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ABSTRACT
The growth of online social networks has seen the utilisa-
tion of these network graphs for the purpose of providing
recommendations. Automated recommendations, however,
do not take into account inter-personal trust levels that exist
in a social network. In this article, we propose a privacy-
preserving trusted social feedback (TSF) scheme where users
can obtain feedback on questions from their friends whom
they trust. We show that the concept can be extended to
the domain of crowdsourcing – the trusted crowdsourcing
(TCS) scheme. In crowdsourcing, instead of asking friends,
one can solicit opinions from experts in the crowd through
a privacy preserving trusted feedback mechanism. Our pro-
posal supports categorical answers as well as single-valued
numerical answers. We evaluate our proposals in a number
of ways: based on a prototype implementation built atop
the Google App Engine, we illustrate the performance of
the trusted social feedback. In addition, we present a user
study to measure the impact that our trusted social feed-
back proposal has on users’ perception of privacy and on
foreground trust. We also present another user study to
capture a model for user acceptance testing of the trusted
crowdsourcing1.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Human Factors, Security

Keywords
privacy, trust, social network, crowd sourcing, recommenda-
tion, category

1. INTRODUCTION
1Copyright is held by the authors. This work is based
on an earlier work: SAC’14 Proceedings of the 2014
ACM Symposium on Applied Computing, Copyright 2014
ACM 978-1-4503-2469-4/14/03. http://dx.doi.org/10.
1145/2554850.2554860.

Social aware recommendation – a recent phenomenon in
recommender systems – has made use of online social net-
works to provide better, arguably more accurate, recom-
mendations. However, many such automated recommender
systems fail to consider the inter-personal context-sensitive
trust that exists between individuals in the social network,
which can affect the way recommendations are made and in-
terpreted. We see social aware recommendation from a dif-
ferent angle, one that is modelled after the word-of-mouth
concept in a human society. We also show that our work
can be generalised and is applicable to crowdsourcing. We
envisage that inter-personal trust is sensitive information,
which the truster may wish to keep private; thus requiring
the social aware recommendation mechanisms to be privacy-
preserving.

We postulate that the strength of a social relation is of-
ten one’s asymmetric personal perception of another in a
particular context that changes over time. We refer to this
as trust in this paper2. The asymmetric nature of personal
perception means that a’s trust in b is likely to be different
from b’s trust in a. This should affect the way one believes
a recommendation from a friend. Recommendations based
on a community of opinions do not generally consider this
interpersonal and contextual trust. In tune with this under-
standing of trust and modelling after the real society, the
user asks for the aggregate feedback from her friends, in her
social network, regarding the item of interest. She attaches
a certain level of contextual trust to each friend that she asks
the question. This non-automated second stage is what we
call the trusted social feedback (TSF). Assuming that such a
recommender system will be deployed on a cloud, the TSF
proposal must be privacy preserving. Building on this idea,
one can ask a group of domain experts (instead of friends),
for feedback on questions. We explore this with what we
term as trusted crowdsourcing (TCS). The TCS proposal
also caters for privacy. Furthermore, we extend both TSF
and TCS proposals to support multi-valued categorical an-
swers instead of single-valued numerical answers.

Note that automated personal trust transitivity – an idea
closely related with the use of trust in the context of social
network graphs – is debatable and subjective. It exists but
modelling it is difficult. Jøsang et al. in [21] go as far as

2Apart from this notion of trust, we refer to the concept of
foreground trust [8] in section 5.

APPLIED COMPUTING REVIEW  SEP. 2014,  VOL. 14,  NO. 3 7



saying “[. . . ] all mathematical operators for trust transitiv-
ity proposed in the literature must be considered ad hoc;
they represent attempts to model a very complex human
phenomenon as if it were lendable to analysis by the laws of
physics”. The authors propose a radically different interpre-
tation of trust transitivity based on subjective logic. The
authors observe that in order for transitivity to function,
the advisor must, in some way, communicate his/her trust
on the trust target to the originator relying party. Thus, in
our proposals, we rule out automatic estimation of propa-
gated trust.

The rest of the paper is organised as follows. Before delv-
ing into describing our proposal, we present the state-of-the-
art in section 2 about recommendations using collaborative
filtering as well as question-answer services related to pri-
vacy and trust; and privacy aware crowdsourcing. Then, we
describe the trusted social feedback (TSF) proposal in sub-
section 3.1, the trusted crowdsourcing (TCS) proposal in
sub-section 3.2 and the capability of both these proposals to
handle multi-valued categorical answers in sub-section 3.3.
A security analysis is presented in section 4 and the evalu-
ation results on our model in section 5 before concluding in
section 6.

2. THE STATE-OF-THE-ART
Herlocker et al.’s work [16] is one of the older works on au-

tomated collaborative filtering algorithms. Golbeck’s work [12]
on FilmTrust utilised trust in social networks for movie rec-
ommendations. Guo’s work [15] is the closest to ours in the
way they combined opinions of neighbours in a social net-
work, weighted by trust values. Unlike our proposal, the
paper used the concept of trust propagation and it does not
preserve privacy in the aggregation process. Trust propa-
gation is a hard-to-model subjective concept. Two recent
proposals: [21] and [27] describe interesting ways of look-
ing at trust propagation. Jamali and Ester [20] employed
matrix factorisation to deduce trust propagation, which was
then used in collaborative filtering. TidalTrust [13] and Mo-
leTrust [26] are similar with the latter considering ratings
from a maximum depth only, in a breadth first search over a
trust network to compute a prediction. In [28], authors sug-
gested that the traditional emphasis on user similarity in rec-
ommender systems was overstated, and proposed two trust
based recommender system solutions. TrustWalker [19] used
a random walk method to combine item-based collaborative
filtering with trust-based recommendation.

Privacy preserving collaborative filtering (PPCF) has been
studied by many [3, 4, 7, 5, 33, 32, 14]. In the context
of medical recommendation systems, authors in [17] pro-
pose a privacy-friendly architecture where patients submit
their ratings in a protected form and the computation of
recommendations is done using secure multiparty computa-
tion techniques. Existing work can be classified into using
either cryptographic or perturbation techniques to preserve
privacy. Very few of these proposals have been tested on real
world cloud platforms. Canny’s work [6] utilised factor anal-
ysis and homomorphic encryption for PPCF; while in [14],
the authors computed PPCF from a combination of random
perturbation and secure multiparty computation. Polat’s
works [31, 33] have used randomisations to preserve privacy.
Several question-answer services exist, including commercial
ones, such as Yahoo! Answers, Aardvark. Fleming [10, 11]
proposed a privacy enhanced question-answer system based

on stigmergic routing where privacy is provided by plausible
deniability in a decentralised network.

In [34], the author focuses on the problem of reliability
of the work submitted to anonymous members of paid mi-
crotask crowdsourcing platforms (e.g., Amazon Mechanical
Turk) as well as the privacy of the input given to them. The
solution involves generating perturbations of the data to pre-
serve anonymity and a majority voting rule to determine the
correct output. Other works involved in achieving reliability
for human computations can be found in [22, 23]. A line of
research more akin to ours is presented in [35], where the
authors introduce a framework to preserve user privacy in
geographic crowdsourcing applications by performing user
anonymization and delayed upload of information. The lim-
ited existing work in privacy tends to focus on privacy of
the questions themselves instead of the privacy of the inter-
personal trust and that of responses, which are what we
concentrate on. In [18], the authors identify two different
concerns for privacy in reputation systems and propose a
solution based on electronic cash technology and designated
verifier proofs.

The field of social aware recommendation is relatively new
in comparison with traditional recommender systems. In [1],
we developed the first privacy-preserving solution for trusted
social feedback. In this article we expand on that work and
apply it to the problem of crowdsourcing. Our prior work
was limited to single valued numeric responses, where as the
current article extends the work to multivalued responses as
well, which is much more realistic. We also expand on the se-
curity analysis, and perform a completely new evaluation of
privacy and user acceptance. Our proposals are about trust
empowerment because we see trust as an idiosyncratic, con-
text sensitive, neither entirely rational nor subjective feeling
that changes over time [9]. Our privacy preserving solutions
also consider privacy from a user-centric perspective.

3. OPINIONS OF PEOPLE
In this section, we describe two methods of obtaining opin-

ions from people: (a) asking trusted friends and (b) asking
domain experts through crowdsourcing.

3.1 Trusted social feedback: finding out what
friends think

Modelled after a likeness of the word-of-mouth in a human
society, the user asks people in her virtual social network
for a trusted social feedback (TSF) on a query. For the sake
of simplicity at this point, a feedback is a numeric rating in
response to a query. In a later section, we will illustrate that
the feedback could also be a categorical answer. A query is
defined as a question for soliciting an opinion on an item or
topic of interest. For instance, a query could be “What is
your opinion on the Canon 5D Mark III DSLR camera?”.

The feedback acts as a trust empowering information aid
to the user in making a choice. In the simplest case, the feed-
back is an average of the feedback inputs from all friends
within one degree of separation, each weighted by the di-
rectional trust the user has on that friend. This is similar
to the model presented in the FilmTrust work by Jennifer
Golbeck [12]. The feedback is obtained per query. Because
of the dynamic nature of queries as well as the trust levels
specified during queries, no feedback can be pre-defined or
stored on the cloud platform that hosts the social network.

In order to preserve privacy, TSF must ensure the non-
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Social feedback 
application

Social network on
a cloud platform

Response to the query

User u decrypts the numerator and 
denominator and divides to obtain 

the plaintext feedback value.

u

f4

f1

f2

f3

The directed social connections of u

Encrypted partial feedback from f1

Encrypted partial feedback from f3

Encrypted partial feedback from f4

Obtain the feedback on a query from u's friends f1, 

f2, f3 and f4, given u's encrypted directional trust 
values on each. Not all friends will respond.

Encrypted numerator

Encrypted denominator

Figure 1. Overview of the trusted social feedback mechanism.

disclosure of: (a) the directional trust values in a query to
the friends and to the social network; and (b) the feedback
from a particular friend of the user to the social network and
the user. (c) the aggregated feedback result to the social
network or to any friend.

3.1.1 Additively homomorphic cryptosystem – Pail-
lier

Before delving further into the proposal, here we briefly
introduce the notion of an additively homomorphic cryp-
tosystem. The Paillier public-key cryptosystem [29] exhibits
additively homomorphic properties, which we utilise in our
proposals. Denoting encryption and decryption functions by
E() and D() respectively, the encryption of the sum of two
plaintext messages m1 and m2 is the modular product of
their individual ciphertexts:

E(m1 +m2) = E(m1) · E(m2) (1)

while, the encryption of the product of one plaintext mes-
sages m1 and a plaintext integer multiplicand π is the mod-
ular exponentiation of the ciphertext of m1 with π as the
exponent:

E(m1 · π) = E(m1)π. (2)

With such an additively homomorphic cryptosystem at
our disposal, let us denote the directional trust from user a
to friend b as Ta→b, the feedback from a friend i on a query
k as ωi,k and the total number of friends responding to the
query as n. The trust value and the individual feedback
value are discrete integers. The trusted feedback on query
k for user u is given as:

Fu,k =

∑n
i|i6=u ωi,kTu→i∑n
i|i6=u Tu→i

(3)

This computation can be performed over the (additively ho-
momorphic) encrypted domain for user u as:

Fu,k =
D(

∏n
i|i6=u E(0, ri)E(Tu→i)ωi,k )

D(
∏n
i|i6=u E(Tu→i))

(4)

The encryption of zero performed by the friend i, (de-
noted as E(0, ri)) ensures3 that the encrypted partial feed-
back from friend i, i.e., E(0, ri)E(Tu→i)ωi,k does not reveal
ωi,k despite the cloud’s knowledge of E(Tu→i), unless the
user u and the cloud collaborate. The formal proof is in
section 4.2. The trusted social feedback mechanism is illus-
trated in figure 1 and is described in algorithm 14. While
sending the question, the user attaches an encrypted trust
value for each friend to the question such that when a friend
responds, the response is homomorphically multiplied by the
trust value. The cloud aggregates those individual responses
from the friends and sends back the aggregate response to
the user after a threshold number of friends have responded.
The flow of information in TSF is shown in figure 2.

As trust is personal and idiosyncratic [9], our proposed
feedback mechanism is only there for trust empowerment,
not to enforce a trust decision on the user. What the user
does with the feedback is solely her choice. Therefore, a
mathematical model for trust transitivity over multiple de-
grees of separation in the social network graph is often in-
adequate and meaningless because the model would tend to
suggest a particular trust level. Trust is also sensitive to
changes over time and context. In our proposal, the trust
values can be as short-lived as a single query, which caters for
temporal changes. The user can solicit the response to her
query from a selected group (based on any particular con-
text) of friends, thereby enabling context sensitivity. Thus,
the queries in TSF are short-lived and context sensitive.

Untrust [25], which can be expressed in our proposed feed-
back mechanism, is also context sensitive. This means that
Alice could trust her friend Bob for an opinion on cloud
security but at the same time untrust him regarding any
opinion on quantum entanglement. Untrust can prove use-

3The notations E(x, ru) and E(x) are synonymous, i.e., en-
cryption performed by the user u. The random number
notation is used only when the operation is performed by
some other user i with u’s public key, i.e., E(x, ri).
4The · is used to denote multiplication for the sake of read-
ability.
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User Cloud Friend *

Query with encrypted 
directional trust values for 
each friend.

Query notification to each friend.

An encrypted partial feedback if 
a friend wishes to respond.

Homomorphically encrypted 
aggregation of partial feedbacks.Encrypted feedback only if a 

threshold number of friends 
responded to the query.

Compute encrypted 
partial feedback.

Figure 2. The trusted social feedback sequence.

ful to accept negative feedback or reject positive feedback
from untrusted friends for specific queries. In our current
prototype, we do not model untrust.

ALGORITHM 1: Computing the trusted social feed-
back for user u on item k.
Require: Additively homomorphic encrypted domain for

user u, i.e., E and corresponding public key.
Require: Encrypted directional trust E(Tu→i) from user u

to each friend i.
1: for each encrypted directional trust E(Tu→i) do
2: if i wishes to respond then
3: i computes encrypted partial feedback,

ψi ← E(0, ri) · E(Tu→i)ωi,k

4: social network updates encrypted trusted feedback,

Ψ← Ψ · ψi

5: social network updates encrypted response
cardinality,

η ← η · E(Tu→i)

6: end if
7: end for
8: return encrypted trusted feedback, Ψ.
9: return encrypted response cardinality, η.

10: user u obtains the trusted social feedback,

Fu,k = D(Ψ)
D(η)

.

3.2 Trusted crowdsourcing: opinions of do-
main experts

An extension of the trusted social feedback is a concept,
which we call the trusted crowdsourcing (TCS). Through
TCS, the user no longer solicits opinions from friends but
uses a crowdsourcing platform to pose questions to domain
experts. We assume the existence of a reputation system for

domain experts through which experts gain or lose reputa-
tion based on how their answers are received. A mechanism
to infer reputation based on the TCS model is left for future
work.

The TCS ensures the non-disclosure of: (a) the directional
trust values in a query to the eligible responders and to the
crowdsourcing platform; (b) the feedback from a particu-
lar responder to the crowdsourcing; and (c) the aggregated
feedback result to the crowdsourcing platform or to any re-
sponder.

The key difference between TCS and TSF is that in TCS,
the user does not know at the time of the query who in
the crowd will be eligible and willing to respond. Further-
more, the absence of a social network connection between
the user and the potential responder means that it is impos-
sible for the user to specify directional trust values at the
time of query as it was done in TSF. However, before letting
a domain expert answer a query, the crowdsourcing platform
can obtain, from the user, the encrypted trust that the user
chooses to assign to the responder. Thus, before receiving
an answer, the user knows the identities of the responders
– this is in sharp contrast with the TSF model. From the
perspective of the user, the trust may be specified based on
the reputation of the responder. In keeping with the under-
standing that trust is personal and idiosyncratic, the trust
in TCS is personal; reputation is a trust aid, not a trust
enforcement. Apart from the reputation, the response eligi-
bility criteria is similar to that used in most crowdsourcing
platforms. For instance, if the user asks the question “I am
going to Japan next week for the first time. Which places
would you recommend visiting?” then a likely response eligi-
bility criteria is that the responder must have visited Japan
and/or have lived/currently living in Japan. The eligibil-
ity criteria is user-specified and may not exist if the user so
chooses.

Responders express their wish to the crowdsourcing plat-
form to respond to a particular question. If the eligibility
criteria is met, the crowdsourcing platform is responsible for
obtaining and sending the encrypted trust values to each el-
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Individual encrypted partial responses

Figure 3. Overview of the trusted crowdsourcing mechanism.
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An encrypted partial feedback 
from the responder.
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All potential responders 
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crowdsourcing platform.
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Encrypted trust 
values for eligible 
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Figure 4. The trusted crowdsourcing sequence.

igible responder. From that point forward, TCS works like
TSF. An overview diagram of TCS is shown in figure 3 while
the operating steps are described in algorithm 2, which is
only slightly modified in comparison with algorithm 1. The
flow of information in TCS is shown in figure 4. Notice that
the crowdsourcing platform sends back to the user, both the
aggregated response as well as the individual responses.

Although the mechanism to build reputations of respon-
ders is left for future work, a potential way to infer rep-
utations could be to compare individual answers with the

collective answer. This might help the user form a better
understanding of where each individual answer stands. In
addition, the availability of individual answers also helps
with forming a better view of the distribution of answers
than just relying on the mean.

3.3 Numeric answers to categorical answers
Although, in an example in the previous section, we men-

tioned a question “I am going to Japan next week for the
first time. Which places would you recommend visiting?”
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ALGORITHM 2: Computing the trusted crowdsourc-
ing response for user u on item k.

Require: Additively homomorphic encrypted domain for
user u, i.e., E and corresponding public key.

Require: Encrypted directional trust E(Tu→i) from user u
based on the reputation level (or any other deciding
factor) of each person i who is eligible to respond.

1: for each encrypted directional trust E(Tu→i) do
2: if i wishes to respond then
3: i computes encrypted partial response,

ψi ← E(0, ri) · E(Tu→i)ωi,k

4: crowdsourcing platform updates the encrypted
trusted response,

Ψ← Ψ · ψi

5: crowdsourcing platform updates encrypted
response cardinality,

η ← η · E(Tu→i)

6: end if
7: end for
8: return encrypted trusted response, Ψ.
9: return encrypted response cardinality, η.

10: return each encrypted trusted response, ψi.
11: user u obtains the trusted crowdsourcing response,

Fu,k = D(Ψ)
D(η)

.

sent out to the crowd, the TSF or TCS models described
so far cannot support the answer to such a question. The
reason is that the both the TSF and the TCS models only
support single-valued numeric answers to questions such as
“What is your opinion on the Canon 5D Mark III DSLR
camera?”.

However, this can be easily extended to support a multi-
valued categorical answer. Let us re-consider the question
that requires a multi-valued answer: “I am going to Japan
next week for the first time. Which places would you rec-
ommend visiting?”. Let us, now, assume that the potential
places are to be chosen from a list of classes: Tokyo, Kyoto,
Hakone and Sapporo. For simplicity, we will assume that
each responder will have to include all these classes in the
response. A system that allows for ranking only some classes
by each user is to be investigated in the future, and may bear
some similarity to our work on rank aggregation of partially
ranked lists [2].

With each response including all classes, a responder p1

may respond with the following class values Tokyo = 0.4,
Kyoto = 0.3, Hakone = 0.2, Sapporo = 0.1, thus specifying
a probability distribution with the class values summing up
to 1. Someone else p2 can specify: Tokyo = 0.2, Kyoto =
0.3, Hakone = 0.3, Sapporo = 0.2. We can apply the TSF
or the TCS algorithm on each class independently of the
others. Thus, the end result computed by the user, Fu,k
will be per class, which can be normalised further to obtain
the correct probability distribution. Table 1 is an example,
in the plaintext domain, of a multi-valued answer. Even if
the final weighted averages (Weighted mean in table 1) do
not add up to unity, we do not need to normalise in order
to find a ranking from the answer. In the aforementioned

example, Tokyo is the most preferred place to visit followed,
in order, by Kyoto, Hakone and Sapporo. Note that the
implementation will have to scale the class values in the
probability distribution to integer-only domain so that those
values can be used by a homomorphic cryptosystem that
works only with integers.

4. SECURITY ANALYSIS
In this section, we present the description of various at-

tacks by honest-but-curious adversaries and discuss how our
model copes. Furthermore, we also provide a proof of ob-
fuscation by the encryption of zero. We also present a spe-
cialised partial response disclosure attack.

4.1 Honest but curious adversary model
In this discussion, the word cloud will be considered syn-

onymous with either the social network or the crowdsourcing
platform in terms of threats because both will usually utilise
a cloud environment. Thus, the internal privacy threats to
either can arise from the cloud infrastructure. We assume
that the parties involved in this process are honest but cu-
rious. Therefore, attacks involving collaborations between
the cloud and the attacker are not considered as realistic
threats although we have described some such possible at-
tacks. For a malicious user, a specialised attack for partial
response disclosure is also described in section 4.3.

4.1.1 Curious user, multi-query and sybil attacks
The user can run multiple queries requesting the feedback

on the same question from the same set of friends or domain
experts. In doing so, and by varying the user’s directional
trust on each responder, the user can acquire the information
necessary to reveal the feedback provided by each responder.
However, the feedback response is slow and some respon-
ders may choose not to respond. Furthermore, the feedback
from the same person may vary over time. In addition, with
crowdsourcing, each query may cost money making this an
expensive attack. Therefore, using a multi-query attack is
not guaranteed to succeed. To further enhance the privacy
of the feedback, the responder can perturb his/her feedback
input in bounded integral ranges – an avenue we have left
open for future work.

However, in a sybil attack the user asks a question to one
real person and a number of sybil identities. Upon receiving
the responses, the asker can find out the exact response from
the real person given the knowledge of those from the sybil
identities. Our model is not resistant against this type of
sybil attacks.

4.1.2 Curious cloud, man-in-the-middle attack
Despite the query itself being sent in clear text, the di-

rectional trust values from the user and the partial feedback
from each responder are both in the encrypted domain of
the user. Even though the cloud knows the encrypted di-
rectional trust value, it cannot decipher the actual feedback
from any responder since encrypted zero, i.e., E(0, ri), is ho-
momorphically added by each responder thus making the
encrypted trusted feedback component probabilistic. The
cloud, however, can tell who responded to the query.

4.1.3 Curious responder
Any particular responder cannot determine the directional

trust value because it is encrypted by the user’s public key.
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Table 1. An example of multi-valued answer.

Tokyo Kyoto Hakone Sapporo Trust
Person 1 (p1) 0.4 0.3 0.2 0.1 0.9
Person 2 (p2) 0.2 0.3 0.3 0.2 0.5
Person 3 (p3) 0.1 0.4 0.3 0.2 0.4
Person 4 (p4) 0.5 0.1 0.2 0.2 0.8

Weighted mean 0.34615 0.25385 0.25 0.16538 –
Class rank 1 2 3 4 –

4.1.4 Collaborative attacks
If the user and the cloud collaborate then all the partial

feedbacks can be deciphered since the cloud will be able to
decrypt partial feedback values with the help of the user.
If a responder and the cloud collaborate, the responder can
learn how many other people responded to the query but
it cannot decipher the actual individual feedback values. If
the user and a responder collaborates, they can only learn
about each others’ secrets – the directional trust value and
the feedback.

4.1.5 Out-of-the-range attacks
Both the responder and the cloud can encrypt arbitrary

numbers and send them to the user in the response. Ho-
momorphic range check protocols [30] may be applicable to
protect those scenarios but this falls within the remits of
future work.

4.2 Proof of obfuscation by encryption of zero
Since the numeric feedback on item k from a responder,

i, is in a fixed discrete integral range, the cloud can at-
tempt to learn it by pre-computing all possible values5 of
E(Tu→i)ωi,k using a trial-and-error method of dividing what
the responder sends by the pre-computed value to eliminate
the obfuscating encryption of zero. Let us assume that the
correct value of ωi,k in question is ω1 and a wrong value is
ω2. This is what happens.

4.2.1 Case A: correct pre-computed value
If the cloud used the correct pre-computed value: E(Tu→i)ω1 ,

we have:

E(0, ri)E(Tu→i)ωi,k

E(Tu→i)ω1
= E(0, ri)E(Tu→i)ωi,k−ω1

= E(0, ri)

Now, the cloud computes:

E(0, ri)E(Tu→i)ωi,k

E(0, ri)
= E(Tu→i)ωi,k

= E(Tu→i)ω1

Thus, the cloud obtains the same value as the one it pre-
computed.

4.2.2 Case B: wrong pre-computed value
If the cloud used a wrong pre-computed value: E(Tu→i)ω2 ,

5Note that this homomorphic multiplication has determin-
istic values.

we have:

E(0, ri)E(Tu→i)ωi,k

E(Tu→i)ω2
= E(0, ri)E(Tu→i)ωi,k−ω2

Now, the cloud computes:

E(0, ri)E(Tu→i)ωi,k

E(0, ri)E(Tu→i)ωi,k−ω2
= E(Tu→i)ωi,k−ωi,k+ω2

= E(Tu→i)ω2

Here again, the cloud obtains the same value as the one it
pre-computed.

Since the results from both the right and the wrong guesses
are indistinguishable, the cloud cannot guess which one is
the true value of E(Tu→i)ωi,k and hence ωi,k.

4.3 A specialised partial response disclosure
attack

Our construction is not inherently secure against a mali-
cious user wishing to know the responses of her responders
from the aggregate encrypted values. This attack consists
of creating a vector with several coordinates inside a single
encrypted value. These coordinates can be read indepen-
dently by the malicious user. Consider an x-bit number and
treat it as a vector of dimension y, where each coordinate
is represented using x

y
bits. If operations are performed on

this vector with no individual coordinate exceeding 2
x
y − 1;

then there is no loss of information for that coordinate. The
following example illustrates this idea.

1. Assume x = 16 and y = 4, then each coordinate can
represent values in the range [0 15].

2. The user asks four responders, i.e., f1 . . . f4 a question
using the following trust values (spaces introduced for
readability), represented as bit sequences.

Tu→f1 = 0000 0000 0000 0001 [decimal : 1]

Tu→f2 = 0000 0000 0001 0000 [decimal : 32]

Tu→f3 = 0000 0001 0000 0000 [decimal : 512]

Tu→f4 = 0001 0000 0000 0000 [decimal : 8192]

3. Each responder provides his/her response in the range
[1 15] weighted by the ingress trust value, i.e.,

E(Tu→i)ωi,k .

The encryption of zero is left out for simplicity be-
cause it does not stop this attack, which happens in
the plaintext domain.

4. The cloud aggregates the resultant numerator as:

n∏
i|i6=u

E(Tu→i)ωi,k
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Since none of the coordinates in the numerator has a value
greater than 15, the malicious user can extract the answer
from each responder by reading the decrypted numerator,
4-bits at a time. The technique also works for trust values
where the particular non-zero nibble is greater than 0001,
for example 0010 0000 0000 0000 [decimal : 16384]. In that
case, the malicious user simply needs to adapt the coordi-
nate length accordingly and once extracted, divide it by the
original trust value assigned to that particular responder.
To prevent this attack, a proof stating that the trust values
are in a given range is necessary. Alternatively, if the num-
ber of responders asked is large enough in comparison with
the bit space of the plaintext trust values then the bit ma-
nipulations will overlap, thus making it impossible for the
attacker to identify individual ratings.

5. IMPLEMENTATION AND EVALUATION
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Figure 5. Responder’s change in the understanding
of the TSF prototype (Q1), pre- and post- experi-
ment.

In this section we present the results from: 1. the user
studies for the trusted social feedback prototype; 2. the per-
formance evaluation of the speed of cryptographic primitives
on the web front-end; 3. the speed of the essential func-
tions of the prototype at the back-end of the trusted social
feedback prototype; and 4. the user studies for the trusted
crowdsourcing model.

The experimental trusted social feedback prototype runs
on the Google App Engine for Java. The application uses
Facebook to perform user login and to determine social con-
nections.

Table 2. Change in uncertainties associated with 4
questions and 12 users.

(a) Change in response uncertainties for each question
per user.

Q1 Q2 Q3 Q4
U1 Reduced No change Reduced Reduced
U2 Reduced Reduced Reduced No change
U3 No change Reduced Reduced Increased
U4 Reduced Reduced Increased No change
U5 Reduced Reduced Reduced Reduced
U6 No change Reduced No change Reduced
U7 Reduced No change Reduced Reduced
U8 No change Reduced Reduced No change
U9 Reduced Reduced Reduced No change
U10 No change Reduced Reduced Reduced
U11 Reduced Reduced Reduced Reduced
U12 Reduced Reduced No change Reduced

(b) Change in response uncertainties per
question.

Increased No change Reduced
Q1 0 (0%) 4 (33%) 8 (67%)
Q2 0 (0%) 2 (17%) 10 (83%)
Q3 1 (8%) 2 (17%) 9 (75%)
Q4 1 (8%) 4 (33%) 7 (58%)

Table 3. Performances of Paillier in Javascript.
Times are in milliseconds. KG: key generation, E:
encryption, HA: homomorphic add; HM: homomor-
phic multiplication; D: decryption. The number suf-
fixed to these abbreviations indicate cryptosystem
bit size.

Chrome Firefox IE Safari
KG-512 69 57 441 1032
E-512 23 16 195 367

HA-512 2 2 9 27
HM-512 11 8 104 214
D-512 23 15 195 371

Table 4. The average times taken for various servlet
function calls. The profile servlet is responsible for
user profile specific functions while qaserv deals with
questions and their responses.

Servlet:Action Call count Time (ms)
profile:getProfile 121 3128
profile:getTopUsers 207 1816
profile:savePublicKey 36 2012
qaserv:answerQuestion 195 233
qaserv:askQuestion 81 1826

qaserv:myNotifications 552 783
qaserv:myQuestions 262 1779
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Figure 6. Responder’s change in the perception of
how well privacy is preserved by the TSF prototype
(Q2), pre- and post- experiment.

5.1 TSF: measuring perception of privacy and
foreground trust

The following questions were used to record user responses
and measure changes in uncertainty in these responses. Each
question was presented once before and once after each user
had a chance to play with the experimental prototype.
Q1 How is your understanding about what you can do with

this application?
Q2 How well do (did) you feel that the application will pre-

serve (preserved) the privacy of the personal trust lev-
els that you have on your friends, and the privacy of
the responses from your friends?

Q3 How useful do you think is this application?
Q4 How likely are you to use such an application, if avail-

able publicly?
Each question was followed by a question to measure un-

certainty: How certain are you about your previous response?.
Responses to each question was recorded on a 7-point Likert
scale [24].

Figures 5 through 8 show the user responses before and
after the experiment in terms of understanding, privacy-
preservation, usefulness and likelihood of use of the proto-
type. Together, the figures show the change in the user per-
ceptions before and after the experiment. In figure 5, the
results suggest that use of the prototype may have helped
the users to understand the application better. Similarly,
figure 6 shows that the the usersâĂŹ perception of how well
privacy is preserved increased after using the prototype. The
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Figure 7. Responder’s change in the perception of
usefulness of the TSF prototype (Q3), pre- and post-
experiment.

users also perceived the application to be more useful after
having used the prototype, which is illustrated by figure 7.
According to figure 8, the likelihood of users using such a
system in the future also slightly improved overall after hav-
ing used the prototype. Thus, this suggests that our proto-
type was perceived by the users to be an effective tool for
preserving privacy while obtaining feedback.

Closely related to the sense of privacy, this user study also
inferred users’ trust in the application, which relates to the
concept of foreground trust [8]. It is different from the trust
between friends that we have discussed so far. Dwyer et al.
in [9], suggested that a reduction of uncertainty is positively
correlated with the increase of trust. Thus, a measure of
uncertainty is used to infer trust. In our user study with 12
participating users, we have employed pre-use and post-use
questionnaires to determine the changes in uncertainty. The
users are highly technically competent and were aware of
this research work before using the prototype. Table 2 shows
that the uncertainty in the users’ responses usually declined,
thus suggesting a likely increase in foreground trust.

5.2 TSF: measuring performance
The speed at which a feedback can be obtained depends

almost entirely on the speed at which friends respond to the
question; and to some extent on the speed of cryptographic
operations and that too on the client-side because the speed
of the limited cryptographic operations on the cloud-side is
usually negligible compared to delays caused by network la-
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Figure 8. Responder’s change in the likeliness of the
future use of the TSF prototype (Q4), pre- and post-
experiment.

tencies, cloud instance initialisations, and datastore access.
For every partial response submitted by a friend, the cloud is
responsible for exactly two homomorphic additions, see line
4 in algorithm 1. We present a comparison of performances
of cryptographic primitives on the client side. We have built
a Google Web Toolkit wrapper for an optimised Javascript
implementation of the Paillier cryptosystem using the Stan-
ford Javascript BigInteger library. The result of each test, in
table 3, is a rounded-off average from 50 runs. The tests were
carried out on Windows 8, running on a 64-bit 3.4GHz In-
tel i7-3770 dual quad-core processor with 16GB RAM. The
versions of the browsers are: Chrome 28.0.150072m, Fire-
fox 22.0, Internet Explorer (IE) 10.0.9200.16599 and Safari
5.1.7. IE and Safari failed to finish the tests when the cryp-
tosystem was set to 1024 bits, so we used a 512 bits cryp-
tosystem for our tests.

Using the F1 (600MHz) instance class and the high-replication
datastore of the Google App Engine, the averages of the
times taken for the different servlet calls are shown in ta-
ble 4. The time taken for a particular function call also
includes the time taken to execute any intermediate servlet
filters, for instance the filter that verifies the logged-in users.

5.3 TCS: measuring user acceptance
Further to measuring foreground trust and sense of pri-

vacy for the trusted social feedback implementation, we also
measured user acceptance of the trusted crowdsourcing model.
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Figure 9. The perception and importance of privacy
from Alice’s viewpoint.

The public questionnaire6 was preceded by a brief descrip-
tion of the TCS model. The users were asked the following
questions after reading the description of the model.
Q1 If you were Alice, how well do you feel that the privacy

of your personal trust value in Bob is preserved by
CrowdTrust?

Q2 If you were Alice, how important would this privacy be
to you?

Q3 If you were Bob (the responder) how well do you feel
that the privacy of your answer to Alice is hidden from
the crowdsourcing platform by CrowdTrust?

Q4 If you were Bob, how important would this privacy be
to you?

Q5 How likely would you be to use such a service to ask for
opinions from the crowd?

Q6 How likely would you be to use such a service to answer
questions, get remunerated and develop reputation?

Q7 Would you prefer CrowdTrust to be implemented as
an end-to-end user communication where the crowd-
sourcing platform is oblivious to the privacy preserv-
ing layer? Or, do you prefer an existing crowdsourc-
ing platform to integrate and provide CrowdTrust as
a separate add-on service?

Responses to each question was recorded on a 7-point Lik-
ert scale. There were two other questions that were used to
collect comments and concerns from the responders to the
survey.

6Online questionnaire available at: http://goo.gl/eIyDx4.
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Figure 10. The perception and importance of pri-
vacy from Bob’s viewpoint.

Q8 If you were Alice, would you have any concerns or sug-
gestions?

Q9 If you were Bob, would you have any concerns or sug-
gestions?

The responses to Q8 and Q9 were used to refine the TCS
model, while the analysis of the results of responses to Q1
through Q7 are presented below. At the time of this writ-
ing, the survey had 16 responses. Figure 9 shows to what
extent Alice (i.e., the person who uses the crowdsourcing
platform to send her query) was convinced that her privacy
was preserved in the model, and how important that pri-
vacy is to her. Similarly, figure 10 correspondingly shows to
what extent Bob (i.e., the responder’s) was convinced that
her privacy was preserved in the model, and how important
that privacy is to him. Figure 11 illustrates to what extent
a user would use such a system if they were playing the role
of Alice/Bob, and also shows their preferences regarding the
form of implementation (end-to-end/integrated) of the TCS
framework.

6. CONCLUSIONS
In this paper, we have presented a working prototype for

obtaining feedback on queries from one’s trusted friends in
a privacy preserving manner. We have implemented and
tested the prototype on the Google App Engine with Face-
book, and have run a user study to evaluate the perception
of privacy as well as foreground trust in the prototype. The
evaluation shows that the prototype was considered by the

users to be an effective tool for preserving privacy while
obtaining feedback; and that it can be inferred that the
foreground trust in the prototype was high. A novel con-
tribution of the paper is the observation that the technique
for privacy-preserving social feedback can also be used in
the domain of crowdsourcing. Based on this, we develop a
framework for trusted crowdsourcing to enable users to ob-
tain feedback from domain experts who may not necessarily
be friends. We have evaluated users’ perception of privacy
preservation and the acceptance of our trusted crowdsourc-
ing model through a user survey. The results of the survey
demonstrate that the users, in general, felt that the model
was good at preserving the privacy.

In the future, we plan to expand this work by developing:
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Figure 11. Alice’s and Bob’s preferences on the im-
plementation of privacy-preserving trusted crowd-
sourcing and the likelihood of use.
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(a) a mechanism to infer reputations of responders in the
trusted crowdsourcing model; (b) means to support incom-
pleteness in multi-valued categorical answers; and (c) prac-
tical homomorphic range checks to protect out-of-range at-
tacks in the encrypted domain. This should enable wider
acceptance of crowdsourcing even in sensitive applications.
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