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Abstract. A core challenge of Multiobjective Evolutionary Algorithms (MOEAs)
is to attain evenly distributed Pareto optimal solutions along the Pareto front. In
this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme for the
identification of well distributed Pareto optimal solutions based on the geometri-
cal characteristics of the Pareto front. The apa scheme applies to problem with
symmetric and asymmetric Pareto fronts. Evaluation on multiobjective problems
with Pareto fronts of different forms confirms that apa improves both conver-
gence and diversity of the classical decomposition-based (MOEA/D) and Pareto
dominance-based MOEAS (pae-MyDE).
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1 Introduction

Multiobjective optimization problems (MOPs) involve several conflicting objectives to
be optimized simultaneously. For Pareto optimal solutions, improvement on one objec-
tive leads to the decrement of at least one other objective. Multiobjective Evolutionary
Algorithms (MOEAs) have been well established as efficient approaches to deal with
various MOPs [1].

MOEASs can be generally categorized into two major classes, namely decomposition-
based (MOEA/D) and Pareto dominance-based MOEAs [2]. MOEA/D decomposes
MOPs into a number of scalar subproblems and optimizes them simultaneously. The
assigned weight vectors of classical MOEA/D, however, may not always suit different
Pareto front (PF). Pareto dominance-based MOEAs use the Pareto dominance defini-
tion with the crowding distance or neighbor density estimator to evaluate individuals.
However, both of them are less effective to deal with MOPs with asymmetric PFs.

In this paper, we propose a novel asymmetric Pareto-adaptive (apa) scheme. Driven
by the hypervolume [3-5] , apa is designed to evenly distribute Pareto optimal solutions
along both asymmetric and symmetric PFs. Experimental results on different shapes of
2-dimensional MOPs showed that MOEA/D and pae-MyDE (one from each category
of MOEAs) using apa, labeled here as apa\-MOEA/D and apae-MyDE respectively,
lead to higher hypervolume, better convergence and more evenly distributed solutions.
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Fig. 1. Asymmetric Pareto-adaptive Scheme

2 apa: Asymmetric Pareto-adaptive

2.1 apa for 2-Dimensional Pareto Front

The new asymmetric Pareto-adaptive (apa) scheme is driven by the hypervolume. When
minimizing bi-objectives for instance, hypervolume is the area enclosed within the dis-
continuous dash line WABCDW (Figure 1). X = {A, B, C, D} denotes the set of non-
dominated solutions and W is the reference point constructed by the worst objective
function values.

Assume points { A, B, D} are fixed and point C' moves along curve BD. The hyper-
volume of X is then decided by the sub-hypervolume of point C', which is indicated by
the shaded rectangle. In general, we define the normalized asymmetric Pareto optimal
frontas fI'* + fI? = 1, where p; # po. The points on the curve are B(x1,y1), C(z,v),
D(z2,y2), and the sub-hypervolume of point C' is calculated as:

V(x) = (v2 — 2) (Y1 — Y) = Y — 1T — T2y + T2y1 1)

To maximize sub-hypervolume, the optimal position of point C'is (&,9 = (1 —
1
ZP1) P2 ), which can be calculated by the Newton Iterative method defined as:

Tpp1 = o — V' (21) /9" () @)

where ¢’ (z) and ¢"(z) are the first and second order of ¥(x), respectively. The
initial value zo = (x1 + x2)/2. When stopping criteria x511 — 2 < & is satisfied,
& = k1. The maximum sub-hypervolume is calculated as ¥(Z).

Algorithm 1 presents the details of the apa scheme. The NN initial points X =
{(z1,y1), -+, (@n,yn)} along PF are constructed by equally dividing the f; axis
(Line 1). In Line 9, the point (z;,,,y;, ) is replaced by (&;, , ¥, ), which makes the
maximum increment to the hypervolume. In Lines 10-14, the movement of point i,
only impact the neighborhood points. We update the sub-hypervolume and the max-
imum sub-hypervolume of the neighborhood points (¢, — 1, %, %y + 1). When the
hypervolume increment is less than &, the algorithm terminates and outputs X.



Algorithm 1: Asymmetric Pareto-adaptive scheme

1 Initialize V points X along Pareto optimal front
2 Sort the N points ascending by the first objective
sfori=2,---,N—1do

4 Calculate sub-hypervolume 9(zx;)

5 Calculate maximum sub-hypervolume (&;)
6 Aﬁ(l‘l) = ’19(.1'1) — 19(.’2‘1)

Find i), = max{Ad(z;) :i € 2,--- ,N — 1}

8 while AY(z;, ) > £ do

9 Move the point (z;, ,y;,,) to (Z4,,,3i,,)

10 Set ¥(x;,,) = ¥H&i,,), A (zi,) =0

1 Update ¥(x;,, —1) and 9(x;,, +1)

12 Update 9(&;,, 1) and 9(&;,, +1)

13 A’ﬂ(iﬂim_l) (IZ _1) (Iqjm_l)

14 AY(@i,, 1) = V@i, +1) — I(i, 71)

15 Find 4., = max{A¥(z;):i€2,--- ,N -1}

16 Output X

~

2.2 Curve Function for Asymmetric Pareto Front

Upon generating a set of Pareto optimal solutions (points), we estimate a curve function
to represent the PF based on the available points. Define 2D Pareto optimal solutions as
F = {(z;,y;) : i = 1,--- ,|F|} (J|F| is the number of points, normalized into [0, 1]).
To estimate the asymmetric PF f'* + f5? = 1, we define the Sum of Square Error as:

SSE(F) ="l + 4 —1+0)2 3)

where 6 denotes the relaxing parameter. A small SSE(F') implies that the curve func-
tion approaches the Pareto optimal solutions better. In reality, it is not easy for all solu-
tions to fall exactly on the true PF, thus, it is natural to set the relaxing parameter with
a small value to estimate the curve function.

3 apa for Decomposition and e-dominance

The well established two major categories of MOEAs includes the decomposition-based
and Pareto dominance-based MOEAs. In this section, we describe how the apa scheme
enhances the performances of MOEAs.

3.1 apal: apa for Decomposition

MOEA based on decomposition (MOEA/D) transforms the PF into a number of scalar
optimization subproblems and optimizes them simultaneously. Three major approaches
of the MOEA/D are weighted sum, Tchebycheff and Boundary intersection (BI) [2].



Define A = (A',---,A\™)T as a weight vector for m objectives, and > A" = 1.
Classical MOEA/D produces N weight vectors in 2-dimensional objective spaces as:
(5. 8y, (4,274, (%, %), where H = N — 1. The gradients of weight vectors
are represented by A lines (see Figures 2, 3). These A lines produce N intersection points
along PF. Such weight vectors are perfectly distributed only when PF is f; + fo = 1
(i.e. a linear line), but not suitable for fI* + f¥* =1, p1,p2 # 1 (i.e. non-linear PF).

Asymmetric Pareto-adaptive weight vectors (apal) is formed by applying the apa
scheme to MOEA/D. Since the apa scheme (Algorithm 1) can obtain evenly distributed

intersection points {(z;,y;),¢ = 1,---, N} along different shapes of Pareto optimal
front, the weight vectors along asymmetric Pareto optimal front can be adjusted as:
Z; i
apa)i = ( —2) 4)

T+ Yy T4y
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Fig. 2. 10 Points along 2-dimensional asymmetric Pareto Fronts by A and apaA

Figure 2 shows an example of 10 intersection points along 2-dimensional asymmet-
ric PFs generated by A (MOEA/D) and the apa) scheme, respectively. When p;=0.5,
p2=1.0, the hypervolume of the intersection points is hv(\) = 0.607939 in MOEA/D
(Figure 2(a)). From Figure 2(c), apa obtains a larger hv(apa)) = 0.613726, and the
A lines are scattered to the two endpoints of PF and distributed more evenly. When
p1 = 2.0 and p2 = 1.0, the hypervolume of intersection points is hv(A) = 0.282367
in MOEA/D (Figure 2(b)). apa obtains a larger hv(apa)) = 0.286820 (Figure 2(d)),
and the ) lines are well assembled and divide the objective space more uniformly.
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Fig. 3. 10 Points along 2-dimensional symmetric Pareto Fronts by A and apa\

In addition, further studies on MOEA/D also assert that apa obtained higher hy-
pervolume on both symmetric convex and symmetric concave PFs (Figure 3). The apa
scheme is shown to significantly improve the performance of classical MOEA/D.

3.2 apae-dominance: apa for e-dominance

The e-dominance is an advanced dominance concept that includes additive and multi-
plicative schemes [6]. It divides the m objective spaces into equal-sized hyper-boxes
and only one solution can survive in a hyper-box. When two solutions exist in the same
hyper-box and non-dominates each other, e-dominance remains the one which is nearer
to the corner of hyper-box. When minimizing MOPs, the additive scheme f is said to
e-dominate g, if Vi € {1,--- ,m}, fi — € < g;.

In e-dominance, the parameter e is user-specific. Pareto-adaptive e-dominance (pae-
dominance) is a new e-dominance, which calculates ¢/ = (e!,€2,--- ,€V) (N is pop-
ulation size) depending on the geometric characteristics of PFs [7]. When minimizing
MOPs, f is said to pae-dominate g in j-th hyper-box, if Vi € {1,--- ,m}, fi —¢/ < g;.

pae-dominance handles asymmetric PFs by approximating f? Ly Vi =1, pl # p2

as f¥ + f¥ = 1. Asymmetric Pareto-adaptive e-dominance concept (apae-dominance),
on the other hand, applies the proposed apa scheme to e-dominance. € = (e}, €7, -+, €V

in i-th objective is calculated for different shapes of PFs. When minimizing MOPs, f is
said to apae-dominate ¢ in the j-th hyper-box, if Vi € {1,--- ,m}, fi — €] < g;.
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The apae-dominance divides the ¢-th objective space into /N non-equal segments
(They can be equal only if f; + f» = 1). To begin, the apa scheme (Algorithm 1)
distributes N + 1 solutions {(z;,y;),i = 1,---, N + 1} along the PF. Then €/ (i =
1,2;5=1,---, N) can be calculated as follows:

{G = mm 5)
€ = Yj+1

Minimizing bi-objective problems, Figures 4- 5 show pae and apae-dominance dis-
tribute 10 points along PFs. In some cases, pae-dominance cannot get 10 points. Each
ideal point is carefully drawn under e-dominance concept. Only one point can survive
in a hyper-box, and the point has the minimum distance to the left bottom corner of
the hyper-box. For asymmetric PF, pae-dominance approximates it as an symmetric PF,
which has the same hypervolume as the original asymmetric PF'. Figures 4(a-b) show
that the region near the origin (0, 0) is a square, which is obviously unsuitable for asym-
metric PFs. In contrast, apae-dominance arrive at rectangle shape (Figures 4(c-d)).

Focusing on the number of points for different PFs, pae-dominance produces 9
points on the two asymmetric PFs (Figure 4(a-b)), 8 points on f{-5 + f95 = 1 and
10 points on fZ + f3 = 1 (Figure 5(a-b)), while ape-dominance produces 10 points
on all PFs. Comparing the hypervolume on asymmetric PFs, pae-dominance obtains
hv(pae) = 0.616577 for f2° + fo = 1 and hv(pae) = 0.282704 for fZ + fo = 1 (Fig-
ure 4(a-b)). However, apae-dominance is able to obtain higher values of hv(apae) =
0.623634 and hv(apae) = 0.288335, respectively (Figure 4(c-d)). In addition, for sym-
metric PFs, Figure 5 shows that apae-dominance also obtains the higher hypervolume
than pae-dominance. The apa scheme is thus shown to successfully enhance the per-
formance of Pareto dominance-based MOEAs.

4 Experimental Results and Discussion

4.1 Benchmark Problems and Experimental Setting

The experiments are performed on jMetal 3.0 [4], which is a Java-based framework that
is aimed at facilitating the development of metaheuristics for solving MOPs?. Testing
MOPs include 4 with asymmetric PFs: f° + fy = 1 (ZDT1, ZDT4) and fZ + fo =
1 (ZDT2, ZDT6), 4 with symmetric PFs: f0-° + f9-® = 1 (ZDTI.1, ZDT4.1%) and
f12 + f22 = 1 (WFG4, DTLZ2.2D), and 2 discrete PFs as ZDT3 and Kursawe [4].

The classical MOEA/D - MOEA/D with the Tchebycheff approach [2] and pae-
MyDE [7] are included for comparison. Two instances of the apa scheme are considered
here: MOEA/D with asymmetric Pareto-adaptive weight vectors (apaA\-MOEA/D) and
differential evolution with asymmetric Pareto-adaptive e-dominance (apae-MyDE).

U'For f2° 4+ fa = 1, pae approximates it as f"723 + f9-73 = 1; for f2° + fo = 1, pae
approximates it as f{ 445 4 f1-445 = 1,

2 http://jmetal.sourceforge.net

3 ZDT1.1 and ZDT4.1 are symmetric PF by modifying ZDT1 and ZDT4 respectively. The true
PS is formed by equally dividing circle into 200 sections in term of angle.



The experimental settings are outlined as follows. The population size is 25 and the
maximum number of fitness function evaluations is 25, 000. Every algorithm runs 100
times independently for each test problem, to obtain statistically significant results. In
MOEA/D, the number of neighborhoods is 7' = 20. For DE (Differential Evolution)
operator, CR = 0.25 and F' = 0.5. For polynomial mutation, = 20 and p,,, = 1/n
(n is the number of decisional variables). For apa scheme, termination condition is
& = le — 10 and relaxing parameter to estimate PF is § = 0.01.

Five performance metrics are reported: Hypervolume (HV), Inverted Generational
Distance (IGD), Generational Distance (GD), Unary Additive Epsilon Indicator (I} 1)
and Spread. The higher Hypervolume and lower IGD, GD, I . and Spread, the better
is the algorithm’s performance. The obtained results are compared using median values
and the superior results of test problems are highlighted by grey background.

Table 1. Median of Hypervolume (HV)

MOEA/D _ [apaA-MOEA/D apae-MyDE
ZDTI ||6.4496e — 01 6.4576e — 01
ZDT4 |[6.4460e — 01 6.4678e — 01
ZDT2 ||3.1346e — 01 =01 3.1417¢ — 01|30L589e =101
ZDT6 | |BESBTOE=I0M|3.8558¢ — 01((3.8667¢ — 01 [Bi8TIBE=101|
ZDT1.1 |[8.1150e — 01 8.1781e — 01|8iI880e =101
ZDT4.1 |[8.1043e — 01 8.1836e — 01
WFG4  [(2.0373e — 01 2.0694e — 01
DTLZ2.2D|[1.9816e — 01 2.0008e — 01
ZDT3 ||5.0189e — 01

Kursawe |[3.8594e — 01 3.8479e — 01

4.9945e — 01

4.2 Discussions on Statistical Results

Table 1 shows the performance of the MOEAs on hypervolume. For decomposition-
based algorithms, apa\-MOEA/D reported superior HV values on 9 problems. MOEA/D
fares better only on ZDT6. Both ZDT2 and ZDT6 share the same true PF of f2+ fo = 1.
The PF of ZDT?2 exists in fi, fo € [0.0,1.0], but that of ZDT6 is in f; € [0.2809, 1.0]
and f € [0.0,0.9211]. The results indicate that Tchebycheff approach is unsuitable
for dealing with disparately scaled objectives problems. To solve such problems, Zhang
suggest to use the Objective Normalization [2].

On Pareto dominance-based algorithms, apae-MyDE reported superior HV values
on 9 problems, while pae-MyDE fares better only on ZDT3, which has a discrete PF.
The lower HV of apae-MyDE on ZDT3 indicates that it is less suitable for discrete PF.

Table 2. Median of Inverted Genetic Distance (IGD)

apaX\-MOEA/D -] apae-MyDE
ZDT1
ZDT4 . |5:5161e = 04| (6.1060c — 04
ZDT2 6.2226e — 04|(7.6548e — 04

ZDT6 4.0058e — 04[]9.7866e — 04]
ZDTL1 |[4.7732e — 03|3N05W8EN=N03] [4.5052¢ — 03
ZDT4.1 |[4.7694e — 03|3M0493€=103] [4.5169¢ — 03
WEG4 |[4.3374e — 04|BUSB85E04]| [4+.0915¢ — 04]
DTLZ2.2D 1.7491e — 03|[1.7322e — 03

ZDT3  |[2.0143¢ — 03 |IBA2TEE=03| 2.8749¢ — 03

Kursawe 6.8078e — 04[[9.7884e — 04




Table 3. Median of Genetic Distance (GD)

apaX-MOEAD][ paec-MyDE | apae-MyDE
ZDTT
ZDT4 ||1.8162e — 04 1.0070e — 04
ZDT2 9.5799¢ — 0591228 Ter=105|
ZDT6 ||9.6881e — 04 1.1717¢ — O
ZDTL1 |[9.5795¢ — 03|8i2646€=108| (9.3162¢ — 03
ZDT4.1 [[9.4369¢ — 03, 9.1691e — 03
WFG4 |[1.5613e — 03 8.2842¢ — 04
DTLZ2.2D 5.6100e — 04,
ZDT3 |[3.9503e — 04 3.1126e — 04
Kursawe

Table 2 shows the performance on Inverted Genetic Distance metric. On decompo-
sition based algorithms, apa\-MOEA/D reported superior results on 6 problems, while
MOEA/D fares better on ZDT2, ZDT6, DTLZ2.2D and Kursawe, respectively. Except
the discrete PF (kursawe), these problems have concave true PFs as f2+ fo = 1 (ZDT?2,
ZDT6) and f? + f7 = 1 (DTLZ2.2D). The results indicate that the apa scheme can
lead to reduce IGD performance on concave PFs.

On Pareto dominance-based MOEAs, apae-MyDE got better IGD on all problems.

Tables 3 and 4 tabulated the performance of the Genetic Distance and epsilon met-
rics, respectively. Among the 10 test problems, apaA-MOEA/D and apae-MyDE re-
ported superior results for these two metrics on most of the problems.

Table 4. Median of epsilon ([, €1+) Metric

MOEA/D apaX-MOEA/D = apae-MyDE
ZDT1 3.3184e — 02 3.2003e — 02
ZDT4 3.3184e — 02 3.1665e — 02
ZDT2 2.5697e — 02 3.0058e — 02

ZDT6 2.5540e — 02|(4.3798e — 02

ZDT1.1 |]|2.9057e — 02 1.2688e — 02
ZDT4.1 |]|2.9275e — 02 .
7.7030e — 02
DTLZ2.2D||2.8321e — 02 2.8834e — 02
ZDT3 5.8978e — 02 .

WFG4 ||7.8637e — 02
Kursawe 3.4308e — 01[|2.4865e¢ — 01

Table 5 presents the performance on Spread metric, which evaluates the distribution
of non-dominated solutions. On decomposition-based algorithms, apaA-MOEA/D re-
ported better Spread values on 6 problems, while MOEA/D on 4 namely ZDT6, WFG4,
DTLZ2.2D and Kursawe. Similar to the IGD metric, the results indicate that the apa
scheme may not favor Spread metric on concave PFs.

Among Pareto dominance-based algorithms, apae-MyDE reported smaller Spread
values on all problems. For the asymmetric problems including f° + f» = 1 (ZDTI,
ZDT4) and f2+ fo = 1 (ZDT2, ZDT6), it is worth mentioning that apae-MyDE arrives
at significantly better spread value than pae-MyDE.

To summarize, experimental results highlight that apa \A-MOEA/D and apae-MyDE
are able to obtain consistently higher hypervolume, better convergence and more evenly
distributed solutions than classical MOEA/D and pae-MyDE on majority of the bench-
mark problems. The apa scheme is validated by demonstrating empirically performance
improvement of both decomposition-based and Pareto dominance-based MOEAs.



Table 5. Median of Spread Metric

MOEA/D _ |apaX-MOEA/D|| pae-MyDE | apae-MyDE
ZDT1 2.8126e — 01|8.9546e — 02|[2.4730e — 01|1.5013e — O1
ZDT4 2.8085e — 01[9N0885E=102] [2.4298e — 01[IN3152e=101
ZDT2 1.3611e — 01[IN0650E==101| [1.9993e — 01|9M4430e=102
ZDT6 14975e=101|1.6385¢ — 01|(1.0006e — 01{318206E=102
ZDT1.1 [|6.8130e — 01[289226e =101 4.2275¢ — 01318306 =01
ZDT4.1 6.8115e — 01|209534e — 01| [4.2975¢ — 01|316701Te — 0T
WFG4 210255e=101(3.0316e — 01([2.8014e — 01|207552e =01

DTLZ2.2D | [Ii8518e=101|2.8223e — 01|[3.1004e — 01216857 =01
ZDT3 7.6543e — 01|733368e =101 [5.8611e — 01|5:4899e =101
Kursawe | [610004€=101(6.0182e — 01|4.1732¢ — 01379657 =01

5 Conclusion and Future Research

In this paper, we have proposed a novel Asymmetric Pareto-adaptive (apa) scheme,
which automatically adjusts the position of Pareto optimal solutions according to the
geometric characteristics of 2-dimensional Pareto optimal front. The new scheme is
shown to work well on both symmetric and asymmetric PFs and improves the perfor-
mance of general MOEAs such as decomposition-based and Pareto dominance-based
MOEAs. Experimental results further confirm that the apa scheme led to significant
improvements on the performance of MOEA/D and pae-MyDE.

The apa scheme is showed to be efficient and for dealing with 2-dimensional MOPs.
Future research is to extend the scheme to higher dimensional MOPs. Another poten-
tial further research would be to improve the MOP search based on the paradigm of
Memetic Computation [8—11].
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