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ABSTRACT
Unfair rating attacks to trust systems can affect the accuracy
of trust evaluation when trust ratings (recommendations)
about trustee agents are sought by truster agents from oth-
ers (advisor agents). A robust trust system should remain
accurate, even under the worst-case attacks which yield the
least useful recommendations. In this work, we base on in-
formation theory to quantify the utility of recommendations.
We analyse models where the advisors have the worst-case
behaviour. With these models, we formally prove that if the
fraction of dishonest advisors exceeds a certain threshold,
recommendations become completely useless (in the worst
case). Our evaluations on several popular trust models show
that they cannot provide accurate trust evaluation under the
worst-case as well as many other types of unfair rating at-
tacks. Our way of explicitly modelling dishonest advisors
induces a method of computing trust accurately, which can
serve to improve the robustness of the trust models.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

Keywords
Trust System; Unfair Rating; Robustness; Information Leak-
age; Worst-Case Attack

1. INTRODUCTION
In a trust system, a truster agent evaluates the trustwor-

thiness of a trustee agent with which it interacts, based on
its direct experiences and the recommendations about the
trustee provided by other trusters (called advisors). How-
ever, some dishonest advisors may launch attacks by pro-
viding misleading recommendations, also known as unfair
ratings [9, 20, 6, 2]. Thus, the accuracy of trust evalua-
tion depends on the robustness of the trust system, that is,
whether it can function properly under all situations – par-
ticularly in the worst case where dishonest advisors launch
the worst-case unfair rating attacks – and be capable of han-
dling unfair rating attacks in a satisfactory manner [10, 13].
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In order to properly value an advisor’s recommendations,
we need to establish the honesty (or trustworthiness) of the
advisor. This is what the existing trust models typically
achieve [20, 21, 19]. However, we argue that knowing only
the trustworthiness of advisors is not sufficient. For a com-
plete picture, we also need to understand how the advisors
behave when they are dishonest. Therefore, in this paper,
we focus on analysing the behaviors of dishonest advisors
(i.e., attacks), especially the worst-case attack, aiming to
improve the robustness of the existing trust models.

More specifically, for the truster who wants to learn from
recommendations, the worst-case unfair rating attack is to
deliberately produce recommendations from which the truster
learns the least1. In this work, we use information theory
to quantify how much information the truster can learn as
the information leakage of recommendations. The worst-
case unfair rating attack is then identified as minimising the
information leakage of the recommendations. Based on this
thinking, we find out the strategies of dishonest advisors
that lead to the worst case.

Some notable theoretical contributions are: 1) we prove
that in the worst case, even if the fraction of dishonest ad-
visors is larger than the commonly asserted threshold 0.5,
the truster can still obtain information from recommenda-
tions; 2) we prove that, even in the case where the truster
obtains zero-information, dishonest advisors may still some-
times report the truth; 3) we also prove that, for dishonest
advisors, to minimise the information leakage of their true
observations and that of the trustworthiness (or integrity) of
trustees, they need to perform different attacking strategies.

Based on the theoretical analysis and the explicit mod-
elling of the worst-case attacking strategies of the dishonest
advisors, we propose an induced trust computation (ITC)
method, which can ensure the accuracy of trust evaluation
under the worst case. The experimental results demonstrate
that under the worst case, ITC predicts either the integrity
of trustees or the true observations of dishonest advisors
with much higher accuracy compared to three representative
trust models: TRAVOS [20], BLADE [17] and MET [6]. To
defend unfair rating attacks, always assuming the worst case
is a safe but may not always be the most accurate choice.
Hence, we also investigate and compare the performance of
ITC with TRAVOS, BLADE and MET under various unfair
rating attacks. The experimental results show that although
our ITC method assumes the worst-case attack in computa-
tion, it still presents the higher accuracy in trust evaluation

1Recommendations opposite to the truth, for example, may
carry useful information. BLADE is a trust model capable
of learning from such opposite recommendations [17].



than TRAVOS, BLADE and MET when dealing with those
types of unfair rating attacks that are not the worst case.
All these results confirm that our method can effectively
improve the robustness of the trust models.

2. RELATED WORK
The unfair rating problem has been recognized as an im-

portant and challenging problem in trust systems [1, 9]. To
deal with this problem, many approaches attempt to accu-
rately model the trustworthiness of advisors in giving rat-
ings. We introduce two representative examples. Based on
the beta probability density function, TRAVOS [20] esti-
mates the trustworthiness of an advisor by examining the
reliability of the previous recommendations provided by this
advisor. BLADE [17] builds a Bayesian network model to
learn the advisors’ evaluation function which provides the
probability of ratings given the trustee’s features. However,
these trust models have the common assumption that dis-
honest advisors only adopt some simple strategies.

Only recently, the robustness issue has drawn the atten-
tion in the trust community [7, 5, 13], demanding that a
trust system should be robust to all potential attacks2. There
are trust models trying to address some specific unfair rat-
ing attacks. For example, Feng et al. [3] study three at-
tacks, namely RepBad, RepSelf and RepTrap, and propose
defenses against them. Jiang et al. [6] propose a trust model
based on evolutionary computation (called MET) to effec-
tively cope with four typical attacks and their combinations.
Liu et al. [11] propose a fuzzy logic based trust model to ef-
fectively resist the attacks that exist in a cyber competition
where human participants compete to break down a trust
system. However, it is still difficult to say that these trust
models will be robust to all possible unfair rating attacks.

Instead of looking at some specific attacks, we consider all
possible attacks and identify the worst case, because a trust
system is robust to unfair rating attacks if it functions well
under the worst-case attack. By explicitly modelling and
analyzing the worst-case unfair rating attacks, trusters can
then derive accurate trust evaluation.

3. PRELIMINARIES
Our approach is mostly supported by concepts and theo-

rems in information theory, as presented below.

Definition 1. (Shannon entropy [12]) The Shannon en-
tropy of a discrete random variable X is given:

H(X) = E(I(X)) = −
∑

xi∈XP (xi) · log(P (xi))

The Shannon entropy gets maximum when all possible out-
comes are equiprobable. Further, it can be generalised to
differential entropy for continuous random variables Y as:

h(Y ) = E(I(Y )) = −
∫
Y

p(y) · log(p(y)) dy

The Shannon entropy measures the expected amount of in-
formation carried in a random variable, which is decided by
the uncertainty of the random variable. The base of the log-
arithm is set as 2, without loss of generality. Since x log(x) is
a common term, we introduce the shortcut f(x) = x log(x).
For practical reasons, we let 0 log(0) = 0.

2Besides unfair rating attacks, other typical attacks are play-
books, reputation lag attack, etc. [10, 7].

Definition 2. (Conditional entropy [12]) The conditional
entropy of discrete random variables X under Y is given as:

H(X|Y ) = −
∑

yj∈Y P (yj) ·
∑

xi∈Xf(P (xi|yj))
It can be generalised to continuous X and Y as:

H(X|Y ) = −
∫
Y

p(y) ·
∫
X

f(p(x|y)) dx dy

The conditional entropy measures the expected amount of
information in one random variable when another random
variable is known. H(X|Y ) = H(X) iff X and Y are inde-
pendent. For brevity, we leave out the cases where only one
of X and Y is continuous. Note that 0 ≤ H(X|Y ) ≤ H(X).

Definition 3. (Cross entropy [16]) The cross entropy for
two distributions P and Q is given as:

H(P,Q) = EP [−log(Q)] = H(P ) +DKL(P ||Q)

The cross entropy measures the distance between the prob-
ability distribution the data actually follows and the dis-
tribution that is assumed. DKL(P ||Q) named Kullback -
Leibler divergence is a non-symmetric measure of the dif-
ference between distributions P and Q [18]. When P = Q,
H(P,Q) = H(P ), DKL(P ||Q) = 0, which are their minimal.

Definition 4. (Information leakage) The information leak-
age of X under Y is given as: H(X)−H(X|Y ).

Information leakage is the gain of information about one
random variable by learning another random variable. This
definition is the same with mutual information [15]. Infor-
mation leakage is zero, iff the two variables are independent.

Proposition 1. For any random variables X, Y : H(X) −
H(X|Y ) = 0 iff P (X) = P (X|Y ).

Theorem 1. (Jensen’s inequality) For a convex function f :

f(

∑
i ai · xi∑
i ai

) ≤
∑
i aif(xi)∑

i ai

Equality holds iff x1 = x2 = . . . = xn or f is linear. Two
instances of convex functions are f(x) and − log(x).

4. THE WORST CASE: MINIMISING INFOR-
MATION LEAKAGE

A trust system is robust if it can function properly under
all situations [7, 13]. For unfair rating attacks, we argue
that a trust system is robust if it can function well under
the worst case. To make a trust system robust to unfair
rating attacks, we thus need to find the worst-case attacks
first.

A truster aims to learn (or obtain information) from rec-
ommendations, based on which it constructs trust opinions
about trustees. Note that this does not simply mean the
truster would believe the recommendations. The truster can
calibrate the interpretation of recommendations based on
the trustworthiness or the strategies of advisors, to construct
accurate trust opinions. For example, BLADE proposes to
re-interpret ratings based on the evaluation functions used
by advisors [17]. Therefore, whenever there is information
in recommendations, there can be the way for a truster to
make use of it. The worst case then is: there is little infor-
mation in recommendations, or misbehaving advisors try to
minimise that information.

Below, we quantify the worst case and analyse what kinds
of recommending strategies constitute that, based on the
recommendation model introduced as follows.
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Figure 1: The naive recommendation model

4.1 Recommendation Model
There are trusters, trustees and advisors in a trust system,

of which an e-marketplace is a popular example. It includes
three kinds of agents: buyers, sellers and advisors. Buyers
and advisors may have interactions with sellers, where the
seller may deliver goods in a satisfactory manner (success)
with probability T , or fail to do so (failure) with probability
1−T , where T is called the trustworthiness (or integrity) of
the seller, and is unknown to the other agents. Below, we
analyse the worst-case recommendations provided by advi-
sors to a single buyer regarding a single seller.

Figure 1 presents the set-up. We first consider the set-up
with a single advisor. The advisor recommends its interac-
tion history with the seller to the buyer. We assume that
for the buyer, the number of interactions between the ad-
visor and the seller is a known quantity, n ∈ N; the only
thing unknown is what fractions are successes and failures.
The random variables O and R represent the true and the
claimed interaction history of the advisor about the seller,
respectively. We assume that before gettingR, O and T have
the highest uncertainty to the buyer, thus they are uniformly
distributed based on the maximum entropy principle.

The advisor may not always report the truth to the buyer.
We set a parameter p to describe the probability that the
advisor is honest. Honesty can refer to“free of deceit”as well
as “truthful”. We in this paper interpret it as the former.
Hence, dishonesty means that the advisor strategically gives
recommendations, and we will use these two words alterna-
tively. Correspondingly, 1−p represents the probability that
the advisor is dishonest/strategical. Given an observation
O = (i, n − i), with i as the number of successful interac-
tions, the probability that the advisor reports R = (j, n− j)
is ai,j . For example, a0,1 represents the probability that the
advisor reports R = (1, n− 1) when O = (0, n) is observed.
As R = (j, n−j), (j = 0, 1, . . . , n, j 6= i) constitutes all possi-
ble recommendations when the advisor is dishonest, we have∑
j 6=i ai,j = 1. Matrix ai,j decides the recommending strat-

egy of an advisor. For simplicity, below we use O = i, R = j
to represent O = (i, n− i) and R = (j, n− j) respectively.

The set-up with a single advisor can be generalised to
multiple advisors. To find the worst-case strategy, we need
to maintain the consistency and uniformity of their honesty
and strategies. Thus we assign the same n, p, ai,j to them.
Here, p ( 1−p) can also be approximately treated as the rate
of honest ( strategical) advisors Also, ai,j can be treated
as the rate of advisors reporting R = j when O = i is
observed. In this way, our analysis for a single advisor is
also explainable for multiple advisors.

In this paper, we consider two types of worst-case unfair
rating attacks performed by advisors: misbehaving advisors
aiming at minimising (hiding) the information of their true
observations, and misbehaving advisors aiming at minimis-
ing the information of the integrity of the seller.
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Figure 2: The extended recommendation model

4.2 Advisors Hiding their True Observations
This kind of advisors aims to hide their observations from

the buyer. The rationale is that, by hiding the true observa-
tions, advisors make it difficult for the buyer to construct an
accurate trust opinion about the seller. In the worst case,
the advisor can completely hide the true observations, i.e.,
the recommendation is independent of the true observations.

Theorem 2. In the naive recommendation model shown
in Figure 1, the recommendation R is independent of the
true observation O iff p = 1

n+1
and ai,j = 1

n
(i 6= j).

Proof If recommendation R is independent of O, then
P (R=j|O=i) = P (R=j|O=i′), for all j, i, i′.

P (R=j|O=i) =

{
p if i = j

(1− p)ai,j if i 6= j
(1)

Therefore p = (1−p)ai,j and ai,j = p
1−p , where i 6= j. Since∑

j ai,j = 1 where i 6= j, n · p
1−p = 1 and p = 1

n+1
. As the

result, ai,j = 1
n

, where i 6= j.

On the other hand, if p = 1
n+1

and ai,j = 1
n

, i 6= j, then

P (R=j|O=i) =
1

n+ 1
(2)

P (R=j) =
∑

iP (O = i) · P (R=j|O=i) =
1

n+ 1
(3)

As P (R=j|O=i) = P (R=j) holds for any i and j, R and O
are independent. �

Intuitively, we expect that the lower values of p (less hon-
est advisors) make it easier to hide O. However, Theorem 2
implies that when p < 1

n+1
the true observations cannot be

perfectly hidden, whereas for p = 1
n+1

, it can. Therefore,
we need to alter the naive model to accommodate for the
case p < 1

n+1
. When p < 1

n+1
, the independence of O and

R implies
∑
j 6=i ai,j < 1, which is impossible in the naive

model. This is caused by the fact that the advisor is forced
to lie (with n fixed) if the advisor is strategical in the naive
model. Therefore, we must allow strategical/dishonest ad-
visors to report the truth with non-zero probability. In fact,
it is nature that strategical advisors may sometimes tell the
truth, as part of deceit. As a real-world scenario: consider
a card game with only one Ace, King, Queen – the highest
wins. Alice asks her (dishonest) opponent Bob about what
his card is. If Bob always lies and if he states Queen, and
Alice has the King, Alice would know that Bob has the Ace.
Thus, as a strategical player, Bob should sometimes report
the truth to deceive Alice. Hence, here we introduce an al-
ternative option aj,j (e.g., a0,0 when j = 0), as depicted in
the extended recommendation model in Figure 2.

Theorem 3. In the extended recommendation model shown
in Figure 2, the recommendation R is independent of the
true observation O iff 0 ≤ p ≤ 1

n+1
and aij = p

1−p + ajj .



Proof If recommendation R is independent of O, then
P (R=j|O=i) = P (R=j|O=i′), for all j, i, i′.

P (R=j|O=i) =

{
p+ (1− p)ai,j if i = j

(1− p)ai,j if i 6= j
(4)

Therefore p + (1 − p)aj,j = (1 − p)ai,j , ai,j = p
1−p + aj,j .

Since
∑
j 6=i ai,j = 1−ai,i, np

1−p +
∑
j 6=i aj,j = 1−ai,i, we get∑

j aj,j = 1−(n+1)p
1−p . Since

∑
j aj,j ≥ 0 and 0 ≤ p ≤ 1, we

get 0 ≤ p ≤ 1
n+1

.

On the other hand, if 0 ≤ p ≤ 1
n+1

and aij = p
1−p + ajj

P (R=j|O=i) = P (R=j) = p+ (1− p)aj,j (5)

holds for any i, j. Hence, R and O are independent. �

When
∑
j aj,j = 0 and ai,j = p

1−p , Theorem 3 becomes

Theorem 2. Note that
∑
j aj,j > 0 is allowed when R is

independent of O, which implies even when the buyer learns
nothing, still some dishonest advisors may tell the truth.

Intuitively, recommendations are only useful when less
than half of the advisors are dishonest. Remarkably, Theo-
rem 3 proves otherwise. It implies that R and O cannot be
independent when p > 1

n+1
. This means that, for n > 1,

over half of the advisors can be dishonest (i.e., (1− p) > 1
2
),

yet the buyer can still learn from the recommendations.
Although no strategy can achieve the independency when

p > 1
n+1

, some strategies are still better at hiding the true
observations than others. To capture this, we generalise
the measure of dependency between recommendations and
true observations to information leakage (Definition 4 in Sec-
tion 3). The independency of R and O holds iff R leaks
zero information about O. Low information leakage about
O means that O is hidden well. Below, we aim to find the
strategy that minimises the information leakage for p > 1

n+1
.

As H(O) is unchangeable to the buyer, to minimise infor-
mation leakage, it suffices to minimise −H(O|R).

Definition 5. (Level strategy) is the strategy where: for
all 0 ≤ j ≤ n, aj,j = 0, and for all 0 ≤ i 6= j ≤ n, ai,j = 1

n
.

Theorem 4. The level strategy minimises information leak-
age of O given R for p ≥ 1

n+1
.

Proof Given hj = p+ (1− p)∑i ai,j , 0 6 i, j 6 n,

−H(O|R)=
∑

jP(R=yj)
∑

iP(O=xi|R=yj) logP(O=xi|R=yj)

=1 1

n+ 1

∑
j

(∑
i 6=j(1− p) · ai,j log(

(1− p) · ai,j
hj

)

+ (p+ (1− p)aj,j) log(
p+ (1− p)aj,j

hj
)
)

(6)

≥2 n

n+ 1

∑
i
(1− p)(1− ai,i)

n
log(

(1− p)(1− ai,i)
n

)

+ (p+

∑
j(1− p) · aj,j
n+ 1

) · log(p+

∑
j(1− p) · aj,j
n+ 1

)

≥3 p · log(p) + (1− p) · log(
1− p
n

)

Inequality 2 is derived based on the Jensen’s inequality (The-
orem 1 in Section 3). Inequality 3 is derived based on the
property that xlog(x) is superlinear and p ≥ 1

n+1
.

Finally, note that applying the strategy from Definition 5
to term 1 yields term 3. Thus, term 3 represents the infor-
mation leakage under the level strategy. Since term 3 is the
minimum, the level strategy minimises information leakage.
For p = 1

n+1
, the level strategy leads to zero information

leakage, as we proved in Theorem 2. �
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Figure 3: The minimal information leakage of O
varies with p and n

In summary, we have found the strategies that minimise
the information leakage about O for all p ∈ (0, 1). Specifi-
cally, for p < 1

n+1
, the strategy requires a fraction of dis-

honest advisors to report the truth. For p ≥ 1
n+1

, the
strategy requires dishonest advisors to uniformly choose a
lie. Further, zero information leakage (independency) is only
achieved when p ≤ 1

n+1
. The buyer can still get some infor-

mation for p > 1
n+1

.
To illustrate our results, we plot the information leakage

of O in the worst case, as a variable of p (with n = 5)
and n (with p = 0.25), in Figure 3. From the figure, we
learn that when p ≤ 1

n+1
or n ≤ 1

p
− 1, the information

leakage is zero. And when the difference between p and
1

n+1
increases, the information leakage increases. This will

further be demonstrated in the experiments in Section 5.

4.3 Advisors Hiding the Integrity of the Seller
This kind of advisors aims to hide the integrity, T , of

the seller from the buyer. The rationale is that the buyer’s
trust opinion is about the integrity of the seller. Therefore,
to make it difficult for the buyer to construct an accurate
trust opinion about the seller, the advisor aims to hide in-
formation about the integrity of the seller.

Intuitively, hiding the true observations may seem equiv-
alent to hiding the integrity of the seller. As we will prove
in Theorem 6, they are not the same. However, they do
coincide whenever they can avoid information leakage.

Theorem 5. There is zero information leakage of T , iff
there is zero information leakage of O.

Proof From Proposition 1 in Section 3, zero information
leakage of T (O) given R is equivalent to T (O) being inde-
pendent of R. If O is independent of R, we have

P (T=t|R=j) =1
∑

iP (T=t|R=j, O=i) · P (O=i|R=j)

=2
∑

iP (T = t|O = i) · P (O = i|R = j)

=3
∑

iP (T = t|O = i) · P (O = i) (7)

=4 P (T = t)

which holds for any t, j, implying that T is independent
of R. Term 2 follows because T and R are conditionally
independent given O.

On the other hand, if T is independent of R, we have

P (O=i|R=j) =1
∑

iP (O=i|T=t, R=j) · P (T=t|R=j)

=2
∑

iP (O = i|T = t) · P (T = t|R = j)

=3
∑

iP (O = i|T = t) · P (T = t) (8)

=4 P (O = i)
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Figure 4: The minimal information leakage of T
varies with p and n

which holds for any i, j, implying that O is independent
of R. Term 2 follows because O and R are conditionally
independent given T . Thus we prove Theorem 5. �

Note that since zero information leakage of O requires p ≤
1

n+1
, zero information leakage of T also requires p ≤ 1

n+1
.

Theorem 6. The level strategy does not minimise infor-
mation leakage of T , for all n, p that satisfy p > 1

n+1
.

Proof It suffices to provide a counterexample. For n =
2, p = 2

3
, using the level strategy, we obtain −H(T |R) =

0.2192. When we set

a =

 0 0.2938 0.7063
0.4922 0.0156 0.4922
0.7063 0.2938 0

 ,

−H(T |R) = 0.1934. Since 0.1934 < 0.2192, the level strat-
egy does not minimise information leakage of T . �

Below, we aim to find the lying strategy that minimises in-
formation leakage of T given R when p > 1

n+1
. As H(T ) is

unchangeable, it suffices to minimise −H(T |R).

−H(T |R) = −
∑

jP (R = j)H(T |R = j)

=
∑

jP (R = j)

∫ 1

0

fT (t|R = j) · log fT (t|R = j) dt,

where P (R = j) as before, and

fT (t|R = j)=
∑

ifT (t|O= i, R= j) · P (O= i|R= j) (9)

=
∑

ifβ(t; i+1, n−i+1) ·
{ p+(1−p)aj,j

hj
if i = j

(1−p)ai,j
hj

if i 6= j

Note that P (O = i|R = j) is the posteriori probability about
O known R, which can be computed from P (R = j|O = i)
based on Bayes’ theorem. And P (R = j|O = i) is decided
by the recommending strategy.

For our analysis, we use a local search heuristic to find
good strategies for the advisors. Our heuristic is initialised
with the level strategy. We iterate over all ai,j , where, for
each ai,j , we increase ai,j with a fixed value (at the expense
of the other ai,j′) until −H(T |R) stops decreasing. We per-
form the iteration multiple times, with decreasing step sizes.
In the limit, the heuristic is a gradient search.

To illustrate the analysis above for T , we plot the informa-
tion leakage of T in the worst case, as a variable of p (with
n = 5) and n (with p = 0.25), in Figure 4. From the figure,
we learn that when p ≤ 1

n+1
or n ≤ 1

p
− 1, the information

leakage is zero. And when the difference between p and 1
n+1

increases, the information leakage increases. This will also
be further demonstrated in the experiments in Section 5.

4.4 Induced Trust Computation (ITC)
Given the worst-case strategies of the advisors, the buyer

can construct accurate trust opinions. A trust opinion is a
distribution fT (t|φ), where φ consists of the knowledge of
the buyer (direct experiences and recommendations) [8].

In [14], the authors prove the following theorem under the
assumptions that if recommendations and observations are
conditionally independent given the strategies of the sellers
and advisors, and that their strategies are independent:

Theorem 7. For any collection of recommendations and
direct observations ϕ and ψ, fT (t|ϕ,ψ) ∝ fT (t|ϕ) · fT (t|ψ).

With Theorem 7, the knowledge of the buyer can be broken
down into cases for which we have explicit computations.
The case where the knowledge of the buyer is direct expe-
rience, has already been solved [8]. If the knowledge of the
buyer is a single recommendation, then φ = R and the trust
opinion is fT (t|R). In the worst-case attack, fT (t|R) can be
computed known the strategy (matrix ai,j) of the advisors
based on Equation (9).

Note that the accuracy of computing fT (t|S) is influenced
by the accuracy of p. As a description of the trustworthiness
of an advisor, p is usually estimated by the trust models (as
done by TRAVOS [20] and many other classic models [21,
19]). In this work, we are not trying to build a new robust
trust model. We are solving a sub-problem of defending the
worst-case unfair rating attack to make a trust model more
robust. Hence, we simply assume that p is already accurately
estimated by the trust models. In fact, we also demonstrate
through experimentation in Section 5 that even when p is
not entirely accurately estimated by the trust models (e.g.,
TRAVOS and MET), their robustness can still be improved
by our ITC method.

In this way, by being aware of the worst-case strategies
in advance, the buyer gains the initiative to derive accurate
trust opinions under the worst case.

5. ROBUSTNESS ANALYSIS
As surveyed in Section 2, TRAVOS [20], BLADE [17] and

MET [6] are three state-of-the-art trust models to address
the unfair rating problem, where TRAVOS and BLADE as-
sume some simple attacking strategies for advisors but MET
tries to cope with some typical attacks and their combina-
tions. In this section, we evaluate the robustness of these
trust models, and more importantly to demonstrate that
our induced trust computation (ITC) method can further
improve the robustness of these trust models.

More specifically, we conduct a set of experiments based
on simulations3. In the first experiment, we compare the
trust opinions about sellers that the trust models and ITC
construct, under two types of the worst-case attacks: advi-
sors hiding true observations (O) and hiding seller integrity
(T ). Because ITC always assumes the worst case, to have
more fair comparison, in the second experiment, we compare
the accuracy of trust opinions given by ITC and the three
models, under other random attacking strategies which are
not the worst case. Modelling the honesty of advisors accu-
rately is not the focus of this work, hence in the first two
experiments, we simply assume that the honesty of advisors
is accurately estimated by all trust models, which appears

3We did not use existing testbeds such as the ART
testbed [4] because they are often only used to study the
quality of expectations about trust evaluation.
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Figure 6: Comparing predictions on distributions of T

as a same parameter (p) to all models. In the third ex-
periment, we further study whether our ITC method can
improve the robustness of the trust models given whatever
advisor honesty output by these trust models.

All of the simulations above rely on the true behaviour of
the seller. To address this, we run the Monte Carlo simu-
lation. In each run, t ∈ [0, 1] is uniformly randomly chosen
as a sample of T for the seller. Then, n Bernoulli samples
are drawn with the probability t, which provides us an o
as the true value of O. Based on o and an advisor’s strat-
egy a, a recommendation r is generated as the true value of
R (recommendations of the advisor). The trust models are
provided with recommendation r, which is used to construct
the trust opinion about the seller.

5.1 Under the Worst Case
In the first experiment, we compare the predictions on T

and O against the truth, under the worst-case strategies of
hiding T and O respectively. The values for parameters n,
p, r∗ are manually chosen as the number of transactions,
probability of advisor honesty, and recommendation. We
then run the simulation, but reject the sample of T (and the
corresponding sample of O) if the resulting R 6=r∗. In this
way, we get the true probability distributions of T and O:
P (T |R=r∗) and P (O|R=r∗), which are used compare with
that predicted by TRAVOS, BLADE, MET and ITC.

For comparison about O, we select four groups of values
for n, p, r∗: (3, 0.8, 0), (3, 0.2, 2), (10, 0.8, 8), (10, 0.2, 2).
Figure 5 presents the results. TRAVOS and MET are not
considered here, as they do not generate the prediction of
O. The predictions of ITC have much smaller difference
with the real distributions compared with BLADE. Larger
p leads to more converged predictions. Comparing Figures
5(a) and 5(c), although p=0.2, s=2 are the same, prediction
of ITC given n=10 is converged on O=2 while that given
n=3 is uniformly distributed. According to the theoretical

proof in the former section, when n=3, p < 1
n+1

= 0.25,
there is no information leakage of O under the worst-case
attack. Hence, ITC predicts maximum uncertainty of O.

For comparison about R, we select four groups of values
for parameters n, p, r∗: (3, 0.8, 0), (3, 0.3, 0), (10, 0.8, 7),
(10, 0.3, 7). Figure 6 presents the results. The probability
distributions of T predicted by ITC are much closer to the
real distributions than that of TRAVOS, BLADE and MET.
For ITC, TRAVOS and MET, the shapes of predicted dis-
tributions are mainly decided by p and r, while BLADE is
largely influenced by n instead. Comparing Figures 6(a,c)
with 6(b,d), larger p leads predictions of ITC and TRAVOS
to be more converged and aligned with the recommenda-
tions, because the buyer tends to believe the advisor more.

Figures 5 and 6 are restricted to a fixed r, n, p and a. To
make more meaningful comparisons, we use cross entropy
(Definition 3 in Section 3) to measure the quality of a pre-
diction so that we can compare a multitude of outcomes
simultaneously. In a good prediction, cross entropy is low.
We generate a true integrity of a seller t, a true observation
o and a recommendation r in each run, and r is used as in-
put for the models to yield a trust opinion about the seller.
To generate the graphs, we let n = 3 and n = 10, and let
0 < p < 1 be the x-axis. We study four scenarios: predicting
O (T ) under the worst-case strategies of hiding O (T ), and
predicting T (O) under the worst-case strategy of hiding O
(T ). Because TRAVOS and MET do not output predictions
of O, they do not appear in Figure 7(c-f). Figure 7 provides
the following information.

First, when p ≤ 1
n+1

, all the ITC graph segments are flat,
meaning that uniform distribution is predicted. This corrob-
orates our proofs: when p ≤ 1

n+1
, there is no information

leakage about T (O) given R in the worst case, thus H(T |R)
(or H(O|R)) reaches the maximum, which implies uniform
distribution. Note that for continuous distributions, the uni-
form distribution has entropy zero, explaining why ITC has
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Figure 7: Comparing accuracy of predicting T (or O) under the worst-case of hiding T (or O)

cross entropy of 0 for small p, in Figures 7(a, b, g, h). In
Figures 7(c-f), the uniform distribution is over discrete vari-
ables, meaning that the entropy depends on n, which ex-
plains the difference in cross entropy for value p near 0.

Second, when p > 1
n+1

, ITC shows lower cross entropy
than BLADE, TRAVOS and MET, for equal p and n. More-
over, we can identify the trends that BLADE and ITC have
decreasing cross entropy over p (and n), whereas for TRAVOS
and MET, the cross entropy increases before it decreases,
over p. The reason that ITC is decreasing, is simply because
H(T |R) (and H(O|R)) are decreasing over p. Recall (Defini-
tion 3) that cross entropy is the entropy of the truth plus KL-
divergence, and that ITC has KL-divergence of 0, because it
computes correct H(T |R) (and H(O|R)) by knowing p and
the worst-case strategies of advisors. TRAVOS and MET
first increase because they over-predict – causing to assign
unreasonably low probability to unlikely events (as shown
in Figure 6). As p tends to 1, their over-predictions start
to match the true distribution. BLADE suffers the same
problem of over-predicting. However, its over-predicting
is not linked with p. Therefore, we observe a decreasing
cross-entropy, as reality tends towards more polarised out-
comes. Note that using the same real p value, the accuracy
of TRAVOS is higher than MET, indicating that the method
of aggregating recommendations in TRAVOS is better than
that of MET under the worst-case attack. In fact, MET
adopts a simple weighted average method to aggregate ad-
visors’ recommendations.

Third, when p is close to 1, the curves of TRAVOS, MET
and ITC with the same n get to converge at a same point.
With p being close to 1, nearly all of advisors report the
truth. The predictions of TRAVOS and MET thus get closer
to the truth, which is the prediction of ITC.

From the analysis above, it is obvious that our prediction
of T (O) is much more accurate than TRAVOS, BLADE and
MET under the worst case. Using our ITC method could
improve the robustness of these trust models.

5.2 Under other Attacks
The real strategies of advisors cannot be known. To al-

ways assume the worst case is a safe choice, but may not
be the most accurate choice. Hence, we investigate the per-
formance of ITC, which assumes the worst-case strategies,
under other types of attacks. Recall that a strategy of an
advisor is represented as a matrix ai,j where 0 ≤ i, j ≤ n
(see Section 4.1). We randomly generate ninety such strate-
gies. Then, these strategies are combined with the worst-
case strategy by assigning the worst case a weight varying
from 0 to 1. In so doing, the strength of the resulting strate-
gies approximately increases. We then compare the cross
entropy regarding the predictions of T (O) given by ITC,
TRAVOS, BLADE and MET, under all of these strategies.
Figure 8 presents the result.

For the truth (the red line), the cross entropy is equal to
the entropy of true distribution of T (O) given R because
KL-divergence is 0. As the recommending strategy tends to
be worse, the entropy of T (O) given R increases towards the
maximum, which is exactly the worst case. In Figure 8, ITC
has much smaller cross entropy with the truth, compared to
the three models, indicating that ITC predicts much closer
to the truth. And as the generated attacking strategy gets
closer to the worst case, ITC predicts more and more accu-
rately. Notice that there is little variance in the cross entropy
of BLADE and MET as the attacking strategies change, im-
plying that their performance does not change much for all
those strategies. On the other hand, the cross entropy of
TRAVOS increases as the attacking strategy gets closer to
the worst case, showing that the performance of TRAVOS
gets worse as the attacks become stronger.

From this experiment, even always assuming the worst
case, our ITC method can still improve the robustness of
the trust models against various other types of attacks.

5.3 Inaccurate Estimation of Advisor Honesty
The above experiments are conducted by assuming the

accurate estimation of advisor honesty (i.e., true p). In this
experiment, we investigate how ITC performs when p is pre-
dicted by other trust models, which may not be completely
accurate. BLADE does not estimate p, so we only com-
pare the accuracy of ITC (ITC-TRAVOS and ITC-MET)
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Figure 9: Using p estimated by other trust models under the worst-case and other types of attacks

with TRAVOS and MET, based on their predicted p respec-
tively. We consider the prediction of seller integrity T under
two scenarios: 1) the worst-case strategy of hiding O, with
the real p value varying from 0 to 1 (Figure 9(a-b)); 2) other
types of attacks with p = 0.7 and p = 0.3 (Figure 9(c-d)).

Based on p predicted by the corresponding trust models,
ITC still has much higher accuracy indicated by the lower
cross entropy of ITC-TRAVOS and ITC-MET as shown in
the figure, confirming that ITC can effectively improve the
robustness of TRAVOS and MET even when the estimation
of p may not be entirely accurate, and when the advisor
attacking strategies may not be the worst case.

Similar as the results in Figure 7, larger p leads to more
accurate prediction because the advisor is more trustworthy.
In addition, when the estimation of p is more accurate, the
prediction of seller integrity T should also be more accurate.
With this, compare ITC-TRAVOS and ITC-MET. ITC per-
forms better when using p output by MET than when using
p from TRAVOS, indicating that MET predicts the honesty
of advisors more accurately than TRAVOS. This is also sup-
ported by the results in [6]. However, with the p value from
MET, ITC cannot accurately predict the truth even under
the worst case (see Figure 9(a-b)), indicating that advisor
honesty estimated by MET is not completely accurate.

On the other hand, TRAVOS performs better than MET
when p < 0.6 in Figure 9(a-b,d). Also, recall the results
in Figure 7 where given the same true p, the predictions of
TRAVOS are more accurate than MET. These results indi-
cate that TRAVOS has a nice method for aggregating rec-
ommendations from the advisors. However, when p > 0.6,
MET outperforms TRAVOS, indicating that when the advi-
sors are more trustworthy, the effect of that method becomes
less important. This can also be observed from Figure 9(c)
that when p = 0.7 and under the worst-case attack (at-
tack #90), MET provides more accurate prediction than
TRAVOS. In fact, for other types of attacks that are close
to the worst case, MET also outperforms TRAVOS.

6. CONCLUSION AND FUTURE WORK
In this work, we used information theory to measure how

helpful recommendations are to trusters that receive them.
A fraction of advisors giving recommendations is dishon-
est: attackers. We identified and analysed which attack-
ing strategies reduce the overall helpfulness of recommenda-
tions. Our techniques and results can increase the robust-
ness of existing trust models against unfair rating attacks.

We introduced two information theoretic measures for the
quality of a recommendation, concerning how much a rec-
ommendation by an advisor reveals about the true obser-
vations of that advisor and about the true integrity of the
trustee, respectively. We find that the two measures coincide
iff recommendations reveal nothing; that the recommenda-
tions cannot always reveal nothing, even with more attack-
ers than honest advisors; and that it may be rational for an
attacker to report the truth, to obscure the truth.

We derived how to compute trust opinions, assuming the
worst-case attacking strategies. The results of our experi-
ments show that our method’s predictions are more accurate
than TRAVOS, BLADE and MET, meaning our method is
more robust, and more importantly that our method com-
plements the trust models in improving their robustness.

We have not yet considered collusion between agents. It
is a difficult problem, for which our approach of defining the
worst case may help. We will investigate this potential.
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