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ABSTRACT
In open online communities, everyone can freely express
opinions about other entities. As the quality of opinions
may vary, it is important for users to evaluate opinions in
order to determine how much to rely on. In this paper,
we propose a novel trust model stemmed from the diffu-
sion theory in social science (called DiffTrust), to evaluate
the opinions of users (referred to as advisors) by modeling
their trustworthiness. Specifically, an advisor’s trust build-
ing among users is considered as a diffusion process. Her
trustworthiness perceived by a specific user is influenced by
four important factors including the advisor’s characteristics
directly observed by the user, susceptibility of the user, the
contagious influence of other users already having a certain
level of trust on the advisor, and the environment. DiffTrust
also emphasizes on the dynamics of trust. Experimental re-
sults based on four real datasets verify the effectiveness of
our model in comparison with state-of-the-art approaches.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—
General ; I.2.11 [Artificial Intelligent]: Distributed Artifi-
cial Intelligence—Intelligent agents

Keywords
Trust Modeling; Diffusion Theory; Social Proximity; Intelli-
gent Agent

1. INTRODUCTION
In large and open online communities, users may often

encounter other entities which they have no previous expe-
rience with or prior knowledge of. In this case, they usually
rely on the experience or knowledge of other users (advi-
sors), to choose which entities to interact with. However, in
these environments, advisors can freely express their opin-
ions, and the quality of opinions may then vary. For ex-
ample, some advisors may be dishonest and lie about their
experience. They may report their experience with other
entities as “completely satisfactory” while the real one is
opposite. In addition, an advisor may only be capable of
providing reliable opinions under one context but not un-
der another because the advisor lacks knowledge in the sec-
ond context. For instance, an expert advisor in automobiles
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may not necessarily be a reliable advisor in recommending
doctors. Therefore, it is important for users to evaluate the
quality of advisors’ opinions in order to determine how much
to rely on. One generally adopted approach in the area of
multiagent systems [3,4,6,7,13,15,16] is to design intelligent
software agents to help users model the trustworthiness of
advisors. The basic idea is that a more trustworthy advisor
to a user will provide more reliable opinions to the user.

Trust has been recognized as a diffusive concept [14]. When
modeling trust, it is crucial to consider the processes through
which trust is cultivated in a system. The diffusion the-
ory [12] in social science seeks to explain how, why and at
what rate a new innovation spreads through a community.
It is thus natural to derive a trust model (called DiffTrust)
from this well-studied theory by considering an advisor’s
trustworthiness as an innovation. Specifically, an advisor’s
trust building among users is considered as a diffusion pro-
cess. Her trustworthiness perceived by a specific user is influ-
enced by: the advisor’s characteristics directly observed by
the user, susceptibility of the user, the contagious influence
of other users already having a certain level of trust on the
advisor, and information about the environment (including
both spatial and temporal information). With this model,
we can well capture the dynamics and subjectivity of trust,
and its dependency on other users and the environment.

Computationally, each user in the system is equipped with
a software agent. Each agent first computes its user’s direct
trust on every other user (advisor) based on their shared
interactions. A shared interaction here means that the user
and the advisor have previously interacted with a same en-
tity, such as providing a rating to the entity. The direct trust
information will be used to form a social (trust) network for
all users. Then when a user encounters an advisor’s opin-
ions, the user’s agent will compute the trustworthiness of the
advisor by incorporating the user’s direct trust on the ad-
visor in the social network, the user’s susceptibility to trust
(i.e. the initial trust assigned to the advisor by the user),
and trust evaluation on the advisor computed by the agents
of other users in the social network. The agent of the user
considers another user’s trust evaluation on the advisor by
also computing the social proximity of that user with respect
to its own user, which indicates how much the agent’s own
user can rely on that user’s trust evaluation. In the model,
the trustworthiness of an advisor in the view of each user
is measured under a specific context, and we assume that
there is a finite set of contexts in a specific system. We also
take into account both temporal and spatial information in
trust computation.



We conduct experiments on real data obtained from eBay
(www.ebay.com), FilmTrust (trust.mindswap.org), Epinions
(www.epinions.com) and Flixster (www.flixster.com), to ver-
ify the effectiveness of our model in comparison with state-
of-the-art approaches including TRAVOS [13], the person-
alized approach [16], CertProp [6] and Shin [7]. The results
demonstrate that our model can more accurately model the
trustworthiness of advisors than other approaches.

2. RELATED WORK
Different approaches have been proposed to model the

trustworthiness of an advisor for a user, some of which are
based on shared interactions between the user and the ad-
visor. For example, the TRAVOS model [13] estimates the
probability that the advisor’s current opinions (ratings) are
accurate based on the advisor’s previous ratings provided to
the user. However, these models are ineffective when there
is no or only a very few shared interactions between the
user and the advisor. To address this problem, the person-
alized approach [16] also estimates the public reputation of
the advisor by comparing her ratings and other advisors’
ratings regarding the same entities. Different from the per-
sonalized approach, our DiffTrust model makes use of other
users’ evaluation of the advisor’s trustworthiness, and as-
sesses those users’ evaluation based on the social proximity
of them with respect to the user, to avoid false evaluation.
The approach of [15] adopts the concept of referral net-

works where users cooperate with each other to find the
trustworthiness of advisors by searching a social network.
The social network is built upon two dimensions: expertise
and sociability. However, this approach suffers from the “ru-
mor problem” that different information about an advisor’s
trustworthiness received by a user may come from the same
source. It also fails to work when new users do not have
trust relationships with others, thus is not appropriate for
the communities where users are loosely connected. In our
model, a user only accepts other users’ direct evaluation on
an advisor to avoid the rumor problem. It also has no strict
requirement on the minimum amount of experience for new
users because various types of information (e.g. advisors’
profile information) can also be utilized in our model.
Some other trust propagation methods [6,7, 11] have also

been proposed. Sabater and Sierra [11] present a one-level
propagation method where a user can make use of other
users’ direct evaluation on an advisor. This method also con-
siders the user’s social relations with the other users, such
as competition, cooperation and trade, which are typically
difficult to obtain in real-world environments. On the ba-
sis of a social network built from users’ direct evaluation on
each other, Hang et al. [6] design a new algebraic approach
called CertProp to propagate trust and address the rumor
problem. They formally define three operators: aggregation,
concatenation and selection for trust propagation. However,
CertProp suffers from the unreachable witness information
problem where a user may not know anything about an-
other user (called witness) who holds information about an
advisor. This problem has further been addressed in their
recent work of the Shin approach [7] by considering the dif-
ference on trust evaluation towards same advisors between
the user and the witness. However, both CertProp and Shin,
grounded on the trust transitivity theory, are generally crit-
icized by their accuracy, since trust evaluated through long
paths endows with high probability to be inaccurate. To an-
alyze further, those trust propagation methods only consider

the user’s own experience with the advisor if such experi-
ence exists, which may lead to inaccurate trust evaluation
when the user has only limited experience with the advi-
sor or the advisor dynamically changes her behavior. Con-
versely, our DiffTrust model flexibly adjusts the weight of
the user’s own experience and other users’ evaluation on the
advisor. The quality of the other users’ evaluation on the
advisor is judged through the concept of social proximity,
which has been proven to be effective in the diffusion the-
ory [1]. In addition, social proximity can also be modeled
based on other types of viable information provided in dif-
ferent environments other than the buyer’s own experience
with the other users’ evaluation.

3. THE DIFFTRUST MODEL
In this section, we describe in detail the rationale of de-

riving the DiffTrust model from the diffusion theory, and
provide computational procedures for users to model trust-
worthiness of advisors for evaluating their opinions.

3.1 Trust and the Diffusion Theory
Our DiffTrust model is inspired by the diffusion theory [12]

where the home territory is an innovation (e.g. technology,
idea or object). The diffusion theory seeks to explain how,
why and at what rate a new innovation spreads through a
community. Rogers [10] indicates that “diffusion is the pro-
cess where an innovation is communicated through certain
channels over time among the members of a social system”.

According to [14], trust is more appropriate to be consid-
ered as a diffusive concept. In trust modeling, it is critical
and more meaningful to explore the context within which
the trust is embedded, and to explore the processes through
which the trust is cultivated. Besides, a user’s trust per-
ception towards another user is not static but dynamically
evolves as the surrounding changes. That is, we can con-
sider a user’s trustworthiness perceived by other users as
a systematic process, involving the purposes of evaluating
and using trust of the user (why), the ways and channels
of inducing trust towards the user (how), and the induced
trust degree (at what rate) varying over time for other users
or other contexts. We can clearly see the similarities be-
tween trust and the innovation in the diffusion theory. Both
of them are dynamic and evolutionary (varying over time),
subject to perceiving (adopting) users (i.e. influenced by the
intrinsic nature of these users), and dependent on the envi-
ronment. It is thus natural to derive a trust model based on
the diffusion theory.

In a system, an advisor’s trustworthiness in the view of
a specific user, which may be different from the perception
of other users, is sensitive to the interactions between the
advisor and the user and also subject to the user’s own in-
trinsic nature. Considering this, it is more appropriate to use
the individual-level framework of the diffusion theory. We
specifically employ Strang and Tuma’s individual-level ori-
ented heterogenous diffusion model [12]. This model empha-
sizes on the heterogeneous characteristics of both spatial and
temporal information. Similarly, the diffusion of an advisor’s
trustworthiness among other users should also consider the
spatial heterogeneity among the other users, because differ-
ent users have different chances of perceiving the advisor’s
trustworthiness and different strength of affecting others’
perception. We are also concerned with the temporal hetero-
geneity among all historical interactions where a more recent
interaction will affect more on trust evaluation. In Strange
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Figure 1: The DiffTrust Model for Evaluating the Trustworthiness of Advisors

and Tuma’s model, there are mainly four factors influenc-
ing the innovation adoption process of a potential adopter:
the susceptibility of the potential adopter (individual ten-
dency, an adopter’s intrinsic nature to adopt a new innova-
tion), the infectiousness (contagious) of early adopters and
the proximity of the pairs consisting of one early adopter
and the potential adopter (contagious influences, the im-
pact from the users already adopting the innovation), the
characteristics of the innovation (direct connections, the
potential adopter’s perception about the characteristics of
innovations through direct observation or communication),
and temporal variation as a function of time since adoption.
We will explain next how our DiffTrust model is derived
based on these factors.

3.2 The Trust Model
In DiffTrust, each user is equipped with a software agent

being responsible for modeling the trustworthiness of advi-
sors for its user. Each user has a set of past interactions with
some entities and provides a rating in the range of [0, 1] for
each interaction. We assume that a user u and an advisor a
have both previously interacted with a set of the same enti-
ties. Based on these shared interactions, the agent computes
user u’s direct trust on advisor a. The direct trust informa-
tion of every user will be used to form a social network of
all users. Let us assume that the set of users who have
adopted advisor a in their social networks under the con-
text c is denoted by the set Uc

a . Our objective is to model
the trustworthiness of advisor a perceived by user u at time
t. The trustworthiness of the advisor is modeled with re-
spect to each context c (c ∈ {c1, c2, · · · , cm}, where m is the
number of contexts in the system), at time t as T(u, a, t, c).
We adopt the individual-level oriented heterogenous dif-

fusion model [12] to derive the DiffTrust model based on its
four factors. More specifically, as shown in Figure 1, the
agent of user u models advisor a’s trustworthiness by incor-
porating the following three major parts:

• Susceptibility of user u trusting advisor a (individual
tendency). This refers to user u’s intrinsic nature
without any direct or indirect experience with advisor
a. We consider two factors: user u’s static initial trust
(Tu

0 ∈ [0, 1]), and the number of u’s neighbors in the
social network at a specific time. A larger number of
neighbors implies that user u has already experienced
a lot in the system. Therefore, she is more likely to be
open to other unknown advisors and confident in her
own trust evaluation.

• Effect of direct connections between user u and advisor
a (direct connections), representing user u’s direct
observations on advisor a. Two factors are involved:
direct trust based on shared interactions between u
and a, and social proximity of a with respect to u,

Su
a , which is treated as a consequence of u’s direct

observation on a’s spatial information.
• Contagious influence of set Uc

a (contagious influ-
ences). We consider the infectiousness of each user
in Uc

a , by sharing their evaluation on advisor a derived
from their shared interactions. We make use of their
trust evaluations by computing the social proximity of
each specific user in Uc

a with respect to user u. A so-
cially closer user to u indicates a higher probability
that u will trust the user’s trust evaluation on a.

We also consider the time decay effect of shared interactions
(temporal variation). The effect of previous shared interac-
tions decreases as time goes by, and thus trust values com-
puted based on long past evidence should also be decreased
accordingly.

3.3 Trust Computation
Before introducing the specific computational steps, we

first clarify some important concepts related to our model.

3.3.1 Related Concepts
Spatial information is used to model the social proxim-

ity between users. Social proximity, believed to be able to
engender trust [1], can be flexibly modeled according to the
consideration of identified spatial information. Two kinds of
spatial information are considered in our model, physically
spatial information and socially spatial information. The
former refers to users’ physical location and identity. It can
be obtained from users’ profile information. For this kind of
information, the method for calculating context similarity
in Section 3.3.3 can be used to model the social proximity.
The latter refers to users’ social identity and status, such
as users’s position in the social network and their neigh-
bors. Traditional proximity metrics such as the number of
common neighbors (CN) (see Equation 1), fraction of com-
mon neighbors, or Jaccard coefficient and the Adamic-Adar
score can be adopted to measure the social proximity of two
users [8]. Note that we prefer to use socially spatial infor-
mation when both of the two kinds of spatial information
are available, because social proximity derived from socially
spatial information is proven to be more infusive than that
from physically spatial information [1].

CN =
1

2
(|△|+ |△′|) (1)

where for two users u and v: △ = Γout(u)
∩

Γin(v) and
△′ = Γin(u)

∩
Γout(v). Here, Γout(u) represents the set of

out-neighbors of node u, which in our research corresponds
to the set of users having direct trust on u. Similarly, Γin(u)
represents the set of users being directly trusted by u.

Temporal information is bounded with other informa-
tion, such as trust values and past interactions between
users, whose influence would be discounted over time. We



mainly consider the time when an interaction happens, when
a user is added to another user’s social network, and when
a trust value is computed.
Context consists of both spatial information and tempo-

ral information, according to the Situation Dependency The-
ory [5]. In our work, context is usually mentioned together
with an interaction or an advisor’s trustworthiness, i.e., the
context of a specific interaction, and advisor a’s trustworthi-
ness perceived by user u under a specific context.

3.3.2 Computational Steps
We now elaborate the computational steps in detail.
Step 1: Model direct trust based on shared in-

teractions. As indicated in Section 3.2, user u models the
direct trustworthiness of advisor a based on their shared in-
teractions. This is a continuous process. Whenever a new
shared interaction happens between u and a, u’s trust on a
needs to be updated based on the new observation. We as-
sume that based on the previous shared interactions of user
u and advisor a, at time t0, u’s direct trust towards a under
context c is denoted as DT(u, a, t0, c). At time t, u and a
have a new shared interaction with a same entity, denoted
as iu under the context cu and ia under the context ca re-
spectively. Note that contexts cu, ca and c may not be the
same. The problem can be identified as to update u’s direct
trust towards a at time t as DT(u, a, t, c) by considering the
effect of the new shared interaction iu and ia.
We first model the direct influence (DI(iu, ia, t)) of the

new shared interaction on the trustworthiness of advisor a.
Intuitively, in the shared interaction, if advisor a’s opinion
is more similar to that of user u towards the same entity, a
can be considered as more trustworthy. Thus, DI(iu, ia, t) is
formulated as the similarity between iu and ia:

DI(iu, ia, t) = (1− |iu − ia|)× S(cu, ca)× S(c, cu) (2)

where S(c, cu) is the similarity between contexts c and cu,
and S(cu, ca) is the similarity between contexts cu and ca.
Calculation of context similarity will be specified in Sec-
tion 3.3.3. In this way, we align the user and advisor’s in-
teractions with the same entity to context c.
We then update user u’s direct trust towards advisor a

based on the new shared interaction at time t under context
c, by combining the new shared interaction (iu and ia) with
the previous trust values DT(u, a, t0, c) at t0, as follows:

DT(u, a, t, c) =
DT(u, a, t0, c)λ

(t−t0) +DI(iu, ia, t)

1 + λ(t−t0)
(3)

where 0 < λ ≤ 1 is a time decay factor for user u to decrease
the effect of old shared interactions between u and a.
Note that two special scenarios need to be considered: 1)

if there is no new shared interaction after t0, we consider
the time decay effect of previously computed trust value at
t0 such that DT(u, a, t, c) = DT(u, a, t0, c)λ

(t−t0); and 2)
if there is no shared interaction between u and a till time
t, the direct connections between u and a can be modeled
by the social proximity of u and a instead, which could be
considered as user u’s direct observation of advisor a’s char-
acteristics, that is DT(u, a, t, c) = Su

a .
Step 2: Model contagious influence. According to

the diffusion theory, the contagious influence of users in Uc
a ,

denoted as CI(u, Uc
a , t), can be modeled as the weighted av-

erage of trust evaluation on advisor a from each user x ∈ Uc
a ,

denoted as DT(x, a, t, c). Each weight corresponds to user

x’s social proximity with respect to user u denoted as Su
x .

The way of computing social proximity can vary depend-
ing on information available in the environment. In our ex-
periments, we use Equation 1 to compute social proximity.
Higher social proximity means that two users are more sim-
ilar/closer according to their spatial information, and user
x’s evaluation on advisor a is pitched to resonate more in
the mind of user u. The contagious influence of users Uc

a

can then be formalized as follows:

CI(u, Uc
a , t) =

∑
x∈Uc

a
DT(x, a, t, c)× Su

x∑
x∈Uc

a
Su
x

(4)

Step 3: Combine the three factors. We now evalu-
ate the trustworthiness of advisor a with regard to user u
at time t under context c, T(u, a, t, c), by considering the
three factors: direct connections, contagious influence and
susceptibility (initial trust) of u, as follows:

T(u, a, t, c) = ω1DT(u, a, t, c) + ω2CI(u, U
c
a , t)

+(1− ω1 − ω2)T
u
0

(5)

where ω2 is the weight of the contagious influence of the
set of users in Uc

a and can be modeled as the average social
proximity of users in Uc

a with respect to user u under the
context c, and ω1 is the weight of the direct trust derived
from shared interactions. The weight ω1 is influenced by
user u’s confidence in the system. It relates to the number
of user u’s neighbors. The larger size of u’s neighbors implies
that u is more experienced and more confident to rely on her
own evaluations. We calculate ω1 as follows:

ω1 =

{
Nt

u
Nmin

if N t
u ≤ Nmin;

1 otherwise.
(6)

where N t
u is the number of u’s trust neighbors in the social

network at time t, and Nmin is the minimum number of
neighbors needed for user u to be totally confident about her
own evaluation. We adopt the method in [16] to compute
the value of Nmin according to an acceptable level of error
ε (for u) and a confidence measure γ, as follows:

Nmin = − 1

2ε2
ln
1− γ

2
(7)

Note that ω1 = 1 is only used in direct trust part, and in
order to more accurately model the advisor’s trustworthi-
ness, the agent will always consider direct trust and conta-
gious influence together. That is to say, in Equation 5, if
ω1 +ω2 > 1, then we change the weights to be: ω1 = ω1

ω1+ω2

and ω2 = 1− ω1.
When there is no shared interaction between user u and

advisor a, a will not be included into u’s social network. If
a is a newcomer of the system, we consider only the social
proximity between u and a and u’s initial trust (without
contagious influence). An advisor will be added into user
u’s social network only when shared interactions between
the advisor and the user are identified. However, if an advi-
sor’s trustworthiness from the view of user u based on shared
interactions is equivalent to the initial trust Tu

0 , the advi-
sor will be immediately excluded from u’s social network.
Intuitively, it represents that user u’s previous shared inter-
actions with the advisor have been forgotten and thus lost
influence on trust evaluation on the advisor. Then, only new
shared interactions between the advisor and the user will be
taken into consideration in the trust computation.



Table 1: Statistical Information about the Four Real Datasets
Datasets eBay FilmTrust Flixster Epinions

Statistics
186,957 buyers
3,046 sellers

214,115 transactions

1,508 users
2,071 items

35,497 ratings

1,000 users
2,867 items
7,905 ratings

500 users
44,288 items
66,287 ratings

Data types buyers→sellers
users→items
users→users

users→items
users→users

users→items
users→users

Vertices in social network 5,531 (buyers) 1,508 (users) 1,000 (users) 500 (users)
Edges in social network 1,144,675 1,632 3,337 23,848

Rating scale -1, 0, 1 0.5, 1, 1.5,· · · , 4 0.5, 1, 1.5, · · · , 5 1, 2, 3, 4, 5
Trust between users - 1 1 1

Ratio of having shared
interactions of all users

7.5% 81.9% 1.5% 21.8%

Maximal number of shared
interactions between users

21 105 444 121

3.3.3 Context Similarity
The context information in our work is represented by

an ontology, and we employ the existing largest ontology
- the LinkedData ontology [2] to present the concepts in-
volved for describing the contexts in a specific system. We
assume two contexts ci and cj ∈ {c1, c2, · · · , cm} represented
by a set of concepts (objects) in our universe, and rela-
tions between the concepts are generalization relationships
(e.g. isA and partOf). Contexts ci = ⟨c1i , c2i , · · · , cni ⟩ and
cj = ⟨c1j , c2j , · · · , cnj ⟩, where n is the number of concepts
describing a context. We adopt the definition of concept
similarity in [9] that two concepts (e.g. apple and pear) are
similar if they relate to a third concept (e.g. fruit). More
formally, the distance between two concepts is defined as the
length of the shortest generalization path between the two
concepts. For example, the distance of apple and pear equals

to 1 (apple
isA→ fruit, and pear

isA→ fruit), while the distance

between apple and rice is 2 (apple
isA→ fruit

isA→ plant, and

rice
isA→ vegetable

isA→ plant). We then define the similarity
of two contexts ci and cj as:

S(ci, cj) =
1∑n

y=1 dist(c
y
i , c

y
j ) + 1

(8)

where dist(cyi , c
y
j ) is the distance between concepts cyi and

cyj defined previously using the shortest generalization path.
Note that social proximity from physically spatial informa-
tion can also be modeled in this way because physically spa-
tial information can also be described by the ontology.

4. EMPIRICAL EVALUATION
We carry out two kinds of experiments to evaluate the

performance of our DiffTrust model. The first kind is to
verify whether the trustworthiness of advisors modeled by
DiffTrust can be used to accurately model the trustworthi-
ness of entities in reputation systems. These experiments
are conducted on real data collected from eBay, modeling
trustworthiness of sellers for buyers to predict the outcomes
of their future transactions with the sellers. The second
kind is to verify whether the modeled trustworthiness of ad-
visors is the same as what have been explicitly indicated
by users. We conduct these experiments using real datasets
extracted from FilmTrust, Epinions and Flixster. We also
compare our model with several competing models, includ-
ing TRAVOS [13], the personalized approach [16], Cert-
Prop [6], Shin [7], and a baseline approach which judges
a seller’s trustworthiness for a buyer by aggregating the rat-
ings from advisors without considering their trustworthiness.

4.1 Data Acquisition
For eBay, we first randomly select 26, 922 sellers selling

products in different categories and collect all their past
transactions (including 969, 213 positive ratings, 1914 neu-
tral ratings and 3590 negative ratings). The data is crawled
from April 10, 2000 to June 4, 2011. Then, we randomly se-
lect 23, 630 buyers from all the buyers who have previously
interacted with at least one of the selected sellers. We collect
all past transactions of these buyers. Each transaction con-
sists of buyer ID, seller ID, rating provided by the buyer, and
time of the transaction. We then particularly select 3, 046
target sellers who have at least one unsuccessful (negative
or neutral) past transaction to fully test the performance of
different models. Correspondingly, the number of buyers in
the buyer set is 5, 531. We then predict the outcomes of past
transactions that buyers have conducted with sellers using
the leave-one-out strategy. More specifically, to predict the
outcome of a transaction between a buyer b and a seller s at
time t, we select ratings provided by other buyers (advisors)
towards seller s before time t. Trustworthiness of advisors
is modeled using different approaches based on all ratings
provided before time t. The trustworthiness of seller s from
the view of buyer b can then be evaluated by aggregating
ratings from advisors weighted by their trustworthiness. In
the end, the outcome of the unknown transaction can be
predicted using the computed trustworthiness of seller s.

FilmTrust dataset consists of 1, 508 users, 2, 071 movies
and 35, 497 movie ratings issued by the users. There are
1, 632 trust relationships explicitly identified by users, which
are used as test data in our experiments. These trust rela-
tionship are directed. That is, a user a trusting another
user b does not imply b also trusting a. On the basis of
shared interactions (commonly rated items) between users,
we model the trust value between two users using different
models. The same evaluation method has been used on the
Flixster and Epinions datasets. We randomly select 1, 000
users from the Flixster dataset1, and 500 users from the
Epinions dataset2. The statistical information of these four
datasets is summarized in Table 1.

4.2 Evaluation Metrics
We use three metrics to measure the performance of dif-

ferent approaches. One is the Matthews Correlation Coef-
ficient (MCC) for the eBay dataset. MCC is a measure for
the quality of binary classifications. It is generally regarded

1http://www.cs.sfu.ca/∼sja25/personal/datasets/.
2http://www.trustlet.org/datasets/downloaded epinions.



Table 2: Performance Comparison on the eBay Dataset

Dataset
All Data

Cold Start Buyers Sellers Non-consistently Perform
Ne ≤ 2 Ne ≤ 10 Rn ≥ 0.01 Rn ≥ 0.1

MCC MAE MCC MAE MCC MAE MCC MAE MCC MAE
DiffTrust 0.327 0.0648 0.007734 0.0769 0.1601 0.0699 0.3431 0.0890 0.5479 0.3010
Baseline 0.166 0.0708 -0.001773 0.0819 0.0820 0.0738 0.1722 0.0971 0.3229 0.3664
TRAVOS 0.156 0.0710 -0.002861 0.0817 0.0093 0.0784 0.1630 0.0974 0.3121 0.3679

Personalized 0.161 0.0710 -0.002861 0.0817 0.0093 0.0785 0.1684 0.0973 0.3270 0.3656
CertProp 0.270 0.0673 -0.002453 0.0812 0.0574 0.0735 0.2801 0.0922 0.4932 0.3225

Shin 0.269 0.0670 -0.002453 0.0813 0.0222 0.0732 0.2790 0.0922 0.4932 0.3225
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Figure 2: Performance Comparison on the eBay Dataset by: (a) Varying the Time Slots (MAE); (b) Varying
the Time Slots (MCC); (c) Varying the Trust Threshold (MCC)

as a balanced measure which can be used even if the classes
have distinct sizes. Thus, it is very suitable for our eBay
dataset, where over 95% of the historical transactions are
positive. MCC can be calculated as follows:

MCC =
tptn − fpfn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(9)

where tp tn, fp and fn refer to an actual positive transaction
predicted to be successful, an actual negative transaction
predicted to be unsuccessful, an actual negative transaction
predicted to be successful, and an actual positive transaction
predicted to be unsuccessful, respectively. A MCC value of
1 represents a perfect prediction, 0 an average random pre-
diction and −1 the worst possible prediction. For the trust
value prediction in FilmTrust, Epinions and Flixster, there
is only information about the relationship that a user trusts
an advisor. Precision is thus used as the evaluation metric,
which refers to the actual fraction of successful prediction
of those trust relationships. More specifically, given the fact
that a user trusts an advisor as explicitly specified by the
user, if the modeled trustworthiness of the advisor is greater
than a threshold, its trust value is successfully predicted to
be 1. Otherwise, this is an unsuccessful prediction. For all
four datasets, we also use the third metric the mean absolute
error (MAE) between predicted rating of each transaction
(or predicted trust value for each user pair in FilmTrust,
Epinions and Flixster) and the real rating of the transaction
(or the actual trust relationship).

4.3 Results and Discussion
Here, we present the performance of our model and the

competing approaches on the four datasets, respectively.
We also examine these approaches in detail by varying the
time when a transaction happened and trust threshold for
predicting whether a transaction is successful on the eBay
dataset, and the trust threshold for predicting whether a

user indicated trust on another user (advisor) on the other
three datasets. Table 2 and Figure 2 summarize the per-
formance comparison of DiffTrust with other approaches in
terms of MCC and MAE on eBay data in different scenar-
ios. Table 3 and Figure 3 present the results of Precision
and MAE on the FilmTrust, Epinions and Flixster datasets.

More specifically, Table 2 shows the experimental results
on 1) the whole eBay dataset with 5, 331 buyers and 3, 046
sellers; 2) the dataset considering only cold start buyers
where Ne ≤ 2 and Ne ≤ 10 respectively, and Ne refers
to the number of other users (advisors) with whom a buyer
has shared interactions with; and 3) the dataset consider-
ing only the sellers who do not perform consistently well
and Rn ≥ 0.01 and Rn ≥ 0.1 for sellers respectively, where
Rn refers to the ratio of sellers’ transactions received neg-
ative ratings from buyers. From all these results, we can
see that our DiffTrust model achieves more consistent and
better performance both in MAE and MCC than other ap-
proaches. To be more specific, the performance of TRAVOS
and the personalized approach is very close to the baseline,
mainly because there are only a very few shared interactions
between buyers, which are needed for TRAVOS to work well.
Besides, the dataset of eBay is extremely skewed and almost
over 99% of the transaction outcomes are positive. Thus,
the personalized approach, relying on the majority of other
users’ ratings to evaluate advisors’ trustworthiness, is more
likely to underestimate the trustworthiness of advisors who
provide negative ratings. In consequence, it is difficult for
the personalized approach to predict the unsuccessful trans-
actions. In our model, we adopt other buyers’ direct trust
evaluations on an advisor derived from their shared inter-
actions with the advisor by considering these buyers’ social
proximity with respect to the current buyer. In so doing, we
can assure a more accurate trust evaluation of the advisor
because we are more likely to receive different trust evalu-



Table 3: Performance Comparison on the FilmTrust, Epinions and Flixster Datasets

Dataset
FilmTrust Epinions Flixster

Precision MAE Precision MAE Precision MAE
DiffTrust 0.867 0.1154 0.8163 0.2064 0.6616 0.3229
Baseline 0.711 0.2136 0.6365 0.3428 0.5193 0.4757
TRAVOS 0.682 0.3008 0.6796 0.2943 0.4884 0.464

Personalized 0.793 0.1798 0.7406 0.2266 0.5754 0.414
CertProp 0.791 0.1854 0.7327 0.2417 0.5781 0.416

Shin 0.809 0.1576 0.7413 0.2314 0.5783 0.4123
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Figure 3: Performance Comparison by Varying the Trust Threshold: (a) FilmTrust; (b) Epinions; (c) Flixster

ations on the advisor, especially on the advisor having ever
provided negative ratings. Trust propagation approaches of
Shin and CertProp are able to achieve consistently much
better results than the baseline approach in most scenarios,
but worse than our DiffTrust model. This is mainly because
CertProp only considers the reachable buyers’ direct trust
on an advisor, but overlooks the unreachable buyers’ (see
Section 2 for details). This may result in the loss of some im-
portant trust evaluations. Shin considers trust propagation
for reachable witnesses (buyers’s direct trust evaluations on
the advisor), and use similarity of the buyer and unreach-
able witnesses’ direct trust evaluations on the same entities
to model those unreachable witnesses. This setting is not
very reasonable and fair for the eBay dataset. The weight
of considering other buyers’ direct trust evaluations on the
advisor is more likely to approach 1 since most of the trans-
actions on eBay are positive, but the weight for unreachable
witnesses is more likely to be less than 1 according to the
similarity metric. In contrast, in DiffTrust, we equally treat
other buyers’ direct trust evaluations towards the advisor by
considering the social proximity. This can avoid the above
mentioned “unfair” problem. It is worth noting that in the
cold start case, only our model can obtain a positive MCC
value and relatively smaller MAE value when the number of
other buyers with whom a buyer has shared interactions is
very sparse. In this scenario, the performance of other ap-
proaches closely approaches that of the baseline approach.
This demonstrates that our model can effectively address
the cold start problem, assist new buyers to accurately eval-
uate advisors’ trustworthiness, and thus assesses the quality
of advisors’ opinions to make correct decisions for buyers.
Figure 2 illustrates the performance of different approaches

by varying the time when each predicted transaction was
conducted, and varying the trust threshold so that if pre-
dicted trustworthiness of a seller at specific time is higher
than the threshold, the seller’s transaction conducted at that
time will be predicted to be successful. As shown in Fig-

ures 2(a) and 2(b), we divide the time range of April 10,
2000 to June 4, 2011 into 10 time slots of equal range. We
can see that the performance of all the approaches improves
gradually in terms of both the MAE and MCC as time goes
by. This is mainly because users gain more experience and
can better model the trustworthiness of advisors. As can be
seen in Figure 2(b), our model performs consistently better
than other approaches, and the performance gap between
our model and each other approach increases gradually as
buyers gain more experience in the system. Figure 2(c)
demonstrates that the best trust threshold for our model
is 0.7, while 0.8 for Shin and CertProp and 0.9 for Baseline,
TRAVOS and the personalized approach, respectively. Our
model outperforms the other approaches for all thresholds.

Table 3 depicts the results of Precision and MAE on the
FilmTrust, Epinions and Flixster datasets. We can see that
our model performs consistently better than other approaches.
As the ratio of shared interactions between users increases
(FilmTrust > Epinions > Flixster), the performance of all
the approaches also improves. The performance of TRAVOS
is very close to Baseline and sometimes worse than Base-
line. TRAVOS works only for binary ratings. Thus, in
these datasets, we first map the ratings to either positive
or negative by choosing the middle of the rating scale in
our experiments, which may lead to inaccurate modeling of
advisors’ trustworthiness according to shared interactions.
For the Flixster dataset, as there are a very limited num-
ber of shared interactions between users (0.015 in Table 1),
the performance gap between our DiffTrust model and other
approaches regarding to both Precision and MAE is rela-
tively larger than that on FilmTrust and Epinions. This is
mainly because in Flixster, of all the users having shared
interactions, the average number of shared interactions is
relatively larger (i.e. 3.2774). That is to say, if there are
any shared interactions between a user and an advisor, the
user can make an accurate trust evaluation on the advisor.
Through social proximity, our model can maximally make



use of each individual user’s trust evaluation on the advisor.
This demonstrates that our model, compared to other ap-
proaches, are more suitable to address the trustworthiness of
advisors in the systems where users have a few shared inter-
actions (the same trend found for eBay). It is worth noting
that on these datasets, the performance of the personalized
approach is much better than Baseline and TRAVOS (com-
pared to that on the eBay dataset), implying that even in
the environments where users are having a relatively larger
number of commonly rated items, the public information is
still worth considering when addressing the trustworthiness
of advisors.
Figure 3 presents the performance of different approaches

by varying the trust threshold so that if a predict trust value
of advisor a in the view of a user u is larger than that thresh-
old, user u trusts advisor a. It shows that in general our
DiffTrust model outperforms the other approaches. It con-
sistently achieves high precision, demonstrating its effective-
ness in modeling the trustworthiness of advisors.

5. CONCLUSION AND FUTURE WORK
Aiming at evaluating the quality of opinions of users (advi-

sors) in open online environments such as e-marketplaces, we
propose a novel trust model called DiffTrust, stemmed from
the diffusion theory in social science, to model the trust-
worthiness of users. Specifically, an advisor’s trust build-
ing among users is considered as a diffusion process. Her
trustworthiness perceived by a specific user is influenced
by four important factors including the advisor’s charac-
teristics directly observed by the user, susceptibility of the
user, the contagious influence of other users already hav-
ing a certain level of trust on the advisor, and the envi-
ronment. Our DiffTrust model emphasizes on the dynam-
ics and evolutionary characteristics of trust, and highlights
that the trustworthiness of an advisor may be perceived dif-
ferently by different users, dependent on the environment,
and embedded with a specific context. We compare our
model with a baseline approach, TRAVOS, the personal-
ized approach, CertProp and Shin, on four real datasets of
eBay, FilmTrust, Epinions and Flixster. Experimental re-
sults demonstrate that DiffTrust can consistently perform
better in both loosely-connected and well-connected envi-
ronments. Besides, it can also help model the trustworthi-
ness of advisors for users who are new to the system.
Our current work focuses on modeling the trustworthiness

of advisors. For future work, we will derive a trust model
also from the diffusion theory to model the trustworthiness
of entities to which the advisors provide opinions. Together,
we will offer a unified trust model for users to make informed
decisions about which entities to interact with. In addition,
due to limitations of the obtained datasets, we did not con-
sider context information and physically spatial information
in our experiments. In the future, we will continue to fully
demonstrate the effectiveness of our DiffTrust model by ex-
ploring more relevant information, and design an alternative
method to compute context similarity without ontologies.
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