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Abstract—An effective Collaborative Intrusion Detection Net-
work (CIDN) allows distributed Intrusion Detection Systems
(IDSes) to collaborate and share their knowledge and opinions
about intrusions, to enhance the overall accuracy of intrusion
assessment as well as the ability of detecting new classes of
intrusions. Towards this goal, we propose a distributed Host-
based IDS (HIDS) collaboration system, particularly focusing on
acquaintance management where each HIDS selects and main-
tains a list of collaborators from which they can consult about
intrusions. More specifically, each HIDS evaluates both the false
positive (FP) rate and false negative (FN) rate of its neighboring
HIDSes’ opinions about intrusions using Bayesian learning, and
aggregates their opinions about intrusions using a Bayesian de-
cision model. Our dynamic acquaintance management algorithm
allows each HIDS to effectively select a set of collaborators. We
evaluate our system based on a simulated collaborative HIDS
network. The experimental results demonstrate the convergence,
stability and incentive of our system.

I. INTRODUCTION

In recent years, cyber attacks from Internet are becoming
more sophisticated and harder to detect. Intrusions can have
many forms such as worms, spamware, viruses, spyware,
denial-of-service attacks (DoS), malicious logins, etc. The
potential damage of these intrusions can be significant if
they are not detected promptly. A recent example is the
Conflicker worm which infected more than 3 million Microsoft
server systems during the year of 2008 to 2009, with the
estimated economic lost of 9.1 billion dollars [2]. As a counter-
measurement, Host-based Intrusion Detection Systems (HID-
Ses) identify intrusions by comparing observable intrusion data
such as log files and computer activities against suspicious
patterns. Several examples of HIDSes are OSSEC [1], an anti-
virus software and Tripwire.

Traditional HIDSes work in isolation and may be eas-
ily compromised by unknown or new threats. Collaboration
among HIDSes can overcome this weakness by having each
peer benefit from the collective knowledge and experience
shared by other peers. This enhances the overall accuracy
of intrusion assessment as well as the ability of detecting
new classes of intrusions. A Collaborative Intrusion Detec-
tion Network (CIDN) is an overlay software which provides
collaboration infrastructure for HIDSes to share information
and experience with each other to achieve improved detection
accuracy. The topology of a CIDN can be centralized, such

as DShield [15], CRIM [4], and N-version AV [12], or
distributed, such as Indra [10], and NetShield [3].

However, in a CIDN, malicious insiders may send false
information to mislead other HIDSes to make incorrect in-
trusion decisions, in this way, render the collaboration system
not useful. A CIDN acquaintance management is the process
of identifying, selecting, and maintaining collaborators for
each HIDS. Effective acquaintance management is critical to
the design of a CIDN. In our paper, we provide a Bayesian
learning technique that helps each HIDS to identify dishonest
collaborators and remove them from its collaborator list. We
propose a Bayesian decision model for HIDSes to aggregate
feedback from their collaborators to minimize expected cost
of making false decisions. In terms of collaborator selection,
a HIDS may add all honest HIDSes into its collaborator list to
achieve maximized detection accuracy. However, including a
large list of collaborators may result in significant maintenance
cost. Previous works on acquaintance management often set a
fixed length of collaborators [16], or a threshold to filter out
less honest collaborators [17], [9]. These simple approaches
lack of flexibility, and the cost efficiency using their selected
collaborators largely depends on the context of their networks
(i.e. the quality of candidates). Our proposed acquaintance
management algorithm can dynamically select collaborators
in any context setting to obtain high efficiency on cost. We
prove empirically that our acquaintance management algo-
rithm achieves several desired properties, such as efficiency,
stability, and incentive.

II. COLLABORATIVE INTRUSION DETECTION NETWORK

A CIDN is shown in Figure 1 as an overlay network
of collaborating HIDSes. HIDSes from different vendors are
connected in a peer-to-peer manner. Each peer HIDS maintains
a list of collaborators. We use the terminology Acquaintance
List to represent the list of collaborators for each HIDS. Peers
may have different expertise levels on intrusion detection.
They may also act dishonestly or selfishly. In this paper, we
use the terms collaborator and acquaintance interchangeably.

When a HIDS detects suspicious behavior but lacks confi-
dence to make a decision whether it should raise an alarm or
not, it may send consultation requests to its collaborators for
diagnosis. The consultation request contains the description of
the suspicious activities or data, such as the data packets from a



suspicious source or the log file entries of suspicious activities.
The feedback from collaborators contains the assessment result
of the request, which is either a “yes” for under-attack or a
“no” for no-attack. All feedback will be aggregated and a final
decision is made based on the aggregation result. However, a
malicious (or malfunctioning) HIDS in a CIDN may send false
intrusion assessments. It is thus important to evaluate peer
HIDSes and choose the ones who provide higher detection
accuracy.

Fig. 1. The Overlay Network of Collaborating HIDSes

In our system, HIDSes also use test messages to evaluate
the detection accuracy and truthfulness of other HIDSes. Test
messages are “bogus” consultation requests, sent out in a way
that makes them difficult to be distinguished from real con-
sultation requests. The testing node needs to know beforehand
the true diagnosis result of the test message and compare
it with the received feedback to derive detection accuracy
of others. This method helps with identifying inexperienced
and/or malicious nodes within the network. The idea of “test
messages” was previously introduced in [14] and [8]. It is
adopted in our CIDN to enable the quick gaining of experience
with affordable communication cost.

The evaluation result of acquaintances’ detection accuracy is
used in feedback aggregations to achieve better decision accu-
racy. The acquaintance management then updates acquaintance
list periodically to recruit new nodes and/or remove unwanted
ones. The collaboration relationship is established based on
mutual consensus, i.e. it is established only if both sides agree.
We will elaborate in detail on our acquaintance management
for CIDN in Section IV.

III. HIDS DETECTION ACCURACY EVALUATION AND
FEEDBACK AGGREGATION

To select collaborators, a HIDS should first learn the qual-
ification of all candidates. In this section, we first introduce a
Beta learning model to evaluate the detection accuracy of the
candidates. A Bayesian decision model is used to optimally
aggregate feedback from acquaintances.

A. Detection Accuracy for a Single HIDS
To better capture the qualification of a HIDS, we use both

false positive (FP) and true positive (TP) rates to represent the
detection accuracy of a HIDS. Let random variables Fk and Tk

denote the FP and TP rates of acquaintance k ∈ A respectively.
FP is the probability that the HIDS gives a positive diagnosis
(under-attack) under the condition of no-attack, written as
P[Y = 1|X = 0]. TP is the probability that the HIDS gives
a correct positive diagnosis under the condition of under-
attack, written as P[Y = 1|X = 1], where random variable
X ∈ {0, 1} represents the random event on whether there is
an attack or not. Random variable Y ∈ {0, 1} denotes whether
the HIDS makes a positive diagnosis or not.

Let Fk and Tk be the probability density functions of Fk

and Tk whose support is [0, 1]. Using the past experience as
samples, a Beta distribution function can be used to model the
posterior distribution of Fk and Tk:

Fk ∼ Beta(xk|α0
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Where α0
k, β0

k, α1
k, β1

k are the cumulated instances of false
positive, true negative, true positive, and false negative, re-
spectively. r0

k,j ∈ {0, 1} is the jth diagnosis data from
acquaintance k under no attack. r0

k,j = 1 means the diagnosis
from k is positive while there is actually no attack happening.
r0
k,j = 0 means otherwise. Similarly, r1

k,j ∈ {0, 1} is the jth
diagnosis data from acquaintance k under attack: r1

k,0 = 1
means that the diagnosis from k is positive under attack.
r1
k,0 = 0 means otherwise. Parameters t0kj and t1k,j denote the

time elapsed since the jth feedback is received. λ ∈ [0, 1] is the
forgetting factor on the past experience. We use exponential
moving average to accumulate past experience so that old
experience takes less weight than new expereince.

B. Feedback Aggregation
A node receives a feedback vector y from its acquaintances.

X ∈ {0, 1} denotes the scenario of “no-attack” or “under-
attack”. The conditional probability of a HIDS being “under-
attack” given the diagnosis results from all acquaintances can
be written as P[X = 1|Y = y]. Using Bayes’ Theorem [13]
and assuming that the acquaintances provide diagnoses inde-
pendently and their FP rate and TP rate are known, we have

P[X=1|Y=y]=
P[Y=y|X=1]P[X=1]

P[Y=y|X=1]P[X=1]+P[Y=y|X=0]P[X=0]

=
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,



where π0 = P[X = 0] and π1 = P[X = 1] (π0 + π1 = 1)
are the prior probabilities of the scenarios of “no-attack” and
“under-attack”. yk is the kth element of vector y.

Since Tk and Fk are both random variables with distribu-
tions as in Equations (1) and (2), we can see that the condi-
tional probability P[X = 1|Y = y] is also a random variable.
We use a random variable P to denote P[X = 1|Y = y].
Then P takes a continuous value over domain [0, 1]. We use
fP (p) to denote the probability density function of P .

When α and β are sufficiently large, a Beta distribution
can be approximated by Gaussian distribution according to
Beta(α, β) ≈ N

(
α

α+β ,
√

αβ
(α+β)2(α+β+1)

)
. Then the density

function of P can be also approximated using Gaussian
distribution. By Gauss’s approximation formula, we have,
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Let Cfp and Cfn denote the marginal cost of a FP decision
and a FN decision. We assume there is no cost when a correct
decision is made. We use marginal cost because the cost of a
FP may change in time depending on the current state. Cfn

largely depends on the potential damage level of the attack.
For example, an intruder intending to track a user’s browsing
history may have lower Cfn than an intruder intending to
modify a system file. We define a decision function δ(y) ∈
{0, 1}, where δ = 1 means raising an alarm and δ = 0 means
no alarm. Then, the Bayes risk can be written as,

R(δ) =
∫ 1

0

(Cfp(1− x)δ + Cfnx(1− δ))fP (x)dx

= CfnE[P ] + δ(Cfp − (Cfp + Cfn)E[P ]), (5)

where fP (p) is the density function of P . To minimize the
risk R(δ), we need to minimize δ(Cfp − (Cfp + Cfn)E[P ]).
Therefore, we raise an alarm (i.e. δ = 1) if

E[P ] ≥ Cfp

Cfp + Cfn
. (6)

Let τ = Cfp

Cfp+Cfn
be the threshold. If E[P ] ≥ τ , we raise an

alarm, otherwise no alarm is raised. The corresponding Bayes
risk for the optimal decision is:

R(δ) =





Cfp(1− E[P ]) if E[P ] ≥ τ ,

CfnE[P ] otherwise.
(7)

IV. ACQUAINTANCE MANAGEMENT

It is intuitive that when a HIDS consults more acquain-
tances, it achieves higher detection accuracy and lower risk
of being compromised. However, having more acquaintances
causes higher maintenance cost since the HIDS needs to
allocate resource for each node in its acquaintance list. When

a HIDS decides how many acquaintances to recruit, both the
intrusion risk cost and the maintenance cost should be taken
into account. When adding a node as an acquaintance does
not lower the total cost, then the node shall not be added into
the acquaintance list. However, how to select acquaintances
and how many acquaintances to include are crucial to build an
efficient CIDN. In this section, we first define the acquaintance
selection problem, then a corresponding solution is used to find
the optimal combination of acquaintances. Finally, we propose
an acquaintance management algorithm for HIDSes to learn,
recruit, update, or remove their acquaintances dynamically.

A. Problem Statement
Let Ai denote the set of acquaintances of HIDS i. Let

Mi(Ai) be the cost for HIDS i to maintain the acquaintance
set Ai. In real applications, maintenance cost of acquain-
tances may not be negligible since acquaintances send test
messages/consultations periodically to ask for diagnosis. It
takes resource (CPU and memory) for the host HIDS to
receive, analyze the requests, and reply with corresponding
answers. The selection of Mi(.) can be user defined on each
host. For example, a simple maximum acquaintance length
restriction can be mapped to Mi(Ai) = Ci max(|Ai|−Li, 0),
where Li ∈ N+ is the acquaintance length upper-bound and
Ci ∈ [0,∞) is the penalization of exceeding the bound. We
use Ri(Ai) to denote the risk cost of missing intrusions and/or
false alarms for HIDS i, given the feedback of acquaintance
set Ai. In the rest of this section, we drop all subscript i from
our notations for the convenience of presentation. The risk cost
can be expressed as:

R(A) = CfnP [δ = 0|X = 1]P [X = 1]
+ CfpP [δ = 1|X = 0]P [X = 0]

where Cfn, Cfp denote the marginal cost of missing an
intrusion and raising a false alarm, respectively. P [X = 1] =
π1, P [X = 0] = π0 are the prior probabilities of under-attack
and no-attack, where π0 +π1 = 1. The above equation can be
further written as:

R(A) = Cfnπ1

∑

∀y∈{0,1}|A||δ(y)=0

P [Y = y|X = 1] (8)
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where Ti, Fi are the TP rate and FP rate of acquaintance
i respectively. ∀y ∈ {0, 1}l|δ(y) = 1 refers to all the



combination of decisions which causes the system to raise an
alarm, vice versa. Our goal is to select a list of acquaintances
from a list of candidates so that the overall cost R(A)+M(A)
is minimized. We define the problem as follows:

Given a list of acquaintance candidates C, we need to find
a subset of acquaintances A ⊆ C, such that the overall cost
R(A) + M(A) is minimized.

B. Acquaintance Selection Algorithm

To solve such a subset optimization problem, the brute
force method is to examine all possible combinations of
acquaintances and select the one which has the least overall
cost. However, the computation complexity is O(2n). It is
not hard to see that the order of selecting acquaintances
does not affect the overall cost. We propose an acquaintance
selection algorithm based on a heuristic approach to find an
acquaintance set which achieves satisfactory overall cost. In
this algorithm, the system always selects the nodes to join
which bring the lowest overall cost.

Algorithm 1 Acquaintance Selection(C, Lmin, Lmax)
Require: A set of acquaintance candidates C
Ensure: A set of selected acquaintances A with minimum

length Lmin and max length Lmax which brings the
minimum overall cost

1: Q = 0 //quit the loop if Q = 1
2: A ⇐ ∅
3: U = min(π0Cfp, π1Cfn) //initialize overall cost R + M
4: while Q = 0 do
5: //select the node which reduces cost most each time
6: Dmax = −MAXNUM //initialize maximum cost

reduction to lowest possible
7: for all e ∈ C do
8: A = A ∪ e
9: if U − R(A) − Ca|A| > Dmax //see Equation (8)

then
10: Dmax = U −R(A)−M(A)
11: emax = e
12: end if
13: A = A \ e
14: end for
15: if (Dmax > 0 and |A| < Lmax) or |A| < Lmin then
16: A = A ∪ emax

17: C = C \ emax

18: U = U −Dmax

19: else
20: Q = 1
21: end if
22: end while

As shown in Algorithm 1, in the beginning, the acquaintance
list is empty. The initial cost is the minimum cost of decision
based on only the prior information (line 3). For each loop,
the system selects a node from the acquaintance candidate list
which brings the lowest overall cost (lines 7-14). If such a
node is found, it is then moved to the acquaintance list if the

acquaintance length is less than Lmin or the cost is reduced
and the acquaintance length is smaller than Lmax. The loop
stops till no node can be added any further.

C. Acquaintance Management Algorithm

In the previous section, we devised an algorithm to select
acquaintances from a list of candidates. However, collabora-
tion is usually based on mutual consensus. If node A selects
B as an acquaintance but B does not select A (non-symmetric
selection), then the collaboration is not established.

Algorithm 2 Managing Acquaintance & Probation Lists
1: Initialization :
2: A ⇐ ∅ //Acquaintance list.
3: P ⇐ ∅ //Probation list.
4: lp = lini //initial Probation length
5: //Fill P with randomly selected nodes
6: while |P| < lp do
7: e ⇐ select a random node
8: P ⇐ P ∪ e
9: end while

10: set new timer event(tu, “SpUpdate”)
11: Periodic Maintenance:
12: at timer event ev of type “SpUpdate” do
13: //Merge the first mature node into the acquaintance list.
14: e ⇐ selectOldestNode(P)
15: C ⇐ A
16: if te > tp //te is the age of node e in probation list then
17: P ⇐ P \ e
18: if Te > Tmin and Fe < Fmax then
19: C ⇐ C ∪ e
20: end if
21: end if
22: //consensus protocol
23: S =Acquaintance Selection(C, lmin, max(lmin, q

q+1 lmax))
24: Saccp ⇐ RequestandReceiveCollaboration(S)
25: A ⇐ Saccp

26: //Refill P with randomly selected nodes
27: while |P| < max(q|A|, lmin) do
28: e ⇐ Select a random node not in A or P
29: P ⇐ P ∪ e
30: end while
31: set new timer event(tu, “SpUpdate”)
32: end timer event

We propose a distributed approach for a HIDS in the CIDN
to select and manage acquaintances and a consensus protocol
to allow a HIDS to deal with the non-symmetric selection
problem. To improve the stability of the acquaintance list,
we propose to use a probation period on each new node
for the HIDS to learn from new nodes before considering it
as an acquaintance. For this purpose, each HIDS maintains
a probation list, where all new nodes remain during their
probation periods. A node also communicates with nodes in
its probation list periodically to learn their detection accuracy.
The purpose of the probation list is to explore potential



collaborators and keep introducing new qualified nodes to the
acquaintance list.

Suppose that node i has two sets Ai and Pi, which are
the acquaintance list and the probation list respectively. The
corresponding false positive rate and true positive rate of
both sets are FAi , TAi and FPi , TPi . To keep learning the
detection accuracy of the acquaintances, a node sends test
messages to nodes in both the acquaintance list and the
probation list periodically, and keeps updating the estimated
false positive rates and true positive rates of them. Let lmax

be the maximum number of HIDSes in both the acquaintance
and the probation list. We set this upper-bound because the
amount of resources used for collaboration is proportional to
the number of acquaintances it manages. lmax is determined
by the resource capacity of each HIDS. Let lmin be the
minimum length of a probation list and q be the parameter that
controls the length of the probation list lp compared to the the
length of acquaintance list la, such that lmin ≤ lp ≤ qla. The
parameters lmin and q are used to tune the trade-off between
the adaptability to the situation where nodes join or leave the
network frequently (“high churn rate”), and the overhead of
resources used on testing new nodes.

The acquaintance management procedure for each node is
shown in Algorithm 2. The acquaintance list A is initially
empty and the probation list P is filled by lini random nodes to
utilize the resources in exploring new nodes. An acquaintance
list updating event is triggered every tu time units. A is
updated by including new trusted nodes from P . A node that
stays at least tp time units in probation is called a mature
node. Only mature nodes are allowed to join the acquaintance
list (lines 15-21). Mature nodes with bad qualification will be
abandoned right away. After that the acquaintance selection
algorithm is used to find the optimal candidate list. Collabo-
ration requests are sent out for nodes which are selected in
the optimal list. If an acceptance is received before expiration
time then the collaboration is confirmed, otherwise the node
is abandoned (lines 22-25). Then, P is refilled with new
randomly chosen nodes (lines 27-30).

Several properties are desirable for the effective acquain-
tance management algorithm, including convergence, stabil-
ity, and incentive for collaboration. When our acquaintance
management is in place, we are interested to know with
whom the HIDS nodes end up collaborating with and how
often they change their collaborators. Section V evaluates our
acquaintance management algorithm, to demonstrate that our
algorithm achieves these properties.

V. EVALUATION

In this section, we present a set of experiments to demon-
strate the desirable properties of our acquaintance management
algorithm. Each experimental result presented in this section
is derived from the average of a large number of replications
with an overall negligible confidence interval.

A. Simulation Setting

We simulate an environment of n HIDS peers collaborating
together by adding each other as acquaintances. We adopt two

parameters to model the detection accuracy of each HIDS,
namely, false positive rate (FP) and false negative rate (FN).
Notice that in reality most HIDSes have low FP (< 0.1) and
FN is usually in the range of [0.1, 0.5]. This is because false
positives can severely damage the reputation of the product,
so vendors are working hard to minimize their FP rate. In
our experiment, we select parameters which reflect real world
properties. To test the detection accuracy of acquaintances,
each peer sends test messages where their correct answers
are known beforehand. Test messages are sent following a
Poisson process with rate R. R will be determined in the
next subsection. The diagnosis results given by a HIDS are
simulated following a Bernoulli random process. If a test
message represents a benign activity, the HIDS i raises alarm
with a probability of FPi. Similarly, if the test message
represents intrusions, an alarm will be raised with a probability
of 1-FNi. All parameter settings are summarized in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value Description

R 10/day Test message rate
λ 0.95 Forgetting factor

Cfp/Cfn 20/100 Unit cost of false positive/negative decisions
tp 10 days Probation period
tu 1 day Acquaintance list update interval
lini 10 Initial probation length
lmax 20 Maximum total number of acquaintances
lmin 2 Minimum probation list length
T min 0.5 Minimum acceptable true positive rate
F max 0.2 Maximum acceptable false positive rate

q 0.5 Length ratio of probation to acquaintance list
π1 0.1 Prior probability of intrusions

B. Determining the Test Message Rate

The goal of our first experiment is to study the relationship
between test message rates and FP, FN learning speed. We
simulate two HIDSes A and B. A sends B test messages to
ask for diagnosis, and learns the FP and FN of B based on
the quality of B’s feedback. The learning procedure follows
Equations (1), (2), and (3). We fix the FN of B to 0.1, 0.2,
and 0.3 respectively. Under each case, we run the learning
process under different test message rates, 2/day, 10/day, and
50/day respectively. We observe the change of estimated FN
over time, plotted in Figure 2. We see that when R is 2/day,
the estimated FN converges after around 30 days in the
case of FN=0.2. The converging time is slightly longer and
shorter in the cases of FN=0.3 and FN=0.1, respectively. When
R is increased to 10/day, the converging time decreases to
around 10 days. In the case of R=50/day, the corresponding
converging time is the shortest (around 3 days) among the
three cases. Increasing the test message rate R to 50/day does
not reduce much learning process time. Based on the above
observation, we choose R=10/day and the probation period tp
to be 10 days as our system parameters. In this way, the test
message rate is kept low and the learned FN and FP values
converge after the probation period.
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C. Efficiency of our Feedback Aggregation

In this experiment, we evaluate the effectiveness of our
Bayesian decision based feedback aggregation by comparing it
with a simple threshold based aggregation. We have described
our Bayesian decision model in Section III-B. In a simple
threshold based feedback aggregation method, if the number
of HIDSes reporting intrusions is larger than a predefined
threshold, then the system raises an alarm. The threshold-based
decision is used in N-version cloud anti-virus systems [12].

We set up eight HIDSes {HIDS0, HIDS1, ..., HIDS7} with
their FP and FN rates randomly chosen from the range [0.1,
0.5]. HIDS0 sends consultations to all other HIDSes, collects
and aggregates feedback to make intrusion decisions. The
costs of false positive and false negative decisions are Cfp=20
and Cfn=100 respectively. We compare the average false
detection cost using the Bayesian decision and the simple
threshold-based decision. Figure 3 shows that the cost of
threshold decision largely depends on the threshold value. An
appropriate threshold can significantly decrease the cost of
false decisions. However, the Bayesian decision prevails the
threshold decision under all threshold settings. This is because
the threshold decision treats all participants equally, while
the Bayesian decision method recognizes different detection
capabilities of HIDSes and takes them into account in the
decision process. For example, if a HIDS asserts that there
is intrusion, our Bayesian based model may raise an alarm
if the HIDS has a low FP rate and ignores the warning if
the HIDS has a high FP rate. However, the threshold based
decision model will either raise an alarm or not based on the
threshold but not on the individual who issued the warning.

D. Risk Cost and the Number of Collaborators

Risk cost is the expected cost from false decisions such
as raising false alarms (FP) and missing the detection of an
intrusion (FN). We show that introducing more collaborators
can decrease the risk cost. In this experiment, we study the
impact of the number of collaborators on the risk cost. We
set up four groups with equal number of HIDSes. Nodes in
all groups have the same FP rate of 0.03, but their FN rates
vary from 0.1, 0.2, 0.3, to 0.4, depending on the group they are
in. Inside each group every node collaborates with every other

node. We are interested in the risk cost as well as maintenance
cost. The maintenance cost is the cost associates with the
amount of resource that is used to maintain the collaboration
with other nodes, such as answering diagnose requests from
other HIDSes. Since our purpose is to capture the concept of
maintenance cost but not to study how much it is, we assume
the maintenance cost to be linearly proportional to the number
of collaborators with a unit rate Ca=0.01 (see Table I).

We increase the size of all groups and observe the average
cost of nodes in each group. From Figure 4, we can see that
in all groups, the cost drops down fast in the beginning and
slowly as group size increases. After an optimal point (marked
by large filled circles), the cost slowly increases. We find that
groups with higher detection accuracy have lower optimal
costs. Also they need a smaller number of collaborators to
reach the optimal cost. For example, in the case of FN=0.4,
13 collaborators are needed to reach optimal, while the number
of collaborators required is 4 in the case of FN=0.1.

E. Efficiency of Acquaintance Selection Algorithms

We learned in the previous section that when the number of
collaborators is large enough, adding more collaborators does
not decrease the overall cost because of the associated main-
tenance cost. An acquaintance selection algorithm is proposed
in Algorithm IV-B. In this section, we compare the efficiency
of acquaintance selection using the brute force algorithm and
our acquaintance selection algorithm. We create 15 HIDSes
as candidate acquaintances with FP and FN rates randomly
chosen from intervals [0.01, 0.1] and [0.1, 0.5], respectively.
Both the algorithms are implemented in Java and run on a PC
with AMD Athlon dual core processor 2.61GHZ, and with
1.93 GB RAM. We start the candidate set size from 1 and
gradually increase the size. We observe the cost efficiency and
run time efficiency of both algorithms.

Figure 5 shows that the brute force algorithm performs
slightly better with respect to acquaintance list quality since
the overall cost using its selected list is slightly lower. How-
ever, Figure 6 shows that the running time of the brute force
method increases significantly when the candidate set size
exceeds 11, and continues to increase exponentially, while our
algorithm shows much better run time efficiency. Based on our
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experiment, we suggest that the brute force method should
only be used when the size of candidate list is small (≤ 11).
When the candidate list is large, our greedy algorithm should
be used to select acquaintances.

F. Evaluation of Acquaintance Management Algorithm

In this experiment, we study the effectiveness of our ac-
quaintance management algorithm (Algorithm 2). We set up
a simulation environment of 100 nodes. For the convenience
of observation, all nodes have fixed FP rate 0.1 and their FN
rates are uniformly distributed in the range of [0.1, 0.5]. All
nodes update their acquaintance list once a day (tu=1). We are
interested to observe several properties, including convergence,
stability, and incentive.

1) Convergence: Our first finding about our acquaintance
management algorithm is that HIDSes converge to collaborat-
ing with other HIDSes with similar detection accuracy levels.
We observed through experiments that HIDSes collaborate
with random other nodes in the network in the beginning.
After a long term (200 days), all HIDSes collaborate with
others with similar detection accuracy, as shown in Figure 7.
Our reasoning is that the collaboration between pairs with
high qualification discrepancy is relatively not stable since
our collaboration algorithm is based on mutual consensus and
consensus is hard to reach between those pairs.

2) Stability: Collaboration stability is an important peop-
erty since cooperation between HIDSes is expected to be
long term. Frequently changing collaborators is costly because

HIDSes need to spend considerable amount of time to learn
the honesty of new collaborators. The stability can be observed
from Figure 8, where the average collaboration time spans for
three selected nodes are shown with different point shapes.
We can see that the collaboration among nodes with similar
expertise levels is more stable. For example, the node with low
FN=0.1 forms very stable collaboration connection with other
nodes with low FN (around 180 days), while the collaboration
with HIDSes with high FN is very short (close to 0 days).

3) Incentive: The collaboration among HIDSes is a long
term collaboration relationship. Incentive is important for the
long term sustainability of collaborations since it provides
motivation for peers to contribute [6], [7]. Figure 9 plots the
average overall cost in the first 365 days of collaboration for
three nodes with FN values 0.1, 0.3, and 0.5 respectively. In
the first 10 days, the costs for all nodes are high. This is
because all collaborators are still in probation period. After
day 10, all cost values drop down significantly. This is because
collaborators pass probation period and start to contribute
to intrusion decisions. The cost for high expertise nodes
continues to drop while the cost for low expertise nodes
increases partially after around day 20, and stabilizes after day
50. This is because the acquaintance management algorithm
selects better collaborators to replace the initial random ones.
We can see that collaboration can significantly decrease the
cost from intrusions for all participants. Figure 10 shows the
distribution of the converged cost of all nodes on day 200. We
can observe that the HIDSes with higher detection accuracy



can achieve less cost in intrusion detection. This provides
incentive for nodes to behave truthfully in cooperation.

VI. RELATED WORK

Various approaches have been proposed to evaluate HIDSes.
All these approaches use a single trust value to measure
whether a HIDS will provide good feedback about intrusions
based on past experience with this HIDS. For example, Duma
et al. [5] introduce a trust-aware collaboration engine for cor-
relating intrusion alerts. Their trust management scheme uses
each peer’s past experience to predict others’ trustworthiness.
Our previous work [9] uses Dirichlet distributions to model
peer trust, but it does not investigate the conditional detection
accuracy such as false positives and false negatives. In the
current work, we use both the false positive rate and true
positive rate to represent the detection accuracy of a HIDS
based on a Beta learning approach, to better capture the infor-
mation about the detection ability of the HIDS. The methods
for aggregating feedback provided by Duma et al. [5] and
our previous work are also simplistic. Indeed, they both use
a weighted average approach to aggregate feedback. Another
broadly accepted decision model in CIDN is threshold-based,
which is used in AVCloud [12]. In their model, when the
total number of collaborators raising alarms exceeds a fixed
threshold, an alarm will be raised. In this paper, we apply the
well established Bayes’ Theorem for feedback aggregation.

Most previous works set a fixed length of the acquaintance
list, such as in [16]. Others use a trust threshold to filter
out less honest acquaintances [17], [9]. The advantage of
the simple threshold based decision is simplicity and ease
of implementation. However, it is only effective in a static
environment where collaborators do not change, such as the
environment presented in [12]. In a dynamic environment,
finding the optimal threshold is a difficult task. Our Bayesian
decision model is efficient and flexible. It can be used in
both static and dynamic collaboration environments. Equipped
with this Bayesian decision model, our acquaintance selection
algorithm based on a greedy approach can find the smallest
number of best acquaintances that can maximize the accuracy
of intrusion detection.

VII. DISCUSSION AND FUTURE WORK

In this paper, we proposed a statistical model to evaluate
the tradeoff between the maintenance cost and intrusion cost,
and used an effective acquaintance management method to
minimize the overall cost for each HIDS in a CIDN. More
specifically, we adopted the Bayesian learning approach to
evaluate the accuracy of each HIDS in terms of its false
positive and true positive rates in detecting intrusions. The
Bayes’ Theorem is applied to the aggregation of feedback
provided by the modeled HIDSes. Our acquaintance man-
agement explores a list of candidate HIDSes and selects
acquaintances using an acquaintance selection algorithm. This
algorithm is based on a greedy approach to find the smallest
number of best acquaintances, and can minimize the cost of
intrusion detection. Through a simulated CIDN environment,

we evaluated our acquaintance selection algorithm against a
brute force approach. Comparatively our algorithm achieves
similar performance but requires much less computation time.
Our acquaintance management is also demonstrated to be able
to achieve the desirable properties of convergence, stability and
incentive.

As our future work, we will seek a theoretical method to find
the optimal length of the acquaintance list of a HIDS based
on the detection accuracy of a set of candidate acquaintances.
We will also study attack models intending to compromise the
collaboration mechanism and integrate corresponding defense
techniques to improve the robustness of our acquaintance
management algorithm.
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