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A Simple and Fast Hypervolume Indicator-based
Multiobjective Evolutionary Algorithm
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Abstract—To find diversified solutions converging to true
Pareto fronts (PFs), hypervolume indicator-based algorithms
have been established as effective approaches in multiobjective
evolutionary algorithms (MOEAs). However, the bottleneck of
hypervolume indicator-based MOEAs is the high time complexity
for measuring the exact hypervolume contributions of different
solutions. To cope with this problem, in this paper, a simple
and Fast hyperVolume indicator-based MOEA (FV-MOEA) is
proposed to quickly update the exact hypervolume contributions
of different solutions. The core idea of FV-MOEA is that the
hypervolume contribution of a solution is only associated with
partial solutions rather than the whole solution set. Thus, the
time cost of FV-MOEA can be greatly reduced by deleting
irrelevant solutions. Experimental studies on 44 benchmark
multiobjective optimization problems (MOPs) with 2–5 objectives
in platform jMetal demonstrate that FV-MOEA not only reports
higher hypervolumes than the five classical MOEAs (NSGAII,
SPEA2, MOEA/D, IBEA and SMS-EMOA), but also obtains
significant speedup compared to other hypervolume indicator-
based MOEAs.

Index Terms—Multiobjective Evolutionary Algorithms, Pareto
Dominance-based, Scalarizing Function-based, Indicator-based,
Hypervolume, jMetal.

I. INTRODUCTION

Many real-world problems can be formulated as multiob-
jective optimization problems (MOPs), which involve several
conflicting objectives to be optimized simultaneously [1–43].
A minimization of MOP can be stated as follows:

min F (x) = (f1(x), . . . , fd(x))
s.t. G(x) ≤ 0, H(x) = 0, x ∈ Ω

(1)

where x = (x1, . . . , xm), Ω is the decision (variable) space,
Rd is the objective space, and F : Ω → Rd consists of d real-
valued objective functions with constraints G(x) ≤ 0,H(x) =
0. The feasible solution space is Ω = Πm

i=1[Li, Ui], and Li, Ui

are the lower and upper bound of xi, respectively.
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Multiobjective evolutionary algorithms (MOEAs) have been
well established as effective approaches to deal with MOPs [1–
43]. Based on various acceptance rules for selecting offspring
solutions, the classical MOEAs can be generally divided to
three groups: 1) Pareto dominance-based approaches (e.g.,
NSGAII [6], SPEA2 [7]), 2) Scalarizing function-based meth-
ods (e.g., MOEA/D [8–12]) and 3) Indicator-based algorithms
(e.g., IBEA [15], SMS-EMOA [16, 39–41]).

Pareto dominance-based approaches utilize the Pareto dom-
inance concept together with the crowding distance (NS-
GAII [6]) or clustering methods (SPEA2 [7]) to select off-
spring. On the other hand, scalarizing function-based meth-
ods calculate solution fitness using predefined weight vec-
tors and perform solution selection in different subproblems
(MOEA/D [8–12]). In essence, the heuristic selection schemes
in these MOEAs can be considered as approximated perfor-
mance indicators to measure the quality of solutions.

In contrast to the two mentioned groups of MOEAs,
indicator-based algorithms directly use performance indicators
(e.g., hypervolume, epsilon metric I1ϵ+) to select offspring [13–
16, 31–33, 36–41]. To date, several hypervolume indicator-
based MOEAs have been proposed to deal with MOPs. For
instance, SMS-EMOA [16, 39–41] is designed as a steady-
state MOEA to measure exact hypervolume contributions of
different solutions. The superiority of SMS-EMOA over the
two above groups of MOEAs has been verified by a plethora
of research studies [16, 37–41]. However, due to the high time
complexity of hypervolume calculation, it is unpractical to
apply SMS-EMOA to high-dimensional MOPs as well as a
large number of solutions. To alleviate this problem, Zitzler
et al. [15] proposed a general indicator-based evolutionary
algorithm (IBEA) that approximates hypervolume contribu-
tions by aggregating the hypervolume differences of pairwise
solutions. In addition, Bringmann et al. [31–33, 36] and Bader
et al. [34, 35] adopted the Monte Carlo sampling method to
estimate hypervolumes. On the other hand, Ishibuchi et al. [13,
14] transformed hypervolume contributions as a form of
distances between solutions and predefined weight vectors. Al-
though the time cost is reduced, the accuracy of hypervolumes
in [13–15, 31–36] is compromised.

In view of this problem, we make an attempt to enhance
the efficiency of hypervolume indicator-based MOEAs without
sacrificing their effectiveness. In this paper, a simple and Fast
hyperVolume indicator-based MOEA (FV-MOEA) is proposed
to quickly update the exact hypervolume contributions of
different solutions. In comparison to SMS-EMOA using the
whole solution set, FV-MOEA only involves part of solutions.
Thus, the time cost for calculating hypervolume contributions



IEEE TRANSACTIONS ON CYBERNETICS 2

in FV-MOEA can be greatly saved by deleting irrelevant
solutions. In addition, when a solution is removed from a
population, FV-MOEA transfers its hypervolume contribution
to others. This is beneficial to reduce the time cost of re-
calculating hypervolume contributions when the population
is changed. Furthermore, different from the studies in [13–
15, 31–36] that only find approximated hypervolumes, FV-
MOEA measures exact hypervolumes. Experimental studies
on 44 MOPs with 2–5 objectives in jMetal [4, 5] demonstrate
that FV-MOEA not only reports higher hypervolumes than
the five classical MOEAs, but also obtains significant speedup
compared to other hypervolume indicator-based MOEAs.

In summary, the core contributions of the proposed FV-
MOEA are highlighted as follows.

• A simple and fast method for measuring hypervolume
contributions is introduced. To the best of our knowledge,
this paper serves as the first attempt that reduces the
computational burden of calculating exact hypervolume
contributions by means of deleting irrelevant solutions
and transferring hypervolume contributions.

• A batch model for selecting offspring in hypervolume
indicator-based MOEAs is proposed. This mechanism can
greatly save the time cost of recalculating hypervolume
contributions when a population is changed.

• Experimental studies demonstrate that FV-MOEA is sig-
nificantly better than the five classical MOEAs (i.e.,
NSGAII, SPEA2, MOEA/D, IBEA and SMS-EMOA) in
term of hypervolume and time cost.

The rest of this paper is organized as follows. The related
work of hypervolume calculation is surveyed in Section II.
Section III introduces the fast hypervolume method and the
proposed FV-MOEA in detail. Experimental studies on 44
MOPs with 2–5 objectives are presented in Section IV. Finally,
the conclusions and future work are given in Section V.

II. RELATED WORK

In the last four decades, multiobjective evolutionary algo-
rithms (MOEAs) have gained popularity for solving multi-
objective optimization problems (MOPs) [1–43]. Among the
classical MOEAs, SMS-EMOA belonging to the indicator-
based MOEAs has exhibited superior performance compared
to the other two groups of MOEAs (i.e., Pareto dominance-
based approaches and scalarizing function-based methods), es-
pecially on high-dimensional MOPs [16, 37–41]. Nevertheless,
the bottleneck of SMS-EMOA is the high time complexity
for computing the exact hypervolume contributions of various
solutions [15, 16, 31–36, 39–44].

To alleviate the computational burden of hypervolume cal-
culation, various approaches have been proposed to either fast
compute exact hypervolumes [4, 5, 45–56] or obtain approxi-
mated hypervolumes [13–15, 31–36]. Specifically, the methods
in [4, 5, 45–56] are briefly discussed as follows.

• HSO: Hypervolume by slicing objectives (HSO) [4, 5,
45] reduces a d-dimensional hypervolume into several
(d− 1)-dimensional hypervolumes by slicing one objec-
tive each time, and then it sums up the hypervolumes
of all slices. The worst-case time complexity of HSO

is O(nd−1), where n is the size of solutions, d is the
number of objectives. In addition, two improved versions
of HSO [46, 47] adopt an incremental strategy and an
iterative schema to speed up hypervolume calculation.

• FPL: Fonseca, Paquete and López-Ibánez (FPL) [48]
prunes recursion trees for avoiding repeated domination
checks and the recalculation of partial hypervolumes.
FPL’s worst-case time complexity is O(nd−2 log n).

• HOY: Hypervolume by Overmars and Yap (HOY) [49–
51] converts a hypervolume calculation problem to a
Klee’s measure problem, which has the worst-case time
complexity of O(n log n + n

d
2 log n). In addition, an

improved version of HOY [52] recursively divides a
hypervolume space into trellises. Since calculating hyper-
volumes within the trellises is trivial, HOY’s worst-case
time complexity reduces to O(n log n+n

d
2 ). Another im-

proved version of HOY [53] arrives at the time complex-
ity of O(n

d
2 ) in 4-dimensional hypervolume calculation

by adopting a fast dimension-sweep method.
• QHV: Quick hypervolume (QHV) [54] recursively di-

vides a hypervolume space into several regions according
to pivot solutions. When solutions are uniformly distribut-
ed on a hyper-sphere or hyper-plane, the time complexity
of QHV is O(dn1.1 logd−2 n).

• WFG: Walking Fish Group (WFG) [55, 56] proposes an
efficient algorithm to calculate the exclusive hypervolume
of a solution, where most of other solutions limited within
this solution are dominated and will not participate into
the hypervolume calculation. While et al. [55, 56] prove
that the worst-case time complexity of WFG is O(2n−1).

Among the above methods, WFG has been generally accepted
as the fastest one for calculating exact hypervolumes on MOPs
with different geometrical shapes [37, 55, 56].

On the other hand, the following approaches [13–15, 31–36]
have been designed to approximate hypervolumes.

• General indicator-based methods: Zitzler et al. [15]
designed a general indicator-based evolutionary algorithm
(IBEA) to roughly estimate the hypervolume contribu-
tions of a solution by aggregating the pairwise hyper-
volume differences between the target solution and other
solutions.

• Monte Carlo sampling methods: Bader et al. [34, 35]
proposed a hypervolume-based search algorithm (HypE),
where the hypervolume contribution of a solution is
treated as the ratio between the size of sampling points
dominated by the target solution and the size of the whole
sampling points. In addition, the similar idea has been
adopted in [31–33, 36] for estimating hypervolumes.

• Achievement scalarizing function-based methods:
Ishibuchi et al. [13, 14] proposed an achievement s-
calarizing function-based method, which approximates
the hypervolume contribution of a solution as the mean
value of distances between the target solution and weight
vectors that are predefined by users.

Although the above approaches [13–15, 31–36] can save the
time cost of hypervolume indicator-based MOEAs, their per-
formance to solve various MOPs is compromised.



IEEE TRANSACTIONS ON CYBERNETICS 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f
2

Pareto−optimal front
d

a

b

c
w1

w2

w3 w4

e

R

Fig. 1. Hypervolume contribution for one solution v1(a, S,R)

In contrast to the approximation approaches [13–15, 31–
36], the proposed FV-MOEA is designed to calculate exact
hypervolume contributions for different solutions. On the other
hand, the previous studies in [4, 5, 45–56] focus on calculating
exact hypervolumes on a fixed solution set. The special design
of FV-MOEA is suitable to deal with the dynamic changes of
inserting and deleting solutions in population-based MOEAs,
by means of quickly transferring hypervolume contributions
among solutions.

III. FAST HYPERVOLUME INDICATOR-BASED MOEA

In this section, a simple and Fast hyperVolume indicator-
based multiobjective evolutionary algorithm (FV-MOEA) is
proposed to quickly update the exact hypervolume contribu-
tions of different solutions. For the sake of readability, the
general procedure of FV-MOEA is outlined as follows.

• Population initialization. The first population of individ-
ual solutions is random generated and evaluated by the
conflicting multiobjective fitness functions.

• Offspring reproduction. The offspring solutions are pro-
duced based on a selection method and evolutionary
operators (i.e., binary tournament, SBX and polynomial
mutation [6, 7, 15, 16]), which are commonly used in the
classical MOEAs.

• Solution selection. Based on the proposed fast hypervol-
ume method, FV-MOEA updates hypervolume contribu-
tions and selects offspring with a batch model.

Since FV-MOEA does not involve special initialization or
reproduction methods, we will put concentration on the third
element (i.e., solution selection) in the following sections.

A. Hypervolume Contribution for One Solution

To calculate the hypervolume contribution for one solution,
we design a nondominated-worse function to delete irrelevant
solutions, which can largely save the time cost for computing
the hypervolume of the whole solution set.
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Fig. 2. Hypervolume contribution for two solutions v2({a, b}, S,R)

Taking Fig. 1 as an illustrative example, suppose a nondom-
inated solution set S = {a, b, c, d, e} is on the 2-dimensional
Pareto-optimal front, and the reference set is R = {r} that
only involves one solution. The hypervolume of set S with
respect to R, denoted as HV(S,R), is the area cbadeRc
enclosed into the dash discontinuous line [4, 5, 13–15, 31–36,
42, 43, 45–56]. Then, a straightforward way to calculate the
hypervolume contribution of solution a is proposed in SMS-
EMOA [16, 39–41], taking the form of:

v1(a, S,R) = HV(S,R)− HV(S − a,R), (2)

where a ∈ S and v1(a, S,R) is the rectangle filled with slash
lines in Fig. 1.

In general, the time cost of Eq. 2 is high, because it needs to
calculate the hypervolume for all solutions HV(S,R) and the
hypervolume of the set excluding one solution HV(S− a,R).
For instance, suppose HSO1 [4, 5, 45] is adopted to compute
hypervolumes, the time complexity is O(nd−1) and |S| = n
(see Section II). This means that the time cost of hypervolume
calculation increases significantly as the size of solution set |S|
and dimension of MOPs d grow. Another limitation of Eq. 2
is that we have to recalculate the two terms (i.e., HV(S,R)
and HV(S−a,R)) when some solutions are removed from or
added into set S.

To cope with the above two limitations, in this paper, a fast
hypervolume method is proposed to compute v1(a, S,R) by
removing irrelevant solutions. At first, we define a worse func-
tion to find the worse objective values from two solutions. For
instance, to minimize a bi-objective MOP in Fig. 1, the worse
solutions w1, w2, w3, w4 have the maximum objective values
between a and b, c, d, e, respectively. Then, the nondominated-
worse function for solution a ∈ S is defined as:

W = nondominated-worse(a, S − a). (3)

In Fig. 1, W = nondominated({w1, w2, w3, w4}) = {w1, w3}
since w2, w4 are dominated by w1, w3, respectively.

1HSO is implemented in the commonly used platform jMetal [4, 5].



IEEE TRANSACTIONS ON CYBERNETICS 4

Input : S, nondominated solution set; R, reference
set; N , required size;

Output: S, solution set after hypervolume selection;
1 for si ∈ S do
2 W = nondominated-worse(si, S − {si})
3 v1(si, S,R) = HV(si, R)− HV(W,R)

4 while |S| > N do
5 j = min

si∈S
v1(si, S,R)

6 for sk ∈ S, sk ̸= sj do
7 w = worse(sj , sk)
8 W = nondominated-worse(w,S − {sj , sk})
9 v2({sj , sk}, S,R) = HV(w,R)− HV(W,R)

10 v1(sk, S,R)+ = v2({sj , sk}, S,R)

11 S = S − sj

12 Output nondominated solution set S
Algorithm 1: The procedure of FastHypervolume.

Based on the above definitions, an alternative way to cal-
culate v1(a, S,R) is proposed as:

v1(a, S,R) = HV(a,R)− HV(W,R). (4)

In contrast to Eq. 2, the time cost of Eq. 4 is relatively low,
because it only needs to calculate the dominated volume of one
solution HV(a,R) =

∏d
i=1 |ai−ri| and the term HV(W,R) is

only associated with partial solutions (i.e., solutions {b, d} ∈ S
in Fig. 1) [55, 56]. In addition, the methods discussed in
Section II, including HSO [4, 5, 45–47], FPL [48], HOY [49–
53], QHV [54], WFG [55, 56], can be adopted to calculate the
hypervolume for solutions (i.e., HV(W,R)). In Section IV,
the popular WFG is selected to calculate hypervolumes in
experimental studies.

B. Hypervolume Contribution for Two Solutions

By using the nondominated-worse function in Eq. 3, we can
quickly obtain the hypervolume contribution of two solutions.
Taking Fig. 2 as an illustrative example, the worse solution
w1 = worse(a, b) has the maximum objective values of
solutions a and b. Then, the nondominated worse solutions
for w1 is found as:

W = nondominated-worse(w1, S − {a, b}), (5)

where W = nondominated({w2, w3, w4}) = {w2, w3} in
Fig. 2. The hypervolume contribution of the two solutions
{a, b} is the rectangle with slash lines in Fig. 2, which is
calculated by the following method:

v2({a, b}, S,R) = HV(w1, R)− HV(W,R). (6)

Based on Eq. 6, the hypervolume contribution of two
solutions can be transferred to one solution when another
solution is deleted from the solution set. For instance, sup-
pose that solution a is removed from solution set S and
S′ = S − a = {b, c, d, e}. The new hypervolume contribution
of solution b can be quickly updated as:

v1(b, S′, R) = v1(b, S,R) + v2({a, b}, S,R). (7)

Input : NP, population size; Max FES, maximum
function evaluations; b, batch size;

Output: P , the nondominated population;
1 Pg = Initialization(), g = 0
2 t = 0
3 while t <= Max FES do
4 Qg+1 = ϕ
5 for i = 1 to b do
6 xi,g+1 = Generate(Pg)
7 Qg+1 = Qg+1

∪
{F (xi,g+1)}

8 t++

9 Qg+1 = Pg

∪
Qg+1

// Select Offspring from Nondominated Fronts
10 {F1,F2, · · · } = nondominated-sort(Qg+1)
11 Pg+1 = ϕ, i = 1
12 while |Pg+1|+ |Fi| < NP do
13 Pg+1 = Pg+1

∪
Fi

14 i++

// Select Offspring by FastHypervolume Alg. 1
15 R = ConstructReferenceSet(Qg+1)
16 Fi = FastHypervolume(Fi, R,NP − |Pg+1|)
17 Pg+1 = Pg+1

∪
Fi

18 g++

19 Output nondominated population Pg

Algorithm 2: The procedure of FV-MOEA.

In Fig. 2, the new hypervolume contribution of solution b,
termed as v1(b, S′, R), is the sum of its original hypervolume
contribution v1(b, S,R) (i.e., rectangle area bw1w2b) and the
hypervolume contribution of two solutions v2({a, b}, S,R).
It is worth noting that this special mechanism overcomes the
limitation of Eq. 2 for recalculating hypervolume contributions
when some changes are detected in set S.

C. Pseudocode of Solution Selection by Fast Hypervolume

The pseudocode of the fast hypervolume method to select
solutions with a batch model is described in Alg. 1.

In Alg. 1, Lines 1-3 calculate each solution’s hypervolume
contribution v1(si, S,R), si ∈ S by Eq. 4. Line 5 finds the
solution sj that has the smallest hypervolume contribution.
Lines 7-9 obtain the hypervolume contribution of two solutions
v2({sj , sk}, S,R) by Eq. 6, where sk ̸= sj , sk ∈ S. Then,
Line 10 updates the hypervolume contribution of sk by Eq. 7.
In Line 11, solution sj is deleted from set S. The procedure of
Lines 4-11 repeats until the number of solutions in S reaches
the predefined size N . It is worth noting that hypervolume
contribution for one solution by Eq. 4 (v1(si, S,R), si ∈ S)
is not recalled in Lines 4-11. Finally, the solution set after
hypervolume selection is output in Line 12.

D. Pseudocode of the Proposed FV-MOEA

Based on the solution selection of Alg. 1, the pseudocode
of the proposed FV-MOEA is given in Alg. 2.

In Alg. 2, Lines 1-2 random initialize the population P0.
In Lines 5-8, the offspring solutions Qg+1 is produced based
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Fig. 3. The median and IQR of Hypervolume (a) and Time (b) derived
by SMS-EMOAHSO and SMS-EMOAWFG with population size NP = 50 on
{2, · · · , 10}–dimensional DTLZ2 over 5 independent runs.

on a selection method and evolutionary operators (i.e., binary
tournament, SBX and polynomial mutation). Line 10 finds
the fronts {F1,F2, · · · } by the nondominated-sort method in
NSGAII [6]. Lines 11-14 select solutions from nondominated
fronts into Pg+1 until the solution size in front Fi is larger
than NP−|Pg+1|. In Line 15, the reference set R is constructed
by using the extreme objective values found in Qg+1

2. Line
16 uses the fast hypervolume method in Alg. 1 for selecting
NP − |Pg+1| solutions from front Fi. When the termination
criterion is satisfied (i.e., t > Max FES), the nondominated
population Pg is output in Line 19.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experiments are conducted on jMetal 4.3 [4, 5], which
is a Java-based framework that is aimed at facilitating the
development of metaheuristics for solving MOPs3.

A. Benchmark Problems and Experimental Settings

The benchmark MOPs include 44 testing instances: 5 MOPs
in ZDT family problems (d = 2) [57], 7 MOPs in DTLZ
family problems (d = 3) [58], 18 MOPs in WFG family
problems4 [59]. In addition, 14 high-dimensional DTLZ family
problems with d = 4, 5 objectives [58] are also involved.

The testing environment is described as follows: the opera-
tion system is Ubuntu kernel Linux 2.6.38-16-server GNOME
2.32.1, CPU is Intel(R) Xeon(R) E31270@3.40GHz×8, the
memory is 16G, and jMetal is running with JRE 1.7.

The major experimental settings are outlined as follows.
1) Population size: In MOEA/D [8], the population size

is decided by the number of weight vectors Cd−1
H+d−1

(d is the objective number, H is a predefined integer).
NP = 50, 55, 56, 70 for d = 2, 3, 4, 5 objectives (H =
49, 9, 5, 4), respectively. Other algorithms have the same
population size as MOEA/D on various MOPs.

2) Maximum function evaluations: Max FES = 15, 000.
3) Independent run times: Runs = 20.
4) Selection method in FV-MOEA: Binary tournament [5].
5) Evolutionary operators in NSGAII [6], SPEA2 [7],

IBEA [15], SMS-EMOA [16] and FV-MOEA:

2The reference set R involves one solution that can be simply found by
constructing a vector of worst objective values from Qg+1.

3http://jmetal.sourceforge.net
4WFG1-9 with 2 objectives and WFG1-9-3D with 3 objectives.
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Fig. 4. The median and IQR of Hypervolume (a) and Time (b) by classical
MOEAs and FV-MOEAWFG with b = {0.05, 0.1, 0.2, 1.0, 2.0, 5.0}×NP on
30 low-dimensional MOPs (d = 2, 3) over 20 independent runs.

TABLE I
HYPERVOLUME AND TIME MEDIAN AND IQR BY CLASSICAL MOEAS

AND FV-MOEAWFG WITH b = {0.05, 0.1, 0.2, 1.0, 2.0, 5.0} × NP ON 30
LOW-DIMENSIONAL MOPS OVER 20 INDEPENDENT RUNS.

Hypervolume Time (s)
NSGAII 3.223E-01±2.63E-02 9.387E-02±1.23E-03
SPEA2 3.439E-01±3.63E-02 5.714E-01±1.77E-02
MOEA/D 2.813E-01±4.66E-02 7.585E-02±2.91E-03
IBEA 3.132E-01±3.13E-02 6.220E-01±1.13E-02
SMS-EMOAWFG 3.623E-01±1.33E-02 1.451E+01±3.29E-00
FV-MOEAWFG b = 0.05 × NP 3.699E-01±2.35E-02 1.284E-00±5.05E-01
FV-MOEAWFG b = 0.1 × NP 3.694E-01±1.97E-02 8.326E-01±1.75E-01
FV-MOEAWFG b = 0.2 × NP 3.694E-01±1.90E-02 4.370E-01±7.79E-02
FV-MOEAWFG b = 1.0 × NP 3.675E-01±2.14E-02 3.112E-01±1.15E-01
FV-MOEAWFG b = 2.0 × NP 3.658E-01±1.82E-02 3.327E-01±1.21E-01
FV-MOEAWFG b = 5.0 × NP 3.617E-01±2.48E-02 3.719E-01±1.36E-01

• SBX: pc = 0.9, ηc = 20.
• Polynomial mutation: pm = 1/n, ηm = 20.

6) DE operator in MOEA/D [8]: CR = 1.0, F = 0.4.
7) Batch size in FV-MOEA: b = 0.2× NP.

Other parameters are set as the default values in jMetal [4, 5].
All the algorithms are evaluated based on hypervolume [34,

35, 42, 43, 60]. In addition, the time cost of various algorithms
is also investigated. The high hypervolume and low time
cost are desirable. The obtained results are compared using
median values and interquartile ranges (IQR). In order to
obtain statistically sound conclusion, the Wilcoxon rank sum
test with 95% confidence level is conducted on experimental
results.

B. Impact of WFG on SMS-EMOA

As mentioned in Section II, several methods have been
proposed to calculate exact hypervolumes, including HSO [4,
5, 45–47], FPL [48], HOY [49–53], QHV [54], WFG [55, 56].
They can be adopted to calculate hypervolumes in MOEAs.
For instance, SMS-EMOA in jMetal [4, 5] utilizes HSO to
compute hypervolume contributions (called SMS-EMOAHSO).
In this section, another version of SMS-EMOA is designed
with the fastest method (WFG), denoted as SMS-EMOAWFG.
Both of them are tested on {2, · · · , 10}-dimensional DTLZ2
problems with NP = 50 over 5 independent runs. Fig. 3 shows
their results in terms of hypervolume and time cost.

From Fig. 3(a), both SMS-EMOAHSO and SMS-EMOAWFG

report the similar hypervolumes on {2, · · · , 10}-dimensional
DTLZ2 problems. On the other hand, Fig. 3(b) shows
that SMS-EMOAWFG is more efficient than SMS-EMOAHSO,
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TABLE II
HYPERVOLUME STATISTICAL RESULTS BY CLASSICAL MOEAS AND

FV-MOEAWFG ON 30 LOW-DIMENSIONAL MOPS (d = 2, 3).

SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

NSGAII 19 6 5 6 5 19 17 6 7 22 5 3 24 4 2
SPEA2 2 4 24 14 4 12 23 5 2 26 3 1
MOEAD 22 4 4 25 1 4 25 2 3
IBEA 23 5 2 24 4 2
SMS-EMOAWFG 9 17 4

which is consistent with the results in [37, 55, 56]. In the
following sections, both SMS-EMOA and FV-MOEA will
utilize WFG to calculate hypervolumes. They are termed as
SMS-EMOAWFG and FV-MOEAWFG, respectively.

C. Effect on Batch Size

In FV-MOEAWFG, the parameter b is designed for defining
the batch size of offspring solutions (see Alg. 2). To investigate
the influence of this parameter, FV-MOEAWFG is tested with
b = {0.05, 0.1, 0.2, 1.0, 2.0, 5.0} × NP. The median and IQR
of hypervolume and time cost are evaluated on 30 low-
dimensional MOPs over 20 independent runs. Table I and
Fig. 4 show the mean values on 30 MOPs by the the five
classical MOEAs and the proposed FV-MOEAWFG.

From Table I and Fig. 4(a), FV-MOEAWFG obtains higher
mean hypervolumes than the five classical MOEAs except b =
5.0×NP. The hypervolume of FV-MOEAWFG decreases as the
batch size increases. The possible reason is that the chance
of generating high quality solutions becomes smaller when
FV-MOEAWFG produces more offspring at each generation.
For instance, the value of b = 1 represents a steady-state FV-
MOEAWFG that inserts only one solution into the population at
each generation, which is beneficial for selecting high quality
solutions in the searing process of MOEAs [61]. On the other
hand, the extreme case b = Max FES means that all offspring
are reproduced based on the random initial population, which
brings up offspring with low quality solutions.

The time cost (seconds) in Table I and Fig. 4(b) show
that SMS-EMOAWFG is much computationally expensive, and
the other five algorithms remain at a relatively low level of
time cost. Although both SMS-EMOAWFG and FV-MOEAWFG

select offspring based on hypervolume contributions, the
proposed fast hypervolume method in Alg. 1 enables FV-
MOEAWFG to quickly update hypervolume contributions of
different solutions. In addition, the time cost of FV-MOEAWFG

decreases first and then increases as the batch size grows. By
considering the hypervolume and time cost, the tradeoff of
batch size in FV-MOEAWFG is set as b = 0.2×NP and tested
in the following sections.

D. Results of Low-dimensional MOPs

In this section, the five classical MOEAs (NSGAI-
I [6], SPEA2 [7], MOEA/D [8], IBEA [15] and SMS-
EMOAWFG [16]) and the proposed FV-MOEAWFG are tested
on 30 low-dimensional MOPs (d = 2, 3) in terms of hyper-
volume and time cost.

Table III reports the detailed experimental results, where
each tuple tabulates the median and IQR of hypervolume

TABLE IV
TIME STATISTICAL RESULTS BY CLASSICAL MOEAS AND

FV-MOEAWFG ON 30 LOW-DIMENSIONAL MOPS (d = 2, 3).

SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

NSGAII 0 0 30 27 3 0 0 0 30 0 0 30 0 0 30
SPEA2 30 0 0 7 3 20 0 0 30 21 7 2
MOEAD 0 0 30 0 0 30 0 0 30
IBEA 0 0 30 23 2 5
SMS-EMOAWFG 30 0 0

over 20 independent runs on 30 low-dimensional MOPs with
maximum 15,000 function evaluations (FES). Table II shows
the win/tie/lose (w/t/l) hypervolume statistical results under the
Wilcoxon rank sum test with 95% confidence level. Each tuple
w/t/l means that the algorithm at the corresponding column
wins on w MOPs, ties on t MOPs, and loses on l MOPs,
compared to the algorithm at the corresponding row.

In Table II, the w/t/l values of hypervolumes between
FV-MOEAWFG and NSGAII, SPEA2, MOEA/D are 24/4/2,
26/3/1, 25/2/3, respectively. In addition, both IBEA and SMS-
EMOAWFG report superior hypervolume results than NSGAII,
SPEA2 and MOEA/D (as shown in Table II). These results
indicate that the three hypervolume indicator-based algorithms
(IBEA, SMS-EMOAWFG and FV-MOEAWFG) are better than
the Pareto dominance-based approaches (NSGAII and SPEA2)
and the scalarizing function-based methods (MOEA/D) for
solving low-dimensional MOPs, which is consistent with the
results in [16, 37–41]. On the other hand, the w/t/l values of
hypervolumes between SMS-EMOAWFG, FV-MOEAWFG and
IBEA are 23/5/2, 24/4/2, respectively. The reason is that the
approximate hypervolume estimation in IBEA is insufficient
compared to SMS-EMOAWFG and FV-MOEAWFG that are able
to measure the exact hypervolume contributions for various so-
lutions. In particular, the w/t/l values of hypervolumes between
FV-MOEAWFG and SMS-EMOAWFG are 9/17/4. The mean
hypervolumes of NSGAII, SPEA2, MOEA/D, IBEA, SMS-
EMOAWFG and FV-MOEAWFG are 0.3223, 0.3439, 0.2813,
0.3132, 0.3623, 0.3694, respectively. The results in Tables II-
V indicate that FV-MOEAWFG is significantly better than the
five classical MOEAs to obtain high hypervolumes on low-
dimensional MOPs.

Tables IV shows the time cost statistical comparison re-
sults of six MOEAs over 20 independent runs on 30 low-
dimensional MOPs, and Table V reports the detailed time cost
results. From Tables IV, the w/t/l values between the hyper-
volume indicator-based algorithms (IBEA, SMS-EMOAWFG

and FV-MOEAWFG) and NSGAII, MOEA/D are 0/0/30. This
means that the computational cost of hypervolume indicator-
based algorithms is larger than other three classical MOEAs
except SPEA2 on low-dimensional MOPs. Among the hyper-
volume indicator-based algorithms, the w/t/l values of time
cost between FV-MOEAWFG and IBEA, SMS-EMOAWFG are
23/2/5, 30/0/0, respectively. The mean time cost of IBEA,
SMS-EMOAWFG and FV-MOEAWFG are 0.622, 14.51, 0.437
seconds, respectively. It demonstrates that FV-MOEAWFG is
faster than IBEA and SMS-EMOAWFG on low-dimensional
MOPs. This is because the proposed fast hypervolume method
in FV-MOEAWFG significantly reduces the time cost for select-
ing offspring.
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TABLE III
HYPERVOLUME MEDIAN AND IQR BY CLASSICAL MOEAS AND FV-MOEAWFG ON 30 LOW-DIMENSIONAL MOPS (d = 2, 3) OVER 20 INDEPENDENT

RUNS WITH 15,000 FES.

MOPs NSGAII SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

ZDT1 6.520E-01±8.05E-04 – 6.541E-01±1.00E-03 – 5.380E-01±5.82E-02 – 6.565E-01±2.95E-04 – 6.572E-01±5.57E-05≈ 6.572E-01±7.27E-05
ZDT2 3.190E-01±1.54E-03 – 3.207E-01±1.23E-03 – 2.367E-01±2.52E-02 – 3.214E-01±4.67E-04 – 3.240E-01±1.27E-04 – 3.242E-01±4.73E-05
ZDT3 5.124E-01±3.42E-04 – 5.112E-01±1.04E-03 – 3.468E-01±1.01E-01 – 5.080E-01±4.10E-04 – 5.142E-01±2.26E-04 – 5.144E-01±3.11E-03
ZDT4 6.409E-01±1.60E-02 – 6.227E-01±4.07E-02 – 6.529E-02±2.10E-01 – 1.687E-01±1.59E-01 – 6.312E-01±3.60E-02 – 6.504E-01±7.14E-03
ZDT6 3.821E-01±4.14E-03 – 3.724E-01±5.80E-03 – 3.962E-01±1.71E-05 + 3.877E-01±1.13E-03 – 3.913E-01±1.52E-03 – 3.949E-01±3.09E-04
DTLZ1 8.871E-03±3.27E-01 – 6.823E-01±4.49E-01 – 6.749E-01±7.33E-01 – 2.818E-02±6.29E-02 – 7.638E-01±5.43E-03 – 7.662E-01±3.78E-03
DTLZ2 3.378E-01±9.60E-03 – 3.803E-01±3.54E-03 – 2.854E-01±1.88E-02 – 3.943E-01±1.40E-03 – 4.078E-01±6.69E-04≈ 4.076E-01±2.81E-04
DTLZ3 0.000E-00±0.00E-00≈ 0.000E-00±0.00E-00≈ 0.000E-00±0.00E-00≈ 0.000E-00±0.00E-00≈ 0.000E-00±0.00E-00≈ 0.000E-00±0.00E-00
DTLZ4 3.431E-01±9.80E-03≈ 2.035E-01±1.65E-01 – 2.794E-01±4.76E-02≈ 2.013E-01±2.02E-01 – 2.051E-01±5.14E-02≈ 2.051E-01±1.96E-01
DTLZ5 8.977E-02±4.21E-04 – 9.070E-02±3.32E-04 – 7.096E-02±7.34E-04 – 8.867E-02±3.05E-04 – 9.202E-02±1.06E-04≈ 9.199E-02±1.37E-04
DTLZ6 0.000E-00±0.00E-00 – 0.000E-00±0.00E-00 – 7.056E-02±7.74E-06 + 5.692E-02±1.33E-02 + 0.000E-00±0.00E-00 – 3.069E-02±2.61E-02
DTLZ7 2.530E-01±8.17E-03 + 2.680E-01±1.53E-02 + 8.947E-02±1.07E-01 – 2.001E-01±6.97E-02≈ 1.986E-01±4.67E-02 + 1.861E-01±1.34E-02
WFG1 3.459E-01±1.92E-01 + 2.944E-01±1.77E-01≈ 1.095E-01±3.83E-03 – 2.645E-01±2.26E-01≈ 1.886E-01±1.15E-01 – 2.756E-01±1.26E-01
WFG2 5.597E-01±1.27E-03≈ 5.595E-01±8.66E-04 – 5.445E-01±4.20E-03 – 5.562E-01±6.71E-04 – 5.606E-01±2.42E-03≈ 5.604E-01±1.98E-03
WFG3 4.365E-01±1.05E-03 – 4.382E-01±5.56E-04 – 4.369E-01±5.01E-04 – 4.390E-01±2.64E-04 – 4.395E-01±2.49E-04≈ 4.395E-01±2.79E-04
WFG4 2.114E-01±1.32E-03 – 2.126E-01±5.46E-04 – 1.876E-01±3.70E-03 – 2.116E-01±6.03E-04 – 2.157E-01±1.60E-04 + 2.156E-01±1.89E-04
WFG5 1.891E-01±1.49E-03 – 1.912E-01±4.22E-04 – 1.887E-01±5.51E-04 – 1.909E-01±1.95E-04 – 1.932E-01±8.79E-05 + 1.931E-01±7.95E-05
WFG6 1.904E-01±1.35E-02≈ 1.924E-01±2.34E-02≈ 1.974E-01±1.59E-03 + 1.950E-01±8.76E-03≈ 1.898E-01±2.71E-02≈ 1.930E-01±2.68E-02
WFG7 2.026E-01±9.87E-04 – 2.046E-01±8.22E-04 – 1.986E-01±6.97E-04 – 2.034E-01±5.90E-04 – 2.074E-01±4.59E-05 + 2.074E-01±6.48E-05
WFG8 1.400E-01±2.56E-03 – 1.433E-01±1.26E-03 – 1.387E-01±3.09E-03 – 1.391E-01±2.65E-03 – 1.458E-01±1.90E-03≈ 1.462E-01±2.06E-03
WFG9 2.265E-01±3.48E-03 – 2.295E-01±3.11E-03 – 2.247E-01±1.04E-03 – 2.332E-01±1.06E-03 – 2.350E-01±3.78E-03≈ 2.360E-01±1.72E-03
WFG1-3D 6.285E-01±9.56E-02 – 5.632E-01±1.35E-01 – 2.149E-01±6.80E-03 – 5.574E-01±1.37E-01 – 8.164E-01±5.66E-02≈ 8.923E-01±1.25E-01
WFG2-3D 8.742E-01±8.16E-03 – 8.951E-01±3.36E-03 – 8.737E-01±6.08E-03 – 8.892E-01±7.83E-03 – 9.194E-01±1.21E-03≈ 9.197E-01±1.08E-03
WFG3-3D 2.960E-01±4.22E-03 – 2.768E-01±1.12E-02 – 2.319E-01±1.05E-02 – 3.229E-01±1.04E-03 + 3.206E-01±8.56E-04≈ 3.209E-01±8.64E-04
WFG4-3D 3.346E-01±1.48E-02 – 3.619E-01±8.92E-03 – 3.121E-01±9.72E-03 – 3.936E-01±1.20E-03 – 4.058E-01±5.47E-04 – 4.065E-01±6.80E-04
WFG5-3D 3.098E-01±9.21E-03 – 3.435E-01±3.63E-03 – 3.258E-01±3.97E-03 – 3.582E-01±1.09E-03 – 3.704E-01±7.83E-04≈ 3.704E-01±5.33E-04
WFG6-3D 3.255E-01±2.75E-02 – 3.687E-01±1.73E-02 – 3.305E-01±8.42E-03 – 3.840E-01±2.56E-02 – 3.951E-01±3.59E-02≈ 3.941E-01±2.13E-02
WFG7-3D 3.218E-01±1.40E-02 – 3.504E-01±7.86E-03 – 3.264E-01±1.11E-02 – 3.897E-01±1.20E-03 – 4.026E-01±9.65E-04 – 4.034E-01±5.51E-04
WFG8-3D 2.157E-01±1.10E-02 – 2.353E-01±6.87E-03 – 2.011E-01±1.65E-02 – 2.687E-01±8.25E-03 – 2.851E-01±5.32E-03≈ 2.862E-01±9.15E-03
WFG9-3D 3.218E-01±9.31E-03 – 3.493E-01±4.33E-03 – 3.410E-01±5.27E-03 – 3.869E-01±2.96E-03 – 3.930E-01±4.61E-03≈ 3.937E-01±2.75E-03
Mean 3.223E-01±2.63E-02 3.439E-01±3.63E-02 2.813E-01±4.66E-02 3.132E-01±3.13E-02 3.623E-01±1.33E-02 3.694E-01±1.90E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively.

TABLE V
TIME MEDIAN AND IQR BY CLASSICAL MOEAS AND FV-MOEAWFG ON 30 LOW-DIMENSIONAL MOPS (d = 2, 3) OVER 20 INDEPENDENT RUNS

WITH 15,000 FES.

MOPs NSGAII SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

ZDT1 1.420E-01±1.00E-03+ 5.325E-01±6.25E-03 – 8.550E-02±7.75E-03+ 6.225E-01±1.02E-02 – 3.272E-00±6.07E-01 – 3.045E-01±6.63E-02
ZDT2 1.435E-01±5.75E-03+ 4.960E-01±2.10E-02 – 7.900E-02±4.50E-03+ 6.230E-01±1.48E-02 – 2.626E-00±5.02E-01 – 2.770E-01±3.42E-02
ZDT3 1.430E-01±1.50E-03+ 5.340E-01±7.25E-03 – 8.450E-02±2.25E-03+ 6.280E-01±6.75E-03 – 3.115E-00±7.63E-01 – 2.910E-01±3.50E-02
ZDT4 8.700E-02±1.00E-03+ 3.365E-01±1.15E-02 – 7.050E-02±6.75E-03+ 4.970E-01±6.50E-03 – 1.383E-00±3.57E-01 – 1.875E-01±4.62E-02
ZDT6 8.500E-02±3.75E-03+ 3.535E-01±8.75E-03 – 6.600E-02±2.25E-03+ 5.100E-01±9.00E-03 – 2.080E-00±3.88E-01 – 2.020E-01±2.90E-02
DTLZ1 8.100E-02±2.00E-03+ 4.885E-01±1.45E-02 + 6.600E-02±1.25E-03+ 6.765E-01±1.25E-02 – 1.336E+01±2.73E-00 – 5.320E-01±5.43E-02
DTLZ2 9.700E-02±1.25E-03+ 7.400E-01±6.50E-03≈ 7.100E-02±2.00E-03+ 7.235E-01±1.15E-02 + 3.247E+01±7.35E-00 – 7.635E-01±6.78E-02
DTLZ3 1.030E-01±2.00E-03+ 4.760E-01±1.92E-02 – 7.700E-02±3.50E-03+ 7.255E-01±1.10E-02 – 3.454E-00±7.80E-01 – 3.115E-01±8.05E-02
DTLZ4 1.110E-01±1.00E-03+ 5.830E-01±1.69E-01≈ 8.300E-02±2.00E-03+ 7.270E-01±6.20E-02 – 1.729E+01±1.69E+01– 3.980E-01±3.94E-01
DTLZ5 8.850E-02±1.00E-03+ 5.930E-01±4.50E-03 – 7.100E-02±5.00E-04+ 6.995E-01±1.12E-02 – 1.579E+01±3.34E-00 – 3.245E-01±4.83E-02
DTLZ6 1.240E-01±2.50E-04+ 6.425E-01±1.02E-02 – 7.500E-02±2.00E-03+ 7.215E-01±1.52E-02 – 1.363E+01±1.80E-00 – 5.385E-01±1.02E-01
DTLZ7 1.310E-01±2.00E-03+ 7.130E-01±1.20E-02 – 7.800E-02±4.00E-03+ 7.800E-01±9.50E-03 – 2.116E+01±4.22E-00 – 6.235E-01±1.53E-01
WFG1 8.400E-02±2.50E-03+ 4.280E-01±1.83E-02 – 8.100E-02±1.25E-03+ 5.080E-01±1.00E-02 – 3.655E-00±5.82E-01 – 2.470E-01±7.15E-02
WFG2 6.900E-02±1.00E-03+ 4.015E-01±1.27E-02 – 6.700E-02±2.00E-03+ 4.960E-01±8.25E-03 – 2.952E-00±9.37E-01 – 2.250E-01±8.77E-02
WFG3 6.500E-02±0.00E-00+ 4.650E-01±1.02E-02 – 6.500E-02±4.75E-03+ 4.830E-01±1.05E-02 – 4.667E-00±9.20E-01 – 2.565E-01±5.87E-02
WFG4 7.300E-02±2.50E-04+ 4.610E-01±1.00E-02 – 7.200E-02±3.00E-03+ 4.915E-01±5.75E-03 – 4.947E-00±1.23E-00 – 2.620E-01±3.40E-02
WFG5 6.600E-02±1.00E-03+ 5.230E-01±1.20E-02 – 6.500E-02±3.00E-03+ 4.820E-01±3.25E-03 – 6.559E-00±1.91E-00 – 3.100E-01±6.05E-02
WFG6 6.600E-02±2.50E-04+ 4.445E-01±8.25E-03 – 6.500E-02±0.00E-00+ 4.865E-01±8.50E-03 – 4.441E-00±6.57E-01 – 2.615E-01±5.85E-02
WFG7 7.400E-02±2.50E-04+ 4.890E-01±7.00E-03 – 7.400E-02±2.25E-03+ 4.925E-01±1.20E-02 – 5.491E-00±7.28E-01 – 2.790E-01±4.52E-02
WFG8 8.300E-02±1.00E-03+ 3.910E-01±7.00E-03 – 8.000E-02±1.00E-03+ 5.045E-01±8.25E-03 – 1.557E-00±4.26E-01 – 1.930E-01±3.03E-02
WFG9 9.100E-02±0.00E-00+ 5.135E-01±5.75E-03 – 9.000E-02±1.00E-03+ 5.080E-01±8.50E-03 – 5.351E-00±7.22E-01 – 2.900E-01±7.82E-02
WFG1-3D 9.800E-02±1.00E-03+ 6.130E-01±2.10E-02≈ 8.800E-02±3.00E-03+ 7.170E-01±9.00E-03 – 1.938E+01±2.54E-00 – 6.200E-01±6.25E-02
WFG2-3D 8.300E-02±1.00E-03+ 6.305E-01±1.15E-02 + 7.200E-02±3.50E-03+ 6.895E-01±1.12E-02≈ 2.566E+01±3.35E-00 – 6.635E-01±7.37E-02
WFG3-3D 7.600E-02±1.00E-03+ 7.820E-01±1.25E-02 – 6.800E-02±6.00E-03+ 6.705E-01±7.75E-03 – 2.079E+01±3.84E-00 – 4.415E-01±9.75E-02
WFG4-3D 9.000E-02±5.00E-04+ 7.450E-01±7.00E-03≈ 7.800E-02±3.25E-03+ 6.980E-01±6.50E-03 + 3.554E+01±6.71E-00 – 7.625E-01±7.80E-02
WFG5-3D 8.300E-02±2.50E-04+ 7.510E-01±1.45E-02≈ 7.000E-02±2.25E-03+ 6.910E-01±7.25E-03 + 3.749E+01±4.58E-00 – 7.520E-01±9.78E-02
WFG6-3D 8.200E-02±1.00E-03+ 6.800E-01±9.75E-03≈ 7.100E-02±1.25E-03+ 6.890E-01±1.22E-02≈ 2.748E+01±4.32E-00 – 6.710E-01±7.02E-02
WFG7-3D 9.100E-02±1.25E-03+ 8.185E-01±1.57E-02≈ 8.000E-02±4.25E-03+ 6.950E-01±1.23E-02 + 4.254E+01±1.22E+01– 8.110E-01±6.85E-02
WFG8-3D 9.700E-02±1.00E-03+ 6.220E-01±2.92E-02 – 8.700E-02±5.50E-03+ 7.050E-01±6.25E-03 – 1.386E+01±2.00E-00 – 5.265E-01±6.65E-02
WFG9-3D 1.090E-01±1.25E-03+ 8.935E-01±2.67E-02 – 9.600E-02±1.25E-03+ 7.180E-01±1.10E-02 + 4.335E+01±1.13E+01– 7.845E-01±8.65E-02
Mean 9.387E-02±1.23E-03 5.714E-01±1.77E-02 7.585E-02±2.91E-03 6.220E-01±1.13E-02 1.451E+01±3.29E-00 4.370E-01±7.79E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively.
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Fig. 5. The best Pareto-optimal fronts on ZDT1, ZDT3, WFG4, DTLZ2 derived by FV-MOEAWFG over 20 independent runs.

TABLE VI
HYPERVOLUME STATISTICAL RESULTS BY CLASSICAL MOEAS AND

FV-MOEAWFG ON 14 HIGH-DIMENSIONAL MOPS (d = 4, 5).

SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

NSGAII 2 7 5 9 1 4 9 2 3 11 3 0 12 2 0
SPEA2 11 0 3 12 1 1 12 1 1 12 1 1
MOEAD 7 3 4 7 4 3 9 3 2
IBEA 6 3 5 7 5 2
SMS-EMOAWFG 6 6 2

To verify the quality of optimal solution sets, Fig. 5 shows
the best Pareto-optimal fronts found by FV-MOEAWFG over 20
runs on the four representative MOPs (ZDT1, ZDT3, WFG4
and DTLZ2). For the discrete Pareto front (PF) of ZDT3, FV-
MOEAWFG arrives at the highest hypervolume among the six
algorithms (see Table III) and obtains well distributed solutions
in Fig. 5(b). The result of ZDT1 in Fig. 5(a) shows that
solutions are scattered to the two extreme objective values
on the convex PF, which is consistent with the results in [11,
12, 16]. On the other hand, Figs. 5(c-d) show that solutions
are assembled to the central region on concave PFs (WFG4
and DTLZ2), which also shares the same conclusion in [11,
12, 16]. These results indicate that FV-MOEAWFG is able to
deal with PFs with different geometrical characteristics.

E. Results of High-dimensional MOPs

To further evaluate FV-MOEAWFG, in this section, 14 high-
dimensional MOPs are selected as testing instances. Tables VI-
IX summarize the median and IQR results of the five classical
MOEAs and the proposed FV-MOEAWFG over 20 independent
runs on 14 high-dimensional MOPs (d = 4, 5) with 15,000
FES in terms of hypervolume and time cost.

From Table VI, the w/t/l values of hypervolumes between
MOEA/D and NSGAII, SPEA2 are 9/1/4, 11/0/3, respec-
tively. It indicates that the scalarizing function-based method
(MOEA/D) is more suitable to deal with high-dimensional
MOPs than the two Pareto dominance-based approaches (NS-
GAII and SPEA2). This is consistent with the studies in [8, 9,
13, 14]. In addition, as shown in Table VI, the indicator-based
algorithms (IBEA, SMS-EMOAWFG and FV-MOEAWFG) ar-
rive at higher hypervolumes than the other three MOEAs
(NSGAII, SPEA2 and MOEA/D). On the other hand, the
w/t/l values of hypervolumes between SMS-EMOAWFG, FV-
MOEAWFG and IBEA are 6/3/5, 7/5/2, respectively. These
results are similar to those of low-dimensional MOPs in

TABLE VIII
TIME STATISTICAL RESULTS BY CLASSICAL MOEAS AND

FV-MOEAWFG ON 14 HIGH-DIMENSIONAL MOPS (d = 4, 5).

SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

NSGAII 0 0 14 14 0 0 0 0 14 0 0 14 0 0 14
SPEA2 14 0 0 4 0 10 0 0 14 1 1 12
MOEAD 0 0 14 0 0 14 0 0 14
IBEA 0 0 14 2 0 12
SMS-EMOAWFG 14 0 0

Tables II-III. The reason is that IBEA is not designed to
measure the exact hypervolume contributions of different solu-
tions. Furthermore, the w/t/l values of hypervolumes between
FV-MOEAWFG and IBEA, SMS-EMOAWFG are 7/5/2, 6/6/2,
respectively. These results indicate that FV-MOEAWFG is the
best among the three hypervolume indicator-based algorithms
for solving high-dimensional MOPs.

In Table VIII, the w/t/l values of time cost between FV-
MOEAWFG and IBEA, SMS-EMOAWFG are 2/0/12, 14/0/0,
respectively. The mean time cost of IBEA, SMS-EMOAWFG

and FV-MOEAWFG in Table IX are 1.196, 214.3 and 3.423 sec-
onds, respectively. This indicates that SMS-EMOAWFG needs
more computational resource than the other two hypervolume
indicator-based approaches, whereas the time cost of IBEA
and FV-MOEAWFG remain at a relatively lower level.

F. Influence of Population Size and MOPs Dimension

Among hypervolume indicator-based algorithms, IBEA on-
ly obtains approximated hypervolume estimations, whereas
SMS-EMOAWFG and FV-MOEAWFG are able to find exact
hypervolume contributions for different solutions. Due to this
reason, in this section, we only compare SMS-EMOAWFG and
FV-MOEAWFG with different population size and dimensional
settings on DTLZ2 problems. The maximum function evalua-
tions is Max FES = 20× NP and the independent runs is set
as Runs = 5.

Fig. 6 reports the hypervolume and time cost by SMS-
EMOAWFG and FV-MOEAWFG with population size NP =
{25, 50, 75, 100, 125, 150} on {2, 3, 4, 5}–dimensional DTLZ2
over 5 independent runs. The results in Figs. 6(a-d) show that
both algorithms arrive at the similar hypervolumes on different
testing scenarios. On the other hand, Figs. 6(e-h) report that
the time cost of SMS-EMOAWFG becomes significantly larger
than those of FV-MOEAWFG as the population size grows.
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TABLE VII
HYPERVOLUME MEDIAN AND IQR BY CLASSICAL MOEAS AND FV-MOEAWFG ON 14 HIGH-DIMENSIONAL MOPS (d = 4, 5) OVER 20 INDEPENDENT

RUNS WITH 15,000 FES.

MOPs NSGAII SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

DTLZ1D4 0.000E-00±0.00E-00 – 0.000E-00±0.00E-00 – 8.226E-01±1.47E-01 – 1.097E-01±1.70E-01 – 8.866E-01±4.22E-03≈ 8.880E-01±1.31E-03
DTLZ2D4 5.885E-01±1.69E-02 – 6.262E-01±1.71E-02 – 4.364E-01±4.96E-02 – 7.004E-01±8.11E-04 – 7.093E-01±4.38E-04 – 7.097E-01±2.30E-04
DTLZ3D4 7.846E-01±1.17E-01 – 6.207E-01±7.21E-01 – 9.772E-01±6.49E-02 – 9.957E-01±8.62E-04≈ 9.936E-01±1.19E-03≈ 9.939E-01±3.48E-03
DTLZ4D4 4.879E-01±2.00E-02≈ 2.929E-01±2.26E-01≈ 5.062E-01±3.44E-02≈ 4.575E-01±2.00E-01≈ 4.745E-01±2.42E-01≈ 3.713E-01±2.89E-01
DTLZ5D4 7.832E-01±2.67E-03 – 7.547E-01±1.77E-02 – 7.773E-01±1.45E-03 – 7.765E-01±6.05E-03 – 7.939E-01±6.37E-04 – 7.942E-01±3.44E-04
DTLZ6D4 3.840E-01±6.39E-02 – 3.884E-01±1.02E-01 – 9.292E-01±1.23E-03 + 9.371E-01±2.18E-03 + 8.888E-01±7.65E-03 – 9.157E-01±6.98E-03
DTLZ7D4 2.905E-01±1.68E-02≈ 3.163E-01±1.50E-02 + 6.531E-02±4.42E-02 – 2.586E-01±9.58E-02≈ 2.503E-01±6.48E-02≈ 2.506E-01±6.47E-02
DTLZ1D5 0.000E-00±0.00E-00 – 0.000E-00±0.00E-00 – 9.264E-01±7.55E-03 + 8.359E-02±1.52E-01 – 8.917E-01±1.59E-02 + 8.770E-01±2.02E-02
DTLZ2D5 6.436E-01±7.44E-02 – 6.308E-01±9.62E-02 – 6.929E-01±4.10E-02 – 8.852E-01±3.63E-04 – 8.888E-01±3.49E-04 – 8.893E-01±3.63E-04
DTLZ3D5 0.000E-00±0.00E-00 – 0.000E-00±0.00E-00 – 9.992E-01±6.07E-01≈ 9.994E-01±2.47E-03≈ 9.974E-01±5.97E-03 – 9.994E-01±2.19E-03
DTLZ4D5 8.916E-01±7.12E-02 – 8.609E-01±9.13E-02 – 9.686E-01±1.67E-03≈ 9.348E-01±8.17E-02 – 9.294E-01±3.88E-01≈ 9.497E-01±3.20E-02
DTLZ5D5 7.759E-01±6.73E-03 – 6.946E-01±2.97E-02 – 7.821E-01±3.34E-03 – 7.735E-01±3.21E-02 – 8.050E-01±5.59E-04 + 8.041E-01±1.13E-03
DTLZ6D5 2.299E-01±9.13E-02 – 1.532E-01±6.30E-02 – 9.397E-01±1.24E-02 – 9.482E-01±1.87E-02≈ 9.322E-01±6.28E-03 – 9.517E-01±4.06E-03
DTLZ7D5 3.648E-01±3.84E-02 – 3.375E-01±4.19E-02 – 7.287E-03±2.30E-02 – 4.216E-01±2.18E-02 + 3.981E-01±5.06E-02≈ 3.920E-01±1.03E-02
Mean 4.446E-01±3.71E-02 4.055E-01±1.01E-01 7.022E-01±7.41E-02 6.630E-01±5.61E-02 7.743E-01±5.63E-02 7.705E-01±3.12E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively.

TABLE IX
TIME MEDIAN AND IQR BY CLASSICAL MOEAS AND FV-MOEAWFG ON 14 HIGH-DIMENSIONAL MOPS (d = 4, 5) OVER 20 INDEPENDENT RUNS

WITH 15,000 FES.

MOPs NSGAII SPEA2 MOEA/D IBEA SMS-EMOAWFG FV-MOEAWFG

DTLZ1D4 9.200E-02±6.00E-03+ 6.355E-01±5.20E-02 + 6.900E-02±1.25E-03+ 8.250E-01±2.67E-02+ 6.745E+01±4.31E-00 – 2.027E-00±1.07E-01
DTLZ2D4 1.130E-01±1.27E-02+ 9.215E-01±4.77E-02 + 8.000E-02±1.22E-02+ 8.645E-01±2.00E-02+ 1.223E+02±3.50E-00 – 2.479E-00±9.07E-02
DTLZ3D4 1.165E-01±1.32E-02+ 6.765E-01±2.32E-02 + 8.300E-02±1.32E-02+ 8.735E-01±2.95E-02+ 3.518E+01±4.31E-00 – 1.548E-00±1.31E-01
DTLZ4D4 1.380E-01±9.75E-03+ 7.960E-01±2.05E-01≈ 1.005E-01±8.50E-03+ 9.035E-01±2.12E-02– 4.031E+01±3.04E+01– 6.495E-01±5.57E-01
DTLZ5D4 1.090E-01±9.50E-03+ 9.610E-01±6.13E-02 – 7.750E-02±2.25E-03+ 8.550E-01±3.80E-02– 2.457E+01±1.92E-00 – 6.405E-01±4.50E-02
DTLZ6D4 1.375E-01±1.25E-02+ 9.460E-01±7.38E-02 + 8.100E-02±7.75E-03+ 8.900E-01±4.83E-02+ 5.746E+01±1.79E-00 – 1.341E-00±5.45E-02
DTLZ7D4 1.450E-01±1.33E-02+ 9.025E-01±4.20E-02 + 8.100E-02±3.75E-03+ 9.350E-01±4.80E-02+ 6.068E+01±6.74E-00 – 1.409E-00±9.98E-02
DTLZ1D5 1.130E-01±8.25E-03+ 1.006E-00±4.27E-02 + 7.400E-02±1.20E-02+ 1.470E-00±5.20E-02+ 4.303E+02±3.78E+01– 5.890E-00±1.23E-00
DTLZ2D5 1.395E-01±8.00E-03+ 1.262E-00±7.75E-02 + 8.600E-02±4.75E-03+ 1.512E-00±9.05E-02+ 8.997E+02±5.02E+01– 1.182E+01±3.30E-01
DTLZ3D5 1.420E-01±4.50E-03+ 1.102E-00±6.40E-02 + 9.000E-02±8.00E-03+ 1.510E-00±1.06E-01+ 2.799E+02±2.71E+01– 6.248E-00±9.30E-01
DTLZ4D5 1.810E-01±1.08E-02+ 1.329E-00±7.58E-02 + 1.180E-01±7.75E-03+ 1.535E-00±6.53E-02+ 1.879E+02±4.25E+02– 2.502E-00±4.82E-00
DTLZ5D5 1.340E-01±4.50E-03+ 1.353E-00±3.63E-02 + 8.400E-02±7.75E-03+ 1.493E-00±5.77E-02+ 1.329E+02±2.19E+01– 2.578E-00±1.54E-01
DTLZ6D5 1.600E-01±5.25E-03+ 1.541E-00±4.63E-02 + 8.900E-02±1.23E-02+ 1.508E-00±3.37E-02+ 3.570E+02±1.42E+01– 4.529E-00±2.60E-01
DTLZ7D5 1.715E-01±1.13E-02+ 1.246E-00±2.97E-02 + 8.650E-02±6.50E-03+ 1.568E-00±6.57E-02+ 3.045E+02±1.97E+01– 4.263E-00±3.48E-01
Mean 1.351E-01±9.25E-03 1.048E-00±6.27E-02 8.568E-02±7.71E-03 1.196E-00±5.02E-02 2.143E+02±4.63E+01 3.423E-00±6.54E-01

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively.
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Fig. 6. The median and IQR of Hypervolume (a-d) and Time (e-h) derived by SMS-EMOAWFG and FV-MOEAWFG with population size NP =
{25, 50, 75, 100, 125, 150} on {2, 3, 4, 5}–dimensional DTLZ2 over 5 independent runs.
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TABLE X
TIME MEDIAN AND IQR BY SMS-EMOAWFG AND FV-MOEAWFG WITH

POPULATION SIZE NP = {25, 50, 75, 100, 125, 150} ON
{2, 3, 4, 5}–DIMENSIONAL DTLZ2 OVER 5 INDEPENDENT RUNS.

SMS-EMOAWFG FV-MOEAWFG SMS-EMOAWFG

FV-MOEAWFG

DTLZ2-2D

NP = 25 1.500E-02±0.00E-00 5.000E-03±1.00E-03 3.0
NP = 50 6.100E-02±5.00E-03 1.200E-02±4.00E-03 5.1
NP = 75 1.640E-01±4.50E-02 1.800E-02±2.00E-03 9.1
NP = 100 3.070E-01±9.20E-02 2.700E-02±1.20E-02 11.4
NP = 125 5.380E-01±2.30E-02 3.900E-02±1.00E-02 13.8
NP = 150 8.800E-01±4.80E-02 4.800E-02±1.00E-03 18.3

DTLZ2-3D

NP = 25 7.100E-02±6.00E-03 9.000E-03±2.00E-03 7.9
NP = 50 7.880E-01±3.44E-01 2.900E-02±3.00E-03 27.2
NP = 75 2.630E-00±6.20E-02 5.600E-02±1.10E-02 47.0
NP = 100 8.354E-00±2.71E-00 9.100E-02±1.20E-02 91.8
NP = 125 1.874E+01±3.55E-00 1.380E-01±1.20E-02 135.8
NP = 150 3.172E+01±4.07E-00 1.800E-01±5.10E-02 176.2

DTLZ2-4D

NP = 25 3.040E-01±6.50E-02 2.800E-02±1.10E-02 10.9
NP = 50 3.551E-00±2.54E-01 9.400E-02±5.00E-03 37.8
NP = 75 1.442E+01±2.92E-01 2.350E-01±2.20E-02 61.4
NP = 100 4.417E+01±4.45E-00 3.120E-01±1.40E-02 141.6
NP = 125 1.056E+02±1.20E+01 5.510E-01±7.20E-02 191.7
NP = 150 1.980E+02±7.03E-00 7.370E-01±5.70E-02 268.7

DTLZ2-5D

NP = 25 7.020E-01±2.32E-01 4.900E-02±1.40E-02 14.3
NP = 50 7.664E-00±7.47E-01 2.480E-01±2.50E-02 30.9
NP = 75 3.916E+01±1.48E-00 5.860E-01±2.30E-02 66.8
NP = 100 1.340E+02±1.54E+01 1.016E-00±7.90E-02 131.9
NP = 125 3.446E+02±2.74E+01 1.745E-00±8.00E-02 197.5
NP = 150 6.814E+02±5.62E+01 2.244E-00±1.71E-01 303.7

Table X shows the detailed time cost of two algorithms on
various testing scenarios. The last column calculates the ratio
of time cost between SMS-EMOAWFG and FV-MOEAWFG. As
shown in Table X, the ratio increases as the population size
grows. In particular, the ratio increases from 14.3 to 303.7 on
5–dimensional DTLZ2 when the population size grows from
25 to 150. Other similar results can be found on DTLZ2 with
2–4 objectives. In addition, the ratio becomes large as the
MOPs dimension increases. For instance, the ratios for NP
= 150 are found as 18.3, 176.2, 268.7, 303.7 on 2, 3, 4, 5–
dimensional DTLZ2 problems, respectively.

In summary, the results of Fig. 6 and Table X show
that FV-MOEAWFG is able to find competitive hypervolumes
compared to SMS-EMOAWFG. The interesting thing is that
FV-MOEAWFG is able to obtain significant speedup compared
to SMS-EMOAWFG when the population size increases as well
as the dimension of MOPs grows.

V. CONCLUSION AND FUTURE WORK

To find high quality of solutions in indicator-based multi-
objective evolutionary algorithms (MOEAs), hypervolume is
a critical performance metric to perform solution selection.
However, the high time complexity of calculating exact hyper-
volume contributions is cumbersome for applying it to high-
dimensional multiobjective optimization problems (MOPs). In
this paper, a simple and Fast hyperVolume indicator-based
MOEA (FV-MOEA) is proposed to quickly update exact
hypervolume contributions for different solutions. The core
idea of FV-MOEA is that the hypervolume contribution of a
solution is only associated with partial solutions rather than
the whole solution set. Experimental studies on 44 benchmark
MOPs with 2–5 objectives on jMetal confirm its superior
performance over the five classical MOEAs (NSGAII, SPEA2,
MOEA/D, IBEA and SMS-EMOA) in terms of hypervolume
and time cost.

In future, we plan to combine the ideas from different
groups of MOEAs (i.e., fusion of scalarizing function-based
methods and hypervolume indicator-based approaches) for
solving MOPs with nonlinear Pareto sets (PSs). In particular,
the scalarizing function-based methods concentrate on con-
verging solutions along predefined weight vectors. With the
help of the fast hypervolume method proposed in this paper,
the fused approach is able to jump out of local Pareto-optimal
fronts and obtain highly diversified solutions converging to
the true Pareto fronts (PFs). On the other hand, to enhance
the search ability of MOEAs, we will adapt the choice of
selecting various evolutionary operators and adjusting control
parameters. Last but not least, we will extend the proposed fast
hypervolume method to surrogated-assisted MOEAs, and test
their performance on dealing with computationally expensive
MOPs.

The Java source codes of the proposed FV-MOEA is avail-
able at http://trust.sce.ntu.edu.sg/∼sjiang1/.
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