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Abstract

Commitment protocols provide an effective formalism
for the regulation of agent interaction. Although exist-
ing work mainly focus on the design-time development
of static commitment protocols, recent studies propose
methods to create them dynamically at run-time with
respect to the goals of the agents. These methods re-
quire agents to verify new commitment protocols taking
their goals, and beliefs about the other agents’ behavior
into account. Accordingly, in this paper, we first pro-
pose a probabilistic model to formally capture commit-
ment protocols according to agents’ beliefs. Secondly,
we identify a set of important properties for the veri-
fication of a new commitment protocol from an agent’s
perspective and formalize these properties in our model.
Thirdly, we develop probabilistic model checking algo-
rithms with advanced reduction for efficient verification
of these properties. Finally, we implement these algo-
rithms as a tool and evaluate the proposed properties
over different commitment protocols.

Introduction
Agent interaction is a fundamental aspect of any multiagent
system. To prevent undesirable outcomes, multiagent sys-
tems regulate interaction of agents employing control mech-
anisms, such as protocols. The concept of (social) commit-
ment provides an effective formalism to define such proto-
cols (Singh 1999; Yolum and Singh 2002). A commitment
protocol (for short, protocol) defines the responsibilities of
the agents in a declarative manner without specifying how
they should satisfy these responsibilities. As a result, a com-
mitment protocol does not interfere with agents’ autonomy.

Verifying the correctness of commitment protocols is
a major challenge. Most of the existing work focus on
the development of static commitment protocols at design-
time, which are created by developers and embedded into
agents’ implementation (Desai et al. 2005; Winikoff 2007;
Baldoni, Baroglio, and Marengo 2010). Successful design-
time methods to analyze static commitment protocols have
been developed (Desai et al. 2007; Kafalı and Torroni 2012;
Yolum 2007; Sultan et al. 2014). However, recent studies
discuss the limitations of static protocols in dynamic agent
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environments and propose automated methods in which
agents create new protocols dynamically at run-time taking
their goals and changing conditions of the environment into
account (Artikis 2009; Günay, Winikoff, and Yolum 2013;
Meneguzzi, Telang, and Singh 2013).

While these new methods allow agents to operate success-
fully in dynamic environments, they also introduce a new
decision problem. That is whether an agent’s participation in
a protocol is rational. In the case of a design-time protocol,
this decision is made by the developer of the agent. On the
other hand, when a protocol is created at run-time, this de-
cision should be made by the agent itself. Unfortunately, the
existing design-time analysis methods are not fully adequate
to make this decision, since they neither take the partial lo-
cal knowledge, nor the private goals and preferences of an
agent into account. In this paper we propose a method that
can be used by an agent to make this decision at run-time.
Particularly, we address the following key challenges.

The first challenge is to identify the properties, which
should be necessarily verified by an agent to make a ratio-
nal decision about participating in a protocol. Approaches to
analyze static protocols focus mainly on the general proper-
ties (e.g., safety) of protocols. These general properties of a
protocol should be taken into account while deciding on par-
ticipation. However, they are not sufficient, since they do not
analyze the protocol from the agent’s perspective. Therefore,
in order to make a rational decision about the participation of
an agent in a protocol, it is necessary to define new proper-
ties, which are specifically designed according to the agent’s
goals and preferences. To solve this issue, we identify three
key properties. These are: conformance of the agent’s be-
havior with the protocol, achievement of the agent’s goals
by participating in the protocol, and benefit of participation.

The second challenge is to build a formal model that can
be used to formalize the identified properties and verify them
against a commitment protocol. As we discussed earlier, the
formal model should be able to represent an agent’s par-
tial local knowledge about a protocol. Moreover, the formal
model should represent the agent’s beliefs to reflect its un-
certainty about the behavior of other agents. Since existing
static protocol analysis methods assume availability of com-
plete information about a protocol and the behavior of all the
agents, they do not model an agent’s local knowledge and
beliefs. Hence, they are not adequate to decide on partici-



pation. In order to capture an agent’s local knowledge and
beliefs, we use a probabilistic model for commitment pro-
tocols, in which we capture an agent’s uncertainty about the
behavior of the other agents using probability distributions.

The final challenge is the development of an efficient al-
gorithm to verify the identified properties on a protocol’s
model to make the final decision about an agent’s partic-
ipation. Verification of non-probabilistic models of com-
mitment protocols have been studied by Singh and col-
leagues. They use SPIN and MCMAS model checkers to
verify general properties and refinements of commitment
protocols (Desai et al. 2007; Gerard and Singh 2013). They
also utilize NuSMV model checker to verify business pat-
terns that are modeled as commitment protocols (Telang
and Singh 2012). Recently, a probabilistic model of com-
mitments is also proposed by Sultan et al. (2014). There
are also several other general algorithms to verify proper-
ties of probabilistic models (Baier and Katoen 2008). How-
ever, these algorithms suffer from the state space explosion
problem, which makes the verification of large models hard.
Depending on the complexity of a multiagent system, a pro-
tocol may include a large number of commitments and an
agent may have complex goals and preferences, which re-
quire us to deal with considerably large models to decide
on protocol participation. To overcome this challenge, we
exploit the independence of commitments in a protocol and
develop a reduction technique, which significantly improves
our method’s scalability.

Commitment Protocols
First, we provide the background in commitments and pro-
tocols. A commitment is a contractual binding between a
debtor and a creditor agent. A commitment is denoted by
C(deb, cre, ant, con) and states that the debtor deb is com-
mitted to the creditor cre to satisfy the consequent condition
con, if the antecedent condition ant holds (Singh 1999). For
instance, C(Alice,Bob, Paid,Goods) denotes that Alice
is committed to Bob to deliver certain goods (i.e., Goods
holds), if she is paid (i.e., Paid holds).

A commitment has a state that is manipulated by a set of
commitment operations. The lifecycle of commitments has
been studied extensively in the literature (Yolum and Singh
2002; Fornara and Colombetti 2002; Chesani et al. 2013).
Here, we use a simplified commitment lifecycle as we show
in Figure 1. The rectangles represent the states of the com-
mitment (bold rectangles are terminal states) and the edge
labels are the operations. A commitment is initially in null
state. When the commitment is created it becomes condi-
tional. If the antecedent starts to hold (e.g., Alice is paid)
the commitment is detached and becomes active. If the an-
tecedent fails to hold (e.g., Bob refuses to pay) the commit-
ment expires and becomes expired. If the consequent starts
to hold (e.g., the goods are delivered) the commitment is
discharged and becomes fulfilled. Finally, if the consequent
fails to hold while the commitment is active (e.g., goods are
failed to be delivered) it is canceled and becomes violated.

A commitment protocol consists of a set of commit-
ments (Yolum and Singh 2002). The commitments of the
protocol are defined over a set of generic roles and the agents

null conditional expired

fulfilled active violated

create expire

detachdischarge

discharge cancel

Figure 1: Life cycle of a commitment.

who participate in an instance of the protocol enact one or
more of these roles. For instance, Alice and Bob from our
previous example enact the Seller andBuyer roles, respec-
tively. The lifecycle of a commitment is captured in a pro-
tocol by associating protocol specific events and domain in-
dependent commitment operations. For instance, Payment
event that is initiated by Buyer to satisfy the antecedent
of the commitment C(Seller, Buyer, Paid,Goods) may be
associated with the detach operation of this commitment.

In the rest of the paper we use the e-commerce proto-
col that consists of the following two commitments as our
running example: {ci = C(Seller, Buyer, Paid,Goods),
cj = C(Provider, Seller,Ordered, Provided)}The com-
mitment ci states that Seller will be committed to Buyer
to deliver certain goods (i.e., to satisfy Goods), if the pay-
ment for the goods is made (i.e., Paid holds). If Seller
does not possess the goods, Seller may order the goods
from Provider (i.e., Ordered holds) and Provider will be
committed to provide the goods to Seller (i.e., to satisfy
Provided) according to cj .

Properties for Analyzing a Protocol
Our main objective is to analyze a commitment protocol to
decide whether it is rational for an agent to participate in
the protocol. We identify the following three properties that
should be subject to this analysis.

Conformance: Agents prefer fulfillment of their commit-
ments over violation. Hence, an agent should ensure that he
is capable of fulfilling his commitments in the context of a
protocol. That is the agent should conform with the proto-
col. Otherwise, it is not rational to participate in the proto-
col. Consider Provider in the e-commerce protocol, who is
committed to provide the goods to Seller (cj). In order to
conform with this protocol, Provider should be capable of
providing goods to Seller.

Achievement: Agents participate in protocols to satisfy
their goals. Hence, an agent should ensure that the execution
of the protocol allows him to achieve his goals. Otherwise,
it is not rational to participate in the protocol. For instance,
if Buyer does not have a goal to possess the goods, there is
no reason for him to participate in the e-commerce protocol.

Benefit: Agents participate in protocols that are benefi-
cial to them. In other words, an agent should earn more than
he spends by participating in a protocol. For instance, the
e-commerce protocol is beneficial for the Buyer only if the
value of possessing the goods is higher than the cost of pay-
ing for the goods.

Before discussing about the necessity of these properties,
we point out to some related work in which similar proper-



ties to the ones we identify are studied. Singh and Chopra
discuss conformance between two roles and also between
an agent and a role (Singh and Chopra 2010) and Chopra et
al. (Chopra et al. 2011) study robustness of commitment
protocols, which basically corresponds to our achievement
property. However, these studies discuss these properties as
abstract concepts without a concrete formalization. More-
over, they do not consider agent beliefs as we do in this pa-
per. Desai, Narendra and Sing develop a method for design-
time verification of commitment protocols using causal logic
C+. Their method is based on the benefit concept in which
they develop a general correctness definition for a commit-
ment protocol with respect to individual agents’ benefit (De-
sai, Narendra, and Singh 2008). Although, there are similar-
ities about the consideration of individual agents’ behavior,
their model is not probabilistic. Moreover, their method is
semi-automated and requires human intervention.

Now, we show the necessity of the identified properties to
make a rational decision about an agent’s participation in a
protocol. Basically, it is rational for an agent to participate
in a protocol, if the protocol changes the environment in a
desirable manner for the agent. Given an agent X , a pro-
tocol P , an initial state si and a final state sf , which can
be reached by X from si by participating in P , we say that
P changes the environment in a desirable manner for X ,
if all of the following three conditions hold: (1) When the
protocol terminates, there is no violated commitment from
the agent to others (conformance). (2) One or more goals
of the agent, which are not already achieved before execut-
ing the protocol, are achieved when the protocol terminates
(achievement). (3) When the protocol terminates, utility of
the agent is greater than the initiation of the protocol (ben-
efit). Accordingly, it is rational for an agent to participate
in a protocol, if the environment of the agent becomes more
desirable as the result of the protocol.

Proposition: Given a protocol and an agent, the protocol
changes the environment of the agent in a desirable manner,
if conformance, achievement and benefit properties are sat-
isfied by the protocol with respect to the local knowledge
and beliefs of the agent.

As a result of this proposition, it is rational for the agent to
participate in the protocol, if conformance, achievement and
benefit properties hold. The agent may conform to the proto-
col, but if the protocol does not allow the agent to achieve his
goals or if it is not beneficial, then participation of the agent
in the protocol is not rational. Similarly, the protocol may
allow the agent to achieve his goals, but if the agent does not
conform to the protocol, then it is not rational to participate.
On the other hand, achieving goals may not always imply
benefit. That is even though the protocol allows the agent to
achieve his goals, the protocol may incur more cost to the
agent than what it gains by participating. Similarly, bene-
fit does not always imply achievement. As a result, in order
to rationalize participation of the agent in the protocol, it is
necessary to satisfy all three properties.

Finally, we discuss the two important issues that should
be taken into account by a formal model in order to verify
these properties. The first issue is the local knowledge of
the analyzing agent about the protocol. In general, the ana-

lyzing agent knows only a subset of the protocol’s commit-
ments, which consists of the commitments that are relevant
to him. For instance, Buyer might not be aware of the com-
mitment from the Provider to Seller in the e-commerce
protocol. Accordingly, the formal model should be based on
the agent’s local knowledge and should not assume that the
protocol is completely known.

The second issue is the uncertainty about the agents’ be-
havior. In general, the analyzing agent has only beliefs about
the others’ behavior, since they are autonomous. For in-
stance, in the e-commerce example, Seller can fulfill his
commitment to Buyer by delivering the goods, only if
Provider fulfills his commitment and provides the goods
beforehand. Hence, Seller should take Provider’s behav-
ior into account while verifying the properties. However,
for Seller there is always uncertainty about the behavior
of Provider (i.e., Provider may violate his commitment).
Accordingly, the uncertainty about the other agents’ be-
havior should be taken into account and the formal model
should reflect the beliefs of the analyzing agent.

Formal Modeling
In this section we present our formal modeling framework.
We first provide the necessary definitions.

Domain: A domain D is a tuple 〈R,A,E,∆〉. R is a set
of agent roles. A is a set of atomic propositions that rep-
resents the factual knowledge of the domain. E is a set of
events and ∆ : E 7→ 2A is a function that represents the ef-
fects of the events over the propositions of A. For instance,
in the e-commerce domain, the event Payment causes the
proposition Paid to hold (i.e., ∆ : Payment 7→ {Paid}).

Commitment: A commitment C w.r.t. to the do-
main D is a tuple 〈rdeb, rcre, Sc, sc0, Op,∆

c〉, where
rdeb and rcre are the debtor and creditor roles, respec-
tively, such that rdeb and rcre ∈ R of D. Sc =
{Null, Con,Act, Ful, V io, Exp} is the set of commitment
states. sc0 is the initial state of the commitment. Op =
{Create,Detach,Expire,Discharge, Cancel} is the set
of commitment operations. The function ∆c : Sc × Op 7→
Sc represents the lifecycle of a commitment. For instance,
〈Con,Detach〉 7→ Act captures the detach operation on the
commitment. For brevity we do not present the details of ∆c

and assume that it is defined w.r.t Figure 1.
Protocol: A protocol P w.r.t. a domain D is a tuple

〈C,∆p〉. C is a set of commitments that forms the proto-
col. The function ∆p : E 7→ 〈C,Op〉 associates each do-
main event in E ∈ D to a domain independent operation of
a commitment in the protocol. For instance, Payment 7→
〈ci, Detach〉 shows that Payment event in the e-commerce
protocol is associated with Detach operation of ci.

Agent: An agent X w.r.t. a domain D and protocol P
is a tuple 〈r,G, π, υ〉. r is the role of X in P , such that
r ∈ R. G is a set of propositions that represents the goals
of X , such that G ⊆ A (e.g., in the e-commerce proto-
col G = {Paid} for Seller). The beliefs of X about the
other agents’ behavior is captured by π, in which the un-
certainty of X is represented by assigning probabilities to
domain events. Technically, π ⊆ R × θ × Dist(E) shows
the probabilities of events in E in the context of P w.r.t. a



Algorithm 1: Algorithm to create the PA α and terminal
states F from the protocol P , agent X and domain D.

input : D = 〈R,A,E,∆〉,P = 〈C,∆p〉,X =
〈r,G, π, υ〉

output: α = 〈S, s0,Σ, P r,Ap, L〉, F
1 Ap← A ∪ St ∪ {util}, Σ← E ∪R, S ← ∅, Pr ← ∅;
2 F ← ∅;
3 create s0 s.t., ∀γ ∈ A : γ = ⊥ and ∀c ∈ C : stc = sc0;
4 let Q be a queue and Enqueue(Q, s0);
5 while Q is not empty do
6 s← Dequeue(Q);
7 S ← S ∪ {s};
8 let terminal← >;
9 foreach 〈r, θ, µ〉 ∈ π s.t. θ holds in s do

10 let δ be a distribution S 7→ [0, 1];
11 foreach e ∈ E that satisfies µ(e) > 0 do
12 create s′ where L(s′) = L(s);
13 δ(s′)← µ(e);
14 S ← S ∪ {s′};
15 let δ′ be a distribution S 7→ [0, 1];
16 create s′′ s.t. L(s′′)← Up(s, e,∆,∆p, υ);
17 δ′(s′′)← 1;
18 Pr ← Pr ∪ {〈s′, e, δ′〉};
19 if s′′ 6∈ S and s′′ 6∈ Q then
20 Enqueue(Q, s′′);

21 terminal← ⊥;
22 Pr ← Pr ∪ {〈s, r, δ〉};
23 if terminal then
24 F ← F ∪ {s};

25 return α, F ;

role in R and a precondition θ, where θ is a union of do-
main propositions and commitment states. Dist(E) denotes
the set of all distributions over E, where a distribution is a
function µ : E 7→ [0, 1] such that Σe∈Eµ(e) = 1. For in-
stance, the belief 〈Buyer, {ci = Con}, (µ(Payment) =
0.9, µ(Refusal) = 0.1)〉 of Seller denotes that when
ci is Con, Buyer triggers Payment event with 0.9 and
Refusal event with 0.1 probability. Finally, υ : E 7→ R
is the subjective utility of events from X ’s point of view,
which may be a positive (gain) or negative (cost) real value.

Semantics
We formalize the semantics of our definitions as probabilis-
tic automata (PA) (Rabin 1963). Our PA model is a tuple
〈S, s0,Σ, P r,Ap, L〉. The elements of the PA and their cor-
respondence to domain D, protocol P and agent X are as
follows. S is the set of states, where each state s ∈ S consists
of a set of boolean variables that correspond to the proposi-
tions in A of D, a variable set St that includes a variable
stc for each commitment c ∈ C of P to represent the state
of c, and an real valued variable util that corresponds to the
utility of X in s. s0 ∈ S is the initial state of the PA, where
every proposition of A is set to false (⊥), every commitment

s
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s′2

s′′1

s′′2

Buyer, δ(s′1) = 0.9

Buyer, δ(s′1) = 0.1

Payment, δ′(s′′1) = 1

Refusal, δ′(s′′1) = 1

Figure 2: Creation of PA states and transitions from beliefs.

state is set to Null and util is set to 01. Σ is the alphabet,
which corresponds to the events of E and roles of R in D.
Pr ⊆ S × Σ × Dist(S) is the transition function where
Dist(S) denotes the set of all distributions over S. A distri-
bution is a function δ : S 7→ [0, 1] such that Σs∈Sδ(s) = 1.
Finally, Ap is the set of variables that form the states of S
and L : S 7→ Ap is the labeling function that assigns the
values of the variables in Ap for each state in S.

We show the creation of the states and transitions of a
PA α from a given domain D, protocol P and agent X in
Algorithm 1. The algorithm also identifies the set of termi-
nal states F (i.e., states without any outgoing transitions).
The algorithm utilizes breadth-first search strategy. First, the
initial state s0 of the PA is created as we describe above
(Line 3). Then, each belief 〈r, θ, µ〉 ∈ π of X is considered
and if the precondition θ of the belief holds in s0 (Line 9),
the algorithm creates a transition for each event e that has a
positive probability in the distribution µ (Lines 11-20). The
destination state of each transition is created by the auxiliary
Up function according to the effects of the e as described in
∆ (Line 16). The states of the commitments and the utility
of the agent are also updated by Up according to ∆p and
υ functions. After that, the new states are added to a queue
(Lines 19-20). The same process is repeated until no more
new states are left in this queue (Lines 5-24).

As an example, we show the creation of the
states and transitions for the belief 〈Buyer, {stci =
Con}, (µ(Payment) = 0.9, µ(Refusal) = 0.1)〉 of
Seller about Buyer in Figure 2. Suppose that the state of
ci is Con in s. Hence, the precondition of the belief holds
in s. First, the intermediary states s′1 and s′2, which are
identical to s are created. Then, the transitions from s to
these new states are created, which are labeled as Buyer
to represent the agent role that can trigger the events of
the given belief. After that the states s′′1 and s′′2 , which can
be reached from s′1 and s′2 via the transitions labeled with
Payment and Refusal events, are created, respectively. In
s′′1 , Paid proposition starts to hold and the state of ci is set
to Act as the effect of Payment event. Variables in s′′2 are
updated similarly according to Refusal event’s effects.

Formalization of Properties
We are ready to formalize our properties with respect to a
PA. Below α = 〈S, s0,Σ, P r,Ap, L〉 is a PA and F ⊆ S
is the set of terminal states, which are the outputs of Al-
gorithm 1 for a given domain D = 〈R,A,E,∆〉, protocol

1Without loss of generality, we assume a single initial state.



P = 〈C,∆p〉 and agent X = 〈r,G, π, υ〉. Our property
definitions are based on a probability function L(T, α) that
computes the probability of reaching the set of states T ⊆ S
in α. We define the details of L in the next section.

Conformance: X conforms with P in D w.r.t. α and F
if L(α, T ) > C, where T = {s | s ∈ F and ∀c ∈ C :
(c.rdeb = r)⇒ (stc = Ful or stc = Exp) ∈ L(s)} and C
is a real valued constant in [0, 1].

An agent conforms with a protocol, if the probability of
being in a terminal state in which every commitment of the
agent is either fulfilled or expired, is greater than a threshold.

Achievement: X achieves his goals G via P in D w.r.t. α
and F if L(α, T ) > A, where T = {s | s ∈ F and ∀γ ∈
G : γ ∈ L(s)}, and A is a real valued constant in [0, 1].

An agent’s goals are achievable via a protocol, if the prob-
ability of being in a terminal state in which every goal of the
agent is achieved, is greater than a threshold.

Benefit: P is beneficial for X in D w.r.t. α and F if
L(α, T ) > B, where T = {s | s ∈ F and util > 0 ∈
L(s)}, and B is a real valued constant [0, 1].

A protocol is beneficial for an agent, if the probability
of being in a terminal state in which the expected utility is
positive, is greater than a threshold.

Verification of Properties
In this section we show computation of L(T, α), which is
the probability of reaching T in α. Computation of L(T, α)
corresponds to reachability checking in probabilistic model
checking. In Algorithm 2 we present an algorithm for this
computation. Algorithm 2 takes a PA α and a set of target
states T ⊆ S as input, and returns the probability of reaching
T in α. T is determined according to the property definition
that is aimed to be verified. If the probability of reaching T is
greater than the threshold of the property, we conclude that
the property holds. Otherwise, the property does not hold.

In Algorithm 2 we use the auxiliary function Pre(s)
that returns the pre-states of a state s in a PA. Formally,
Pre(s) = {s′|∃(s′, t, δ) ∈ Pr satisfying δ(s) > 0}. We use
ps to record the probability of reaching T from s. Due to
the existence of non-determinism in PA, the result of reach-
ability checking is a range instead of a single value, which
is similar to Markov Decision Processes (Baier and Katoen
2008). Accordingly, in Algorithm 2 we adopt a cautious ap-
proach and compute the minimal probability of reaching T .

The main idea of the reachability checking is to start from
the target states and proceed backwards step by step while
updating the probabilities of the PA states. Accordingly, first
T is assigned to Scur (Line 1), which represents the cur-
rent states in the iterative process, and the probabilities of
these states are set to 1 (Lines 2-3). Then, a state s is re-
moved from Scur (Lines 5-6) and for each pre-state s′ of s
(Line 7) the probabilities are updated as follows: for each
enabled transition t from s′ with distribution δ, a variable pn
is created (Line 9-10) to record the probability of reaching
T from s′ via δ. Afterward, the sum of δ(s′′)×ps′′ for all s′′
satisfying δ(s′′) > 0 is assigned to pn, i.e., pn is the sum of
the transition probabilities of this distribution times the cor-
responding successor state’s probability to T (Lines 11-12).

Algorithm 2: Computation of the probability to reach
the target states from the initial state.

input : α = 〈S, s0,Σ, P r,Ap, L〉, T ⊆ S
output: ps0

1 let Scur ← T and Spre ← ∅;
2 foreach s ∈ Scur do
3 ps ← 1;
4 while Scur 6= ∅ do
5 foreach s ∈ Scur do
6 Scur ← Scur\{s};
7 foreach s′ ∈ Pre(s) do
8 Spre ← Spre ∪ {s′};
9 foreach 〈s′, t, δ〉 ∈ Pr do

10 pn ← 0.0;
11 foreach s′′ ∈ S such that δ(s′′) > 0 do
12 pn ← pn + δ(s′′)× ps′′ ;
13 ps′ ←Min(ps′ , pn);

14 Scur ← Spre;
15 Spre ← ∅;
16 return ps0 ;

To keep the minimal probability, ps′ is set to the minimum
value of ps′ and pn using Min function (Line 13). When
all states in Scur are considered, Scur is set to pre-states of
s (Line 14). The while loop at Line 4 terminates when no
pre-states exist, i.e., the minimal probability from s0 to T is
computed and stored in ps0 . Finally, ps0 is returned as the
probability of reaching T from s0 (Line 16).

Partial Order Reduction for Efficient Verification
The major factor that determines the execution time of Al-
gorithm 2 is the size of the PA’s state space. Hence, reduc-
ing the size of the PA’s state space also reduces the execu-
tion time. Partial order reduction is a common technique in
model checking for the reduction of state space that exploits
the commutativity of concurrent transitions (Baier and Ka-
toen 2008). Usually, a commitment protocol includes several
commitments that are independent from each other and the
operations on such commitments are commutative, which
allows us to apply partial order reduction to our PA model.

As an example consider an extension of our e-commerce
protocol in which the buyer can purchase more than one
goods from the seller. Suppose that different goods are pro-
vided to the seller by different providers. Accordingly, the
seller has separate commitments for the goods from differ-
ent providers. We show this situation for two providers in
Figure 3. In the figure, cj1 and cj2 represent the commit-
ments from the two providers to the seller. The superscripts
denote the states of the commitments, where A means ac-
tive and F means fulfilled. Suppose that both cj1 and cj2 are
initially active in state s1. If cj1 is discharged, the system
progresses to s2, where cj1 is fulfilled. Then, when cj2 is
discharged, the system progresses to s4, where both cj1 and
cj2 are fulfilled. On the other hand, if c2j is discharged, the
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Figure 3: Different message orderings with the same result.

system progresses to s3 and when c1j is discharged, the sys-
tem progresses again to s4. Hence, both executions reach to
the same state independent from the order of operations.

A particular method for partial order reduction is the use
of ample sets (Peled 1993). Given a state s, a subset of all
possible transitions from s is called an ample set, if it is suf-
ficient to explore only the transitions in the ample set in-
stead of every possible transition from s. For instance, in
Figure 3 there are two ample sets for s1 as {Discharge cj1}
and {Discharge cj2}. Therefore, it is enough to explore just
one of these transition sets.

An ample set is determined according to a set of crite-
ria. Due to space limitations we discuss only the dependency
condition, which is the most challenging to check of all these
criteria. Technically, checking the dependency condition is
equivalent to checking the reachablity of a condition in the
full PA. However, in general it is possible to use an equiva-
lent local criterion that can be checked efficiently. We define
a local criterion that exploits the independency of commit-
ments as follows: (LC-1) A state of c that can be reached
as a result of an event e that may occur in s, should not be
a precondition of any event e′ that affects the state of any
other commitment c′. (LC-2) A disabled event e that affects
the state of c, should not have a precondition about the state
of some other commitment c′.

Computational Experiments
We conducted a set of experiments to evaluate the execution
performance of our algorithms and the effect of our reduc-
tion technique. For these experiments we implemented Al-
gorithms 1 and 2. We systematically created a set of protocol
models based on our e-commerce protocol for evaluation as
follows2. We combined n number of copies of the base e-
commerce protocol, such that each copy of the base proto-
col uses new identifiers for Buyer and Provider, and the
commitments are created between these new roles and the
original Seller. Hence, each copy of the basic protocol can
be executed independent from the other copies.

We run our experiments on a PC equipped with an Intel
i7 3.0 GHz processor and 4GB RAM running 64-bit Win-
dows 7 operating system. We verify all three properties for
each protocol according to the beliefs of Seller. For brevity
we present only the result for the verification of the con-
formance property in Table 1. However, we observed simi-
lar results for other properties. The first column shows the
number of duplications of the base protocol. The columns

2The implementations and protocol models can be downloaded
from http://pat.sce.ntu.edu.sg/akin

n without reduction with reduction
Time State Mem Time State Mem

2 0.011 421 36.7 0.004 188 33.5
3 0.356 8117 40.8 0.013 1001 37.4
4 7.676 160K 185.7 0.121 5102 39.0
5 238.8 3.2M 3642.2 0.559 25K 48.2

Table 1: Results for the verification of conformance.

2–4 show the execution time of the verification process in
seconds, number of states in the verified PA and the approx-
imate memory usage in megabytes without applying reduc-
tion, respectively. The columns 5–7 shows the same results
when reduction is applied. All results are the average of ten
runs. The results show that without applying the partial or-
der reduction, the state space grows exponentially and con-
sequently the execution time also increases exponentially.
On the other hand, partial order reduction reduces the state
space and consequently the execution time, significantly.

Conclusion and Future Work
We proposed a probabilistic model checking method for the
verification of a commitment protocol’s key properties with
respect to an agent’s beliefs. We showed that these proper-
ties should be satisfied in order to rationalize an agent’s par-
ticipation in the protocol. Our major contributions are the
development of a new probabilistic model of a commitment
protocol that reflects an agent’s local knowledge and beliefs,
identification and formalization of properties that are neces-
sary for the analysis of a protocol with respect to an agent’s
goals and preferences, and the use of probabilistic model
checking and reduction techniques for the efficient verifica-
tion of the introduced properties.

Our proposal has major differences from the existing
work on the verification of commitment protocols. Previous
approaches aim to verify a commitment protocol at design-
time from a global point of view, where the specification
of the whole protocol and exact behavior of the agents are
known. Although this type of verification is crucial to de-
sign correct commitment protocols, they are not adequate
to support an individual agent’s decision making. On the
other hand, use of PA for modeling allows us to reflect an
agent’s beliefs about the other agents’ behavior into the ver-
ification process. Moreover, our PA model allows us to adopt
existing probabilistic model checking algorithms for the ef-
ficient verification commitment protocols (Song et al. 2012;
Sun, Song, and Liu 2010).

There are several future directions. We aim to extend our
method to cover other states and operations, which are stud-
ied in the literature (Chesani et al. 2013). In this paper
we do not consider resource constraints of commitments.
However, there are several properties of commitments, such
as conflict-freeness and feasibility, which are based on re-
sources (Günay and Yolum 2012; 2013). In our future re-
search, we aim to extend our method to cover these prop-
erties. Finally, we aim to integrate our method into more
general model checking frameworks for multiagent sys-
tems (Lomuscio, Qu, and Raimondi 2009; Song et al. 2014).
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