
7302 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

Sublinear-Time Algorithms for Compressive
Phase Retrieval

Yi Li and Vasileios Nakos , Member, IEEE

Abstract— In the problem of compressed phase retrieval,
the goal is to reconstruct a sparse or approximately k-sparse
vector x ∈ C

n given access to y = |Φx|, where |v| denotes
the vector obtained from taking the absolute value of v ∈
C

n coordinate-wise. In this paper we present sublinear-time
algorithms for a few for-each variants of the compressive phase
retrieval problem which are akin to the variants considered for
the classical compressive sensing problem in theoretical computer
science. Our algorithms use pure combinatorial techniques and
near-optimal number of measurements.

Index Terms— Phase retrieval, compressive sensing, sparse
recovery, sublinear-time algorithms, combinatorial algorithms.

I. INTRODUCTION

IN THE past decade, the sparse recovery problem,
or compressive sensing, has attracted considerable research

interest with extensive applications and fruitful results. The
problem asks to recover a signal x ∈ Rn (or Cn) from
linear measurements y = Φx for some matrix Φ ∈ R

m×n

(or Cm×n), assuming that x is k-sparse (i.e. containing only
k non-zero coordinates) or can be well-approximated by a
k-sparse signal (intuitively x contains k large coordinates
while the rest of the other coordinates are small). Often
post-measurement noise is present, that is, y = Φx + ν
for some noise vector ν. The primary goal is to use as
few measurements as possible. The algorithms are largely
divided into two categories: geometric algorithms and com-
binatorial algorithms. Geometric algorithms usually use fewer
measurements but run in poly(n) time while combinatorial
algorithms run in sublinear time, usually O(k poly(log n)) or
O(k2 poly(log n)), at the cost of slightly more measurements.

In recent years a closely related problem, called com-
pressive phase retrieval, has become an active topic, which
seeks to recover a sparse signal x ∈ Rn (or Cn) from
the phaseless measurements y = |Φx| (or y = |Φx| + ν
with post-measurement noise), where |z| denotes a vector
formed by taking the absolute value of every coordinate of z.
The primary goal remains the same, i.e. to use as fewer

Manuscript received June 27, 2018; revised February 18, 2020; accepted
June 4, 2020. Date of publication August 31, 2020; date of current version
October 21, 2020. The work of Vasileios Nakos was supported in part by
ONR under Grant N00014-15-1-2388. This article was presented in part at the
2018 IEEE International Symposium on Information Theory. (Corresponding
author: Yi Li.)

Yi Li is with the School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore 637371 (e-mail: yili@ntu.edu.sg).

Vasileios Nakos is with Saarland University, 66123 Saarbrücken, Germany
(e-mail: billynak@gmail.com).

Communicated by P. Grohs, Associate Editor for Signal Processing.
Digital Object Identifier 10.1109/TIT.2020.3020701

measurements as possible. Such types of measurements arises
in various fields such as optical imaging [1] and speech signal
processing [2]. There has been rich research in geometric
algorithms for recovering the whole vector from phaseless
measurements (see, e.g. [3]–[10]), as well as algorithms for
the sparse phase retrieval problem that run in at least polyno-
mial time (e.g. [6], [11]–[13]), mostly based on semidefinite
programming. On the other side, there have been relatively few
sublinear time algorithms – [14]–[17] are the only algorithms
to the best of our knowledge. This comes in contrast to
the standard sparse recovery problem with linear measure-
ments, which sees a long history of sublinear-time algorithms
(e.g. [18]–[28]). For the case of phaseless measurements, most
existing algorithms consider sparse signals, and thus such
sublinear time algorithms have a flavour of code design, akin
to Prony’s method. Among the sublinear-time algorithms, [14]
considers sparse signals only, [16] considers sparse signals
with random post-measurement noise, [15] allows adversarial
post-measurement noise but has poor recovery guarantee, [17]
considers near-sparse real signals (signals of real coordinates)
with no post-measurement noise but achieves constant-factor
approximation and thus outperforms all other sublinear-time
algorithms for real signals. The approach in [17] employs
combinatorial techniques more widely used in the theoretical
computer science literature for the classical sparse recovery
problem. In this paper, we aim to improve on [17] for complex
near-sparse signals using similar combinatorial techniques.

More quantitatively, suppose that the decoding algorithmR,
given input y = |Φx|, outputs an approximation x̂ to x,
with the guarantee that the approximation error d(x, x̂) is
bounded from above. For x ∈ C

n, the approximation error
d(x, x̂) = minθ∈[0,2π)

��x− eiθx̂
��. Specifically we consider

the following two types of error guarantee:

• (�∞/�2) minθ∈[0,2π)

��x− eiθx̂
��
∞ ≤ 1√

k
�x−k�2;

• (�2/�2) minθ∈[0,2π)

��x− eiθx̂
��

2
≤ (1 + �) �x−k�2,

where x−k denotes the vector formed by zeroing out the
largest k coordinates (in magnitude) of x. Note that when
x is noiseless, that is, when x−k = 0, both guarantees mean
exact recovery of x, i.e., x̂ = x.

Besides the error guarantees, the notions of for-all and
for-each in the sparse recovery problems also extend to the
compressive phase retrieval problem. In a for-all problem,
the measurement matrix Φ is chosen in advance and will
work for all input signals x, while in a for-each problem,
the measurement matrix Φ is usually random such that for

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6420-653X
https://orcid.org/0000-0003-2703-2750

LI AND NAKOS: SUBLINEAR-TIME ALGORITHMS FOR COMPRESSIVE PHASE RETRIEVAL 7303

each input x, a random choice of Φ works with a good
probability.

In the next subsection we shall give an overview of our
sublinear-time results. Our results are all for-each results.
As the problem has received little attention in the community
of theoretical computer science, our results are the first and
preliminary along the combinatorial approach though require
mild assumptions on the possible phases of the coordinates
of x. Those assumptions are automatically satisfied when
the possible phases, as commonly seen in applications (see,
e.g., [16]), belong to a set P ⊆ S1 which is equidistant with a
constant gap, that is, up to a rotation, P ⊆ {e2πi j

m }j=0,...,m−1

for some constant m. We leave the case of general complex
signals as an open problem. A major difficulty is that for heavy
hitters of large magnitude, a small error in the phase estimate
could incur a lot of error in the overall approximation.

A. Results

In this section we give an overview of the sublinear-time
results which we have obtained for the sparse recovery prob-
lem with phaseless measurements.

First, we consider the case of noiseless signals. Similar
to the classical sparse recovery where O(k) measurements
suffice for noiseless signals by Prony’s method [29], it is
known that O(k) phaseless measurements also suffices for
exact recovery (up to rotation) and the decoding algorithm
runs in time O(k log k) [14]. Their algorithm is based on
a multi-phase traversal of a bipartite random graph in a
way such that all magnitudes and all phases are recovered
by resolving multi-tons. We prove a result with the same
guarantee, but our algorithm takes a different route using more
basic tools and being less technically demanding. Apart from
being significantly simpler, it also can be modified so that
it trades the decoding time with the failure probability; see
Remark 1.

Theorem 1 (Noiseless Signals): There exists a randomized
construction of Φ ∈ C

m×n and a deterministic decoding pro-
cedureR such that for any signal x ∈ Cn with | supp(x)| ≤ k,
the recovered signal x̂ = R(Φ, |Φx|) satisfies that x̂ = eiθx
for some θ ∈ [0, 2π) with probability at least 1− 1/ poly(k),
where Φ has m = O(k) measurements and R runs in time
O(k log k).

The next results refer to approximately sparse signals and
improve upon the previous ones with various degrees. For the
�∞/�2 problem our result, stated below, improves upon [17] in
terms of the error guarantee and the decoding time. It requires
a modest assumption on the pattern of the valid phases of
the heavy hitters as defined below, which is often satisfied in
applications where the valid phases lie in a set of equidistant
points on S

1. Throughout this paper we identify S
1 with

[0, 2π) or [−π, π) and assume both the non-oriented distance
d(·, ·) and the oriented distance �d(·, ·) on S1 are circular.
We shall also use [m] to denote the set {1, . . . , m} for any
positive integer m, a conventional notation in computer science
literature.

Definition 1 (η-Distinctness): Let P = {p1, . . . , pm} be
a finite set on S1. We say P is η-distinct if the following
conditions hold:

(i) d(pi, pj) ≥ η for all distinct i, j ∈ [m];
(ii) it holds for every pair of distinct i, j ∈ [m] that

max
�∈[m]

d(p� + pj − pi, P) ∈ {0} ∪ [η, π].

Intuitively, (i) means that the phases are at least η apart
from each other, and (ii) means that if we rotate the set P
of the valid phases to another set P � such that some valid
phase coincides with another one (in the expression above pi

is rotated to the position of pj), then either P = P � or there
exists an additive gap of at least η around some phase. This
precludes the case where P is approximately, but not exactly,
equidistant.

Definition 2 (Head): Let x ∈ Cn. Define Hk(x) to be (a
fixed choice of) the index set of the k largest coordinates of
x in magnitude, breaking ties arbitrarily.

Definition 3 (�-Heavy Hitters): Let x ∈ Cn. We say xi is
an �-heavy hitter if |xi|2 ≥ �

��x−1/�

��2

2
.

Definition 4 (Phase-Compliant Signals): Let x ∈ Cn. Let
P ⊆ S1 be a set of possible phases and T be the set of all
(1/k)-heavy hitters in T . We say that x is (k, P)-compliant
if {argxi : i ∈ T } ⊆ P .

Theorem 2 (�∞/�2 With Optimal Measurements): There
exists a randomized construction of Φ ∈ Cm×n and a
deterministic decoding procedure R such that for x ∈ Cn

which is (O(k), P)-compliant for some η-distinct P ⊂ S
1,

the recovered signal x̂ = R(Φ, |Φx|, P) satisfies the �∞/�2

error guarantee with probability at least 1 − 1/ poly(n),
and Φ has m = O((k/η) log n) rows and R runs in time
O(k/η + k poly(log n)).

It is clear that the lower bound for the traditional com-
pressive sensing problem is also a lower bound for the
compressive phase retrieval problem, and it is known that
the �∞/�2 compressive sensing problem requires Χ(k log n)
measurements [30]. Therefore, the theorem above achieves the
optimal measurements up to a constant factor when η is a
constant.

An immediate corollary of the �∞/�2 sparse recovery
algorithm is an �2/�2 sparse recovery algorithm, stated below,
which improves upon [17] in approximation ratio (from a
constant factor to 1 + �).

Corollary 1 (�2/�2 With Near-Optimal Measurements):
There exists a randomized construction of Φ ∈ Rm×n and
a deterministic decoding procedure R such that for x ∈ Cn

which is (O(k), P)-compliant for some η-distinct P ⊂ S
1,

the recovered signal x̂ = R(Φ, |Φx|, P) satisfies the �2/�2

error guarantee with probability at least 1 − 1/ poly(n), and
Φ has m = O((k/ min{η, �}) logn) rows and R runs in time
O((k/ min{η, �}) poly(log n)).

It is also known that the classical compressive sensing prob-
lem with for-each �2/�2 error guarantee and constant failure
probability requires Χ((k/�) log(n/k)) measurements [31].
Our result above achieves the optimal number of measure-
ments up to a logarithmic factor.

II. TOOLKIT

The first two results concern heavy hitters, one for estimat-
ing the value of a heavy hitter and the other for finding the
positions of the heavy hitters.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

7304 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

Theorem 3 (COUNT-SKETCH, [32]): There exist a ran-
domized construction of a matrix Φ ∈ Rm×n with m =
O(K log n) and a deterministic algorithm R such that given
y = |Φx| for x ∈ Cn, with probability at least 1−1/ poly(n),
for every i ∈ [n], the algorithm R returns in time O(log n)
an estimate |x̂i| such that

||xi| − |x̂i||2 ≤ 1
K
�x−K�22 .

Theorem 4 (Heavy Hitters, [33]): There exist a random-
ized construction of a matrix Φ ∈ R

m×n with m =
O(K log n) and a deterministic algorithm R such that given
y = |Φx| for x ∈ Cn, with probability at least 1− 1/ poly(n)
the algorithm R returns in time O(K · poly(log n)) a set S
of size O(K) containing all (1/K)-heavy hitters of x.

We remark that the paper [33] does not consider complex
signals but the extension to complex signals is straightforward.
The algorithm is not designed for the phaseless sparse recovery
either, the identification algorithm nevertheless works when
the measurements are phaseless because it only relies on the
magnitudes of the bucket measurements; see Theorem 2 and
Section B in [33]. Estimating the values of the candidate
coordinates requires knowing the phases of the measurements
but our theorem above does not concern this part.

Theorem 5 [34]: Let V be a set of n vertices. There exists
an absolute constant κ such that κn logn uniform samples of
pairs of distinct vertices in V induce a connected graph with
probability at least 1− 1/ poly(n).

The following lemmata will be crucial in the analysis of our
algorithms.

Lemma 1: Let θ0 ∈ (0, π/12) be a constant. There exist
constants �0, c0, c > 0 such that the following holds. Sup-
pose that x, y, n1, n2, n3 ∈ C such that |n1|, |n2|, |n3| ≤
� min{|x|, |y|} for some � ≤ �0. Denote by θ be the phase
difference between x and y. Then given the norms

|x + n1|, |y + n2|, |x + y + n1 + n2 + n3|,
we can recover |θ| up to an additive error of c0

√
�. Further-

more, we can recover |θ| up to an additive error of c� whenever
|θ| ∈ (θ0, π − θ0).

Proof: If we know |x|, |y| and |x + y|, it follows from
the Law of Cosines that

cos(π − |θ|) =
|x|2 + |y|2 − |x + y|2

2|x| · |y| =
−
xȳ

|x| · |y| .
Let x� = x+n1 and y� = y +n2 then x+ y+n1 +n2 +n3 =
x� + y� + n3. Suppose the phase difference between x� and
y� is θ�, then we would pretend x� + y� + n3 to be x� + y�.
We compute

ξ =
|x�|2 + |y�|2 − |x� + y� + n3|2

2|x�| · |y�|
=
−
x�y −
x�n3 −
yn3 − |n3|2

|x�| · |y�| .

Hence

|ξ − cos(π − |θ�|)| ≤ |x
�||n3|+ |y�||n3|+ |n3|2

|x�| · |y�|
≤ �

1− �
+

�

1− �
+

�2

1− �2
≤ 3�,

provided that � ≤ 1/4.

Similarly we have

cos(π − |θ�|)
= cos(π − |θ|) · |x|

|x + n1| ·
|y|

|y + n2| + ν, |ν| ≤ 3�,

and thus

cos(π − |θ�|)− cos(π − |θ|)
= cos θ

� |x|
|x + n1| ·

|y|
|y + n2| − 1

�
+ ν.

Note that |x|
|x+n1| ,

|y|
|y+n2| ∈ [1

1+� ,
1

1−�], it follows that

| cos(π − |θ�|)− cos(π − |θ|)| ≤ c1�

for some absolute constant c1 > 0, and thus

|ξ − cos(π − |θ|)| ≤ (c1 + 3)�.

Therefore we can estimate |θ| up to an additive error of c0
√

�
for some absolute constant c0 > 0; and furthermore, there
exists an absolute constant c > 0 such that when θ0 = π/9, �
is small enough and |θ| ∈ (θ0, π − θ0), it holds that

| arccos ξ − |θ|| ≤ c�.

Lemma 2: Let x, y, n1, n3, �, θ0, c be as in Lemma 1 and
further assume that � < θ0/(2c). Suppose that arg y = argx+
θ for some θ ∈ [0, 2π), where addition is modulo 2π. Given
the norms

|x+n1|, |y|, |x+y+n1+n3|, |x + βy + n1 + n3| , β = eiθ0 ,

we can recover θ up to an additive error of c�, provided that
θ ∈ (2θ0, π − 2θ0) ∪ (π + 2θ0, 2π − 2θ0).

Proof: By Lemma 1, we can recover |θ| up to an additive
error of c� when |θ| ∈ (θ0, π − θ0). To determine the sign,
we rotate y by angle θ0 and test the angle between x and this
rotated y again by Lemma 1. Suppose that the angle between
x and βy is φ and we have an estimate of |φ| up to an additive
error of c�, provided that |φ| ∈ (θ0, π− θ0), which is satisfied
when |θ| ∈ (2θ0, π − 2θ0). It holds in this case that

|φ| − |θ| =
�

θ0, θ > 0;
−θ0, θ < 0.

The left-hand side is approximated up to an additive error of
2c� and thus we can distinguish the two cases.

Lemma 3 (Relative Phase Estimate): Let x, y, n1, n3, �,
c0, θ0, c be as in Lemma 2 and further assume that � <
min{θ0/(2c), (θ0/(2c0))2}. Suppose that arg y = arg x + θ
for some θ ∈ [0, 2π), where addition is modulo 2π. Given the
norms

|x + n1|, |y|, |x + ei(θ0 j+ π
2 �)y + n1 + n3|, j, � = 0, 1

we can recover θ up to an additive error of c�.
Proof: From Lemma 2, we know that we can recover θ

up to an additive error of c� when θ ∈ I , where I = (2θ0, π−
2θ0) ∪ (π + 2θ0, 2π − 2θ0). We accept the estimate if the
estimate is in the range of I � := (3θ0, π−3θ0)∪(π+3θ0, 2π−
3θ0). It follows from the assumption of � that if we ever accept

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

LI AND NAKOS: SUBLINEAR-TIME ALGORITHMS FOR COMPRESSIVE PHASE RETRIEVAL 7305

the estimate, |θ| must be contained in (5
2θ0, π − 5

2θ0) and we
have therefore an c� additive error.

Consider the phase difference between x and eiπ/2y and
suppose that arg(eiπ/2y) = argx + φ, then we can recover φ
up to an additive error of c� for φ ∈ I , that is, for θ ∈ J :=
(π/2+2θ0, 3π/2−2θ0)∪(−π/2+2θ0, π/2−2θ0), which is I
rotated by π/2. We accept the estimate when it is in the range
of J � := (π/2 + 3θ0, 3π/2− 3θ0)∪ (−π/2 + 3θ0, π/2− 3θ0).

Note that I � ∪ J � covers the whole S1 when θ0 < π/12.

III. NOISELESS SIGNALS

We shall need the following theorem from [17], which
shows that one can recover an exactly K-sparse signal up to a
global phase using O(K) measurements and in time O(K2).1

Theorem 6 [17]: There exists a matrix M ∈ C(6k−2)×n,
such that given given y = |Mx| for x ∈ Cn such that �x�0 ≤
K we can recover x up to a rotation in time O(K2).

We are now ready to prove Theorem 1, which we restate
below.

Theorem 1 (Noiseless Signals): There exists a randomized
construction of Φ ∈ Cm×n and a deterministic decoding pro-
cedureR such that for any signal x ∈ Cn with | supp(x)| ≤ k,
the recovered signal x̂ = R(Φ, |Φx|) satisfies that x̂ = eiθx
for some θ ∈ [0, 2π) with probability at least 1− 1/ poly(k),
where Φ has m = O(k) measurements and R runs in time
O(k log k).

Let us first give some intuition on the algorithm and the
proof. We hash all n coordinates to Θ(k/ log k) buckets, and
in each bucket we apply the algorithm in Theorem 6 with K =
O(log k). By standard concetration bounds there exist at most
O(log k) coordinates of supp(x) in each bucket, and hence,
conditioned on this event, we can find them deterministically
along with their relative phases. Next we find all the relative
phases by finding the relative phases “between buckets”, which
means finding the relative phases between representatives
from each bucket. To that end, we build a random graph
with O(k/ log k) buckets and O(k) edges, where each vertex
represents a bucket and each edge has a label that indicates
the relative phase between its two endpoints. If the graph is
connected, a standard traversal will give the desired result.
We show how to sample random edges from this graph by
performing a careful subsampling on the vector x. The number
of measurements and the running time follows by standard
results in random graph theory. Below is the formal proof.

Proof: Let B = k/(c log k) and h : [n] → [B] a random
hash function, where c is a constant. We hash all n coordinates
into B buckets using h. It is a typical application of Chernoff
bound that the buckets have small size, more specifically, for
some constant c̄ > c,

Pr
�∃j ∈ [B] : |h−1(j) ∩ supp(x)| > c̄ log k

� ≤ 1
poly(k)

.

(1)

1The runtime is dominated by Prony’s method, which can be implemented
in O(K2) time using a Lanczos process (see, e.g. [35]) and solving a linear
Vandermonde system (see, e.g. [36]). A detailed discussion can be found in
the arXiv version of [17].

To see this, for i ∈ [n] and j ∈ [B], let Xi,j be the indicator
variable of the event h(i) = j. Then EXi,j = 1/B, and
thus E

�
i∈supp(x) Xi,j = k/B = c̄ log k. Note that Xi,j are

negatively associated, thus the Chernoff bound can be applied,
which, with appropriate constants, yields that for each j ∈ [B],

Pr
�|h−1(j) ∩ supp(x)| > 5 log k

�
= Pr

⎧⎨
⎩

�
i∈supp(x)

Xi,j > c̄ log k

⎫⎬
⎭

≤ 1
poly(k)

.

Take a union bound over all j ∈ [B] gives (1).
In each bucket we run the algorithm of Theorem 6 with K =

c̄ log k. The number of measurements used for each bucket is
Θ(log k). The failure probability is 2−Θ(log k), and this allows
us to take a union-bound to conclude correct execution over
all B buckets. For each j ∈ [B], we can find xh−1(j) up to
a global phase. We set supp(x) =

�B
j=1 supp(xh−1(j)) and,

for notational convenience, let s = | supp(x)| and � be such
that 2�−1 < s ≤ 2�.

Now, let B� = 2�/(c�) and let h� : [n]→ [B�] be a random
hash function. We hash all n coordinates into B� coordinates.
Similar to the above, with probability ≥ 1 − 2−Ω(�) every
bucket contains at most c̄� nonzero coordinates of x. In each
bucket, we run the algorithm of Theorem 6 with K = c̄�,
so that in O(�) measurements we can find x(h�)−1(j) up to
a global phase for each j ∈ [B�], so it remains to find the
relative phases across different x(h�)−1(j).

Let F� be a matrix of n columns and 2ακ2� rows, where α
is a sufficiently large constants and κ is the same constant in
Theorem 5. The rows are split into ακ2� groups, each has 2
rows. For each group j, the first row (F�)2j−1 has independent
random {0, 1}-entries such that E[(F�)2j−1,t] = 2−�. The sec-
ond row has the form (F�)2j,t = ρj,t ·(F�)2j−1,t, where {ρj,t}
are independent uniform random variables in {1, i}.

Next we describe how to recover the relative phases across
different x(h�)−1(j). Define a row index set Ĵ to be

Ĵ =
�
j :

��supp((F�)5(j−1)+1) ∩ supp(x)
�� = 2

�
.

Observe that for each j,

Pr{j ∈ Ĵ} =
�

s

2

�
1

22�

�
1− 1

2�

�s−2

≥ 1
2

�
s− 1
2�

�2 �
1− 1

s

�s−2

≥ 1
2

�
1
2

�2 1
e
,

that is, each j is contained in Ĵ with probability at least
an absolute constant. For each such j, let {uj, vj} =
supp((F�)2j−1) ∩ supp(x). It is clear that ρj,uj �= ρj,vj with
probability 1/2. When this event happens, we say j is good.
We have shown that each j is good with probability at least
an absolute constant. Let J ⊆ Ĵ denote the set of good j’s.

We shall focus on the measurements corresponding to the
groups in J . From each j ∈ J we can obtain a random

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

7306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

pair {uj, vj} ⊆ supp(x) and, moreover, (h�(uj), h�(vj)) is
uniformly random on [B�]× [B�] \ {(b, b), b ∈ [B�]} (in other
words, such a measurement corresponds to a random pair of
buckets). Since j is good, we obtain both |xuj + xvj | and
|xuj + ixvj |. Since we also know |xuj | and |xvj |, we can
infer the relative phase between xu, xv . The relative phases
we obtain are always correct since the signal is noiseless. Let
M be the ordered set of such pairs (uj, vj) along with the
label that we obtain about the relative phase between uj and
vj . By taking α to be big enough, we have |M| = |J | ≥
κB� log B� (since B� log B� = Θ(2�)) with probability at least
1 − 2−Ω(|J|). We run a depth-first search on M to infer the
relative phases. We infer all the relative phases correctly when
the M is connected, which, by Theorem 5, happens with
probability at least 1− 1/ poly(B�) ≥ 1− 2−Ω(�).

So far we have shown that with probability at least 1 −
2−Ω(�) we can recover x̂ up to a global phase difference.
To improve the success probability to 1− 1/ poly(k), we can
repeat the procedure above by Θ(1) times for � > � 12 log k�
and Θ(log k) times for � ≤ � 12 log k� and take the relative
phase pattern that appears most often.

Number of Measurements: The total number of measure-
ments is therefore (taking a union over all possible values of
� = 1, 2, . . . , �log k�)

k

c log k
·Θ(log k)

+
�

�>� 1
2 log k�

�
2�

c�
·Θ(�) + ακ2�

�
·Θ(1)

+
�

�≤� 1
2 log k�

�
2�

c�
·Θ(�) + ακ2�

�
·Θ(log k)

= O(k)

as desired.
Runtime: Recovering the in-bucket signals takes time

O(B log2 k(· poly(log log k)) = O(k log k · poly(log log k)).
Finding the set J takes time O(k) (see Remark 2). Thus,
it takes time O(k + B� log B�) = O(k) to build a pattern
of relative phase differences and O(k log k) time to build all
patterns2. Finding the most frequent pattern can be imple-
mented with a sorting followed by a linear scan. There are
Θ(log k) patterns and the comparison of two patterns takes
time O(B). Hence finding the most frequent pattern takes time
O(log k log log k ·B + B log k) = O(k log log k). The overall
runtime is therefore O(k log k).

Remark 1: Note that if we hash to k1−α buckets, solve in
each bucket and then combine the buckets, we can obtain
a failure probability at most exp(−kα) and a running time
of O(k1+α). This is a trade-off between decoding time and
failure probability that the previous algorithms did not achieve.

Remark 2: We show how to implement efficiently the rou-
tine which finds the set of rows of F whose support intersects
supp(x) at exactly two coordinates. For � > � 12 log k�, in each

2In fact, building the patterns can be done in O(k) time, since the log k
factor due to the number of repetitions occurs only for “small” �, that is,
� ≤ � 1

2
log k�. Nevertheless, this will not make any difference in our final

running time.

repetition, the expected number of rows of F� containing an
index i ∈ supp(x) is 2−�ακ2� = ακ. So the probability
that there are more than 2ακ2� pairs (i, q) such that i ∈
supp(x)∩supp(F�)q is exp(−Χ(2�)) < 1/ poly(k). A similar
result can be obtained for � ≤ � 12 log k�. Suppose that F� is
stored using n lists of nonzero coordinates in each column,
we can afford to iterate over all such pairs (i, q), keep an
array C[q] that holds the cardinality of supp(x)∩supp((F�)q).
At the end, we find the values of q with C[q] = 2. This
implementation makes the algorithm run in O(k log k) time.

IV. �∞/�2 ALGORITHM

We first give a high-level overview of our algorithm. Invok-
ing Theorems 3 and 4, we can find a set S of size O(k)
that contains all heavy hitters. It remains to find their relative
phases. Our approach is very different from the previous
section; we shall exploit the presence of the rest n−O(k)
coordinates to find the relative phases among the heavy hitters.
We downsample the signal at the rate of Θ(1/k), and combine
with gaussians to form L =

�
i∈T gixi, where T is the

support of the downsampled signal. With constant probability,
T ∩ S = ∅ (note that we do not know S when designing
the measurements, we only know T). We then hash every
coordinate in [n] \ T to Θ(k) buckets, combine with random
rotations and add L to each bucket. We repeat with fresh
randomness Θ(log n) times. Then, for every i ∈ S we can
find the buckets in which it is isolated from S \ {i} and its
relative phase with respect to L (note that L is present in
every bucket). This allows us to find the relative phase among
all i ∈ S. The risk is that L might be 0, in which case the
argument above would not work. In this case, however, T
would be an empty set, which in turn implies that x would be
O(k)-sparse, and hence we could run the algorithm from the
previous section.

The remaining of the section is devoted to the details of our
algorithm and its analysis.

We set �0, c0, c to be the constants in Lemma 3 and � =
min{�0, η/(5c), π/(25c), π2/(145c2

0)}. Let P ⊆ S1 be η-
distinct and suppose that it contains the phases of all 1/(C̃k)-
heavy hitters for some (large) constant C̃.

We first describe our construction of the measurement
matrix Φ and then present the analysis and the recovery
algorithm. Let R = cR log n for some constant cR to be
determined. The overall sensing matrix Φ is a layered one
as

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΦHH

ΦCS

ΦL

Φ1

...
ΦR

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Here

• ΦHH is the sensing matrix in Theorem 4 with K = k.
• ΦCS is the sensing matrix of COUNT-SKETCH with K =

Ck/�.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

LI AND NAKOS: SUBLINEAR-TIME ALGORITHMS FOR COMPRESSIVE PHASE RETRIEVAL 7307

Algorithm 1 Algorithm for the �∞/�2 Phaseless Sparse
Recovery. Assume That the Elements in P Are Sorted
1: S ← the set returned by the algorithm in Theorem 4 with

K = k
2: Run a COUNT-SKETCH algorithm with K = Ck/� to

obtain an approximation |x̂i| to |xi| for all i ∈ S
3: Lr ← |

�n
i=1 ηr,igr,ixi| for all r ∈ [R]

4: if L1 = 0 then
5: Run the algorithm for the noiseless case

with sparsity C2k
6: else
7: for each r ∈ [R] do
8: S�

r ← {i ∈ S : |x̂i| ≥ Lr}
9: br,i ← hr(i) for all i ∈ S�

r

10: Ir ← {i ∈ S�
r : br,i �= br,j for all j ∈ S�

r \ {i}}
11: for each i ∈ Ir do
12: θ̃r,i ← estimate of phase

difference between xi

and �ρr, x� using
Lemma 3

13: S�� ← �
r S�

r

14: Choose an arbitrary i0 ∈ S��

15: for each i ∈ S�� \ {i0} do
16: θ�i0,i = medianr:i,i0∈Ir (θ̃r,i − θ̃r,i0)
17: for each p ∈ P do
18: θ�i0 ← p
19: θ�i ← θ�i0 + θ�i0,i for all i ∈ S�� \ {i0}
20: if d(θ�i, P) ≤ η/2 for all i ∈ S�� then
21: return x̂ supported on S��

with arg x̂i = θi,
where θi is the rounded value
of θ�i to P

22: end if
23: end if

• ΦL is an R×N matrix, the r-th row (r ∈ [R]) of which
is

ρr =
�
ηr,1gr,1 ηr,2gr,2 · · · ηr,ngr,n

�
,

where ηr,i are i.i.d. Bernoulli variables with E ηr,i =
1/(C0 k) and gr,i are i.i.d. N (0, 1) variables.

• Each Φr (r ∈ [R]) is a matrix of 4B rows defined as
follows, where B = CBk/�. Let hr : [n] → [B] be a
random hash function and {σr,i}ni=1 be random signs.
Define a B × n hashing matrix Hr as

(Hr)j,i =

�
(1− ηr,i)σr,i, i ∈ h−1

r (j);
0, otherwise.

The 4B rows of Φr are defined to be

ei(θ0�1+π
2 �2)ρr + (Hr)b,·, �1, �2 = 0, 1, b = 1, . . . , B.

We present the recovery algorithm in Algorithm 1, where
we assume that the set P of valid phases have been sorted.
Next we analyse the algorithm in four steps as follows.

a) Step 1: By Theorem 4, the set S has size O(k)
and, with probability 1−1/ poly(n), contains all (1/k)-heavy
hitters. The COUNT-SKETCH (Theorem 3) guarantees that

||xi| − |x̂i||2 ≤ �

Ck

��x−Ck/�

��2

2
(2)

for all i ∈ S with probability at least 1− 1/ poly(n).
b) Step 2: Fix a repetition r ∈ [R]. We shall see that

Lr, calculated in Line 3, ‘approximates’ the desirable tail
1
k �x−k�22. For notational simplicity, we omit r in the subscript
and write Lr,i as L, ηr,i as ηi, etc., since we have fixed the
repetition index r.

First we upper bound L. Decompose x into real and
imaginary parts as x = y + iz with y, z ∈ Rn and consider
L1 =

�
i ηigiyi and L2 =

�
i ηigizi. Note that L2 = L2

1+L2
2.

Choosing C0 ≥ 200, we have

Pr {ηi = 0 for all i ∈ Hk(y) ∪Hk(z)} ≥ 0.99 (3)

Condition on this event below. Note that L1 ∼
N (0, |�i ηiyi|22), and

Pr

⎧⎨
⎩L2

1 ≥ 2.2822

�����
�

i

ηiyi

�����
2

2

⎫⎬
⎭ ≤ 1− 2F (2.282) ≤ 0.0225,

where F (t) denotes the cumulative distribution function of the
standard normal distribution.

On the other hand, E |�i ηiyi|2 =
�

i(E ηi)y2
i ≤

�y−k�22 /(C0k) thus

Pr

⎧⎨
⎩

�����
�

i

ηiyi

�����
2

≥ 20
C0k

�x−k�22

⎫⎬
⎭ ≤ 0.05,

and hence

Pr
�

L2
1 ≥

105
C0k

�y−k�22
�
≤ 0.0725.

Similarly we have

Pr
�

L2
2 ≥

105
C0k

�z−k�22
�
≤ 0.0725.

Therefore, taking a union bound of both events above and
noting that �y−k�22 + �z−k�22 ≤ �x−k�22, we have that

Pr
�

L2 ≥ 105
C0k
�x−k�22

�
≤ 0.145. (4)

We therefore obtained an upper bound of L. The next lemma
lower bounds L.

Lemma 4: With probability at least 0.8, it holds that L2 ≥
1

C1 k�x−C2 k�22, where C1, C2 are absolute constants.
Proof: Decompose x into real and imaginary parts as

x = y + iz with y, z ∈ Rn. Consider L1 =
�

i ηigiyi and
L2 =

�
i ηigizi, which are both real. Note that L2 = L2

1+L2
2.

First consider L1. We sort coordinates [n] \ Hk(y) by
decreasing order of magnitude. Then, we split the sorted
coordinates into continuous blocks of size C�

2k and let Sj

denote the j-th block. Let δj be the indicator variable of the
event that there exists i ∈ Sj such that ηi = 1, then δj’s are
i.i.d. Bernoulli variables with E δj = 1− (1− 1/(C0k))C�

2k ≥
1− exp(−C�

2/C0), which can be made arbitrary close to 1 by

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

7308 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

choosing C�
2 big enough. It is a standard result in random

walks (see, e.g., [37, p67]) that when E δj is big enough,
with probability at least 0.95, every partial prefix of the
0/1 sequence (δ1, δ2, δ3, . . .) will have more 1s than 0s. Call
this event E . In fact, one can directly calculate that Pr(E) =
1− (1− p)2/p when p := E δj ≥ 1/2, and thus one can take
C�

2 = �1.61 C0� such that Pr(E) ≥ 0.95.
Condition on E . We can then define an injective function

π from {j : δj = 0} to {j : δj = 1}. Specifically, we define
π(j) = �, where δj is the k-th 0 in the sequence and � is the
k-th 1 in the sequence. Clearly π is injective, π(j) < j and
δπ(j) = 1. It follows that�

i∈[n]

ηi|yi|2

≥
�

j

δj �Sj+1�2∞

≥
�

j:δj=1

1
C�

2k
�Sj+1�22

≥ 1
2

�
j:δj=1

1
C�

2k
�Sj+1�22 +

1
2

�
j:δj=1

π−1(j) exists

1
C�

2k

��Sπ−1(j)

��2

2

≥ 1
2

�
j:δj=1

1
C�

2k
�Sj+1�22 +

1
2

�
j:δj=0

1
C�

2k
�Sj�22

≥ 1
2 C�

2k

��y−C�
2k

��2

2
.

This implies that L1 =
�

i ηigiyi ∼ N (0,
�

i ηi|yi|2) with
probability at least 0.95 will stochastically dominate a gaussian
variable N (0, 1

2C2k�y−C2k�22). Combining with the fact that
Prg∼N (0,1){|g| ≤ 1

16} ≤ 0.05, we see that

Pr
�

L2
1 ≥

1
162 · 2C2 k

��y−C�
2k

��2

2

�
≥ 0.9.

Similarly for the imaginary part z and L2,

Pr
�

L2
2 ≥

1
162 · 2C2 k

��z−C�
2k

��2

2

�
≥ 0.9.

Condition on that both events above happen. For notational
convenience, let T1 = HC�

2k(y) and T2 = HC�
2k(z), then

L2 = L2
1 + L2

2 ≥
1

162 · 2C�
2k

(
��yT c

1

��2

2
+

��zT c
2

��2

2
)

≥ 1
162 · 2C�

2k
(
��y(T1∪T2)c

��2

2
+

��z(T1∪T2)c

��2

2
)

=
1

162 · 2C�
2k

��x(T1∪T2)c

��2

2

≥ 1
162 · 2C�

2k

��x−2C�
2k

��2

2
.

Therefore, we can take C2 = 2C�
2 above and C1 = 162 C2.

Combining (3), (4) and Lemma 4 and taking C0 = 210,
we conclude that with probability at least 1− 0.365,

1
C1k
�x−C2k�22 ≤ L2 ≤ 1

2k
�x−k�22 . (5)

c) Step 3: We keep the repetition r. We now show that
the trimmed set S� is good in the sense that its elements are
not too small and it contains all (1/k)-heavy hitters. This is
formalized in the following lemma.

Lemma 5: Suppose that event (2) happens. With probability
at least 0.635, it holds that

(i) |xi|2 ≥ 1
2C1k �x−C2k�22 for all i ∈ S�; and

(ii) S� contains all coordinates i such that |xi|2 ≥ 1
k �x−k�22.

Proof: The events (3) and (5) happen simultaneously with
probability at least 1 − 0.365. Condition on both events. Let
C =

√
2√

2−1
C1. By our choice of constants, C ≥ C1 ≥ C2,

then

(i) for i ∈ S�, it holds that |xi| ≥ L − 1√
Ck
�x−C2k�2 ≥

1√
2C1k

�x−C2k�2;

(ii) if |xi|2 ≥ 1
k �x−k�22, then |x̂i| ≥ 1√

k
�x−k�2 −

1√
Ck
�x−k�2 ≥ L.

d) Step 4: We now show that each θ̃r,i is good for i ∈ Ir.
Let θr,i be the (oriented) phase difference between xi and�n

j=1 ηr,jgr,jxj .
Lemma 6: Suppose that event in Lemma 5 happens for S�

r.
Then it holds for each i ∈ Ir that, with probability at least
0.95, |θ̃r,i − θr,i| ≤ c� for some absolute constant c.

Proof: We have from our construction the measurements������ei(2c��1+
π
2 �2)

n�
i=1

ηr,igr,ixi +
�

i∈h−1
r (j)

(1− ηr,i)σr,ixi

������ ,

�1, �2 = 0, 1, j ∈ [B], r ∈ [R].

We note that Line 12 in the algorithm is valid because we
have access to

|x̂i| ,
�����

n�
i=1

ηr,igr,ixr,i

����� ,������x̂i+ei(2c��1+
π
2 �2)

n�
i=1

ηr,iσr,ixi +
�

i�∈h−1
r (hr(i))\S�

(1−ηr,i�)gr,i�xi�

������ .
Let

Z =
�

i�∈h−1
r (hr(i))\S�

(1− ηr,i�)σr,i�xi� .

Observe that

Pr
���h−1

r (hr(i)) ∩H
C2 k

(x)
�� = 1

� ≥ 1− C2

CB

and that

E |Z|2 =
�

CBk
�x−C2k

�22.

By Markov’s inequality, we have that |Z|2 ≤ 40�
CBk �x−k�22

with probability at least 0.025. Choose CB such that 40
CB
≤

1
2C1

and C2
CB

< 1
40 , the assumptions on noise magnitude in

Lemma 3 will be satisfied for xi with probability at least 0.95.
Then Lemma 3 yields an estimate θ̃r,i which satisfies |θ̃r,i −
θi| ≤ c�.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

LI AND NAKOS: SUBLINEAR-TIME ALGORITHMS FOR COMPRESSIVE PHASE RETRIEVAL 7309

e) Step 5: We are now ready to prove Theorem 2.
Proof of Theorem 2: Let i ∈ S��. Observe that for each

r, it is isolated from every other i� ∈ S�
r with probability

1
CB

. A simple Chernoff bound shows that with probability at
least 1− 1/ poly(n), it is contained in at least 0.9 fraction of
{Ir}r∈[R], provided that CB is big enough.

Suppose that event (2) happens. It follows from Lemmata 5
and 6 that in each repetition r ∈ [R], for each i ∈ Ir \ {i0} it
holds with probability at least 1− 0.465 that

|(θ̃r,i − θ̃r,i0)− (θr,i − θr,i0)| ≤ 2c�.

Next we take the median over valid repetitions. To do this,
we first check if there are at least half of θ̃r,i − θ̃r,i0 , when
interpreted as real numbers in [−π, π), satisfy that θ̃r,i−θ̃r,i0 ∈
[− 3

25π, 3
25π]. If this happens, take θ�i0,i to be the median

of those numbers in [−π, π); otherwise, take θ�i0,i to be the
median with the interpretation of all θ̃r,i−θ̃r,i0 as real numbers
in [0, 2π). Since both i and i0 appear in at least 0.8 fraction of
{Ir}r∈[R], we can, by choosing the constant cR large enough,
guarantee that ��θ�i0,i − (θr,i − θr,i0)

�� ≤ 2c� (6)

with probability at least 1−1/ poly(n). This allows for a union
bound over all i ∈ S�� \ {i0}. Therefore (6) holds for all i ∈
S�� \ {i0} simultaneously with probability ≥ 1− 1/ poly(n).

Next, assume that it happens that (6) holds for all i ∈ S�� \
{i0}. Consider the for-loop from Line 17 to 22. It is clear
that when θ�i0 is exactly the phase of xi0 , it will hold that θ�i
is an accurate estimate to the phase of xi up to an additive
error of 2c� < η/2. The if-clause in Line 20 will be true and
the algorithm will terminate with an x̂. Since the phases of
the entries are at least η apart, there will be no ambiguity in
rounding and the phases in x̂ are all correct, hence the error
�x − x̂�2 only depends on the magnitude errors, which is
exactly (2), obtained from applying COUNT-SKETCH. When
θ�i0 is not xi0 , by the rotational (k, η)-distinctness, {θ�i} will
coincide with P exactly or the if-clause will not be true. This
shows the correctness.

Removing the conditioning of (2) increases the failure
probability 1/ poly(n) and the overall failure probability is
1/ poly(n).

Number of Measurements: The submatrix ΦHH has
O(k log n) rows, the submatrix ΦCS has O((k/�) log n) rows,
the submatrix ΦL has O(log n) rows, each Φr for r ∈ [R] has
O(k/�) rows. Hence the total number of rows is dominated
by that of ΦCS and the R independent copies of Φr’s, that is,
O((k/�) log n+R(k/�)) = O((k/�) log n) = O((k/η) log n).

Runtime: Line 1 runs in time O(k poly(log n)), Line
2 in time O(|S| log n) = O(k log n), Line 3 in time
O(log n). The runtime before the if-branch of Line 4 is thus
O(k poly(log n)).

The noiseless case in Line 5 runs in time O(k log k).
For the for-loop from Line 7 to 12, Line 8 runs

in time O(k), Line 9 in O(k), Line 10 in O(k log k),
Lines 11–12 in time O(k). Hence this for-loop takes
time O(Rk log k) = O(k poly(log n)). Line 13 runs in time
O(Rk) = O(k log n). Calculating each median takes time

O(R) and thus Lines 15–16 takes time O(Rk) = O(k log n).
The for-loop from Line 17 to 22 takes time O(k/η), since
|P | = O(1/η), the if-clause in Line 20 can be verified in time
O(k) if the elements in P are sorted in advance. Hence the
total runtime of Lines 7–22 is O(k/η + k poly(log n)).

Therefore, the overall runtime is O(k/η+k poly(log n)).

V. FUTURE WORK

In this paper we obtained sublinear-time algorithms for
different versions of the compressive phase retrieval problem,
using purely combinatorial techniques. Our results include the
first sublinear-time algorithm for the �∞/�2 problem, a popular
problem in the literature. We suggest future directions and
open questions that may be of interest to the computer science
community.

• A natural question is to generalize our results to a more
general set of valid phases. The difficulty lies in the fact
that we can only estimate the phase up to an additive
error of O(η) using the Law of Cosines, and this would
incur a large error if the corresponding heavy hitter has
a huge magnitude.

• Is it possible to obtain a uniform guarantee for noiseless
signals that runs in Õ(k) time and uses O(k) measure-
ments? Even something that is substantially less than
O(k2) time would be interesting.

• Another question is whether one can achieve almost opti-
mal bounds using structured measurements, one example
being local correlation measurements as in [15]. This
would pave the way of tackling the more constrained
problem of phase retrieval, where the sensing matrix is
the Discrete Fourier Matrix, a problem of great impor-
tance in engineering. There are numerous directions and
open problems in this direction; interested readers can
refer to [1], [38].

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their comments and suggestions that greatly helped
improve and clarify the paper. A preliminary version of this
paper appeared in the Proceedings of International Symposium
on Information (ISIT), 2018.

REFERENCES

[1] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and
M. Segev, “Phase retrieval with application to optical imaging: A
contemporary overview,” IEEE Signal Process. Mag., vol. 32, no. 3,
pp. 87–109, May 2015.

[2] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[3] E. J. Candès, T. Strohmer, and V. Voroninski, “PhaseLift: Exact and
stable signal recovery from magnitude measurements via convex pro-
gramming,” Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274,
Aug. 2013.

[4] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded
diffraction patterns,” Appl. Comput. Harmon. Anal., vol. 39, no. 2,
pp. 277–299, Sep. 2015.

[5] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Apr. 2015.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

7310 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

[6] B. Gao, Y. Wang, and Z. Xu, “Stable signal recovery from phaseless
measurements,” J. Fourier Anal. Appl., vol. 22, no. 4, pp. 787–808,
Aug. 2016.

[7] M. A. Iwen, B. Preskitt, R. Saab, and A. Viswanathan, “Phase retrieval
from local measurements: Improved robustness via eigenvector-based
angular synchronization,” 2016, arXiv:1612.01182. [Online]. Available:
http://arxiv.org/abs/1612.01182

[8] M. Iwen, A. Viswanathan, and Y. Wang, “Robust sparse phase retrieval
made easy,” Appl. Comput. Harmon. Anal., vol. 42, no. 1, pp. 135–142,
Jan. 2017.

[9] T. Goldstein and C. Studer, “PhaseMax: Convex phase retrieval via
basis pursuit,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2675–2689,
Apr. 2018.

[10] J. Sun, Q. Qu, and J. Wright, “A geometric analysis of phase retrieval,”
Found. Comput. Math., vol. 18, no. 5, pp. 1131–1198, Oct. 2018.

[11] K. Jaganathan, S. Oymak, and B. Hassibi, “Sparse phase retrieval:
Convex algorithms and limitations,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2013, pp. 1022–1026.

[12] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “STFT phase retrieval:
Uniqueness guarantees and recovery algorithms,” IEEE J. Sel. Topics
Signal Process., vol. 10, no. 4, pp. 770–781, Jun. 2016.

[13] M. Soltanolkotabi, “Structured signal recovery from quadratic measure-
ments: Breaking sample complexity barriers via nonconvex optimiza-
tion,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp. 2374–2400, Apr. 2019.

[14] S. Cai, M. Bakshi, S. Jaggi, and M. Chen, “SUPER: Sparse signals
with unknown phases efficiently recovered,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2014, pp. 2007–2011.

[15] M. A. Iwen, A. Viswanathan, and Y. Wang, “Fast phase retrieval from
local correlation measurements,” SIAM J. Imag. Sci., vol. 9, no. 4,
pp. 1655–1688, Jan. 2016.

[16] R. Pedarsani, D. Yin, K. Lee, and K. Ramchandran, “PhaseCode: Fast
and efficient compressive phase retrieval based on sparse-graph codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 6, pp. 3663–3691, Jun. 2017.

[17] V. Nakos, “Almost optimal phaseless compressed sensing with sublinear
decoding time,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 1142–1146, doi: 10.1109/ISIT.2017.8006707.

[18] P. Indyk, E. Price, and D. P. Woodruff, “On the power of adaptivity in
sparse recovery,” in Proc. IEEE 52nd Annu. Symp. Found. Comput. Sci.,
Oct. 2011, pp. 285–294.

[19] E. Porat and M. J. Strauss, “Sublinear time, measurement-optimal, sparse
recovery for all,” in Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algo-
rithms, Jan. 2012, pp. 1215–1227. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2095116.2095212

[20] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse
Fourier transform,” in Proc. 44th Symp. Theory Comput. (STOC), 2012,
pp. 563–578.

[21] A. C. Gilbert, H. Q. Ngo, E. Porat, A. Rudra, and M. J. Strauss, “�2/�2-
foreach sparse recovery with low risk,” in International Colloquium on
Automata, Languages, and Programming. Berlin, Germany: Springer,
2013, pp. 461–472.

[22] P. Indyk, M. Kapralov, and E. Price, “(Nearly) sample-optimal sparse
Fourier transform,” in Proc. 25th Annu. ACM-SIAM Symp. Discrete
Algorithms, Jan. 2014, pp. 480–499.

[23] M. Kapralov, “Sparse Fourier transform in any constant dimension with
nearly-optimal sample complexity in sublinear time,” in Proc. 48th Annu.
ACM SIGACT Symp. Theory Comput. (STOC), 2016, pp. 264–277.

[24] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss, “For-all sparse
recovery in near-optimal time,” ACM Trans. Algorithms, vol. 13, no. 3,
pp. 32:1–32:26, Mar. 2017.

[25] M. Kapralov, “Sample efficient estimation and recovery in sparse FFT
via isolation on average,” in Proc. IEEE 58th Annu. Symp. Found.
Comput. Sci. (FOCS), Oct. 2017, pp. 651–662.

[26] Y. Li, V. Nakos, and D. P. Woodruff, “On low-risk heavy hit-
ters and sparse recovery schemes,” in Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) (Leibniz International Proceedings in Informatics
(LIPIcs)), vol. 116, E. Blais, K. Jansen, J. D. P. Rolim, and D. Steurer,
Eds. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2018, pp. 19:1–19:13.

[27] V. Nakos, X. Shi, D. P. Woodruff, and H. Zhang, “Improved algorithms
for adaptive compressed sensing,” in Proc. 45th Int. Colloq. Automata,
Lang., Program. (ICALP), Jul. 2018, p. 90, doi: 10.4230/LIPIcs.ICALP.
2018.90.

[28] V. Nakos and Z. Song, “Stronger �2/�2 compressed sensing; without
iterating,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput.
(STOC), 2019, pp. 289–297.

[29] R. Prony, “Essai éxperimental et analytique: Sur les lois de la dilatabilité
de fluides élastique et sur celles de la force expansive de la vapeur de
l’alkool, à différentes témperatures,” J. de l’École Polytechnique Floréal
et Plairial, vol. 1, no. 22, pp. 24–76, 1795.

[30] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff, “Lower bounds
for sparse recovery,” in Proc. 21st Annu. ACM-SIAM Symp. Discrete
Algorithms, Jan. 2010, pp. 1190–1197.

[31] E. Price and D. P. Woodruff, “(1 + �)-approximate sparse recovery,”
in Proc. IEEE 52nd Annu. Symp. Found. Comput. Sci., Oct. 2011,
pp. 295–304.

[32] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” Theor. Comput. Sci., vol. 312, no. 1, pp. 3–15, Jan. 2004.

[33] K. G. Larsen, J. Nelson, H. L. Nguyen, and M. Thorup, “Heavy hitters
via cluster-preserving clustering,” in Proc. IEEE 57th Annu. Symp.
Found. Comput. Sci. (FOCS), Oct. 2016, pp. 61–70.

[34] P. Erdős and A. Rényi, “On random graphs I,” Pub. Math. (Debrecen),
vol. 6, no. 2, pp. 290–297, 1959.

[35] D. L. Boley, F. T. Luk, and D. Vandevoorde, “A fast method to
diagonalize a hankel matrix,” Linear Algebra Appl., vol. 284, no. 1,
pp. 41–52, 1998.

[36] A. Björck and V. Pereyra, “Solution of vandermonde systems of equa-
tions,” Math. Comput., vol. 24, no. 112, pp. 893–903, 1970.

[37] S. Karlin and H. M. Taylor, A 1st Course Stochastic Processes, 2nd ed.
Amsterdam, The Netherlands: Elsevier, 1975.

[38] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “Phase retrieval: An overview
of recent developments,” in Optical Compressive Imaging. Boca Raton,
FL, USA: CRC Press, 2016, pp. 263–296.

Yi Li received the B.Eng. degree in computer science and engineering
from Shanghai Jiaotong University in 2008 and the Ph.D. degree in com-
puter science and engineering from the University of Michigan—Ann Arbor
in 2013. He is currently an Assistant Professor with the School of Physical
and Mathematical Sciences, Nanyang Technological University. His research
interests lie in theoretical computer science, mostly on algorithms for massive
data, including compressive sensing, data stream algorithms, randomized
numerical linear algebra, and dimensionality reduction.

Vasileios Nakos (Member, IEEE) received the Ph.D. degree from Harvard
University in 2019. He is currently a Postdoctoral Researcher with Saarland
University and the Max-Planck Institute for Informatics. His thesis was titled
Sublinear-Time Sparse Recovery and its Power in the Design of Exact Algo-
rithms. His main research interests are compressed sensing, linear sketching
for big data, and understanding the computational aspects of convolutions.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 22,2020 at 23:43:26 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ISIT.2017.8006707
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.90
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.90

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

