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ABSTRACT
In reputation systems for multiagent-based e-marketplaces,
buying agents model the reputation of selling agents based
on ratings shared by other buyers (called advisors). With
the existence of unfair rating attacks from dishonest advi-
sors, the effectiveness of reputation systems thus heavily
relies on whether buyers can accurately determine which
advisors to include in trust networks and their trustwor-
thiness. In this paper, we propose a novel multiagent evo-
lutionary trust model (MET) where each buyer evolves it-
s trust network. In each generation, each buyer acquires
trust network information from its advisors and generates a
candidate trust network using evolutionary operators. Only
trust networks providing more accurate seller reputation es-
timation shall survive to the next generation. Experimental
results demonstrate MET is more robust than the state-of-
the-art trust models against various unfair rating attacks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; Multiagent systems
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1. INTRODUCTION
Trust plays a vital role in open, large, distributed and dy-

namic multiagent systems where self-interested agents may
be deceptive and strategic. For example, in multiagent-
based e-marketplaces, dishonest selling agents may not de-
liver products with the quality as what they promised. Rep-
utation systems are thus designed for buying agents to mod-
el the reputation of sellers based on ratings shared by other
buyers (called advisors) and make decisions on which sellers
to transact with. However, unfair rating attacks from dis-
honest advisors, such as the Sybil, Camouflage and White-
washing attacks, render reputation systems vulnerable to
mislead buyers to transact with dishonest sellers [2, 10]. S-
trategic dishonest advisors may also employ sophisticated
attacks, such as a combination of unfair rating attacks.
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Various trust models [3, 6, 7, 8, 9] have been proposed to
cope with unfair ratings. Dishonest advisors’ ratings are ei-
ther filtered out (e.g., BRS [7] and iCLUB [3]) or discounted
(e.g., TRAVOS [6], ReferralChain [8] and Personalized [9])
before aggregating advisors’ ratings to estimate seller rep-
utation. However, these models are not completely robust
against various strategic attacks. In particular, when dis-
honest advisors occupy a large proportion in e-marketplaces
(i.e., Sybil), BRS [7] becomes inefficient and iCLUB [3] is un-
stable because they both employ the “majority-rule”. When
dishonest advisors adopt strategic attacks, TRAVOS [6] does
not work well because it assumes an advisors’ rating behav-
ior is consistent. ReferralChain [8] assigns trust value 1 to
every new buyer (advisor) which provides a chance for dis-
honest advisors to abuse the initial trust (i.e., Whitewash-
ing). Personalized [9] is vulnerable when buyers have insuf-
ficient experience with advisors and the majority of advisors
are dishonest (i.e., combination of Sybil and Whitewashing).
Thus, we need a more robust trust model.

Evolutionary computation, as a search methodology mim-
icking the natural organism, inherits the characteristic of ro-
bustness to enable individuals (agents) to survive in a broad
variety of environments [5]. To resist various unfair rating
attacks, we thus propose a multiagent evolutionary trust
model (MET) for each buyer to evolve its trust network
(consisting of information about which advisors to include in
the network and their trustworthiness) over time and finally
construct accurate and robust trust networks. Specifically,
in each generation, each buyer acquires trust network in-
formation from its advisors and generates a candidate trust
network using evolutionary operators [1] (e.g., crossover and
mutation). Based on fitness evaluation, only trust networks
providing more accurate seller reputation estimation will be
kept for the buyer (i.e., survive to the next generation).

Compared to the state-of-the-art trust models [3, 6, 7, 8,
9], MET has the following unique characteristics: 1) MET
allows a buyer to ask its advisors about their trust network
information. But, differing from trust propagation in Re-
ferralChain [8], the buyer only uses advisors’ information to
generate candidate trust networks that will still go through
fitness evaluation; 2) evolutionary operators enable buyers
to explore diverse forms of trust networks, to alleviate the
impact of false information provided by dishonest advisors;
3) different from most of the trust models that aim to accu-
rately model each individual advisor’s trustworthiness, MET
finds out the optimal trust network that gives the most accu-
rate seller reputation estimation through fitness evaluation,
even certain advisor trustworthiness is not very accurate.



We carry out experiments in a simulated multiagent e-
marketplace where dishonest sellers try to obtain high trans-
action volume by colluding with dishonest advisors to launch
unfair rating attacks. Results show that MET is more ro-
bust than the state-of-the-art trust models and can construct
more accurate trust networks to estimate seller reputation.

2. RELATED WORK
In a large e-marketplace, direct experience between a buy-

er and a seller is often insufficient or even does not exist. In
such a case, the buyer has to rely on indirect experience
– opinions of other buyers (playing the role of advisors) to-
wards a target seller. However, various forms of cheating be-
havior (attacks) from advisors have been observed and stud-
ied in the trust research community [2, 10]. We provide brief
descriptions for the typical unfair rating attacks that will be
studied in this paper, including Constant where dishonest
advisors constantly provide unfairly positive/negative rat-
ings to sellers; Camouflage where dishonest advisors cam-
ouflage themselves as honest advisors by providing fair rat-
ings to build up their trustworthiness first and then gives
unfair ratings; Whitewashing where a dishonest advisor is
able to whitewash its low trustworthiness by starting a new
account with the initial trustworthiness value; Sybil where a
dishonest buyer creates several accounts to constantly pro-
vide unfair ratings to sellers [2, 10]; Sybil Camouflage
(the combination of Sybil and Camouflage) where a number
of dishonest advisors perform Camouflage attacks togeth-
er; and Sybil Whitewashing where a number of dishonest
advisors perform Whitewashing attacks together.
Various trust models [3, 6, 7, 8, 9] have been proposed

to handle unfair ratings from advisors, but they are all vul-
nerable to certain attacks. Specifically, BRS [7] iteratively
filters out unfair ratings based on the “majority-rule” where
an advisor is considered as an outlier if its ratings are located
outside of the acceptable range of all advisors’ accumulated
ratings. This rule renders BRS vulnerable to Sybil-based at-
tacks because honest buyers’ (the minority) ratings will be
incorrectly filtered out. In [3], iCLUB is proposed to handle
multi-nominal ratings by applying clustering to divide buy-
ers into different clubs. When having little evidence about
sellers, a buyer relies on the club with the maximum num-
ber of advisors. In this scenario, Sybil attackers forming a
club with many members will mislead the buyer to follow
their opinions. Thus, iCLUB is also vulnerable to Sybil-
based attacks. TRAVOS [6] discounts advisors’ ratings by
setting weights of their ratings according to their trustwor-
thiness. In some cases, such weights cannot punish dishonest
advisors to a large extent when a buyer has insufficient ex-
perience with the sellers which the advisors has encountered
in the past. In addition, TRAVOS assumes an advisor’s
behavior is consistent, making it vulnerable to Camouflage
attacks. Yu and Singh propose referral chains to propagate
trust through advisors [8]. The initial trustworthiness val-
ues of advisors are set to 1 in the range of [0, 1], and these
values will be decreased if the advisors’ ratings deviate from
the buyer’s direct experience. This provides an opportunity
for Whitewashing attackers to abuse their initial trustwor-
thiness values. In the Personalized approach [9], the trust-
worthiness of advisors is calculated based on both private
and public trust aspects. The private part is vulnerable to
Whitewashing attacks because a buyer cannot have many
commonly rated sellers with a whitewashing attacker. The

public part cannot work well when the majority advisors are
dishonest (Sybil attacks). Thus, this approach is vulnerable
to the combination of Sybil and Whitewashing attacks.

In contrast, our MET model takes advantage of the robust
ability of evolutionary computation in solving dynamic and
complex problems [5]. It also has several unique character-
istics compared to the state-of-the-art trust models, as sum-
marized in Section 1. All these specific design decisions make
MET robust against various unfair rating attacks, which will
be demonstrated through experiments in Section 4.

Evolutionary techniques have been widely used to design
intelligent agents and multiagent systems. In multi-robot
learning [4], each agent is configured with a single-layer neu-
ron network. The evolutionary technique of particle swarm
optimization is adopted to reproduce new parameters of the
neural network for the agent by allowing it to model neigh-
boring agents. This work assumes that each agent shares
its true knowledge. MET addresses false information from
agents by constructing accurate and robust trust networks.

3. THE MET MODEL
In e-marketplaces, when a buyer wants to evaluate the

reputation of a target seller but does not have sufficient per-
sonal experience with the seller, it needs to ask for opinions
(ratings) from other buyers (advisors) towards the seller. To
cope with possible unfair ratings from dishonest advisors,
each buyer in our MET model maintains a trust network
consisting of a set of advisors, each of which is assigned with
a trust value1. The buyer then evolves its trust network over
time in order to obtain a high quality trust network.

To measure the quality of trust networks, a specific fit-
ness function is designed by considering simultaneously the
following two aspects: 1) suitability of selected advisors; 2)
accuracy of trust values assigned to these advisors. In each
generation, each buyer asks some randomly selected advi-
sors from its trust network for information about their trust
networks and fitness values2. By comparing its own trust
network with those provided by the advisors, the buyer s-
elects three appropriate trust networks to produce a can-
didate trust network using evolutionary operators. Finally,
between the candidate trust network and the buyer’s current
trust network, the one with higher fitness value will survive
to the next generation. The details of the MET model will
be provided in the following sections.

3.1 Fitness Function
Assume that in an e-marketplace, the set of buyers is de-

noted as B = {Bi|i = 1, · · · , l} and the set of sellers is de-
noted as S = {Sj |j = 1, · · · ,m}. We also denote the trust-
worthiness of an advisor Ak ∈ B from the view of a buyer Bi

as TBi(Ak) ∈ [0, 1]. In the buyer Bi’s trust network TNBi ,
the trustworthiness values of advisors connected with Bi is
then denoted as TBi(A) = {TBi(Ak)|Ak ∈ TNBi}.

A rating provided by buyer Bi to seller Sj is denoted as
rBi,Sj , which can be a binary, multi-nominal or real value.
Two types of reputation values of Sj can then be derived
by buyer Bi. One type of reputation is derived based on

1For a new buyer without any knowledge of the e-
marketplace environments, it can randomly select a set of
other buyers as its advisors, each of which is assigned with
a randomly generated trust value.
2How to reach a specific advisor to obtain such information
as well as seller ratings is out the scope of this work.



the buyer’s personal experience with the seller, denoted as
RBi(Sj). And, another type is calculated based on the ex-
perience with the seller (i.e., ratings) shared by the advisors

in the buyer’s trust network, denoted as R̃Bi(Sj).
In our MET model, a specific fitness function is designed

for buyers to measure the quality of their trust networks
by comparing the two types of derived reputation values
of sellers. Formally, the fitness value of buyer Bi’s trust
network TBi(A) = {TBi(Ak)|Ak ∈ TNBi} is calculated as:

f(TBi(A)) =
1

m′

m′∑
j=1

|RBi(Sj)− R̃Bi(Sj)| (1)

where RBi(Sj) and R̃Bi(Sj) are the two types of reputation
of a seller Sj respectively. In addition, m′ ≤ m, indicating
that sellers with which either buyer Bi or its advisors have
no experience will not be considered in fitness evaluation.
Suppose that rating type is real, i.e., rBi,Sj ∈ [0, 1], and

the default value rBi,Sj = 0.5 means that Bi has no expe-
rience with Sj . The two types of reputation values of the
seller Sj are then calculated respectively as:{RBi(Sj) = mean({rBi,Sj})

R̃Bi(Sj) = g(TBi(Ak) ·mean({rAk,Sj}))
(2)

where RBi(Sj) is the average of Bi’s ratings to Sj on dif-
ferent transactions, and rBi,Sj ̸= 0.5. The general function
g(·) can be a discounting or Dempster-Shafter operator [8].
For simplicity, we use the discounting operator as follows:

R̃Bi(Sj)=[

n∑
k=1

TBi(Ak)×mean({rAk,Sj})]/
n∑

k=1

TBi(Ak) (3)

where Ak ̸= Bi (ignore Bi’s own opinion), Ak ∈ TNBi ,
n = |TNBi | is the total number of advisors in the trust
network (n ≤ l − 1), and rAk,Sj ̸= 0.5.
A smaller fitness value indicates that the buyer’s trust

network is in higher quality, because the combination of ad-
visors’ ratings is more similar to the buyer’s own opinions
regarding the common sellers. In other words, the fitness
function measures the suitability of the selected advisors and
the accuracy of the trust values assigned to these advisors si-
multaneously. In addition, it is worth noting that MET does
not rely on the trust transitivity or propagation despite the
fact that we use the concept of trust network. The accura-
cy of the trustworthiness values of all advisors in a buyer’s
trust network is directly measured by the buyer itself, based
on the buyer’s own experience with sellers.

3.2 Trust Network Comparison
In each generation, each buyer will ask some randomly

selected advisors in its trust network to share information
about their trust networks and fitness values. However, some
dishonest advisors may provide false information. In some
cases, honest advisors may unintentionally provide noisy or
useless information, because they do not have sufficient ex-
perience with sellers in the e-marketplace in order to assign
precise trust values to the advisors in its trust network. To
alleviate this problem, the buyer will compare trust network-
s shared by advisors with its own trust network, to choose
appropriate trust networks, which will further be used to
generate candidate trust networks (see Section 3.3).
More specifically, suppose that buyer Bi has the trust

network TBi(A) = {TBi(A1), · · · , TBi(Ax)} and the fitness

value is f(TBi(A)). Buyer Bi randomly chooses an advi-
sor Ar from its trust network to ask for the information
about the advisor’s trust network and its fitness value. Sup-
pose that advisor Ar provides the trust network information
as TAr (A) = {TAr (A1), · · · , TAr (Ay)} and the fitness value
f(TAr (A)). The difference between the trust networks of
buyer Bi and advisor Ar is calculated as follows:

diff(TBi(A), TAr (A)) =
1

n′

n′∑
k=1

|TBi(Ak)− TAr (Ak)| (4)

where n′ ≥ x, y is the number of advisors appearing in either
the trust networks of Bi or that of Ar, that is the union of
advisors in the two trust networks. In some cases, Bi and Ar

may not have common advisors. If an advisor Ak appears in
one trust network but not the other, the default trust value
of Ak in the second trust network will be assigned as 0.5.
The difference between the fitness values of Bi and Ar is:

diff(f(TBi(A)), f(TAr (A))) = |f(TBi(A))−f(TAr (A))| (5)

Buyer Bi chooses to use the information shared by advisor
Ar only when the following condition is satisfied:

(diff(TBi(A), TAr (A))− 0.5) (6)

×(diff(f(TBi(A)), f(TAr (A)))− 0.5) > 0

The rationale of Eq. 6 can be explained by analyzing the
following three scenarios. In the first scenario where advisor
Ar provides both the real trust network and the real fitness
value, Eq. 4 and Eq. 5 are smaller than 0.5 because they
are similar with Bi’s own experience. Then Bi will treat Ar

as an honest advisor to use its information. In the second
scenario where only one type of Ar’s information is false,
either Eq. 4 or Eq. 5 is smaller than 0.5. Then the result of
Eq. 6 is smaller than 0. Buyer Ar will not be selected as an
honest advisor by buyer Bi. In the third scenario where Ar

provides both a false trust network and a false fitness value,
Eq. 4 and Eq. 5 are both larger than 0.5. Then, Ar’s fitness
value indicates that Ar’s trust network is different from Bi’s
own opinion, and this information from Ar suggests Bi to
avoid such type of trust networks.

3.3 Evolutionary Operators
After choosing three3 advisors by trust network compari-

son, the buyer will generate a candidate trust network using
evolutionary operators. By comparing the candidate trust
network with the buyer’s own trust network, the one with
higher fitness value measured by Eq. 1 will survive to the
next generation. Two widely used evolutionary operators
(DE crossover and polynomial mutation [1]) are utilized to
produce candidate trust works in MET.

The operator“DE/ran/1/bin”in Differential Evolutionary
(DE) [1] is adopted for crossover. Let us denote buyer Bi’s
trust network in generation g − 1 as TBi,g−1(A). At first,
the crossover operator generates a new vector VBi,g as:

VBi,g(A)=TA1,g−1(A) + F · [TA2,g−1(A)− TA3,g−1(A)] (7)

where F is the scaling factor which amplifies or shrinks the
difference vectors. A1, A2, A3 are the three advisors selected
in Section 3.2. TA1,g−1(A), TA2,g−1(A), TA3,g−1(A) are the

3If insufficient advisors satisfy Eq. 6, some advisors will be
randomly selected from the buyer’s trust network.



trust networks shared by them respectively. After that, op-
erator “DE/rand/1/bin” applies the binomial crossover op-
eration to produce the new trust network.

TBi,g(Ak)=
{
VBi,g(Ak) if randk()≤CR || k=krand

TBi,g−1(Ak) otherwise
(8)

where randk() ∈ [0, 1] is an uniformly distributed random
number and krand∈ [1, n] is a randomly chosen integer. The
control parameter CR is the probability for crossover. If
TBi,g(Ak) < 0, it is set to 0. If TBi,g(Ak) > 1, it is set to 1.
In general, buyer Bi uses information from the advisors in

its own trust network, which is considered as the local view.
But, such mechanism may lead solutions to get stuck at local
optimum. To balance between exploitation and exploration,
our MET model designs a probability variable Plocal (usually
close to 1) to control the buyer’s view. It means that the
buyer has probability 1− Plocal to obtain information from
all advisors in the e-marketplace as the global view.
The polynomial mutation is used to add perturbation to

Bi’s trust network, which is beneficial to generate different
solutions and boost the evolutionary process, as follows:

TBi,g(Ak) = TBi,g(Ak) + δ if randk() ≤ pm (9)

δ =
{

(2 · rand())1/(ηm+1) − 1 if rand() < 0.5

1− |2(1− rand())|1/(ηm+1) otherwise
(10)

where ηm is used to control the polynominal probability dis-
tribution, and pm is the mutation probability. After evo-
lutionary operations, the number of advisors in TBi(A) is
retained by discarding advisors with smaller trust values.

Input : TBi,0(A), buyer Bi’s current trust network;
G, the maximum number of generations;
Plocal, probability of local view;

Output: The optimal trust network TBi(A);

1 Calculate the fitness f(TBi,0(A)) using Eq. 1;
2 for g = 1 to G do
3 if rand() < Plocal then
4 Randomly select advisors Ar1, Ar2, Ar3 that

satisfy Eq. 6 from TBi,g−1(A);

5 else
6 Randomly select advisors Ar1, Ar2, Ar3 that

satisfy Eq. 6 from all possible advisors;

7 Generate TBi,g(A) by DE with Ar1, Ar2, Ar3;
8 Apply the polynomial mutation to TBi,g(A);
9 Calculate the fitness f(TBi,g(A));

10 if f(TBi,g(A)) < f(TBi,g−1(A)) then
11 Replace TBi,g−1(A) by TBi,g(A);

12 Output the optimal trust network TBi,G(A);

Algorithm 1: Multiagent Evolutionary Trust Model

3.4 Pseudo-Code Summary of MET
The pseudo-code summary of the MET model is given in

Algorithm 1. When a buyer has some new experience with
certain sellers, the buyer will evolve its trust network to cap-
ture advisors’ dynamic behavior patterns by Algorithm 1.
More specifically, the buyer Bi firstly evaluates its curren-
t trust network (in generation 0) based on both the new
and old experience with sellers (Line 1). The buyer then
acquires trust network information from three randomly s-
elected advisors of its own trust network with the probabil-
ity Plocal or from all possible advisors with the probability

Table 1: Key Parameters in the Testbed
Key parameters Values
Number of dishonest duopoly sellers 1
Number of honest duopoly sellers 1
Number of dishonest common sellers 99
Number of honest common sellers 99

Number of dishonest buyers (|BD|) 12/28∗

Number of honest buyers (|BH |) 28/12∗

Simulation days (Days) 100
Dominance Ratio (Ratio) 0.5
∗ Non-Sybil-based Attack/Sybil-based Attack

1−Plocal. The trust networks shared by all the selected ad-
visors should satisfy Eq. 6 (Lines 3-6), to control the quality
of the shared trust networks. With the shared trust net-
works, the buyer then generates a new trust network using
the DE operator and polynomial mutation (Lines 7-8). If
the newly generated trust network is better than the buy-
er’s current trust network, the better one will survive to the
next generation (Lines 9-11). After generations of evolu-
tion, an optimal trust network will be finally obtained for
the buyer to accurately model seller reputation.

4. EXPERIMENTATION
We carry out a rich set of experiments to evaluate MET. In

this section, we introduce a multiagent-based e-marketplace
testbed firstly, and then evaluate the robustness of MET by
simulating different strategies of advisors for sharing their
trust networks and examining parameter settings on MET.
After that, we compare MET with five existing trust models
to show its advantages of being more robust again various
unfair rating attacks and more accurately modeling seller
reputation and advisor trustworthiness.

4.1 Multiagent-Based E-Marketplace Testbed
As mentioned in [2, 10], the existing testbeds, such as the

Agent Reputation and Trust (ART) testbed, are not suitable
for carrying out experiments to compare the robustness of
trust models under unfair rating attacks. We thus design a
multiagent-based e-marketplace testbed to incorporate dif-
ferent trust models and simulate unfair rating attacks from
advisors. In the testbed, we simulate a scenario of “Duopoly
Market” where two sellers occupy a large portion of the to-
tal transaction volume in the market. The dishonest duopoly
seller tries to compete with the honest duopoly seller to gain
larger transaction volume by recruiting dishonest buyers to
perform unfair rating attacks. The other sellers (common
sellers) include 99 honest sellers and 99 dishonest sellers,
and their reputation are uniformly distributed alone [0, 1].
Typically, trust models are most effective when only 30% of
buyers are dishonest [7]. Thus, we add 12 dishonest buyers
(attackers) and 28 honest buyers in the market for non-Sybil-
based Attacks, and switch their numbers for Sybil-based At-
tacks. The entire simulation lasts for 100 days. On each day,
each buyer chooses to transact with one seller once.

Since most trust models are more effective when every ad-
visor has transaction experiences with many different sell-
ers, we assume that buyers will transact with the duopoly
sellers with the probability 0.5 while transacting with each
common seller randomly. This implies that duopoly sellers
occupy half of transactions in the market, which is called the
dominance ratio. When deciding on which duopoly seller to
transact with, honest buyers use trust models to calculate
their reputation and transact with the one with the high-
er value, while dishonest buyers choose sellers according to



their attacking strategies. After each transaction, honest
buyers provide fair ratings, whereas dishonest buyers pro-
vide ratings according to their attacking strategies. The key
parameters are summarized in Table 1.
To evaluate trust models, we compare the transaction vol-

umes of the duopoly sellers. The robustness of a trust model
(defense, Def) against an attack model (Atk) is:

R(Def,Atk) =
|Tran(SH)| − |Tran(SD)|

|BH | ×Days×Ratio
(11)

where |Tran(SD)| and |Tran(SH)| are transaction volumes
of the dishonest and honest duopoly sellers, respectively.
R(Def,Atk) = 1 or −1 means Def is complete robust or
complete vulnerable to Atk, respectively. The larger value
indicates the trust model is more robust against the attack.
The mean absolute error (MAE) of seller reputation is

also adopted to measure the accuracy of trust models in
modeling seller reputation:

MAE(Sj) =

∑
t

∑
Bi

|Rt(Sj)− R̃t
Bi

(Sj)|
|BH | ×Days

(12)

where Rt(Sj) is the actual reputation of a seller Sj in day t

(t ∈ [0, Days]), and R̃t
Bi

(Sj) is the estimated reputation of
Sj by a trust model based on experience of a honest buyer
Bi’s advisors (Bi ∈ BH). A smaller MAE indicates that the
trust model predicts seller reputation more accurately.
In the testbed, each trust model is tested against every

attack over 50 independent runs. The experimental results
show the mean and standard deviation (mean ± std), and
the best results are in bold font. The ratings to sellers are
set as the real type. For parameters of trust models, we
use the values suggested by their authors. The parameter
settings of our MET are outlined as following. The number
of advisors in a buyer’s trust network is n = 25. The maxi-
mum generation is G = 10. The probability of local view is
Plocal = 0.8. The DE operator has CR = 0.6, F = 0.3, and
the polynomial mutation has ηm = 20 and pm = 0.05.

4.2 The Influence of Trust Networks
In MET, buyers exchange information about seller ratings

and trust networks. Honest buyers always provide truthful
information to others. Besides unfair ratings generated by
their various attacking strategies, dishonest buyers may also
provide three types of trust networks to other buyers:

• Truthful trust network: a dishonest buyer provides
truthful information about the trustworthiness of ad-
visors in its trust network. Such information will help
other buyers to obtain optimal trust networks quickly.

• Noisy trust network: a dishonest buyer shares a trust
network with randomly generated trust values for ad-
visors, implying that some buyers do not share their
evolved trust networks but only the initial networks.

• Collusive trust network: a dishonest buyer provides
false information about the trustworthiness of some
advisors because they are in the same colluding group.
Such collusive information is more difficult to detect.

In this section, our model is tested with the three type-
s of trust networks. A rating to a seller from a buyer is
a real value. Since BRS [7], TRAVOS [6] and Personal-
ized [9] are designed to deal with binary ratings, the rating

Table 2: Robustness of MET with the Existence of
Truthful, Noisy and Collusive Trust Networks

Constant Camouflage Whitewashing
MET– truthful 0.99±0.02 0.99±0.03 0.99±0.02
MET– noise 0.98±0.02 0.99±0.03 0.99±0.03
MET– collusive 0.98±0.02 0.99±0.02 0.98±0.04

Sybil Sybil Cam∗ Sybil WW∗

MET– truthful 0.96±0.07 0.99±0.07 0.98±0.08
MET– noise 0.91±0.08 0.96±0.08 0.94±0.08
MET– collusive 0.87±0.15 0.94±0.06 0.82±0.11
∗Sybil Cam: Sybil Camouflage; Sybil WW: Sybil Whitewashing

is converted to [negative, positive] when it is in the range of
[0, 0.5) and (0.5, 1.0], respectively. The iCLUB approach [3]
is proposed for multi-nominal ratings, so the rating is con-
verted to [worst, bad, neutral, good, best ] for the ranges of
[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0], respectively.

In Table 2, we can see that MET is highly robust against
the Constant, Camouflage and Whitewashing attacks no
matter whether dishonest buyers (advisors) provide truth-
ful, noisy or collusive trust networks. Under the other three
Sybil-based attacks, although the robustness values of MET
decreases when dishonest buyers provide noisy and collu-
sive trust networks, it still exhibits reasonably high robust-
ness values (R(MET, Atk) ≥ 0.82). Hereafter, we test MET
under the most challenging case (collusive trust networks)
unless explicitly indicated. This will also affect the Refer-
ralChain model [8] but not other trust models.

4.3 Impact of Parameter Settings on MET
In this section, we investigate the impact of the parameter

setting (i.e., the number of advisors in a buyer’s trust net-
work n) on the performance of MET. When a buyer acquires
information about sellers from its trust network, the small-
er/larger value of n means the buyer can consult less/more
advisors, respectively. If the buyer has fewer advisors, the
evaluation of seller reputation is difficult because it receives
less information on target sellers. On the other hand, when
the buyer has too many advisors, MET may require more
generations to evolve the buyer’s trust network.

Fig. 1(a-b) show the average robustness of MET against
Sybil and Sybil Whitewashing, respectively. MET is tested
with n ∈ [5, 10, · · · , 40] advisors. It demonstrates that the
parameter settings has certain impact on MET and n = 25
is a good choice in our experiments. As shown in Fig. 1(b), it
is also worth to notice that MET with different parameters
exhibits reasonably high average robustness even under the
strongest attack (i.e., R(MET,Sybil WW) > 0.68).

4.4 Comparison of Robustness
We also carry out a set of experiments to compare the

robustness of MET with that of other trust models. The
results are presented in Table 3 and Fig. 1(c-d) and Fig. 2.
Next, we will describe the results under each type of attacks.

From Table 3, we can see that all the trust models are
robust against the Constant attack. Consistent with the
authors’ own experimental results [7], the table also shows
that BRS is not completely robust against the Constant at-
tack (R(BRS,Constant) = 0.87).

The Camouflage attackers provide fair ratings to com-
mon sellers to establish their trustworthiness before day 20,
and then give unfair ratings to all sellers. In Table 3, Re-
ferralChain’s robustness is low with respect to Camouflage.
Before day 20, ReferralChain is unable to decrease the trust-
worthiness of dishonest advisors as they provide fair ratings.
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Figure 1: (a-b): MET with Different Parameter Settings; (c-d): Transactions along Days

Table 3: Robustness of Trust Models vs. Attacks
Constant Camouflage Whitewashing

BRS 0.87±0.03 0.89±0.02 -0.18±0.07
iCLUB 0.98±0.02 0.99±0.02 0.77±0.13
TRAVOS 0.97±0.02 0.82±0.03 0.87±0.03
ReferralChain 0.89±0.04 0.69±0.04 -0.95±0.08
Personalized 0.99±0.03 0.99±0.03 0.98±0.03
MET 0.98±0.02 0.99±0.02 0.98±0.04

Sybil Sybil Cam∗ Sybil WW∗

BRS -0.99±0.08 -0.47±0.07 -0.30±0.07
iCLUB 0.23±0.35 0.90±0.09 0.20±0.29
TRAVOS 0.16±0.09 -0.57±0.07 -0.98±0.07
ReferralChain 0.82±0.06 0.63±0.08 -0.98±0.07
Personalized 0.74±0.45 0.94±0.08 -1.00±0.08
MET 0.87±0.15 0.94±0.06 0.82±0.11
∗Sybil Cam: Sybil Camouflage; Sybil WW: Sybil Whitewashing

Buyers receive seller information from their advisors with
equal chance. Thus, the two duopoly sellers obtain simi-
lar transaction volume before day 20 (see Fig. 1(c)). After
that, ReferralChain gradually decreases the trustworthiness
of dishonest advisors when they give unfair ratings. The
transaction volume of the honest duopoly seller becomes
larger than its competitor after day 30.
Each Whitewashing attacker provides one unfair rating

on each day and starts with a new buyer account on the next
day. In Table 3, the value R(BRS,Whitewashing) = −0.48
shows that BRS is vulnerable to this attack. According to
Fig. 1(d), the honest duopoly seller has more transaction-
s than the dishonest one in the beginning. However, after
some time (around 52 days), the dishonest duopoly seller’s
transaction volume exceeds its competitor. To explain, af-
ter day 52, the accumulated reputation of a seller will more
easily fall in the rejection area of the beta distribution of
an honest buyer rather than a Whitewashing attacker. This
means that honest buyers will be incorrectly filtered out by
BRS. Listening advice from Whitewashing attackers mis-
leads buyers to transact with the dishonest duopoly seller.
ReferralChain is vulnerable to Whitewashing because the
initial trustworthiness of advisors (buyers) is set to 1 in that
model [8], and it is difficult for buyers to select reliable ad-
visors between honest buyers and Whitewashing attackers.
MET allows buyers to exchange their advisor information

to generate candidate trust networks. Through fitness com-
parison using Eq. 1, trust networks with the most suitable
advisors will be kept for buyers. It is also difficult for White-
washing attackers to get into buyers’ trust networks. Thus,
MET is able to obtain the high robustness of 0.98.
BRS is completely vulnerable to the Sybil attack due

to its employed “majority-rule”. The robustness of iCLUB
is not stable with the standard deviation of (std = 0.35).
To explain, in Sybil, the majority of buyers are dishonest.
When a buyer only relies on its own experience to model the

trustworthiness of advisors, it still has the accurate model-
ing. If it also relies on opinions of majority advisors (which
are dishonest), it will have incorrect modeling of advisors.
In consequence, the modeling of seller reputation will be i-
naccurate. Personalized also has large standard deviation
(std = 0.45) because it has the similar design as iCLUB.

TRAVOS is not completely robust against Sybil attacks.
In the early period, TRAVOS cannot find enough reference
sellers so the discounting of advisors’ ratings is not effective
(referred to as soft punishment). For instance, suppose that
the trustworthiness of dishonest/honest advisors is 0.4/0.6,
and each advisor (12 honest ones and 28 dishonest ones)
gives one rating to a seller. An honest seller’s reputation is
0.40 ≈ (0.6 × 12 + 1)/(0.4 × 28 + 0.6 × 12 + 2)) and that
of the dishonest seller is 0.60 ≈ (0.4 × 28 + 1)/(0.4 × 28 +
0.6 × 12 + 2). However, if a trust model is able to set the
dishonest/honest advisors’ trustworthiness as 0.1/0.9, the
evaluation of seller reputation will become more accurate.
The Personalized approach, in the beginning, also suffers
from the soft punishment when the buyer relies on public
trust to evaluate advisors’ trustworthiness. In Fig. 2(a-b),
as buyers have more experience, TRAVOS and Personalized
become more effective after day 80 and day 15, respectively.

MET generates diverse trust networks with several can-
didate trust values of advisors using evolutionary operators,
and keeps the best trust network with the most accurate
trust assigned to advisors. This increases the chance for
buyers to punish Sybil attackers to a large extent. Thus,
MET obtains the high robustness as R(MET,Sybil) = 0.87.

Unlike the Sybil attack, Sybil Camouflage is unable to
render BRS completely vulnerable. This is because in the
beginning attackers camouflage themselves as honest ones by
providing fair ratings where BRS is always effective. After
attackers stop camouflaging, the dishonest duopoly seller’s
transaction volume will soon exceed its competitor. Under
Camouflage and Sybil Camouflage, the robustness of Re-
ferralChain is similar because the buyer aggregates only its
local advisors’ ratings to predict sellers’ reputation.

Comparing with Camouflage, TRAVOS becomes vulner-
able to Sybil Camouflage. Although TRAVOS will inaccu-
rately promote the trustworthiness of a Camouflage attacker
(most are slightly larger than 0.5), when majority of buy-
ers are honest, the aggregated ratings from attackers are
still not able to overweigh honest buyers’ opinions. How-
ever, under Sybil Camouflage, when majority are dishonest
buyers, these attackers’ aggregated ratings will easily over-
weigh honest buyers’ opinions and render TRAVOS vulnera-
ble. Fig. 2(c-d) clearly show the difference in the robustness
of TRAVOS against Camouflage and Sybil Camouflage.
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Figure 2: Transaction Volume along Days for Dishonest and Honest Duopoly Sellers

Sybil Whitewashing is the strongest attack among the
six investigated attacks. It can defeat BRS, TRAVOS, Re-
ferralChain and Personalized as shown in Table 3. Similar
to Sybil, the robustness of iCLUB against Sybil Whitewash-
ing is still unstable. Comparing with Whitewashing, BRS is
still vulnerable to Sybil Whitewashing, while TRAVOS and
Personalized change dramatically from being robust to com-
pletely vulnerable. For TRAVOS, since each whitewashing
attacker provides only one unfair rating, buyers cannot find
reference sellers to discount attackers’ trustworthiness to a
large extent. When majority are softly punished attackers,
TRAVOS will always suggest honest buyers to transact with
the dishonest duopoly seller. For Personalized, the buyer
cannot find enough commonly rated sellers and will heavily
rely on public trust to evaluate an advisor’s trustworthiness,
which is inaccurate when majority of buyers are dishonest.
Thus, similar to TRAVOS, whitewashing attackers’ trust-
worthiness cannot be discounted to a large extent and soft
punishment renders Personalized completely vulnerable.
ReferralChain is completely vulnerable to Sybil White-

washing, whereas MET is sufficient robust to this attack
(R(MET, Sybil WW) = 0.82 in Table 3). Although both
ReferralChain and MET allow buyers to ask their advisors
about other advisors, MET applies evolutionary operators
(e.g., crossover and mutation) to generate new trust net-
works. The candidate trust networks will go through the fit-
ness evaluation. Only when the selected advisors and trust-
worthiness values for those advisors show better accuracy,
they will be kept by buyers. Besides, unlike ReferralChain,
MET does not assign high initial trust values to advisors.
In summary, experimental results show that iCLUB and

the Personalized approach have large perturbation under
Sybil attacks. BRS, TRAVOS and ReferralChain are vulner-
able to Sybil, Camouflage and Whitewashing, respectively.
It demonstrates that our MET model is more robust than
these other trust models against typical attacks.

4.5 MAE of Modeling Seller Reputation
In this section, we carry out further experiments to com-

pare trust models in term of mean absolute error (MAE) of
duopoly sellers’ reputation. The smaller MAE indicates the
trust model is more accurate in modeling seller reputation.
In Tables 4-5, under Constant, Camouflage and White-

washing, our MET is able to obtain the best results for both
duopoly sellers’ reputation. Under other Sybil, Sybil Cam-
ouflage and Sybil Whitewashing, MET and iCLUB provide
the best MAE values. In most cases, other trust models
(except MET) obtain smaller MAE for the honest duopoly
seller reputation while larger MAE for the dishonest duopoly

Table 4: Mean Absolute Error (MAE) of Reputation
Estimation for Dishonest Duopoly Sellers

Constant Camouflage Whitewashing
BRS 0.52±0.05 0.50±0.04 0.74±0.02
iCLUB 0.83±0.21 0.73±0.14 0.80±0.09
TRAVOS 0.42±0.03 0.56±0.01 0.57±0.02
ReferralChain 0.05±0.01 0.15±0.01 0.59±0.03
Personalized 0.45±0.08 0.46±0.07 0.83±0.03
MET 0.02±0.01 0.02±0.01 0.03±0.01

Sybil Sybil Cam∗ Sybil WW∗

BRS 0.73±0.03 0.67±0.03 0.61±0.01
iCLUB 0.06±0.01 0.70±0.10 0.06±0.01
TRAVOS 0.29±0.01 0.54±0.02 0.56±0.02
ReferralChain 0.08±0.02 0.19±0.02 0.68±0.04
Personalized 0.24±0.07 0.59±0.08 0.24±0.02
MET 0.07±0.04 0.11±0.02 0.20±0.06
∗Sybil Cam: Sybil Camouflage; Sybil WW: Sybil Whitewashing

Table 5: Mean Absolute Error (MAE) of Reputation
Estimation for Honest Duopoly Sellers

Constant Camouflage Whitewashing
BRS 0.19±0.06 0.11±0.04 0.58±0.02
iCLUB 0.01±0.00 0.01±0.00 0.11±0.07
TRAVOS 0.17±0.01 0.25±0.01 0.28±0.01
ReferralChain 0.06±0.02 0.16±0.01 0.97±0.03
Personalized 0.02±0.00 0.01±0.00 0.06±0.01
MET 0.01±0.00 0.01±0.00 0.05±0.03

Sybil Sybil Cam∗ Sybil WW∗

BRS 0.99±0.00 0.73±0.01 0.64±0.01
iCLUB 0.35±0.17 0.01±0.00 0.37±0.14
TRAVOS 0.44±0.02 0.57±0.01 0.84±0.01
ReferralChain 0.10±0.02 0.19±0.02 0.99±0.01
Personalized 0.20±0.21 0.05±0.00 0.96±0.02
MET 0.09±0.06 0.08±0.02 0.16±0.11
∗Sybil Cam: Sybil Camouflage; Sybil WW: Sybil Whitewashing

seller reputation, implying that it is more difficult to obtain
accurate dishonest sellers’ reputation because they recruit
attacker to perform strategic attacks.

For Sybil and Sybil Whitewashing, iCLUB gets the best
results on the dishonest duopoly seller (MAE(SD) = 0.06),
whereas it is unable to accurately estimate the honest duopoly
seller’s reputation (MAE(SH) = 0.37). It is consistent with
the results of robustness comparison in the previous sec-
tion. To explain, when a buyer conducts enough transac-
tions with the dishonest duopoly seller, iCLUB adopts the
buyer’s local knowledge to calculate the dishonest seller’s
reputation. However, in some cases, the buyer has little ev-
idence about the honest duopoly seller, and iCLUB has to
rely on global knowledge to calculate the honest seller’s rep-
utation. When majority of advisors are dishonest, iCLUB
suggests the buyer to transact with the dishonest duopoly
seller rather the honest one, and then a rating will give to
the dishonest duopoly seller. The consequence is that the
buyer will still not have sufficient experience with the honest
duopoly seller to accurate model this seller’s reputation.
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(b) Honest Duopoly Seller
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(c) Dishonest Advisors
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(d) Honest Advisors

Figure 3: (a-b): MAE of Duopoly Sellers’ Reputation; (c-d): Average Trustworthiness of Advisors

Fig. 3(a-b) show the MAE of duopoly sellers’ reputation
along days by trust models against Sybil Whitewashing.
MET and iCLUB can get small MAE values for model-
ing both duopoly sellers’ reputation. Thus, iCLUB and our
MET model are more effective than other four trust models
in predicting sellers’ reputation.

4.6 Trustworthiness of Advisors
We also show how the different trust models can accurate-

ly model the trustworthiness of both honest and dishonest
advisors, under the Sybil Whitewashing attack4. Fig. 3(c-d)
show the average trustworthiness of dishonest and honest
advisors modeled by honest buyers, respectively. BRS as-
signs both dishonest and honest advisors’ trustworthiness
as zero after day 35 because it filters out all the advisors,
which is similar to the reason why BRS is vulnerable to
Whitewashing in Section 4.4. Although ReferralChian as-
signs the trustworthiness value 1 to the honest advisors, it
maintains the average trustworthiness of dishonest advisors
at a high level (i.e., larger than 0.8 in Fig. 3(c)). As shown
in Fig. 3(c-d), iCLUB, TRAVOS and Personalized are able
to reduce or increase the average trustworthiness of dishon-
est or honest advisors, respectively. However, these three
trust models cannot enforce the difference in dishonest and
honest advisors’ average trustworthiness to a large extent.
In contrast, MET is more effective than those trust models
for modeling the trustworthiness of advisors.

5. CONCLUSION AND FUTURE WORK
In this paper, a novel multiagent evolutionary trust (MET)

model is proposed for constructing robust and accurate trust
networks for buyers to accurate model seller reputation in
the presence of unfair rating attacks. Each buyer in our
model evolves its own trust network by asking its advisors
to provide their trust network information. By doing so, the
buyer is able to select suitable advisors into its trust network,
and assign accurate trustworthiness to these advisors simul-
taneously. Experimental studies confirm that MET is more
robust and effective than the state-of-the-art trust models
against various unfair rating attacks.
For future work, we will examine how the combination of

sellers’ cheating behaviors and advisors’ unfair ratings will
impact trust models. We also plan to build a comprehen-
sive testbed to evaluate the robustness of trust models by
incorporating more intelligent attacks.

4We choose the Sybil Whitewashing attack because it is the
strongest attack among the six typical attacks.

6. ACKNOWLEDGEMENT
This work is supported by the Ministry of Education A-

cademic Research Fund Tier 1 Grant Singapore (M4010265
RG15/10) awarded to Dr. Jie Zhang.

7. REFERENCES
[1] S. Jiang, J. Zhang, and Y. Ong. A multiagent

evolutionary framework based on trust for
multiobjective optimization. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 299–306, 2012.

[2] A. Jøsang. Robustness of trust and reputation
systems: Does it matter? In Proceedings of the 6th
IFIP International Conference on Trust Management
(IFIPTM), pages 253–262, 2012.

[3] S. Liu, J. Zhang, C. Miao, Y. Theng, and A. Kot.
iCLUB: an integrated clustering-based approach to
improve the robustness of reputation systems. In
Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), 2011.

[4] J. Pugh and A. Martinoli. Multi-robot learning with
particle swarm optimization. In Proceedings of the 5th
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2006.

[5] R. A. Sarker and T. Ray. Agent-Based Evolutionary
Search. Springer, 2010.

[6] W. Teacy, J. Patel, N. Jennings, and M. Luck.
TRAVOS: Trust and reputation in the context of
inaccurate information sources. Autonomous Agents
and Multi-Agent Systems, 12(2):183–198, 2006.

[7] A. Whitby, A. Jøsang, and J. Indulska. Filtering out
unfair ratings in bayesian reputation systems. In
Proceedings of the 3rd International Joint Conference
on Autonomous Agenst Systems Workshop on Trust in
Agent Societies (AAMAS), 2004.

[8] B. Yu and M. Singh. Detecting deception in
reputation management. In Proceedings of the 2nd
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2003.

[9] J. Zhang. Promoting Honesty in E-Marketplaces:
Combining Trust Modeling and Incentive Mechanism
Design. PhD thesis, University of Waterloo, 2009.

[10] L. Zhang, S. Jiang, J. Zhang, and W. Ng. Robustness
of trust models and combinations for handling unfair
ratings. In Proceedings of the 6th IFIP International
Conference on Trust Management (IFIPTM), volume
374, pages 36–51, 2012.


