e~ W) f(y)dy.

Itis clear that w € C§°[0, 00). Therefore f € C§°[0, 00) is contained in R(T} —i[) if and only if f satisfies (1). Note
that e=® € L?[0, 00), it follows that R(T} — I )" is a one-dimensional subspace spanned by e =%, and n_ (T}) = 1.

Now consider the range of 77 + ¢I. Similarly we conclude that f € C§°[0, 00) is contained in R(T7 + ¢I) if and

only if
/ e’f=0
0

Since e* ¢ L2[0, 00), f satisfies the equation above is dense in C§°[0, 00). Therefore R(Ty + 1) is dense and thus
n4 (Tl) = 0.

A similar argument shows that def(75) = (1,0). Now combining with Problem 1, we see that on
p q
D= {u € @LQ[QOO) EB@LQ(—OO,O] su; € C§°l0,00) for 1 <4 < pand

u; € Cg¥(—00,0] forp+ 1< i < p+q}

pt+q
the operator Z Z% has deficiency indices (p, q). O
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4.3 Suppose that p(z) is a polynomial with real coefficients. Let A = p(i%) with domain C§°[0, 00) in L?[0, 00).
Show that

(1) A is symmetric;
(2) if p has no odd powers, then the deficiency indices of A are equal;
(3) if the degree of p is odd, then the deficiency indices of A are unequal.

Proof. (1) Straightforward integration by parts.

(2) If p has no odd-degree terms, then (A + iI)u = (A — iI)u, which implies that R(A + ¢I) is isomorphic to
R(A — iI). The conclusion follows easily.

(3) The approach is similar to that in Problem 4.2.
The range of A — 41 contains all fun&ions f of form Au — iu = f, u € C§°[0,00). From ODE Theory, we
conclude that f is contained in the range of A — iI if and only if fooo fg = 0 for all g that are solutions to
(A +il)g = 0, where we formally extend the domain of A to C°°[0,00) N L?[0, o). The deficiency index
concerns only those g that are contained in L?, hence we are only concerned with fooo ke f(z)dx = 0,
where z is the root of p(iz) + i = 0 with Rz < 0. In fa&, n (A) is the number of the roots of p(iz) +i =0
lying in ®z < 0. Similarly, n_(A) is the number of the roots of p(iz) — i = 0 lying in Rz > 0. Note that
p(ix) £ i = 0 has no pure imaginary roots, and z <+ —Z is a bijeGtion between the roots of the two equations.
We conclude that ny + n_ = deg g, which is odd, therefore n4 and n_ can never be equal. O

4.4 Let M and N be two subspaces of 5 and dim M > dim N. Show that there exi§ts u € M, |lul| = 1, such that
u e Nt

Proof: By considering a subspace of M, if necessary, we can assume that both M and IV are finite-dimensional.
Take orthonormal basis {z;} and {y;}*1, m > n, for M and N, respeétively. Consider z = 3 a;z; € M. We
want (z,y;) = >_; ai(z;,y;) = 0forall 1 < j < n. This is a system of linear equations that can be rewritten as
Az = 0, where A;; = (;,y;). Note that A has more rows (m rows) than columns (n columns), the linear sy§tem
has a non-zero solution. O

4.5 Let A be a closed symmetric operator. Show that o(A) must be one of the four cases:

(1
2
@3
(4

the closed upper half plane;
the closed lower half plane;

the entire plane;

T T o —

a subset of the real axis.

Proof. Suppose that zg € p(A). Fir§ suppose that im zyp < 0, then dim ker(A* + 2I) = n_ = dimker(A* + zI)
forallimz < 0. Since A — 2o/ is invertible, R(A — z9l) = 5 and n_ = 0. Hence ker(A* + zI) = {0} for all
imz < 0, thatis, R(A—2I) = 5 forallim z < 0 (because R(A — zI) is closed when A is closed and symmetric).
Note also symmetry of A implies that A — zI is inje&tive. Hence A — 21 is bije&tive for im z < 0, and z € p(A).
Similarly, if im zp > 0 then the entire open half-plane is contained in p(A). O

4.6 Let A be a closed symmetric operator. If p(A) contains a real number then A is self-adjoint.

Proof- Since p(A) contains a real number, the spectrum o (A) must be in case (4), thatis, 0(A) C R. Then def(A4) =
(0,0) and it follows from von Neumann Theorem that A is self-adjoint. (See also Theorem 6.4.5) O

4.7 Let A be a symmetric operator. If A; is a symmetric extension of A, then A; C A*. Define a sesquilinear form on
D(A*) as
{z,y} = (A"z,y) — (z, A"y).
Show that {z,y} = 0 forall x,y € D(A;).
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4.8

4.9

4.10

411

Proof. A C A; = A7 C A*. Also A, is symmetric, A1 C A} and {z,y} = 0. O

Suppose that A is a symmetric operator and D a linear subspace such that D(A) € D C D(A*) and {z,y} = 0 on
D x D. Show that there exi§ts a symmetric extension, denoted A1, of A such that D(4;) = D.

Proof Let A; = A*|p, then it is symmetric because {z,y} = 0on D x D. Also, A C A* and D(A) C A, we see
that A C A;. O]

Let A be a symmetric operator. Define an inner product on D(A*) as

(,9)a = (z,y) + (A", A"y),
then D(A*) with (-,-) 4 forms a Hilbert space. Show that

(1) The sesquilinear form defined in Problem 6.4.7 is continuous under the topology induced by (-, ) 4;

(2) Suppose that Ay is a re§triGtion of A. Show that A, is a closed operator if and only if D(A;) is closed under
the topology induced by (-, ) 4.

Proof. (1) Suppose that 2,, — x and y, = y under || - || 4, then z, = z, y,, = y, A*z,, = A%z, A%y, — A*y
(because A* is closed -- the dual of any densely-defined operator is closed) under the usual norm. It follows
that

{xnayn} = (A*xna yn) - (‘rnv A*yn) - (A*x»y) - (va*y) = {x,y},
where we use the fa& that the usual inner produ is continuous w.r.t. the usual norm.

(2) Note that the graph norm of A; coincides with (-, -) 4. O

Let A be a symmetric operator and view D(A*) as a Hilbert space with inner product (-, -) 4. Let S be a subset of
D(A*). We say S is symmetricif {z,y} = 0 on S x S. Show that there is a one-to-one correspondence between the
closed symmetric subspaces of D(A*) that contain D(A) and all the closed symmetric subspaces of D+ & D_, where
D, = ker(A* —il)and D_ = ker(A* 4 iI). Moreover, if D O D(A) is closed and symmetric and corresponds

to D, a closed and symmetric subspace of D, & D_, then D = D(A) & D.

Proof. First it is clear that A is closable, and A* = A*. Observe that any closed subspace of D(A*) that contains

D(A) also contains D(A), we may assume that A is closed.

Suppose D D D(A) is a closed subspace of D(A*). Note that D(A*) = D(A)@® D4 @ D_, for any x € D we can
write & = 24 + 24 + _ in a unique way. Let D be spanned by those 2 's and z_'s. We claim that D is a closed
symmetric subspace of D & D_. The closedness of D follows from the closedness of D and D(A). We show that
D is symmetric, i.e. (after some algebra), (z4+,y4+) = (v—,y_) for all z,y € D. 'This is not hard to obtain from
the symmetry of D, A*r = Ax + iz} — iz_ together with the assumption that A is symmetric. It is clear that
D = D(A) & D from the constru&ion of D, which implies that D <+ D is a one-to-one correspondence. O

Suppose that A is a symmetric operator, A? is densely-defined, show that A* A is a Friedrichs self-adjoint extension
of A2,

Proof. Without loss of generality, assume that A is closed. It is clear that A? is symmetric. Define a(u,v) =
(A%u,v) + (u,v), then a(u, v) is a positive-definite sesquilinear form on D(A?) C D(A). Consider the completion
of D(A?) with respett to a, denoted by D. Note that a(u, u) = ||Au||? + ||ul|? and D(A) is closed under this norm
(equivalent to the graph norm), the completion of D(A?), denoted by D, is the intersection of all subspaces of D(A)
that are closed under the graph norm. We shall show that D = D(Q), where D(Q) is defined in Corollary 6.4.21.
Then it follows from the uniqueness of the extension (Theorem 6.4.20) that A* A is the self-adjoint extension of A?
(Theorem 6.4.21).

Obviously D C D(Q), thus it suffices to show that D(Q) C D. This is because D(Q) is closed and is dense in
D(A). O
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412

4.13

4.14

4.15

4.16

Suppose that A is a lower semi-bounded closed symmetric operator, A > —M. Then dim ker(A* — 2T) is a con§tant
onC\ [-M, c0).

Proof. 'The proof is the same as that of Theorem 6.4.4. To connect the upper and lower half-planes, notice that the
proof is valid for real z € (—oo0, —M). In fa&, suppose that u € D(A), (A — zI)u = x,

(z,u) = (A= 2D)u,u) > (=M — 2)|[ull,

implying that

[zl = V(=M = 2)]ul]. H

Let A be a closed symmetric operator that is semi-bounded from below. Suppose that ny(A) = n_(A) < oo,
show that any self-adjoint extension of A is semi-bounded from below.

Proof: Suppose that A is a self-adjoint extension of A. From Problem 4.10, we know that D(A4,) = D(A4) & S,
where S is a finite-dimensional linear space. Suppose that M is the lower bound of A and pick K < M. Then
dim P_ k] < dim S, where Pq is the projection-valued measure of A;. Otherwise, we can find z € D(A4) N
R(P(—oo,K]), s0 that

(Az, z) = / zd|| B(z)z||* < K| E(K)z||* < M|,
R

contradicting with A > M. We have established that dim P_ ] < 00, this implies that o(A;) has only finitely
many elements in (—oo, K, and they are eigenvalues. Therefore, A; is bounded below. O

Suppose that T is a densely-defined closed operator in a Hilbert space. Show that there exi§t a positive self-adjoint

operator A with D(A) = D(T) and an isometry V : (ker T')*~ — R(T') such that
T=VA.

'This is called polar decomposition of closed operator.

Proof- Since T is densely-defined and closed, we have that 7T is positive self-adjoint. Let A = (T*T)z. For
x € D(T*T) we clearly have | Tz||? = (T*Tz,z) = (A%z,x) = ||Az|?. Since D(T*T) is dense in D(T'), we can
extend A to D(T') by continuity such that | Tz|| = ||Ax|| for all z € D(T).

Define V : R(A) — R(T) such that VAx = Tz, it is clear that V is well-defined and norm preserving. Thus V'

extends to an isometry from R(A) to R(T) by continuity. Since A is self-adjoint, R(A) = (ker A)* = (kerT)*.
Suppose that T = V' A’ is another decomposition. Then T*T = A*V"*VA' = A*A’ = A" thus A = A’ on
D(T*T) because vVT*T is unique. It follows immediately that A = A’ on D(T) and V' = V. O

Let A be a symmetric operator in a Hilbert space. Show that A is essentially self-adjoint if and only if dim ker(A* F
il) 2 ng =0.

Proof- This is Corollary 6.2.5 (Exercise 6.2.2). O

Denote the Schwartz space by . (R?). Let K1 (R?) be the closure of . (R?) under the norm of [,; [Vu|?dz. Let
H = K1(R3) x L?(R?) and define an inner product in 77 as
3

((f1, f2), (91, 92)) :/R (Vf1-Va1+ f2g2)dx.

Consider the following operator in .7¢”:

A= <2 é) . D(A) = Z(B%) x Z(RY).

Show that
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(1) A is symmetric;

(2) A is essentially self-adjoint.
Proof. (1) For (f1, f2), (91, 92) € D(A), it holds that

(1A(f1, f2), (91, 92)) = (i(f2, Af1), (91, 92))
—i [ (V52 Vo S m)a

“i [ (o B+ VA e
R.

= ((f1, f2), (g2, Ag1))
= ((f1, f2),1A(g1, 92))-

(2) We shall show that R(A %+ iI) is dense in 5. We fir§t show that R(A + iI) is dense. Note that
(A+il)(f1, f2) = i{f2 + f1,Af1 + [2),
it suffices to show that the sy§tem of equations

v+u=f
Aut+v=g

has solution u,v € .7 (R3) if f, g € .7 (R?), which can be easily reduced to show that
Au—u=nh
has solution u € .%(R3) if h € .#(R?). Take Fourier transform on both sides,
—4m?|¢)?0 — @ = h.

Solve for 1,

a=__ "
= TTr A

which is clearly in .(R3). Hence by taking inverse Fourier transform we obtain a solution u € .7 (IR?).

Similarly, to show that R(A — 4[) is dense, it suffices to show that

v—u=f
Au—v=g
has solution u, v € .7 (R3) if f, g € .7(R3), which reduced to the same problem as above. O

5 Perturbation of Self-Adjoint Operators

5.1 Let A be self-adjoint and B be symmetric. Suppose that B is A-bounded with relative bound equal to a. Prove that

1 LN —1
a= lim [[B(A+in)""||.

Proof: Note that [|(A + in)ul|? = ||Au||* 4+ n?||u||? for all u € D(A). Since A is self-adjoint, A + in is invertible
and R(A + in) = 4. Replace u by (A +in)~'x,

l]]* = [A(A + in)~@||* + n?|| (A +in) " x|, 2)
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Suppose that || Bu||? < a’?||Aul| + b"?||u||? for all u € D(A). Replace u by (A + in) "'z and use (2),
IB(A+in) " z|* < o[ A(A +in) " ]| + b2 [[(A + in) " ||
< a”(||lz]]* = n?[[(A + in) " @l|?) + bZ[|(A + in) " x|
< a”|z|?

when 7 is large enough. This implies that a’ > lim |B(A + in)~}| and thus a > lim |B(A + in)~ . The
conclusion follows easily if a = 0, so we assume a > 0 henceforth.

On the other hand, By the definition of relative bound, we know that for any € > 0 small enough, b > 0, there
exists u € D(A) such that
[Bull* > (a — €)*|| Aul|* + b*[|ul|*.

Use the same technique as before,
IB(A+in)" z]|* > (a - €)*|z]|* + (0° — (a — €)*n®)|[(A + in) " z?
Choose b = (a — €)n, we know that for any € > 0 there exi§ts = such that
IB(A+in)"'z|* > (a — €)*||z]?

which implies that || B(A + in)~!|| > a — e. This result holds for all n, thus lim || B(A + in)~!|| > a — ¢, and let
€ — 0,a <lim ||B(A + in)~!||, whence the conclusion follows. O

5.2 Let A be a densely defined closed operator and B a closable operator. If D(A) C D(B), show that B is A-bounded.

Proof. Since A is closed, X = (D(A),| - |lr(a)) is a Banach space. Without loss of generality, we may assume
that B is closed. To show that B is A-bounded, i.e., B is continuous on X, it suffices to show that B|x is a closed
operator then the Closed Graph Theorem applies. In fa&, suppose that x,, — x in X and Bz,, — y. Thenz,, — =
in 2. Since B is closed, we must have Bx = y, which shows that B|x is closed. O

5.3 Suppose that A and B are densely-defined operators in %, B is A-bounded, then there exist a, b > 0 such that
|Bz|| < afAz|| + bl|zl|,  Vz € D(A).

Show that
(1) Bis (A + B)-bounded and the relative bound is at mo$t %—;
(2) if C is A-bounded with relative bound ¢, then C'is (A + B)-bounded with relative bound at mo$t 1=
Proof. (1) Note that
I(A+ B)z|| > [[Az|| — || Bz| > [|Az]| — (a]|Az[| + bllz[]) = (1 — a)[|Az[| — b]|z]]
Then ALB ;
i < 14+ Bl + 0l "
1—-a
and
|(A+ B)z|| + b||=| a b(1+a)
Bz| < allA < =—|(A+B .
1B < alAal + ] < AT EIALAL iy - a4 a4 EED
(2) For any € > 0 there exiéts d > 0 such that
c+e€ c+e
[Call < e+ )l + el < S5 1A+ Blal + (£ +a) e,
thus C'is (A 4+ B)-bounded with relative bound at mogt £+<. Let € — 0, completing the proof. O
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5.4 Let J# be a Hilbert space. Suppose that A is a densely defined closed operator and B is A-bounded such that
|Bz|| < al|Az|| + bll].
Let A € p(A) such that
al[ARN(A)[| + bl RA(A)]| < 1,
where Ry (A) = (M — A)~1 is the resolvent operator of A. Show that A + B is closed, A € p(A + B) and

IRA(A+ B)|| < [ RA(A) (1 — al ARA(A)]| — bl RA(A)I) ™"

Proof. Fir§t we show that A+ B is closed. Suppose that z,, — = and (A+B)z,, — y. From (3) we see that { Ax,, } is
Cauchy and thus Ax,, — z for some z. Since A is closed, we have that x € D(A) and z = Az. Thus Bz, — y—z.
Also, since B is A-bounded, it holds that Bx,, — Bx. Therefore y — z = Bz and (A + B)z, — (A + B)z.

Denote ¢ = al|ARA(A)|| + b||Rx(A)||. Replacing z by Rx(A)y in || Bz|| < a||Az| + b||x||, we obtain that
IBRA(A)y| < al ARX(A)yl| + b RA(A)yll < cllyll-
Then

1-c
A+ B - X)z| > [[(A—=A)z| — ||Bz|| > |lyl| —cllyll = 1 =)yl > ———lz||
I1( )zl = I( )zl = [1Bz|| = [yl = ellyll = (1 = )yl ||R)\(A)HH I

which implies that A € p(A + B) and ||[Rx(A + B)|| < ”Rf(A)H_ 0

—cC

5.5 Let A and B be densely defined operators in . Suppose that A~ € L(.%#) and B is A-bounded such that
[Bz|| < af|Az|| + bllz]|, 2 & D(A).
Suppose that a + b||A~!|| < 1, prove that

(1) A+ B is closed and invertible;
@ I(A+B)7H < IA7H(A—a=b[ A7) 7L [(A+B) " =AY < [JA7H [ (a+ bl AT DI (L —a—bl A=H) ™
(3) if A~ is compa&, (A + B)~! is also compaét.

Proof: It has been proved in the previous exercise that A + B is closed. Similarly, Replacing z by A~y in || Bz|| <

a||Az|| + b||z||, we obtain that
IBA™ |l < ally]l + bl A7yl < cllyll,

where ¢ = a + b||A7!|| < 1. Then

_ 1—c
(A4 B)z| = |ly + BA Y| > |ly| — clly| = m\lxll,

which shows that A + B is invertible and ||(A + B)7!|| < %. Denote T = (A+ B)~! — A=1. Now,
T < 1A+ B)"HII(A+B)T| = [(A+ B) " [ BATH| < [|(A+ B)~*|e.

Since [|[BA™!|| < 1, we see that ] + BA™! is invertible, then (A + B)~! = A='(I + BA™')~! is compact by
Theorem 4.1.2(6). O

5.6 Suppose that A and B are densely defined operators, B is A-bounded and dim R(B) < oco. Show that B is
A-compact.

Proof: Suppose {z,,} and {Az,} are bounded sequences. Since B is A-bounded, { Bz, } is a bounded sequence,

too. Then {Bz,,} has a convergent subsequence because R(B) is finite-dimensional. O
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5.7 Suppose that A and B are symmetric operators, D(A) = D(B) = D, and
I(A = B)z|| < a'l|Az|| + a”|| Bz|| + bl|z||, Yz € D,

where 0 < a/,a” < 1, b > 0. Show that A is essentially self-adjoint if and only if B is essentially self-adjoint, and

when they are self-adjoint it holds that D(A) = D(B).
Proof. Use Corollary 6.5.12 inétead of Theorem 6.5.2 in the proof of Corollary 6.5.4. O

5.8 Suppose that A is self-adjoint and B is symmetric. Show that B is A-compact if and only if
(1) D(B) > D(A);
(2) VA € p(A), B(AI — A)~! is compaét.
Furthermore, the condition (2) can be replaced by
(2") 3\ € p(A) such that B(AI — A)~! is compact.
Proof. “If": Suppose that {x, } and { Az, } are bounded sequences, then {(A] —A)z,, } is bounded. Hence {Bx,,} =

{B(\ — A)~*((\I — A)x,,)} has a convergent subsequence.

*Only if": Suppose that {z,,} is a bounded sequence, then {(A] — A)~'x,,} is bounded, { A(\] — A) "'z, } is also
bounded since A(A — A)~t = AN\ — A)~! — I. Since B is A-compaé&, {B(Al — A)"'x,,} has a convergent

subsequence.

It is clear that we need only 3 inStead of VA in the “only if" part. O
5.9 LetV € 2 = L*(R3) and A > 0. Show that
Jim V(A + 27 =0,
and that V is (—A)-compadt.

Proof. It is easy to see that —A + ) is invertible on C§° using Fourier Transform and (—A + A) "' is in Schwartz
space for u € C§°(IR?). More precisely, using Green's funétion,

e—ﬁ\x—y|

(-2 + 3 Mu)(z) = / u(y)dy,

s 47(T — Y|
Then

e—Vlz—yl
(V=840 u)w) = [ Vi) Gy,

where the integral kernel

Now,

_ 1
V(A + 27 < 1K - 5 =0

as A — 0. Also, since K, (z,y) € L?(R®), it is a Hilbert-Schmidt kernel and V(= A+ ) =1 is compact. It follows
from the previous problem that V' is (—A)-compaét. O

5.10 Let A be essentially self-adjoint and B bounded symmetric. Show that A 4+ B is essentially self-adjoint.
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Proof. Obviously B is A-bounded with relative bound 0. The conclusion follows immediately from Corollary 6.5.12.
O

5.11 Let A be self-adjoint and B symmetric with D(A) C D(B) and B? < A% + b*I, where b is a constant. Show that
A + B is essentially self-adjoint.

Proof- Since
|Bz||* = (Bz, Bx) = (B*z,2) < (A%x,2) + b*(z,2) = (Az, Az) + b*|l2|* = || Az|* + b*[|«],
the conclusion follows immediately from Theorem 6.5.14. O
5.12 Let # be a Hilbert space, A self-adjoint, A > 0, B symmetric with D(B) D D(A). Suppose that
[ Bz|| < [[Az]|, V2 e D(A).
Show that |(Bz, z)| < (Az,x).

Proof: For any t € (—1,1), tB is symmetric and A-bounded with relative bound |¢t| < 1. Hence A +tB > 0
from Theorem 6.5.16. It means that t(Bz, z) > —(Az, z) for all t € (—1,1). The conclusion follows from letting
t— £1. O

5.13 Suppose that Vi, Vo € L?(IR?) are real-valued funétions and view V; (z;) (i = 1, 2) as multiplication operator. Show
that —A + Vi (z1) + Va(z2) is essentially self-adjoint with domain C§°(RS).

Proof: In the proof of Example 6.5.11, we see that given any @ > 0 there exists b > 0 such that
[ulloe < all Aullz + bllull2
for all u € C§°(R™), which is “equivalent' to

lull3e < a®| Aull3 + b7||ull3.

Now let u € C§°(RY),

\|V1u||§ < a® /| - Alu(xl,z2)|2dx1dx2 + b2 / |u(x1,x2)|2d:c1d:c2
= a2/

3
prﬂ(pla cee 7}76)
i=1
< ag/

6
Zp?ﬁ’(plﬂ s 7}76)
=1
= a®|| — Aull3 + 6*[Julf3,

2

dpy - -~ dpe + 0°||ull3

2
dp1 -+ - dps + b*||ul)3

A result with the same right-hand side holds for Vau. It follows that
Vi (1) + Va(zz)ul|? < 202 — Aull3 + 26%||ull5.

Since we can choose a as small as we want, V1 (z1) + Va(x2) is infinitesimally small with respe& to —A. Thus, by
Kato-Rellich Theorem, —A + V;(z1) + Va(z2) is essentially self-adjoint on C§°(RS). O
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5.14 Let A be a self-adjoint operator and B a bounded symmetric operator. Show that A + B is self-adjoint, and

d(o(A),0(A+ B)) <|B],

ie.,
sup d(A,o(A+ B)) < |B], 4)
A€o (A)
sup  d(a(A4),A) < |BJ|. (5)
A€o (A+B)

Proof: Itis clear that A+ B is symmetric. Also D(A*+ B*) = D(A*) = D(A) = D(A+ B) because B is defined
or can be extended to the entire /. Therefore A + B is self-adjoint.

To show (4), it suffices to show that for any A € 0(A) and € > 0, it holds that
A= ||Bl| — e, A+ ||B|| +¢€) No(A+ B) # 0.

Suppose it holds that
(A= Bl — & A+ |Bll + ) C p(A+ B),
then
IO7 = A= Bjal = [ (\= OPd|ESPa?
-/ (A — QP EA+Ba?
R\(A— || Bl|—€,A+| B]|+€)
> (IBI| + 2«
So
M —A=B) Y <t
EEx

and || B(Al — A — B)7!|| < 1, hence I + B(\] — A — B)~ ! is invertible and so is
M—-A=(I+BMN-A-B) ")\ -A-B).

Contradiétion.
For the second half, juét notice that (5) is (4) applied to (A + B) + (—B) = A. O

5.15 Let A be a self-adjoint operator, D C C be a Borel-measurable set with smooth boundary I' = dD. Suppose that

I’ C p(A), show that

E(D) = 1 fr(zf — A)"ldz,

2
where E is the spectral family of A.

Proof: Note that p(A) is an open set and 0(A) C R, hence such a boundary I' separates o(A). Then the proof
follows the same line as in Exercise 5.5.15. O

5.16 Let A be a self-adjoint operator and C' a compact operator, then

Oess(A) = 0ess(A + C).

5.17 Suppose that V' € L?(IR?) is real-valued, show that oes (—A + V) = [0, 00).

Proof. Using Fourier transform we can easily obtain that e,(—A) = [0, 00). Since V' is symmetric (because it is
real-valued) and (—A)-compa&t (Exercise 5.9), it immediately follows from Weyl's Theorem that oess(—A + V) =
[0, 0). O
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6 Convergence of Unbounded Operators

6.1

6.2

6.3

Let A,, and A be self-adjoint operators and suppose that forall z, y € 7 and all A withim A # 0, (Rx(An)x,y) —
(Ra(A)z,y). Prove that A,, — A s.r.s.

Proof.

[(Rx(An) — Ra(A)z|* = ((Ra(An) — Ra(A))z, (R(An) — RA(A))z)
= (Rx(4n)z, R\(An)x) — 2R(RA(Ap)z, Ra(A)z) + (RA(A)z, RA(A)x).

Since A, = A w.r.s, it is clear that (Ry(A,)x, Ra(A)x) — (Ra(A)z, Ra(A)z). Also,

(Rx(An)z, RA(An)z) = (B3 (An)RA(An)7, 7)
( RX(An) — R/\(An)x,x>

PYED
Ry (A) — Ry(A)
NECE XN

= (Rx(A)Rx(A)z, z)

Therefore,
[(RA(An) = Ra(A))z]|* = 0. O

Remark. 'This problem is exactly weak resolvent convergence implies §trong resolvent convergence.

Let A,, and A be positive self-adjoint operators, show that A,, — A s.r.s if and onlyif (4, + )71 — (A+ 1)~}
strongly.

Proof. “If": Let \g = —1. Examine the proof of Theorem 6.6.3, we see that the power series

(Ao = A)F(R-1(4))"H (6)

NE

Ry\(A) =

ES
I

0

converges in norm in |A — Ag| < 1, because 0(A4) C [0,00). So does the power series of Ry(A,,). Hence there
exits A, im A # 0 such that Ry(A4,,) — Rx(A) §trongly. Theorem 6.6.3 then applies.

*Only if": Note that A\ = —1 + ¢ is contained in p(A,) and p(A). The power series (6) converges in norm in
IA — Xo| < /2 because o(A) C [0,00). So does the power series of Ry(A,,). Hence Ry(A,) — Rx(A) s.r.s in
A= Xo| < V2. LetA=—1. 0

Let A be a self-adjoint operator. Show that

(1) Ner.s-limgye tA = toA, where tg # 0;

(2) limg_4, |4 — 04| = 0 if and only if A is bounded.
Proof. (1) Let A € C with im A # 0. Then

IRA(toA) — RA(tA)|| = [I(A — tA)™")(toA — tA)(AI — toA) ™'
< AL = tA) Y[ [[toA — tA| [(M — toA) ™|

-1
¢t (;\I - A)

< e im A/ Jto — ¢ LA (AT =t A)~H| — 0.

[to = tH AN [T = toA) ™|
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(2) “If": Suppose that E is the spectral family of A. Since A is bounded, o(A) is compact. Suppose that 0(A) C
[-N,N]and |t — to| < 1/N. It follows from

HeitAm _ eitoAxHZ — / |ez’t/\ _ eit")‘|2d||E,\$H2
R
N .
- / TR~ 1Pd| Bal?

N
— 2/4\7“ — cos((t — to)/\))dHE)\xHZ

< 2(1 — cos((t — to)N)) /]R d|| Exx||®
2(1 — cos((t — to)N))||z|?

that

HeitA . eitoA” < \/2(1 — cos((t - to)N)) —0

ast — to.

“Only if": Assume that tg = 0 for simplicity. For any operator Z that differs from I by an operator of norm
< 1 we can define
(Z - 1)

2

Since [|e?*? — I|| — 0, there exiéts ¢ such that [|e”®4 — I|| < 1. We can define Ine?* according to the
expansion of In Z above. Then In %4 is bounded. On the other hand, from functional calculus we see that

Inei4 = it A. Therefore A is bounded. O

InZ=W(I+Z-1)=2Z-1-

6.4 Let A,, and A be uniformly bounded self-adjoint operators. Show that

A, = Asrs <= A, — A &rongly.

Proof. =" Suppose that A,, — A s.r.s, then for all A, im A # O and all z, (Rx(A,) — Ra(A))z — 0. Note that
A—A, =N —-A,)— (M —A) = (M — A,)(RA(A) — RA(Ay))(N — A),
hence

Az — Ayall < (A = A [(Ra(4) = Ra(A))M — A)]
< (M + A [(Br(A) = Ra(An) (AL = A)a]] =0,

where M is the uniform bound of A,,.

"<=": Suppose that A,, — A §trongly. For any z, there exits y € D(A) such that z = (Al — A)y. Then
N —-A) e - -A) le=N-A,)(A-A,)y—0

because

1A — Ap)~H| < [im A7
Therefore (A — A,,) ™t — (M — A)~! §rongly. O

6.5 Show that if 4,, — A s.r.s then e?4n — git4 uniformly §trongly for ¢ in any finite interval.
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6.6

6.7

Proof. Let fs(t) = €"*. A careful examination of the proof of Theorem 6.6.6(2) reveals that we need to prove

£ (An)gmo (£) 7 = fs(A)gm, ()] < €/3

for all s in a finite interval when n is big enough. Since | f,(t)| = 1 regardless of s and ¢, the other lines in the proof
of Theorem 6.6.6(2) §till carries through for s in a finite interval.

+2

Fix m. Note that f(t)gm (t) = e~ = T and
2 . s
Sup | oy (g (1) = [ (D)gm (8)] = supe™ 7w [e1 7520 — 1
teR teR

+2
= supV2e " m /1 — 2cos(s] — s2)t
teR

By splitting R into [¢| < T and |¢t| > T, it is easy to see that

sup | fs1 () gm (t) = fo, (D) gm(t)| < €

for |s1 — s2| small enough (depending on € and independent of s1 or s2). This fact shows that the following line in
the proof of Theorem 6.6.6

sup |f@ams0) - P (o5 )| < 5

.9 -
z€R! T+ T—1

holds for all s inside any interval with a small length L(e). Consequently, for any of such interval, there exists N
such that whenever n > N it holds that

Ifs(An)z — f(A)z| < e

holds for all s inside the small interval. The final §tep is to divide a finite interval into pieces, each has length
L(e). O

Let A,, and A be uniformly bounded self-adjoint operators. Suppose that A, — A weakly but not §trongly. Does
A, — Aw.Rr.s?

Proof- No. If A, =+ A w.r.s, then A, — A s.r.s and thus A,, — A §trongly by Exercise 6.6.4. O

Let A,, and A be positive self-adjoint operators. Suppose that e~*4n — e~ &rongly for all t > 0. Show that
s.R.s-lim,, . A,, = A.

Proof: One can show that for positive self-adjoint operator A4,

o(4) = / "GN dE,

for Borel measurable ¢ that is bounded on [0, 00). Then following the same outline of Example 6.6.7, we obtain
that

R_1(A)u = —/ e te " udt,
0

and thus -
|IR-1(Ap)u — R_1(A)u| < / e e My — et ay|dt.
0

It follows from Dominated Convergence Theorem that R_;(A4,) — R_1(A) &trongly, and thence A,, — A s.r.s
by Problem 6.2. O
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6.8

6.9

6.10

Let {A,,} be a sequence of symmetric operators. Define DS, = {z : 3y € 7, (z,y) € T'S}. If DZ is dense in
S, show that { A,, } has a §trong graph limit and the limit operator is also symmetric. Moreover, the limit operator
is closed.

Proof. First we show that ', is the graph of an operator, for which we need only to show that the operator is well-
defined, i.e., suppose x,,, z,, € D(A,,) and z,, — z, x|, — 2’, Apz,, — yand A, 2], — ¥/, we must have y = /.
Indeed, let u be an arbitrary element in Dfo, then there exists u,, € D(A,,) such that u,, — u and Au,, — v. Thus,

(y—vy' u) = lim (A, (z, — 2),),up) = lim (z, — x,,, Apuy,) = 0. (7)

n—oQ n—oo

Since D% is dense, it follows immediately that y = y’. So {A,,} has a §trong graph limit, say A.

Now we show that A is symmetric. Let 2,y € D3 . There exi§t u,, — = and v,, — y such that u,, v, € D(A,),
Anuy, — Ax for some Az and A, v, — Ay for some Ay. Then

(z, Ay) = (un, Apvy) = lim (Apug,v,) = (Az,y). (8)

im
n—oo n— o0

Moreover, A is closed: suppose that z,, — x and Ax,, — y. There exi§ x, — @, and Ay Tpm — Az, for each
n. We can pick 2y, m — ¢ and Ay @y, m — y, hence v € D(A) and y = Az. O

Let {A,} be a sequence of operators on . Define 'Y, = {(u,v) € H x H : Ju, € D(A,),u, —
u, Apu, — v} If T is the graph of some linear operator A, we say A is the weak graph limit of {A,,}, de-
noted by A = wg-lim,,_,oc A,,. Suppose that A,, and A are uniformly bounded self-adjoint operators, show that
A =wg-lim,_, A, if and only if A,, — A weakly.

Proof. Suppose that the uniform bound of A,, and A is M.

*Only if": We want to prove that A,u — Au for all u. There exit u,, such that u,, — w and A, u,, — Au. Since
A, and A are bounded, they can be extended to the entire .72. Notice that

[(Anu = Apun, y)| < Mllu = un |y = 0, vy e A
it follows immediately that

lim (Ayu,y) = lim (Ayun,y) = (Au,y), Yye H#
n— oo n— oo
or, A,u — Au.

“If": Suppose that A, u — Au for all u. We want to find {u,,} such that u,, — w and A,u,, — Au. Note that
D(A,) is dense, we can easily find u,, € D(A,,) such that u,, — u. Now, as above, it automatically holds that

lim (Apun,y) = lim (Ayu,y) = (Au,y), Vy € . O
n—00

n— oo

Let {A,,} be a sequence of symmetric operators. Define DY, = {z : 3y € 2, (z,y) € T'%}. If DZ is dense in
S, show that I''2 is the graph of some symmetric operator.

Proof: 'The proof follows the same line as that of Exercise 6.8. Recall Exercise 2.5.18: If a,, — a and b,, — b then
(an,bn) — (a,b). Hence (7) and (8) $till hold. O
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