
1 Closed Operators
1.1 Show that every bounded operator on a Hilbert space is closable and every finite-rank closable operator is bounded.

Proof. For the first part, see eorem 2.3.12. Now we prove the second part. Suppose thatA is a finite-rank closable
operator, i.e., if {xn} ⊆ D(A), xn → 0 and Axn → y then y = 0. If A is not bounded, then there exist {yn} such
that ∥Ayn∥ ≥ n∥yn∥. Let xn = yn/∥Ayn∥, then ∥Axn∥ = 1 and ∥xn∥ ≤ 1

n . Hence xn → 0. Note that A is
finite-rank and recall that the unit sphere is sequentially compa in a finite dimensional space, thus we can choose a
subsequence of {xn}, still denoted by xn, such that Axn → z for some z. Since A is closable, we must have z = 0,
which contradis with ∥xn∥ = 1.

1.2 Show that a linear operator T is closed if and only if D(T ) is complete under graph norm.

Proof. It is clear that {xn} is Cauchy in D(T ) under graph norm if and only if ⟨xn, Txn⟩ is Cauchy in X × Y .
e conclusion follows immediately.

1.3 Let T be a closable operator. Show that T ∗
= T ∗.

Proof. It is easy to see that⊥S =⊥ S for anyS ⊆ X . Hence, Γ(T ∗) =⊥ (V Γ(T )) =⊥ (V Γ(T )) =⊥ (V Γ(T )) =⊥

(V Γ(T )) = Γ(T
∗
), which implies that T ∗

= T ∗.

1.4 Let T be a densely-defined linear symmetric operator on a Hilbert space, show that

(1) T is closed ⇐⇒ T = T ∗∗ ⊂ T ∗;
(2) T is essentially self-adjoint ⇐⇒ T ⊂ T ∗∗ = T ∗;
(3) T is self-adjoint ⇐⇒ T = T ∗∗ = T ∗.

Proof. (1) In the proof of 6.1.4, we have seen that Γ(T ∗∗) = Γ(T ). Hence T = T ∗∗ ⇐⇒ Γ(T ∗∗) = Γ(T ) ⇐⇒
Γ(T ) = Γ(T ) ⇐⇒ T is closed. From the definition of symmetric operators, T ⊂ T ∗ is automatic.

(2) `⇒': T is closable implies that Γ(T ) = Γ(T ) = Γ(T ∗∗), and thus T ⊂ T ∗∗, and from the previous problem,
T

∗
= T ∗. Also, T is self-adjoint, T = T

∗
= T ∗. Taking conjugate on both sides, T ∗

= T ∗∗, i.e., T ∗ = T ∗∗.
`⇐': T is symmetric, thus T is closable and T = T ∗∗ (eorem 6.1.4). Also T ∗∗ = T ∗ = T

∗ (Problem 6.1.3),
it follows that T = T

∗ and T is self-adjoint.
(3) T is self-adjoint ⇐⇒ (by definition) T = T ∗ =⇒ T ∗ = T ∗∗.

1.5 Let T be a densely-defined operator on Hilbert space H . Show that D(T ∗) = {0} if and only if Γ(T ) is dense in
H × H .

Proof. It suffices to show that

Γ(T ∗) =⊥ (V Γ(T )) = {0} ⇐⇒ Γ(T ) is dense in H × H ,

which is obvious, since ⊥(V Γ(T )) = {0} iff V Γ(T ) is dense iff Γ(T ) is dense.

1.6 Determine whether the following statement is true: Let T be a densely-defined operator on H such that (Tx, x) =
0 for all x ∈ D(T ), then Tx = 0 for all x ∈ D(T ).
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Proof. is is false. Consider the differential operator T : x 7→ d
dt defined on C∞

0 (R), which is a dense subset of
L2(R). Suppose x ∈ C∞

0 (R), then∫
R

(
dx

dt
· x
)
dt = x2

∣∣∣+∞

−∞
−
(∫

R
x · dx

dt

)
dt = −

(∫
R
x · dx

dt

)
dt,

hence ⟨Tx, x⟩ = 0 for all x ∈ C∞
0 (R). Obviously Tx ̸= 0 for some x ∈ C∞

0 (R).

1.7 Let X and Y be Banach spaces, and Y is reflexive. T : X → Y is a densely-defined operator. Show that
T is closable if and only if T ∗ is densely-defined. Also let JX : X → X ∗∗ and JY : Y → Y ∗∗ be natural
embeddings, show that when T is closable, T = J−1

Y T ∗∗JX .

Proof. `If ': Since T ∗ is densely-defined, T ∗∗ is a closed operator, and

Γ(T ∗∗) =⊥ V Γ(T ∗) =⊥ V ⊥V Γ(T ) =⊥ (⊥V 2Γ(T )) =⊥ (⊥Γ(T )) = Γ(T̃ ),

where T̃ : X ∗∗ → Y ∗∗ is the natural lift of T : X → Y . It is clear to see that Γ(T̃ ) restried on im JX × Y ∗∗

can be brought down to X × Y and become Γ(T ). To summarize, T = J−1
Y T ∗∗JX .

`Only if ': Suppose that T is closable. If D(T ∗) is not dense, then there exists y0 ∈ Y ∗∗, y0 ̸= 0, such that
y0 ∈⊥ D(T ∗), thus ⟨y0, 0⟩ ∈⊥ Γ(T ∗). Obviously ⟨0, y0⟩ ∈⊥ V Γ(T ∗), which implies that ⊥V Γ(T ∗) can not be
a graph of some linear operator. But on the other hand, ⊥V Γ(T ∗) =⊥ V ⊥V Γ(T ), which is, as shown above, the
graph of the lift of T , contradiion. erefore T ∗ is densely-defined.

1.8 Let f be a bounded and measurable funion on R1, but f ̸∈ L2(R1). Let

D =

{
ψ ∈ L2(R1) :

∫
|f(x)ψ(x)|dx <∞

}
.

Suppose that ψ0 ∈ L2(R1) and define

Tψ = (f, ψ)ψ0, ∀ψ ∈ D.

Prove that T is densely-defined and find T ∗.

Proof. Obviously C∞
0 (R) ⊂ D and we know that C∞

0 (R) is dense in L2(R), therefore D is dense in L2(R) and T
is densely-defined. Let fn = fχ[−n,n], then ⟨f, fn⟩ = ∥fn∥22. Note that ∥fn∥ → ∞ as n → ∞, this implies that
(f, x) is not a bounded funional on D. Suppose y ∈ D(T ∗), which requires that there existsMy such that

|(y, Tx)| = |(y, (f, x)ϕ0)| = |(f, x)| |(y, ϕ0)| ≤My∥x∥, ∀x ∈ D.

Since (f, x) is not a bounded funional, we must have (y, ϕ0) = 0. It is also easy to see that all y such that
(y, ϕ0) = 0 is contained in D(T ∗), and therefore D(T ∗) = {y ∈ L2 : (y, ϕ0) = 0}. Since (T ∗y, x) = (y, Tx) =
(f, x)(y, ϕ0) = 0 for all x ∈ D. Since D is dense, it must hold that T ∗y = 0. Hence T ∗ = 0.

1.9 Let T be a linear operator in Hilbert space H . Define its kernel as N(T ) = {x ∈ D(T ) : Tx = 0}. Show that

(1) If D(T ) is dense in X then N(T ∗) = R(T )⊥ ∩D(T ∗);
(2) If T is closed, then N(T ) = R(T ∗)⊥ ∩D(T ).

Proof. (1) `⊆': Let y∗ ∈ N(T ∗), then (y∗, Tx) = (T ∗y∗, x) for all x ∈ D(T ). Since T ∗y∗ = 0, it follows that
(y∗, Tx) = 0, which implies that y∗ ⊥ R(T ).
`⊇': Let y∗ ∈ R(T )⊥ ∩ D(T ∗), then 0 = (y∗, Tx) = (T ∗y∗, x) for all x ∈ D(T ), which means that
T ∗y∗ ⊥ D(T ). Since D(T ) is dense, it must hold that T ∗y∗ = 0, i.e., y∗ ∈ kerT ∗.
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(2) Since T is closed, T ∗ is densely-defined.
`⊆': Suppose that x ∈ R(T ∗)⊥∩D(T ), then (T ∗y∗, x) = 0 for all y∗ ∈ D(T ). en (y∗, Tx) = (T ∗y∗, x) =
0 for all y∗ ∈ D(T ∗). Since D(T ∗) is dense, we must have Tx = 0, or, x ∈ kerT .
`⊇': Suppose that x ∈ kerT . en 0 = (y∗, Tx) = (T ∗y∗, x) for all y∗ ∈ D(T ), which implies that
x ⊥ R(T ∗).

1.10 Let T be an injeive linear operator on H . Consider some assumptions about T :

(1) T is closed;
(2) imT is dense;
(3) imT is closed;
(4) ∃c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ D(T ).

Show that

(1) Conditions (1), (2) and (3) imply (4);
(2) Conditions (2), (3) and (4) imply (1);
(3) Conditions (1) and (4) imply (3);

Proof. (1) e conditions (2) and (3) imply that imT = H , since H is injeive, we must have D(T ) = H ,
which is closed. It follows condition (1) and Closed Operator eorem that T is continuous. Also T is
bijeive, Open Mapping eorem asserts that T−1 is bounded, which is exaly condition (4).

(2) From the same argument as in subproblem (1), we know that D(T ) is bijeive. Condition (4) implies that
T−1 is continuous. Suppose that xn → x and yn → y, yn = Txn, then xn = T−1yn. Taking limits on both
slides yields x = T−1y, i.e., y = Tx. erefore T is closed.

(3) Suppose that {Txn} is a Cauchy sequence. Condition (4) implies that {xn} is a Cauchy sequence. Suppose
that Txn → y and xn → x. Condition (1) says that x ∈ D(A) and y = Tx ∈ imT , hence imT is closed.

1.11 Let H = L2[0, 1], T1 = i d
dt , T2 = i d

dt .

D(T1) = {u ∈ H : u is absolutely continuous},
D(T2) = {u ∈ H : u(0) = 0, u is absolutely continuous},

Show that both T1 and T2 are closed operators.

Proof. Suppose that {xn} ⊆ D(T2), xn → x and idxn

dt → iy. Since xn is absolutely continuous,

xn(t) =

∫ t

0

x′n(s)ds.

Note that ∫ t

0

|x′n(s)− y(s)|ds ≤
√
t · ∥x′n − y∥2 ≤ ∥x′n − y∥2 → 0, , n→ ∞,

it follows that
xn(t) →

∫ t

0

y(s)ds

uniformly on [0, 1]. Hence ∥xn −
∫
y∥2 ≤ ∥xn −

∫
y∥2∞ → 0. From the uniqueness of limit, we see that

x(t) =

∫ t

0

y(s)ds,
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which is contained in D(T2) and T2x = iy. erefore T2 is closed.
Now suppose that {xn} ⊆ D(T2), xn → x and idxn

dt → iy. Since L2 convergence implies convergence in measure,
and Riesz theorem ensures an a.e. pointwise convergent subsequence in a subsequence of funions converging in
measure, we may assume that xn → x pointwise a.e. Define f(t) =

∫ t

0
y(s)ds, from the preceding argument, we

conclude that xn(t)− xn(0) → f(t) everywhere. Recall that xn(t) → x(t) a.e., we must have that xn(0) → a for
some a and x(t) = f(t) + a a.e.. Note that f(t) is absolutely continuous, hence x(t) is absolutely continuous, too.
is implies that T1 is closed.

1.12 Let X be a separable Hilbert space and {en}∞n=1 an orthonormal basis. Suppose that a ∈ X , a is not a finite linear
combination of {en}. Let D be the set of finite combinations of {en} and a, and define on D

T (βa+
∑

aiei) = βa,

where in the summand there are only finitely many non-zero ai's. Show that ⟨a, a⟩ ∈ Γ(T ), ⟨a, 0⟩ ∈ Γ(T ) and
thus Γ(T ) is not the graph of any linear operator.

Proof. It is trivial that ⟨a, a⟩ ∈ Γ(T ). Let an =
∑n

i=1(a, ei)ei, then an → a and Tan = 0. Hence ⟨a, 0⟩ ∈
Γ(T ).

1.13 Let H = l2 and

D(T ) =

a ∈ l2 : ∃N such that whenever n > N, an = 0 and
N∑
j=0

aj = 0

 .

Define Ta ∈ l2 for a ∈ l2 as

(Ta)n = i

n−1∑
j=1

aj +
n∑

j=1

aj

 .

Show that

(1) T is densely-defined and symmetric;
(2) R(T + i) is dense in l2;
(3) (1, 0, 0, . . . ) ∈ D(T ∗) and (T ∗ + i)(1, 0, 0, . . . ) = 0.

Proof. (1) To show that D(T ) is dense, it suffices to show that D(T ) is dense in span{en}, where {en} is the
natural orthonormal basis in l2. Furthermore, it suffices to show that each en can be approximated by elements
in D(T ). Take e1 for example. Let

an =
(
1− 1

n
,− 1

n
(1− 1

n
), . . . ,− 1

n
(1− 1

n
)︸ ︷︷ ︸

n times

, 0, 0, . . .
)
.

en
∥an − e1∥2 =

1

n2
+ n

( 1
n

(
1− 1

n

))2
→ 0

as n → ∞. We have seen that an → e1. e approximation to general em is similar, just right shift {an} by
m positions.
Now we show that (Tx, y) = (x, Ty) for all x, y ∈ D(T ), to prove that T is symmetric. Suppose that N is
the maximum of the two N 's corresponding to x and y.

(Tx, y) = i

N∑
n=1

yn

n−1∑
j=1

xj +

n∑
j=1

xj
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= i

 N∑
n=1

n−1∑
j=1

xjyn +
N∑

n=1

n∑
j=1

xjyn


= i

N−1∑
j=1

N∑
n=j+1

xjyn +
N∑
j=1

N∑
n=j

xjyn


= i

N∑
j=1

xj

 N∑
n=j+1

yn +
N∑

n=j

yn


= i

N∑
j=1

xj

(
−

j∑
n=1

yn −
j−1∑
n=1

yn

)
= (x, Ty).

(2) Note that (T + i)a = 2i(a1, a1 + a2, . . . , a1 + a2 + · · · + an, . . . ). Hence (T + i)( 1
2ia) = e1, where

a = (1,−1, 0, . . . ). Similarly we can show that {en} ⊆ R(T + i), which implies that R(T + i) is dense.
(3) Let y∗ = (1, 0, 0, . . . ), then (y∗, Tx) = (Tx)1 = −ix1. Let x∗ = (−i, 0, 0, . . . ) = −y∗, then (x∗, x) =

−ix1. Hence T ∗y∗ = −y∗, y∗ ∈ D(T ∗) and (T + i)y∗ = 0.

1.14 Let T be a symmetric operator on X with domain D. Suppose that D1 ⊆ D is a dense linear set and T |D1 is T
restried to D1. If T |D1 is essential self-adjoint, so is T and T = T |D1 .

Proof. SinceD1 is dense inD, we can use diagonal technique to show thatΓ(T ) = Γ(T |D1) = Γ(T |D1). Hence T is
closable and T = T |D1 . Now we show that T is self-adjoint. Since T |D1 is self-adjoint, we have that T |D1

∗
= T |D1

and therefore T ∗
= T |D1

∗
= T |D1 = T .

1.15 Let H = L2(R1) and

D(T ) =

{
u ∈ H :

∫ ∞

−∞
x2|u(x)|2dx <∞

}
.

Define T as (Tu)(x) = xu(x) for u ∈ D(T ). Show that T is unbounded and closed.

Proof. It is clear that ∥Tχ[0,n]∥ = 1√
3
n

3
2 and ∥χ[0,n]∥ =

√
n, ∥Tχ[0,n]∥

∥χ[0,n]∥
→ ∞ as n→ ∞, hence T is unbounded.

Suppose that un → u and xun → v in L2. We know that un → u in measure and Riesz's eorem enables us
to pick a subsequence, still denoted by un, which is convergent to u almost everywhere. So un → u in L2 and
pointwise a.e., thus xun → xu a.e. A similar argument shows that there is a subsequence of {xun}, again denoted
by {xun}, converges to v pointwise a.e. erefore it must hold that xu = v a.e., which implies that T is closed.

1.16 Suppose that T is a densely-defined closed operator on H . Show that for all a, b ∈ X , the system of equations

−Tx+ y = a

x+ T ∗y = b

has a unique solution x ∈ D(T ) and y ∈ D(T ∗).

Proof. `Existence': Consider the set S ⊆ H × H of all pairs (a, b) which make the system of equations have at
least one solution. It is clear that S is a linear set, V Γ(T ) ∈ S and Γ(T ∗) ∈ S. Note that Γ(T ∗) = (V Γ(T ))⊥.
Since Γ(T ) is closed, we know that V Γ(T ) is closed and Γ(T ∗) + V Γ(T ) = H . erefore S = H .
`Uniqueness': It suffices to show that

−Tx+ y = 0
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x+ T ∗y = 0

has solution x = 0, y = 0 only. A solution satisfies (y, Tx′) = (T ∗y, x′) for all x′ ∈ D(T ). In particular (x′ = x)
we have that (y, y) = −(x, x), it must hold that (y, y) = (x, x) = 0 from non-negativity of inner produ, and
therefore x = 0 and y = 0.

2 Cayley Transform and Speral Decomposition of Self-Adjoint Operators
2.1 Consider the operator Au = iu′ on L2(R1). Define D(A) = {u ∈ l2(R) : u is absolutely continuous and u′ ∈

L2(R1)}. Show that A is self-adjoint.

Proof. It is clear that C∞
0 (R) is contained in D(A) and thus D(A) is dense.

Suppose that u ∈ D(A) and ϵ > 0. Since u′ ∈ L2 there exists δ0 such that
∫ x+δ

x
|u′|2 < ϵ for all x and δ < δ0. Let

δ1 = min{δ0, ϵ}. en for all δ < δ1,

|u(x+ δ)− u(x)| =

∣∣∣∣∣
∫ x+δ

x

u′(t)dt

∣∣∣∣∣ ≤√δ1
√∫ x+δ1

x

|u′(t)|2dt ≤
√
ϵ ·

√
ϵ = ϵ.

Now we are ready to show that u(±∞) = 0. If not, without loss of generality, suppose that there exists ϵ0 > 0 and
xn → +∞ such that |u(xn)| ≥ ϵ0 for all n. We have seen that u is uniformly continuous, so we can find δ such
that |u(x)− u(y)| < ϵ0

2 whenever |x− y| < δ. erefore, we have that |u(x)| ≥ ϵ0
2 on (xn − δ, xn + δ) for all n.

Without loss of generality, assume that xn+1 − xn ≥ 2δ. en∫
R
|u|2 ≥

∞∑
n=1

∫ xn+δ

xn−δ

|u|2 ≥
∞∑

n=1

2δ · ϵ
2
0

4
= ∞,

which contradis with u ∈ L2(R). Hence u(±∞) = 0, then

(Au, v) = i

∫
R
u′v̄ = iuv

∣∣∣∞
−∞

− i

∫
uv′ = −i

∫
uv′ = (u,Av).

Using the same technique in Problem 6.1.11, we can show thatA is closed. It is easy to see that ker(A∗+ iI) = {0}
as A ⊆ A∗ and ker(A+ iI) = {0}. It follows from eorem 6.2.4 that A is self-adjoint.

2.2 Prove Corollary 6.2.5: Let A be a symmetric operator on a Hilbert space, then the following statements are equiv-
alent:

(1) A is essentially self-adjoint;
(2) ker(A∗ ± iI) = {0};
(3) R(A∓ iI) = H .

Proof. eorem 6.2.3 implies that (2) and (3) are equivalent, and a symmetric operator is closable. Now suppose that
A is essentially self-adjoint, soA is self-adjoint andA∗

= A∗. It follows from Proposition 6.2.1 that ker(A∗±iI) =
ker(A∗± iI) = {0}. Conversely, if (2) holds then it holds that ker(A∗± iI) = {0} and by eorem 6.2.4 we know
that A is self-adjoint, which implies that A is essentially self-adjoint.

2.3 Consider Au = iu′ as an operator on L2[0,∞) with domain C∞
0 [0,+∞). Is A essentially self-adjoint?

Proof. From Problem 1 we know that A is symmetric. It is easy to see that e−x ∈ D(A∗) and D∗e−x = −ie−x

since (e−x, u′) = (ie−x, u) for all u ∈ C∞
0 [0,+∞). erefore e−x ∈ ker(A∗ − iI) and ker(A∗ − iI) ̸= {0}.

Corollary 6.2.5 tells us that A is not essentially self-adjoint.
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2.4 Let A be a densely-defined symmetric operator, A is positive ((Ax, x) ≥ 0 ∀x ∈ D(A)), show that

(1) ∥(A+ I)x∥2 ≥ ∥x∥2 + ∥Ax∥2;
(2) A is a closed operator if and only if R(A+ I) is a closed set;
(3) A is essentially self-adjoint if and only if A∗y = −y has solution y = 0 only.

Proof. (1) Since A is symmetric, we have that (Ax, x) = (x,Ax). Hence ((A + I)x, (A + I)x) = (Ax,Ax) +
2(Ax, x) + (x, x) ≥ (Ax,Ax) + (x, x).

(2) `Only if ': Suppose thatA is closed. Let {yn} ⊆ R(A+I) be aCauchy sequence. Suppose that yn = Axn+xn.
From part (1) we know that {xn} and {Axn} are Cauchy, thus xn → x and Axn → y for some x and y.
Since A is closed, x ∈ D(A) and y = Ax, thus yn → (A+ I)x ∈ R(A+ I). erefore R(A+ I) is closed.
`If ': Suppose that xn → x andAxn → y. en (A+I)xn → x+y ∈ R(A+I), there exists a z ∈ D(A) such
that Az+ z = x+ y. Hence (A+ I)(xn − z) → 0. From part (1) we see that xn → z, hence x = z ∈ D(A)
and Az = y, showing that A is closed.

(3) `Only if ': Suppose that A is essentially self-adjoint, then A is closable and A∗ = A
∗
= A. Let y ∈ D(A) be

a solution of A∗y = −y. en (A+ I)x, y) = (x, (A∗ + I)y) = 0 for all x ∈ D(A). In particular, let x = y,
we have ((A+ I)y, y) = 0, i.e., 0 = ∥y∥2 + (Ay, y) ≥ ∥y∥2, it must hold that y = 0.
`If ': Since T is symmetric and densely-defined, T is closable, thus T̄ ∗ = T ∗, and T̄ = T ∗∗ ⊆ (T̄ )∗ (because
T ⊆ T ∗. Hence T̄ is symmetric. It suffices to show thatD(T ∗) ⊆ D(T̄ ). Let y ∈ D(T ∗) and x = (T ∗+I)y.
For this, we shall first prove thatR(T̄ +I) is closed. Clearly T̄ is positive. en let {yn} be a Cauchy sequence
in R(T̄ + I) and suppose that yn = (T̄ + I)xn. en

(yn, xn) = ((T̄ + I)xn, xn) ≥ ∥xn∥2,

and note the Cauchy-Schwarz Inequality (yn, xn) ≤ ∥yn∥ ∥xn∥ it follows that ∥xn∥ ≤ ∥yn∥. Hence {xn} is
bounded as {yn} is bounded. en

∥xn − xm∥2 ≤ (yn − ym, xn − xm) ≤ (∥xn∥+ ∥xm∥)∥yn − ym∥,

whence we see that {xn} is Cauchy. Since T̄ is closed, we have xn → x and yn → (T̄ + I)x ∈ R(T̄ + I).
Note that ker(T ∗ + I) ⊕ R(T̄ + I) = H , it follows from ker(T ∗ + I) = {0} that R(T̄ + I) = H . us
there exists y′ ∈ D(T̄ ) such that

(T̄ + I)y′ = (T̄ ∗ + I)y′ = x = (T ∗ + I)y.

Since T ∗ + I is injeive, it must hold that y = y′ ∈ D(T̄ ), and D(T ∗) ⊆ D(T̄ ).

2.5 Let

H =

{
f(z) =

∞∑
n=0

cnz
n, |z| < 1 :

∞∑
n=0

|cn|2 <∞

}
,

then H is a Hilbert space under the norm ∥f∥ = (
∑

|cn|2)
1
2 . Define operators U and A on H as

(Uf)(z) = zf(z),

(Af)(z) = i
1 + z

1− z
f(z).

Show that A is a symmetric operator on H , U is the Cayley transform of A and find R(A+ iI) and R(A− iI).

Proof. Suppose that f(z) =
∑
cnz

n, then

(Af)(z) = i
∞∑

n=0

(
2
n−1∑
k=0

ck + cn

)
zn.
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Since H is isomorphic to l2 via f ↔ {cn}, the operatorA in this problem corresponds to T in Exercise 6.1.13. We
can therefore define D(A) as D(T ) in Exercise 6.1.13, and it follows that A is densely-defined and symmetric.
Dire computation shows that

(U(A+ iI)f)(z) =
(
U
( 2i

1− z
f(z)

))
(z) =

2iz

1− z
f(z)

((A− iI)f)(z) =
2iz

1− z
f(z),

hence A− iI = U(A+ iI). Hence U = (A− iI)(A+ iI)−1, which is exaly the Cayley transform of A.
It is clear that R(A+ iI) consists of polynomials, and R(A− iI) polynomials with a zero constant term.

2.6 Let C be a symmetric operator on H and A a linear operator on H . Suppose that A ⊂ C and R(A + iI) =
R(C + iI), show that A = C.

Proof. For any y ∈ R(C + iI) we have x ∈ D(C) and z ∈ D(A) such that (C + iI)z = (A + iI)x = y.
Since A ⊂ C, we have also (C + iI)x = y. Note that C + iI is injeive (Proposition 6.2.1), it must hold that
z = x ∈ R(A). is implies that R(C) ⊆ R(A) and therefore A = C.

2.7 Let A be a symmetric operator on H , R(A + iI) = H and R(A − iI) ̸= H . Show that A has no self-adjoint
extensions.

Proof. Suppose that B is a self-adjoint extension of A, then B∗ ⊂ A∗, and R(B ± iI) = H . It follows from the
previous problem that A = B, and thus R(A− iI) = R(B − iI) = H . Contradiion. erefore A cannot have
a self-adjoint extension.

2.8 Let V be an isometry on H : ∥V x∥ = ∥x∥ for all x ∈ D(V ). Show that

(1) (V x, V y) = (x, y) for all x, y ∈ D(V );
(2) If R(I − V ) is dense in H then I − V is injeive;
(3) If one of D(V ), R(V ), Γ(V ) is closed, so are the other two.

Proof. (1) is is a dire corollary of polarisation identity.
(2) Suppose that (I − V )y = 0, i.e., y = V y. From part (1), (V x, V y) = (x, y) for all x ∈ D(V ). Replacing

V y by y yields (V x − x, y) = 0 for all y ∈ D(V ). Since R(I − V ) is dense, it must hold that y = 0, i.e.,
ker(I − V ) = {0}.

(3) It follows easily from ∥x∥ = ∥V x∥ that D(V ) is closed if and only if R(V ) is closed. e graph norm
∥x∥G = ∥x∥+ ∥V x∥ = 2∥x∥. Hence Γ(V ) is closed if and only if D(V ) is closed.

2.9 Let T be a closed operator on Hilbert space H . Show that ρ(T ) is open. For z ∈ ρ(T ) defineRz(T ) = (zI−T )−1,
show that Rz(T ) is an analytic funion with respe to t on each conneed component of ρ(T ) and satisfies the
first resolvent formula:

Rz1(T )−Rz2(T ) = (z2 − z1)Rz1(T )Rz2(T ).

Proof. See the proof of Corollary 2.6.7, Lemma 2.6.8 and eorem 2.6.9.

2.10 Prove Proposition 6.2.16, 6.2.17 and 6.2.18.
Proposition 6.2.16: Let A be a self-adjoint operator and {Eλ} its speral family. en λ0 ∈ σp(A) if and only if
Eλ0 − Eλ−

0
̸= 0.
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Proof. Note that λ0I −A =
∫
R(λ0 − λ)dEλ and

∥(λ0I −A)x∥2 =

∫
R
(λ0 − λ)2d∥Eλx∥2, x ∈ D(A).

us by E−∞ = 0 and the right continuity of ∥Eλx∥2 in λ, we see that λ0x = Ax iff

Eλx = Eλ+
0
x = Eλx ∀λ ≥ λ0

Eλx = Eλ−
0
x = 0 ∀λ < λ0,

that is, λ0x = Ax iff (Eλ0 − Eλ−
0
)x = x.

Proposition 6.2.17: Let A be a self-adjoint operator then σr(A) = ∅.

Proof. Suppose λ ∈ σr(A) then λ is real. Since R(λI −A) ̸= H , there exists y ̸= 0 such that y ⊥ (λI −A),
i.e., ((λI − A)x, y) = 0 for all x ∈ D(A). Hence (Ax, y) = (λx, y) = (x, λy) and y ∈ D(A∗) = D(A) as A is
self-adjoint, and D∗y = λy. Since D∗ = D, we find that y ∈ σp(A) and thus meet a contradiion.

Proposition 6.2.18: Let A be a self-adjoint operator with speral family {Eλ}, then λ0 ∈ σ(A) if and only if for
all ϵ > 0 it holds that E(λ0 − ϵ, λ0 + ϵ) ̸= 0.

Proof. From the previous problem we see that ρ(A) is open, and thus σ(A) is closed. e rest of the proof is exaly
the same as the proof of eorem 5.5.19.

2.11 Prove Proposition 6.2.20: Let A be a self-adjoint operator with speral family {Eλ}, then λ0 ∈ σess(A) if and only
if, ∀ϵ > 0, dimR(E(λ− ϵ, λ+ ϵ)) = ∞.

Proof. `Only if ': Let λ0 ∈ σess(A) but dimR(E(λ− ϵ, λ+ ϵ)) <∞ for some ϵ. Since λ0 ∈ σ(A), the argument in
the proof of eorem 5.5.21 gives that λ0 is an isolated point of σ(A) and thus belongs to σp(A) (use Proposition
6.2.16 and 6.2.18), however, ker(λ0I − A) = dimR(E({λ0})) ≤ dimR(E(λ − ϵ, λ + ϵ)) < ∞, contradiion
with the assumption that λ0 ∈ σess(A).
`If ': See the proof of eorem 5.5.21.

3 Speral Transform of Unbounded Normal Operators
3.1 Suppose that N be a normal operator, show that N∗ is a normal operator also.

Proof. eorem 6.1.4 tells us that N = N = N∗∗, then N∗∗N∗ = NN∗ = N∗N = N∗N∗∗. From the same
theorem we know that N∗ is densely defined, and Γ(N∗) = (V Γ(N))⊥ is closed, which implies that N∗ is closed.
erefore N∗ is normal.

3.2 Suppose that T is a densely-defined closed operator, D(T ) = D(T ∗), ∥Tx∥ = ∥T ∗x∥ for all x ∈ D(T ). Show
that T is normal.

Proof. From D(T ) = D(T ∗) it is easy to see that D(T ∗T ) = D(TT ∗). Since ∥Tx∥ = ∥T ∗x∥ for all x ∈ D(T ),
it follows from polarisation identity that ⟨Tx, Ty⟩ = ⟨T ∗x, T ∗y⟩ for all x, y ∈ D(T ). en for x ∈ D(T ∗T )
and y ∈ D(T ), it is immediate that (T ∗Tx, y) = (TT ∗x, y). Since D(T ) is dense in H , we must have that
T ∗Tx = TT ∗x for all x ∈ D(T ∗T ), which, together with D(T ∗T ) = D(TT ∗), implies that TT ∗ = T ∗T and T
is normal.

3.3 Let L ∈ L(H ) andM,N unbounded normal operator on H . Suppose that LM ⊂ NL, show that LM∗ ⊂ N∗L.
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Proof. First consider the case whereM = N . Let E be the speral decomposition ofM . en E(∆)L = LE(∆)
for every Borel set ∆ (eorem 6.3.11). It follows that

(LM∗x, y) = (M∗x, L∗y) =

∫
z̄d(E(z)x, L∗y) =

∫
z̄d(LE(z)x, y) =

∫
z̄d(E(z)Lx, y) = (M∗Lx, y)

for all x ∈ D(M∗) = D(M) and y ∈ H . is implies that LM∗ ⊆M∗L.
Now we consider the general case. Define M̂ on D(M)×D(N) ⊆ H × H as M̂(x, y) = (Mx,Ny). It is clear
that M̂ is normal. Also define L̂ on H ×H as L̂(x, y) = (Ly, 0), which is bounded. en it is easy to verify that
L̂M̂ ⊂ M̂L̂. Applying the previous case whereM = N , we obtain that L̂M̂∗ ⊂ M̂∗L̂, that is, LM∗ ⊂ N∗L.

3.4 Show that a densely-defined closed operatorN on H is an unbounded normal operator if and only if the following
conditions hold simultaneously:

(1) D(N) = D(N∗);
(2) N +N∗, i(N −N∗) are self-adjoint, and their speral families are commutative.

3.5 Let N be a densely-defined closed operator on H . Show that N is normal if and only if there exist decomposition
of the form N = A+ iB, A, B are self-adjoint, and their speral families are commutative.

Proof. `Only if ': Suppose that N is normal. Let A = N+N∗

2 and B = iN
∗−N
2 . Note that D(N) = D(N∗), it

follows easily that A,B are self-adjoint and AB = BA.

3.6 Prove that every normal operator N in H has a polar decomposition

N = UP = PU,

where U is unitary, P self-adjoint, P ≥ 0, and D(P ) = D(N).

Proof. Put p(z) = |z| and u(z) = z/|z| if z ̸= 0, u(0) = 1. en p and u are Borel funions on σ(N), Dp(z) =
Dz = D(N) and Du(z) = H . Put P = Φp and U = Φu. Since p ≥ 0, we know that P ≥ 0. Since uū = 1,
QQ∗ = Q∗Q = I . Since z = p(z)u(z), the relationN = PU = UP would follow immediately from the symbolic
calculus.

3.7 Suppose that N is an unbounded normal operator and (C,B, E) is its speral family. Show that

(1) z ∈ σp(N) ⇔ E({z}) ̸= 0;
(2) σr(N) = ∅;
(3) z ∈ σ(N) ⇔ ∀ Borel set ∆, z ∈ ∆, it holds that E(∆) ̸= 0.

Proof. With the speral theorem, the proof is almost identical to the case of bounded normal operator. See Problem
2.10, eorem 5.5.18 and 5.5.19.

3.8 Suppose that N is an unbounded normal operator and E is its speral family. Let

σess(N) = {z ∈ σ(N) : z has a Borel neighbourhood ∆ such that dimR(E(∆)) = +∞.},
σd(N) = σ(N) \ σess(N),

show that z ∈ σd(N) if and only if z is a finite isolated eigenvalue, z ∈ σess(N) if and only if z is a limit point of
σ(N) or an infinite eigenvalue.

Proof. See eorem 5.5.21.
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3.9 Suppose that H is a Hilbert space, (C,B, E) a speral family and f, g Borel-measurable funions. Show that
Φ(f)Φ(g) = Φ(fg) if and only if Dfg ⊂ Dg, where Φ(f) and Df are defined in (6.3.11) and (6.3.8) respeively.

Proof. eorem 6.3.4 says that Φ(f)Φ(g) ⊂ Φ(fg) and D(Φ(f)Φ(g)) = Dg ∩Dfg.
`Only if ': Suppose that Φ(f)Φ(g) = Φ(fg), then D(Φ(f)Φ(g)) = D(Φ(fg)), that is, Dg ∩Dfg = Dfg, hence
Dfg ⊆ Dg.
`If ': Suppose that Dfg ⊂ Dg, then D(Φ(f)Φ(g)) = Dfg = D(Φ(fg)), and thus Φ(f)Φ(g) = Φ(fg).

3.10 Let H be a Hilbert space, (C,B, E) an arbitrary speral family and f a bounded Borel-measurable funion. Show
that under the operator norm, the integral ∫

C
f(z)dE(z)

is convergent in the sense of Lebesgue integral, and

Φ(f) =

∫
C
f(z)dE(z),

where Φ(f) is defined as in (6.3.1).

Proof. See the remark following eorem 5.5.14.

3.11 Let H be a Hilbert space, (C,B, E) an arbitrary speral family and f a Borel-measurable funion. Define
∆n = {z : |f(z)| ≤ n}, fn(z) = χ∆n(z)f(z), show that

Φ(f) = s− limΦ(fn),

where Φ(f) is defined as in (6.3.11).

Proof. Since fn is bounded, it holds thatDf = Df−fn . For each x ∈ Df , it follows from Dominated Convergence
eorem that

∥Φ(f)x− Φ(fn)x∥ ≤
∫
C
|f − fn|2d∥E(z)x∥2 → 0

as n→ ∞.

4 Extension of Self-Adjoint Operators
4.1 Let An be a symmetric operator on a Hilbert space Hn for n = 1, 2, . . . . Define

D =

{
u = (u1, u2, . . . ) ∈

∞⊕
n=1

Hn : un ∈ D(An), only finitely many un's are non-zeroes
}
.

Show that

(1) A =
∑∞

n=1An is symmetric on D;
(2) n±(A) =

∑∞
n=1 n±(An).

Proof. (1) It is not difficult to see that D is dense and A =
∑∞

n=1An is linear. It is straightforward to verify that
(Ax, y) = (x,Ay) for x, y ∈ D, thus A is symmetric.
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(2) We only show that n+(A) =
∑∞

n=1 n+(An) (n−(A) can be proved similarly), for which it suffices to show
that

ker(A∗ − iI) =
∞⊕

n=1

ker(A∗
n − iI).

e left-hand side isR(A+iI)⊥. Suppose that v = (v1, v2, . . . ) ∈ R(A+iI), then
∑

((An+iI)un, vn) = 0
for all (u1, u2, . . . ) ∈ D, which reduces to ((An + iI)un, vn) = 0 for all n and un ∈ D(An). is implies
that vn ∈ R(An + iI)⊥ = ker(A∗

n − iI), giving ker(A∗ − iI) ⊆
∑∞

n=1 ker(A∗
n − iI).

Conversely, suppose that vn ∈ ker(A∗
n− iI) = R(An+ iI)

⊥, i.e., ((An+ iI)un, vn) = 0 for all un ∈ D(An),
then

∑
((An + iI)un, vn) = 0 for all (u1, u2, . . . ) ∈ D, indicating that (v1, v2, . . . ) ∈ R(A + iI)⊥ =

ker(A∗ − iI). Hence
∑∞

n=1 ker(A∗
n − iI) ⊆ ker(A∗ − iI).

Finally consider the decomposition of 0. Suppose that (A+ iI)(u1, u2, . . . ) = 0, i.e., (A1u1 + iu1, A2u2 +
iu2, . . . ) = 0, which implies that (An+ iI)un = 0 for all n. SinceAn is symmetric, it must hold that un = 0.
Hence the sum is a dire sum.

4.2 Define T1 = i d
dx with domain C∞

0 [0,∞) in L2[0,∞) and T2 = i d
dx with domain C∞

0 (−∞, 0] in L2(−∞, 0].
Show that def(T1) = (0, 1) and def(T2) = (1, 0). Show how to constru a symmetric operator with any given pair
of deficiency indices.

Proof. Integration by parts shows that T1 is symmetric. e range of T1 − iI contains all funions f of form

i
d

dx
u− iu = f, u ∈ C∞

0 [0,∞).

Hence f ∈ C∞
0 [0,∞). Multiply by e−x,

i
d

dx
(e−xu) = e−xf.

Since u has compa support, we obtain that ∫ ∞

0

e−xf = 0 (1)

Conversely, every C∞
0 funion f satisfying the condition above belongs to the range of T1 − iI as we can define u

by

u(x) = −i
∫ x

0

e−(y−x)f(y)dy.

It is clear that u ∈ C∞
0 [0,∞). erefore f ∈ C∞

0 [0,∞) is contained inR(T1−iI) if and only if f satisfies (1). Note
that e−x ∈ L2[0,∞), it follows thatR(T1− iI)⊥ is a one-dimensional subspace spanned by e−x, and n−(T1) = 1.
Now consider the range of T1 + iI . Similarly we conclude that f ∈ C∞

0 [0,∞) is contained in R(T1 + iI) if and
only if ∫ ∞

0

exf = 0

Since ex ̸∈ L2[0,∞), f satisfies the equation above is dense in C∞
0 [0,∞). erefore R(T1 + iI) is dense and thus

n+(T1) = 0.
A similar argument shows that def(T2) = (1, 0). Now combining with Problem 1, we see that on

D =

{
u ∈

p⊕
L2[0,∞)⊕

q⊕
L2(−∞, 0] : ui ∈ C∞

0 [0,∞) for 1 ≤ i ≤ p and

ui ∈ C∞
0 (−∞, 0] for p+ 1 ≤ i ≤ p+ q}

the operator
p+q∑

i
d

dx
has deficiency indices (p, q).
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4.3 Suppose that p(x) is a polynomial with real coefficients. Let A = p(i d
dx ) with domain C∞

0 [0,∞) in L2[0,∞).
Show that

(1) A is symmetric;
(2) if p has no odd powers, then the deficiency indices of A are equal;
(3) if the degree of p is odd, then the deficiency indices of A are unequal.

Proof. (1) Straightforward integration by parts.
(2) If p has no odd-degree terms, then (A+ iI)u = (A − iI)u, which implies that R(A + iI) is isomorphic to

R(A− iI). e conclusion follows easily.
(3) e approach is similar to that in Problem 4.2.

e range of A − iI contains all funions f of form Au − iu = f , u ∈ C∞
0 [0,∞). From ODE eory, we

conclude that f is contained in the range of A − iI if and only if
∫∞
0
fg = 0 for all g that are solutions to

(A + iI)g = 0, where we formally extend the domain of A to C∞[0,∞) ∩ L2[0,∞). e deficiency index
concerns only those g that are contained in L2, hence we are only concerned with

∫∞
0
xkezxf(x)dx = 0,

where z is the root of p(iz) + i = 0 with ℜz < 0. In fa, n+(A) is the number of the roots of p(iz) + i = 0
lying in ℜz < 0. Similarly, n−(A) is the number of the roots of p(iz) − i = 0 lying in ℜz > 0. Note that
p(ix)± i = 0 has no pure imaginary roots, and z ↔ −z̄ is a bijeion between the roots of the two equations.
We conclude that n+ + n− = deg g, which is odd, therefore n+ and n− can never be equal.

4.4 Let M and N be two subspaces of H and dimM > dimN . Show that there exists u ∈ M , ∥u∥ = 1, such that
u ∈ N⊥.

Proof. By considering a subspace of M , if necessary, we can assume that both M and N are finite-dimensional.
Take orthonormal basis {xi}mi=1 and {yi}ni=1,m > n, forM andN , respeively. Consider x =

∑
aixi ∈M . We

want (x, yj) =
∑

j ai(xi, yj) = 0 for all 1 ≤ j ≤ n. is is a system of linear equations that can be rewritten as
Ax = 0, where Aij = (xi, yj). Note that A has more rows (m rows) than columns (n columns), the linear system
has a non-zero solution.

4.5 Let A be a closed symmetric operator. Show that σ(A) must be one of the four cases:

(1) the closed upper half plane;
(2) the closed lower half plane;
(3) the entire plane;
(4) a subset of the real axis.

Proof. Suppose that z0 ∈ ρ(A). First suppose that im z0 < 0, then dim ker(A∗ + zI) = n− = dim ker(A∗ + z0I)
for all im z < 0. Since A − z0I is invertible, R(A − z0I) = H and n− = 0. Hence ker(A∗ + zI) = {0} for all
im z < 0, that is, R(A− zI) = H for all im z < 0 (because R(A− zI) is closed when A is closed and symmetric).
Note also symmetry of A implies that A − zI is injeive. Hence A − zI is bijeive for im z < 0, and z ∈ ρ(A).
Similarly, if im z0 > 0 then the entire open half-plane is contained in ρ(A).

4.6 Let A be a closed symmetric operator. If ρ(A) contains a real number then A is self-adjoint.

Proof. Since ρ(A) contains a real number, the sperum σ(A)must be in case (4), that is, σ(A) ⊂ R. en def(A) =
(0, 0) and it follows from von Neumann eorem that A is self-adjoint. (See also eorem 6.4.5)

4.7 Let A be a symmetric operator. If A1 is a symmetric extension of A, then A1 ⊂ A∗. Define a sesquilinear form on
D(A∗) as

{x, y} = (A∗x, y)− (x,A∗y).

Show that {x, y} = 0 for all x, y ∈ D(A1).

13



Proof. A ⊂ A1 ⇒ A∗
1 ⊂ A∗. Also A1 is symmetric, A1 ⊂ A∗

1 and {x, y} = 0.

4.8 Suppose that A is a symmetric operator andD a linear subspace such thatD(A) ⊂ D ⊂ D(A∗) and {x, y} = 0 on
D ×D. Show that there exists a symmetric extension, denoted A1, of A such that D(A1) = D.

Proof. Let A1 = A∗|D, then it is symmetric because {x, y} = 0 on D ×D. Also, A ⊂ A∗ and D(A) ⊂ A, we see
that A ⊂ A1.

4.9 Let A be a symmetric operator. Define an inner produ on D(A∗) as

(x, y)A = (x, y) + (A∗x,A∗y),

then D(A∗) with (·, ·)A forms a Hilbert space. Show that

(1) e sesquilinear form defined in Problem 6.4.7 is continuous under the topology induced by (·, ·)A;
(2) Suppose that A1 is a restriion of A. Show that A1 is a closed operator if and only if D(A1) is closed under

the topology induced by (·, ·)A.

Proof. (1) Suppose that xn → x and yn → y under ∥ · ∥A, then xn → x, yn → y, A∗xn → A∗x, A∗yn → A∗y
(because A∗ is closed -- the dual of any densely-defined operator is closed) under the usual norm. It follows
that

{xn, yn} = (A∗xn, yn)− (xn, A
∗yn) → (A∗x, y)− (x,A∗y) = {x, y},

where we use the fa that the usual inner produ is continuous w.r.t. the usual norm.
(2) Note that the graph norm of A1 coincides with (·, ·)A.

4.10 Let A be a symmetric operator and view D(A∗) as a Hilbert space with inner produ (·, ·)A. Let S be a subset of
D(A∗). We say S is symmetric if {x, y} = 0 on S×S. Show that there is a one-to-one correspondence between the
closed symmetric subspaces ofD(A∗) that containD(A) and all the closed symmetric subspaces ofD+⊕D−, where
D+ = ker(A∗ − iI) and D− = ker(A∗ + iI). Moreover, if D ⊃ D(A) is closed and symmetric and corresponds
to D̃, a closed and symmetric subspace of D+ ⊕D−, then D = D(Ā)⊕ D̃.

Proof. First it is clear that A is closable, and Ā∗ = A∗. Observe that any closed subspace of D(A∗) that contains
D(A) also contains D(Ā), we may assume that A is closed.
SupposeD ⊃ D(A) is a closed subspace ofD(A∗). Note thatD(A∗) = D(A)⊕D+ ⊕D−, for any x ∈ D we can
write x = xA + x+ + x− in a unique way. Let D̃ be spanned by those x+'s and x−'s. We claim that D̃ is a closed
symmetric subspace ofD+ ⊕D−. e closedness of D̃ follows from the closedness ofD andD(A). We show that
D̃ is symmetric, i.e. (after some algebra), (x+, y+) = (x−, y−) for all x, y ∈ D̃. is is not hard to obtain from
the symmetry of D, A∗x = Ax + ix+ − ix− together with the assumption that A is symmetric. It is clear that
D = D(Ā)⊕ D̃ from the construion of D̃, which implies that D ↔ D̃ is a one-to-one correspondence.

4.11 Suppose thatA is a symmetric operator, A2 is densely-defined, show thatA∗Ā is a Friedrichs self-adjoint extension
of A2.

Proof. Without loss of generality, assume that A is closed. It is clear that A2 is symmetric. Define a(u, v) =
(A2u, v)+(u, v), then a(u, v) is a positive-definite sesquilinear form onD(A2) ⊆ D(A). Consider the completion
ofD(A2) with respe to a, denoted byD. Note that a(u, u) = ∥Au∥2+∥u∥2 andD(A) is closed under this norm
(equivalent to the graph norm), the completion ofD(A2), denoted byD, is the interseion of all subspaces ofD(A)
that are closed under the graph norm. We shall show that D = D(Q), where D(Q) is defined in Corollary 6.4.21.
en it follows from the uniqueness of the extension (eorem 6.4.20) that A∗A is the self-adjoint extension of A2

(eorem 6.4.21).
Obviously D ⊆ D(Q), thus it suffices to show that D(Q) ⊆ D. is is because D(Q) is closed and is dense in
D(A).
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4.12 Suppose thatA is a lower semi-bounded closed symmetric operator,A ≥ −M . en dim ker(A∗−zI) is a constant
on C \ [−M,∞).

Proof. e proof is the same as that of eorem 6.4.4. To conne the upper and lower half-planes, notice that the
proof is valid for real z ∈ (−∞,−M). In fa, suppose that u ∈ D(A), (A− zI)u = x,

(x, u) = ((A− zI)u, u) ≥ (−M − z)∥u∥2,

implying that
∥x∥ ≥

√
(−M − z)∥u∥.

4.13 Let A be a closed symmetric operator that is semi-bounded from below. Suppose that n+(A) = n−(A) < ∞,
show that any self-adjoint extension of A is semi-bounded from below.

Proof. Suppose that A1 is a self-adjoint extension of A. From Problem 4.10, we know that D(A1) = D(A) ⊕ S,
where S is a finite-dimensional linear space. Suppose that M is the lower bound of A and pick K < M . en
dimP(−∞,K] ≤ dimS, where PΩ is the projeion-valued measure of A1. Otherwise, we can find x ∈ D(A) ∩
R(P(−∞,K]), so that

(Ax, x) =

∫
R
zd∥E(z)x∥2 ≤ K∥E(K)x∥2 ≤M∥x∥2,

contradiing with A ≥M . We have established that dimP(−∞,K] <∞, this implies that σ(A1) has only finitely
many elements in (−∞,K], and they are eigenvalues. erefore, A1 is bounded below.

4.14 Suppose that T is a densely-defined closed operator in a Hilbert space. Show that there exist a positive self-adjoint
operator A with D(A) = D(T ) and an isometry V : (kerT )⊥ → R(T ) such that

T = V A.

is is called polar decomposition of closed operator.

Proof. Since T is densely-defined and closed, we have that T ∗T is positive self-adjoint. Let A = (T ∗T )
1
2 . For

x ∈ D(T ∗T ) we clearly have ∥Tx∥2 = (T ∗Tx, x) = (A2x, x) = ∥Ax∥2. SinceD(T ∗T ) is dense inD(T ), we can
extend A to D(T ) by continuity such that ∥Tx∥ = ∥Ax∥ for all x ∈ D(T ).
Define V : R(A) → R(T ) such that V Ax = Tx, it is clear that V is well-defined and norm preserving. us V
extends to an isometry from R(A) to R(T ) by continuity. Since A is self-adjoint, R(A) = (kerA)⊥ = (kerT )⊥.
Suppose that T = V ′A′ is another decomposition. en T ∗T = A′∗V ′∗V A′ = A′∗A′ = A′2, thus A = A′ on
D(T ∗T ) because

√
T ∗T is unique. It follows immediately that A = A′ on D(T ) and V ′ = V .

4.15 LetA be a symmetric operator in a Hilbert space. Show thatA is essentially self-adjoint if and only if dim ker(A∗∓
iI) , n± = 0.

Proof. is is Corollary 6.2.5 (Exercise 6.2.2).

4.16 Denote the Schwartz space by S (R3). LetK1(R3) be the closure of S (R3) under the norm of
∫
R3 |∇u|2dx. Let

H = K1(R3)× L2(R3) and define an inner produ in H as

(⟨f1, f2⟩, ⟨g1, g2⟩) =
∫
R3

(∇f1 · ∇g1 + f2g2)dx.

Consider the following operator in H :

A =

(
0 I
∆ 0

)
, D(A) = S (R3)× S (R3).

Show that
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(1) iA is symmetric;
(2) iA is essentially self-adjoint.

Proof. (1) For ⟨f1, f2⟩, ⟨g1, g2⟩ ∈ D(A), it holds that

(iA⟨f1, f2⟩, ⟨g1, g2⟩) = (i⟨f2,∆f1⟩, ⟨g1, g2⟩)

= i

∫
R3

(∇f2 · ∇g1 +∆f1 · g2)dx

= −i
∫
R3

(f2 ·∆g1 +∇f1 · ∇g2)dx

= (⟨f1, f2⟩, i⟨g2,∆g1⟩)
= (⟨f1, f2⟩, iA⟨g1, g2⟩).

(2) We shall show that R(A± iI) is dense in H . We first show that R(A+ iI) is dense. Note that

(A+ iI)⟨f1, f2⟩ = i⟨f2 + f1,∆f1 + f2⟩,

it suffices to show that the system of equations

v + u = f

∆u+ v = g

has solution u, v ∈ S (R3) if f, g ∈ S (R3), which can be easily reduced to show that

∆u− u = h

has solution u ∈ S (R3) if h ∈ S (R3). Take Fourier transform on both sides,

−4π2|ξ|2û− û = ĥ.

Solve for û,

û = − ĥ

1 + 4π2|ξ|2
,

which is clearly in S (R3). Hence by taking inverse Fourier transform we obtain a solution u ∈ S (R3).
Similarly, to show that R(A− iI) is dense, it suffices to show that

v − u = f

∆u− v = g

has solution u, v ∈ S (R3) if f, g ∈ S (R3), which reduced to the same problem as above.

5 Perturbation of Self-Adjoint Operators
5.1 LetA be self-adjoint andB be symmetric. Suppose thatB isA-bounded with relative bound equal to a. Prove that

a = lim
n→∞

∥B(A+ in)−1∥.

Proof. Note that ∥(A+ in)u∥2 = ∥Au∥2 + n2∥u∥2 for all u ∈ D(A). Since A is self-adjoint, A+ in is invertible
and R(A+ in) = H . Replace u by (A+ in)−1x,

∥x∥2 = ∥A(A+ in)−1x∥2 + n2∥(A+ in)−1x∥2. (2)
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Suppose that ∥Bu∥2 ≤ a′2∥Au∥+ b′2∥u∥2 for all u ∈ D(A). Replace u by (A+ in)−1x and use (2),

∥B(A+ in)−1x∥2 ≤ a′2∥A(A+ in)−1x∥+ b′2∥(A+ in)−1x∥2

≤ a′2(∥x∥2 − n2∥(A+ in)−1x∥2) + b′2∥(A+ in)−1x∥2

≤ a′2∥x∥2

when n is large enough. is implies that a′ ≥ lim ∥B(A + in)−1∥ and thus a ≥ lim ∥B(A + in)−1∥. e
conclusion follows easily if a = 0, so we assume a > 0 henceforth.
On the other hand, By the definition of relative bound, we know that for any ϵ > 0 small enough, b > 0, there
exists u ∈ D(A) such that

∥Bu∥2 > (a− ϵ)2∥Au∥2 + b2∥u∥2.
Use the same technique as before,

∥B(A+ in)−1x∥2 > (a− ϵ)2∥x∥2 + (b2 − (a− ϵ)2n2)∥(A+ in)−1x∥2

Choose b = (a− ϵ)n, we know that for any ϵ > 0 there exists x such that

∥B(A+ in)−1x∥2 > (a− ϵ)2∥x∥2

which implies that ∥B(A+ in)−1∥ ≥ a− ϵ. is result holds for all n, thus lim ∥B(A+ in)−1∥ ≥ a− ϵ, and let
ϵ→ 0, a ≤ lim ∥B(A+ in)−1∥, whence the conclusion follows.

5.2 LetA be a densely defined closed operator andB a closable operator. IfD(A) ⊂ D(B), show thatB isA-bounded.

Proof. Since A is closed, X = (D(A), ∥ · ∥Γ(A)) is a Banach space. Without loss of generality, we may assume
that B is closed. To show that B is A-bounded, i.e., B is continuous on X , it suffices to show that B|X is a closed
operator then the Closed Graph eorem applies. In fa, suppose that xn → x inX andBxn → y. en xn → x
in H . Since B is closed, we must have Bx = y, which shows that B|X is closed.

5.3 Suppose that A and B are densely-defined operators in H , B is A-bounded, then there exist a, b ≥ 0 such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥, ∀x ∈ D(A).

Show that

(1) B is (A+B)-bounded and the relative bound is at most a
1−a ;

(2) if C is A-bounded with relative bound c, then C is (A+B)-bounded with relative bound at most c
1−a .

Proof. (1) Note that

∥(A+B)x∥ ≥ ∥Ax∥ − ∥Bx∥ ≥ ∥Ax∥ − (a∥Ax∥+ b∥x∥) = (1− a)∥Ax∥ − b∥x∥

en
∥Ax∥ ≤ ∥(A+B)x∥+ b∥x∥

1− a
(3)

and

∥Bx∥ ≤ a∥Ax∥+ b∥x∥ ≤ a
∥(A+B)x∥+ b∥x∥

1− a
+ b∥x∥ =

a

1− a
∥(A+B)x∥+ b(1 + a)

1− a
∥x∥.

(2) For any ϵ > 0 there exists d ≥ 0 such that

∥Cx∥ ≤ (c+ ϵ)∥Ax∥+ d∥x∥ ≤ c+ ϵ

1− a
∥(A+B)x∥+

(
c+ ϵ

1− a
+ d

)
∥x∥,

thus C is (A+B)-bounded with relative bound at most c+ϵ
1−a . Let ϵ→ 0, completing the proof.
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5.4 Let H be a Hilbert space. Suppose that A is a densely defined closed operator and B is A-bounded such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥.

Let λ ∈ ρ(A) such that
a∥ARλ(A)∥+ b∥Rλ(A)∥ < 1,

where Rλ(A) = (λI −A)−1 is the resolvent operator of A. Show that A+B is closed, λ ∈ ρ(A+B) and

∥Rλ(A+B)∥ ≤ ∥Rλ(A)∥(1− a∥ARλ(A)∥ − b∥Rλ(A)∥)−1.

Proof. First we show thatA+B is closed. Suppose that xn → x and (A+B)xn → y. From (3) we see that {Axn} is
Cauchy and thusAxn → z for some z. SinceA is closed, we have that x ∈ D(A) and z = Ax. usBxn → y−z.
Also, since B is A-bounded, it holds that Bxn → Bx. erefore y − z = Bx and (A+B)xn → (A+B)x.
Denote c = a∥ARλ(A)∥+ b∥Rλ(A)∥. Replacing x by Rλ(A)y in ∥Bx∥ ≤ a∥Ax∥+ b∥x∥, we obtain that

∥BRλ(A)y∥ ≤ a∥ARλ(A)y∥+ b∥Rλ(A)y∥ ≤ c∥y∥.

en
∥(A+B − λI)x∥ ≥ ∥(A− λI)x∥ − ∥Bx∥ ≥ ∥y∥ − c∥y∥ = (1− c)∥y∥ ≥ 1− c

∥Rλ(A)∥
∥x∥,

which implies that λ ∈ ρ(A+B) and ∥Rλ(A+B)∥ ≤ ∥Rλ(A)∥
1−c .

5.5 Let A and B be densely defined operators in H . Suppose that A−1 ∈ L(H ) and B is A-bounded such that

∥Bx∥ ≤ a∥Ax∥+ b∥x∥, x ∈ D(A).

Suppose that a+ b∥A−1∥ < 1, prove that

(1) A+B is closed and invertible;
(2) ∥(A+B)−1∥ ≤ ∥A−1∥(1−a−b∥A−1∥)−1, ∥(A+B)−1−A−1∥ ≤ ∥A−1∥(a+b∥A−1∥)∥(1−a−b∥A−1∥)−1;
(3) if A−1 is compa, (A+B)−1 is also compa.

Proof. It has been proved in the previous exercise that A+B is closed. Similarly, Replacing x by A−1y in ∥Bx∥ ≤
a∥Ax∥+ b∥x∥, we obtain that

∥BA−1y∥ ≤ a∥y∥+ b∥A−1y∥ ≤ c∥y∥,

where c = a+ b∥A−1∥ < 1. en

∥(A+B)x∥ = ∥y +BA−1y∥ ≥ ∥y∥ − c∥y∥ =
1− c

∥A−1∥
∥x∥,

which shows that A+B is invertible and ∥(A+B)−1∥ ≤ ∥A−1∥
1−c . Denote T = (A+B)−1 −A−1. Now,

∥T∥ ≤ ∥(A+B)−1∥∥(A+B)T∥ = ∥(A+B)−1∥∥BA−1∥ ≤ ∥(A+B)−1∥c.

Since ∥BA−1∥ < 1, we see that I + BA−1 is invertible, then (A + B)−1 = A−1(I + BA−1)−1 is compa by
eorem 4.1.2(6).

5.6 Suppose that A and B are densely defined operators, B is A-bounded and dimR(B) < ∞. Show that B is
A-compa.

Proof. Suppose {xn} and {Axn} are bounded sequences. Since B is A-bounded, {Bxn} is a bounded sequence,
too. en {Bxn} has a convergent subsequence because R(B) is finite-dimensional.
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5.7 Suppose that A and B are symmetric operators, D(A) = D(B) = D, and

∥(A−B)x∥ ≤ a′∥Ax∥+ a′′∥Bx∥+ b∥x∥, ∀x ∈ D,

where 0 < a′, a′′ < 1, b > 0. Show that A is essentially self-adjoint if and only if B is essentially self-adjoint, and
when they are self-adjoint it holds that D(Ā) = D(B̄).

Proof. Use Corollary 6.5.12 instead of eorem 6.5.2 in the proof of Corollary 6.5.4.

5.8 Suppose that A is self-adjoint and B is symmetric. Show that B is A-compa if and only if

(1) D(B) ⊃ D(A);
(2) ∀λ ∈ ρ(A), B(λI −A)−1 is compa.

Furthermore, the condition (2) can be replaced by

(2') ∃λ ∈ ρ(A) such that B(λI −A)−1 is compa.

Proof. `If ': Suppose that {xn} and {Axn} are bounded sequences, then {(λI−A)xn} is bounded. Hence {Bxn} =
{B(λI −A)−1((λI −A)xn)} has a convergent subsequence.
`Only if ': Suppose that {xn} is a bounded sequence, then {(λI −A)−1xn} is bounded, {A(λI −A)−1xn} is also
bounded since A(λI − A)−1 = λ(λI − A)−1 − I . Since B is A-compa, {B(λI − A)−1xn} has a convergent
subsequence.
It is clear that we need only ∃λ instead of ∀λ in the `only if ' part.

5.9 Let V ∈ H = L2(R3) and λ > 0. Show that

lim
λ→∞

∥V (−∆+ λ)−1∥ = 0,

and that V is (−∆)-compa.

Proof. It is easy to see that −∆+ λ is invertible on C∞
0 using Fourier Transform and (−∆+ λ)−1u is in Schwartz

space for u ∈ C∞
0 (R3). More precisely, using Green's funion,

((−∆+ λ)−1u)(x) =

∫
R3

e−
√
λ|x−y|

4π|x− y|
u(y)dy,

en

((V (−∆+ λ)−1)u)(x) =

∫
R3

|V (x)|e
−
√
λ|x−y|

4π|x− y|
u(y)dy,

where the integral kernel

Kλ(x, y) = |V (x)|e
−
√
λ|x−y|

4π|x− y|
∈ L2(R6).

Now,
∥V ((−∆+ λ)−1∥ ≤ ∥Kλ∥ ·

1

λ
→ 0

as λ→ ∞. Also, sinceKλ(x, y) ∈ L2(R6), it is a Hilbert-Schmidt kernel and V (−∆+λ)−1 is compa. It follows
from the previous problem that V is (−∆)-compa.

5.10 Let A be essentially self-adjoint and B bounded symmetric. Show that A+B is essentially self-adjoint.
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Proof. ObviouslyB isA-bounded with relative bound 0. e conclusion follows immediately fromCorollary 6.5.12.

5.11 Let A be self-adjoint and B symmetric withD(A) ⊂ D(B) and B2 ≤ A2 + b2I , where b is a constant. Show that
A+B is essentially self-adjoint.

Proof. Since

∥Bx∥2 = (Bx,Bx) = (B2x, x) ≤ (A2x, x) + b2(x, x) = (Ax,Ax) + b2∥x∥2 = ∥Ax∥2 + b2∥x∥2,

the conclusion follows immediately from eorem 6.5.14.

5.12 Let H be a Hilbert space, A self-adjoint, A ≥ 0, B symmetric with D(B) ⊃ D(A). Suppose that

∥Bx∥ ≤ ∥Ax∥, ∀x ∈ D(A).

Show that |(Bx, x)| ≤ (Ax, x).

Proof. For any t ∈ (−1, 1), tB is symmetric and A-bounded with relative bound |t| < 1. Hence A + tB ≥ 0
from eorem 6.5.16. It means that t(Bx, x) ≥ −(Ax, x) for all t ∈ (−1, 1). e conclusion follows from letting
t→ ±1.

5.13 Suppose that V1, V2 ∈ L2(R3) are real-valued funions and view Vi(xi) (i = 1, 2) as multiplication operator. Show
that −∆+ V1(x1) + V2(x2) is essentially self-adjoint with domain C∞

0 (R6).

Proof. In the proof of Example 6.5.11, we see that given any a > 0 there exists b > 0 such that

∥u∥∞ ≤ a∥∆u∥2 + b∥u∥2

for all u ∈ C∞
0 (Rn), which is `equivalent' to

∥u∥2∞ ≤ a2∥∆u∥22 + b2∥u∥22.

Now let u ∈ C∞
0 (R6),

∥V1u∥22 ≤ a2
∫

| −∆1u(x1, x2)|2dx1dx2 + b2
∫

|u(x1, x2)|2dx1dx2

= a2
∫ ∣∣∣∣∣

3∑
i=1

p2i û(p1, . . . , p6)

∣∣∣∣∣
2

dp1 · · · dp6 + b2∥u∥22

≤ a2
∫ ∣∣∣∣∣

6∑
i=1

p2i û(p1, . . . , p6)

∣∣∣∣∣
2

dp1 · · · dp6 + b2∥u∥22

= a2∥ −∆u∥22 + b2∥u∥22,

A result with the same right-hand side holds for V2u. It follows that

∥V1(x1)u+ V2(x2)u∥2 ≤ 2a2∥ −∆u∥22 + 2b2∥u∥22.

Since we can choose a as small as we want, V1(x1) + V2(x2) is infinitesimally small with respe to −∆. us, by
Kato-Rellich eorem, −∆+ V1(x1) + V2(x2) is essentially self-adjoint on C∞

0 (R6).
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5.14 Let A be a self-adjoint operator and B a bounded symmetric operator. Show that A+B is self-adjoint, and

d(σ(A), σ(A+B)) ≤ ∥B∥,

i.e.,

sup
λ∈σ(A)

d(λ, σ(A+B)) ≤ ∥B∥, (4)

sup
λ∈σ(A+B)

d(σ(A), λ) ≤ ∥B∥. (5)

Proof. It is clear thatA+B is symmetric. AlsoD(A∗+B∗) = D(A∗) = D(A) = D(A+B) becauseB is defined
or can be extended to the entire H . erefore A+B is self-adjoint.
To show (4), it suffices to show that for any λ ∈ σ(A) and ϵ > 0, it holds that

(λ− ∥B∥ − ϵ, λ+ ∥B∥+ ϵ) ∩ σ(A+B) ̸= ∅.

Suppose it holds that
(λ− ∥B∥ − ϵ, λ+ ∥B∥+ ϵ) ⊂ ρ(A+B),

then

∥(λI −A−B)x∥2 =

∫
R
(λ− ζ)2d∥EA+B

ζ x∥2

=

∫
R\(λ−∥B∥−ϵ,λ+∥B∥+ϵ)

(λ− ζ)2d∥EA+B
ζ x∥2

≥ (∥B∥+ ϵ)2∥x∥2.

So
∥(λI −A−B)−1∥ ≤ 1

∥B∥+ ϵ
,

and ∥B(λI −A−B)−1∥ < 1, hence I +B(λI −A−B)−1 is invertible and so is

λI −A = (I +B(λI −A−B)−1)(λI −A−B).

Contradiion.
For the second half, just notice that (5) is (4) applied to (A+B) + (−B) = A.

5.15 Let A be a self-adjoint operator, D ⊂ C be a Borel-measurable set with smooth boundary Γ = ∂D. Suppose that
Γ ⊂ ρ(A), show that

E(D) =
1

2πi

∮
Γ

(zI −A)−1dz,

where E is the speral family of A.

Proof. Note that ρ(A) is an open set and σ(A) ⊂ R, hence such a boundary Γ separates σ(A). en the proof
follows the same line as in Exercise 5.5.15.

5.16 Let A be a self-adjoint operator and C a compa operator, then

σess(A) = σess(A+ C).

5.17 Suppose that V ∈ L2(R3) is real-valued, show that σess(−∆+ V ) = [0,∞).

Proof. Using Fourier transform we can easily obtain that σess(−∆) = [0,∞). Since V is symmetric (because it is
real-valued) and (−∆)-compa (Exercise 5.9), it immediately follows from Weyl's eorem that σess(−∆+ V ) =
[0,∞).
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6 Convergence of Unbounded Operators
6.1 LetAn andA be self-adjoint operators and suppose that for all x, y ∈ H and all λwith imλ ̸= 0, (Rλ(An)x, y) →

(Rλ(A)x, y). Prove that An → A ...

Proof.

∥(Rλ(An)−Rλ(A))x∥2 = ((Rλ(An)−Rλ(A))x, (Rλ(An)−Rλ(A))x)

= (Rλ(An)x,Rλ(An)x)− 2ℜ(Rλ(An)x,Rλ(A)x) + (Rλ(A)x,Rλ(A)x).

Since An → A .., it is clear that (Rλ(An)x,Rλ(A)x) → (Rλ(A)x,Rλ(A)x). Also,

(Rλ(An)x,Rλ(An)x) = (Rλ̄(An)Rλ(An)x, x)

=

(
−Rλ̄(An)−Rλ(An)

λ̄− λ
x, x

)
→
(
−Rλ̄(A)−Rλ(A)

λ̄− λ
x, x

)
= (Rλ̄(A)Rλ(A)x, x)

= (Rλ(A)x,Rλ(A)x)

erefore,
∥(Rλ(An)−Rλ(A))x∥2 → 0.

Remark. is problem is exaly weak resolvent convergence implies strong resolvent convergence.

6.2 Let An and A be positive self-adjoint operators, show that An → A .. if and only if (An + I)−1 → (A+ I)−1

strongly.

Proof. `If ': Let λ0 = −1. Examine the proof of eorem 6.6.3, we see that the power series

Rλ(A) =
∞∑
k=0

(λ0 − λ)k(R−1(A))
k+1 (6)

converges in norm in |λ − λ0| < 1, because σ(A) ⊂ [0,∞). So does the power series of Rλ(An). Hence there
exists λ, imλ ̸= 0 such that Rλ(An) → Rλ(A) strongly. eorem 6.6.3 then applies.
`Only if ': Note that λ0 = −1 + i is contained in ρ(An) and ρ(A). e power series (6) converges in norm in
|λ − λ0| <

√
2 because σ(A) ⊂ [0,∞). So does the power series of Rλ(An). Hence Rλ(An) → Rλ(A) .. in

|λ− λ0| <
√
2. Let λ = −1.

6.3 Let A be a self-adjoint operator. Show that

(1) ..-limt→t0 tA = t0A, where t0 ̸= 0;
(2) limt→t0 ∥eitA − eit0A∥ = 0 if and only if A is bounded.

Proof. (1) Let λ ∈ C with imλ ̸= 0. en

∥Rλ(t0A)−Rλ(tA)∥ = ∥(λI − tA)−1)(t0A− tA)(λI − t0A)
−1∥

≤ ∥(λI − tA)−1)∥ ∥t0A− tA∥ ∥(λI − t0A)
−1∥

=

∥∥∥∥∥t−1

(
λ

t
I −A

)−1
∥∥∥∥∥ |t0 − t| ∥A∥ ∥(λI − t0A)

−1∥

≤ |t−1| | imλ/t|−1 |t0 − t| ∥A∥ ∥(λI − t0A)
−1∥ → 0.
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(2) `If ': Suppose that E is the speral family of A. Since A is bounded, σ(A) is compa. Suppose that σ(A) ⊂
[−N,N ] and |t− t0| < 1/N . It follows from

∥eitAx− eit0Ax∥2 =

∫
R
|eitλ − eit0λ|2d∥Eλx∥2

=

∫ N

−N

|ei(t−t0)λ − 1|2d∥Eλx∥2

= 2

∫ N

−N

(1− cos((t− t0)λ))d∥Eλx∥2

≤ 2(1− cos((t− t0)N))

∫
R
d∥Eλx∥2

= 2(1− cos((t− t0)N))∥x∥2

that
∥eitA − eit0A∥ ≤

√
2(1− cos((t− t0)N)) → 0

as t→ t0.
`Only if ': Assume that t0 = 0 for simplicity. For any operator Z that differs from I by an operator of norm
< 1 we can define

lnZ = ln(I + (Z − I)) = Z − I − (Z − I)2

2
+ · · · .

Since ∥eitA − I∥ → 0, there exists t such that ∥eitA − I∥ < 1
3 . We can define ln eitA according to the

expansion of lnZ above. en ln eitA is bounded. On the other hand, from funional calculus we see that
ln eitA = itA. erefore A is bounded.

6.4 Let An and A be uniformly bounded self-adjoint operators. Show that

An → A .. ⇐⇒ An → A strongly.

Proof. `⇒': Suppose that An → A .., then for all λ, imλ ̸= 0 and all x, (Rλ(An)−Rλ(A))x→ 0. Note that

A−An = (λI −An)− (λI −A) = (λI −An)(Rλ(A)−Rλ(An))(λI −A),

hence

∥Ax−Anx∥ ≤ ∥(λI −An)∥ ∥(Rλ(A)−Rλ(An))(λI −A)x∥
≤ (M + |λ|)∥(Rλ(A)−Rλ(An))(λI −A)x∥ → 0,

whereM is the uniform bound of An.
`⇐': Suppose that An → A strongly. For any x, there exists y ∈ D(A) such that x = (λI −A)y. en

(λI −A)−1x− (λI −An)
−1x = (λI −An)

−1(A−An)y → 0

because
∥(λI −An)

−1∥ ≤ | imλ|−1.

erefore (λI −An)
−1 → (λI −A)−1 strongly.

6.5 Show that if An → A .. then eitAn → eitA uniformly strongly for t in any finite interval.
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Proof. Let fs(t) = eits. A careful examination of the proof of eorem 6.6.6(2) reveals that we need to prove

∥fs(An)gm0(t)x− fs(A)gm0(t)x∥ < ϵ/3

for all s in a finite interval when n is big enough. Since |fs(t)| = 1 regardless of s and t, the other lines in the proof
of eorem 6.6.6(2) still carries through for s in a finite interval.

Fixm. Note that fs(t)gm(t) = e−
t2

m+its and

sup
t∈R

|fs1(t)gm(t)− fs2(t)gm(t)| = sup
t∈R

e−
t2

m |ei(s1−s2)t − 1|

= sup
t∈R

√
2e−

t2

m

√
1− 2 cos(s1 − s2)t

By splitting R into |t| < T and |t| ≥ T , it is easy to see that

sup
t∈R

|fs1(t)gm(t)− fs2(t)gm(t)| < ϵ

for |s1 − s2| small enough (depending on ϵ and independent of s1 or s2). is fa shows that the following line in
the proof of eorem 6.6.6

sup
x∈R1

∣∣∣∣fs(x)gm0(x)− P

(
1

x+ i
,

1

x− i

)∣∣∣∣ ≤ ϵ

3
.

holds for all s inside any interval with a small length L(ϵ). Consequently, for any of such interval, there exists N
such that whenever n > N it holds that

∥fs(An)x− f(A)x∥ ≤ ϵ

holds for all s inside the small interval. e final step is to divide a finite interval into pieces, each has length
L(ϵ).

6.6 Let An and A be uniformly bounded self-adjoint operators. Suppose that An → A weakly but not strongly. Does
An → A ..?

Proof. No. If An → A .., then An → A .. and thus An → A strongly by Exercise 6.6.4.

6.7 Let An and A be positive self-adjoint operators. Suppose that e−tAn → e−tA strongly for all t > 0. Show that
..-limn→∞An = A.

Proof. One can show that for positive self-adjoint operator A,

ϕ(A) =

∫ ∞

0

ϕ(λ)dEλ

for Borel measurable ϕ that is bounded on [0,∞). en following the same outline of Example 6.6.7, we obtain
that

R−1(A)u = −
∫ ∞

0

e−te−tAudt,

and thus
∥R−1(An)u−R−1(A)u∥ ≤

∫ ∞

0

e−t∥e−tAnu− e−tAu∥dt.

It follows from Dominated Convergence eorem that R−1(An) → R−1(A) strongly, and thence An → A ..
by Problem 6.2.
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6.8 Let {An} be a sequence of symmetric operators. Define DS
∞ = {x : ∃y ∈ H , ⟨x, y⟩ ∈ ΓS

∞}. If DS
∞ is dense in

H , show that {An} has a strong graph limit and the limit operator is also symmetric. Moreover, the limit operator
is closed.

Proof. First we show that ΓS
∞ is the graph of an operator, for which we need only to show that the operator is well-

defined, i.e., suppose xn, x′n ∈ D(An) and xn → x, x′n → x′, Anxn → y and Anx
′
n → y′, we must have y = y′.

Indeed, let u be an arbitrary element inDS
∞, then there exists un ∈ D(An) such that un → u andAun → v. us,

(y − y′, u) = lim
n→∞

(An(xn − x′n), un) = lim
n→∞

(xn − x′n, Anun) = 0. (7)

Since DS
∞ is dense, it follows immediately that y = y′. So {An} has a strong graph limit, say A.

Now we show that A is symmetric. Let x, y ∈ DS
∞. ere exist un → x and vn → y such that un, vn ∈ D(An),

Anun → Ax for some Ax and Anvn → Ay for some Ay. en

(x,Ay) = lim
n→∞

(un, Anvn) = lim
n→∞

(Anun, vn) = (Ax, y). (8)

Moreover, A is closed: suppose that xn → x and Axn → y. ere exist xnm → xn and Amxnm → Axn for each
n. We can pick xnmm → x and Amxnmm → y, hence x ∈ D(A) and y = Ax.

6.9 Let {An} be a sequence of operators on H . Define Γw
∞ = {⟨u, v⟩ ∈ H × H : ∃un ∈ D(An), un →

u,Anun ⇀ v}. If Γw
∞ is the graph of some linear operator A, we say A is the weak graph limit of {An}, de-

noted by A = wg- limn→∞An. Suppose that An and A are uniformly bounded self-adjoint operators, show that
A = wg- limn→∞An if and only if An → A weakly.

Proof. Suppose that the uniform bound of An and A isM .
`Only if ': We want to prove that Anu ⇀ Au for all u. ere exist un such that un → u and Anun ⇀ Au. Since
An and A are bounded, they can be extended to the entire H . Notice that

|(Anu−Anun, y)| ≤M∥u− un∥ ∥y∥ → 0, ∀y ∈ H

it follows immediately that

lim
n→∞

(Anu, y) = lim
n→∞

(Anun, y) = (Au, y), ∀y ∈ H

or, Anu ⇀ Au.
`If ': Suppose that Anu ⇀ Au for all u. We want to find {un} such that un → u and Anun ⇀ Au. Note that
D(An) is dense, we can easily find un ∈ D(An) such that un → u. Now, as above, it automatically holds that

lim
n→∞

(Anun, y) = lim
n→∞

(Anu, y) = (Au, y), ∀y ∈ H .

6.10 Let {An} be a sequence of symmetric operators. Define Dw
∞ = {x : ∃y ∈ H , ⟨x, y⟩ ∈ Γw

∞}. If DS
∞ is dense in

H , show that Γw
∞ is the graph of some symmetric operator.

Proof. e proof follows the same line as that of Exercise 6.8. Recall Exercise 2.5.18: If an ⇀ a and bn → b then
(an, bn) → (a, b). Hence (7) and (8) still hold.
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