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Abstract—MOEA/D is a recently proposed methodology of
Multiobjective Evolution Algorithms that decomposes multiob-
jective problems into a number of scalar subproblems and
optimizes them simultaneously. However, classical MOEA/D uses
same weight vectors for different shapes of Pareto front. We pro-
pose a novel method called Pareto-adaptive weight vectors (pa))
to automatically adjust the weight vectors by the geometrical
characteristics of Pareto front. Evaluation on different multiob-
jective problems confirms that the new algorithm obtains higher
hypervolume, better convergence and more evenly distributed
solutions than classical MOEA/D and NSGA-II.

I. INTRODUCTION

Many real-world problems can be described as Multiob-
jective problems (MOPs). MOPs always have several conflict
objectives, and it is difficult to simultaneously optimize all the
objectives. The tradeoff point is a Pareto-optimal solution, the
set of Pareto-optimal solutions is called the Pareto Set (PS),
and the set of all Pareto-optimal objective vectors is the Pareto
front (PF). Multiobjective Evolutionary Algorithms (MOEAs)
are demonstrated to be suitable for solving various complex
MOPs [1].

Currently, most MOEAs are Pareto dominance-based algo-
rithms such as NSGA-II [2], SPEA2 [3], SMPSO [4]. These
algorithms use the Pareto dominance relation together with a
crowding distance or neighbor density estimator to evaluate in-
dividuals. Pareto dominance-based algorithms work generally
well to approximate PF in two or three objectives. However,
the performance is severely deteriorated by the increasing
number of objectives, because almost all the solutions are
nondominated by each other under many objectives.

MOEA based on decomposition (MOEA/D) belongs to an-
other scope to solve MOPs, which decomposes multiobjective
problems into a number of scalar subproblems and optimizes
them simultaneously. Classical MOEA/D mainly includes
three decomposition approaches: weighted sum, weighted
Tchebycheff [5] and boundary intersection [6]. A new penalty-
based boundary intersection (PBI) approach is proposed in [7].
MOEA/D has several advantages over Pareto dominance-
based algorithms such as computational efficiency, scalability
to many problems and high search ability for combinatorial
optimization problems. Despite its advantages, MOEA/D has
two limitations: (1) MOEA/D is unable to produce an arbitrary
number of weight vectors when the number of objectives is
larger than two; (2) the weight vectors in classical MOEA/D
are unchanged for different shapes of PF.

We propose a novel method called Pareto-adaptive weight
vectors (pal), inspired by the Pareto-adaptive e-dominance
method that divides the objective space into different sizes
of hyper boxes according to the geometrical characteristics of
Pareto front [8]. The paA approach has two important features:
(1) paX is based on Mixture Uniform Design (MUD) and
able to generate an arbitrary number of weight vectors even
when the number of objectives is larger than two; (2) paA
is driven by the hypervolume metric. It can automatically
adjust weight vectors to scatter for concave PF, whereas
assemble weight vectors for the convex PF. Experimental
results on various multiobjective problems show that paA-
MOEA/D obtains higher hypervolume, better convergence and
more evenly distributed solutions than classical MOEA/D and
NSGA-IL

II. paA: PARETO-ADAPTIVE WEIGHT VECTORS

The paX is based on Mixture Uniform Design, and it
automatically adjusts weight vectors by the shape of PF.

A. Weight Vectors by MUD

For MOEA/D, the number of weight vectors N = C’;}L;}n_l
is controlled by the parameter H. When the number of
objectives m is larger than 2, N is a discrete sequence for
different H. paX adopts Mixture Uniform Design (MUD)
to produce an arbitrary number of evenly distributed weight
vectors when m > 3.

MUD is an advanced experimental design method. Suppose
that a vector is composed of m components x1, - - - , Z,,. Each
vector is one point in the space region T = {(z1,- -+, Tm) :
x; > 0;4i=1,--- ,m;x; + -+ + x,, = 1}. The opinion of
MUD is to evenly spread the N experimental points (repre-
senting the N vectors) in region 7"". The detailed algorithm
can be found in [9]. For example, in the case of N = 10
and m = 3, MUD first constructs an uniform design array
U10(10%), and then transfers U™~ to C™~1 cubic space.
The weight vectors \¥ = (2.1, 70, 713), k = 1,--- , N can
be calculated as: xp1 = 1 —\/Cx1, Tr2 = /Cr1(1 — c2), and
T3 = /Cr1Ck2.

B. paX for Two, Three and more Objectives

paX controls weight vectors to assemble or scatter depend-
ing on the geometrical characteristics of PF. We first illustrate
paA in the bi-objective case. Assuming that PF is symmetric
and the m objectives are normalized to 0 < f; < 1. The curve
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of PF can be represented as f¥ + fJ = 1. The weight vectors
satisfy A\; + A2 = 1, whose gradients are represented by A
lines (Figure 1). These A lines produce N intersection points
along PF. To evaluate the distribution of such points, we set
the hypervolume metric [10] as a rule to drive paA method.
When p = 1, the shape of PF is a line f; + fo = 1, the A
lines are distributed perfectly, and the set of intersection points
has the maximum hypervolume. When p # 1, we need to move
the intersection points until they are evenly distributed along
¥+ f¥ = 1. In other words, the intersection points with the
maximum hypervolume is the ultimate goal. pa) introduces a
scale parameter [ to adjust the gradient of \ lines: % = (%)l

Define the intersection points as {(z%,2%),i = 1,---,N}.
They are along PF and on the adjusted A lines: (z})P+(z4)? =
$3 = (58)"

For an assumptive scale parameter [, a set of intersection
points is calculated by solving the above equations. Then, the
hypervolume of such points is associated with the parameter [.
pa adopts Simplex Method to find evenly spread intersection
points with the maximum hypervolume. The Simplex Method
repeatedly uses the shrink, reflection and expansion procedures
to get the optimal scale parameter [°P¢. After that, the adjusted
weight vectors can be calculated as:
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Figure 1 shows an example of 10 intersection points along
PF generated by A (MOEA/D) and paX respectively. When
p = 0.5, the hypervolume of the intersection points is hv =
0.774252 by MOEA/D (plot (a) in Figure 1). From plot (b) in
Figure 1, pa) gets the optimal parameter [°P* = 1.7105 and
larger hv = 0.793305, the A lines are scattered in the objective
space, and the intersection points are moved to the two
endpoints of PF. When p = 2, the hypervolume of intersection
points is hv = 0.169539 by MOEA/D. paA gets the optimal
parameter [°P! = (.56192 and larger hv = 0.178965 (plot (c)
in Figure 1). X lines are assembled together in the objective
space, and the intersection points are moved to the median of
PF.
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10 Intersection Points along 2-dimensional Pareto Front by A (MOEA/D) and paA Method

For the tri-objectives case, pa) sets the number of scale
parameters as 2. The X lines are adjusted in two directions:
in the plane xy the A lines are adjusted by parameter /5, and
in the plane xz the A\ lines are adjusted by parameter /3. The
intersection points along Pareto front and on the adjusted A

lines (¢ = 1,---, N) can then be defined as:
%o Sy By
1 1 1 1
The two parameters [57°, 15" are optimized by the Simplex
Method, and the adjusted weight vectors are calculated as:
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paX can expand to the case of more than three objectives.
The scale parameters (o, - - ,l,,) are set for m objectives. At
first, the weight vectors {\* = (\i,--- A\ ):i=1,--- N}
are initialized by MUD. Then, we estimate the p value of
PF [8]. Finally, the scale parameters are optimized by the
Simplex Method. The Pareto-adaptive weight vectors can then
be calculated as follows: 5 = ()\i»/)\’i)l;m (j=2,---,m)and

;fm,)\ = (Lréa T 7T;in)/(1 + Zj:Z T;)
II1. THE paA-MOEA/D ALGORITHM

The paA\-MOEA/D algorithm is based on decomposition
with Pareto-adaptive weight vectors, and its decomposition
method is the Tchebycheff approach. A pseudo code of paA-
MOEA/D is given in Algorithm 1. Some parameters are
defined as: IV is the size of population; 7" is the number of
the neighborhood for weight vectors; Archive is the external
population which stores the non-dominated solutions.

There are four steps in the paA-MOEA/D: Step 1 is to
initialize the first population, weight vectors, neighborhood
and the external population (Archive); Step 2 is to generate
the next offsprings, update population and Archive; Step 3
is the paA method (as described in Section 2); and Step 4
is to quit the algorithm when the number of fitness function
evaluations is larger than maz_evals.



To explain, the initial weight vectors are generated by the
Mixture Uniform Design (Line 5). As mentioned in Sec-
tion II-A, by adopting MUD, we can generate an arbitrary
number of weight vectors even when the number of objectives
is larger than two. This expands the scalability of MOEA/D.

The paX method is implemented as Lines 14-21. In Line
18, paX estimates the parameter p of the Pareto-optimal front
¥+ .-+ f2 =1 by calculating the area of non-dominated
solutions in Archive [8]. In Line 19, paX is driven by the
hypervolume metric (As described in section II-B). A larger
hypervolume means that the intersection points distribute more
evenly along the PF. pa\ automatically adjusts the intersection
points to scatter when PF is convex but assemble when PF is
concave. There are m — 1 parameters to be optimized for m
objectives by the Simplex Method. In Lines 20-21, the new
weight vectors are used to update the neighborhoods of each
weight vector.

The algorithm finally outputs the non-dominated solutions
in population when the stopping criteria is satisfied (Lines 23-
25), which form the solutions of the multiobjective problem.

Algorithm 1: The pa\-MOEA/D Method
1 Step 1: Initialization Method

Set evals = 0, flag = false;

Random generate first population X;

Evaluate X and update evals;

Generate first weight vectors A by MUD;
Compute the 7" neighborhoods for every A;

Add X into Archive by dominance relationship;
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8 Step 2: Update Procedure
9 fori=1,---,N do

10 Generate a new solution ¢’ from X by DE
operator and polynomial mutation;

11 Evaluate v’ and evals + +;

12 Update population;

13 Add 3y’ to Archive by dominance relationship;

14 Step 3: Pareto-adaptive A Method

15 if flag == true or |Archive| < 2N then

16 L Go to Step 4;

17 Set flag = true;

18 Estimate parameter p of Pareto front for Archive;
19 Pareto-adaptive weight vectors;

20 Get the new weight vectors A = Apga;

21 Recompute 7' neighborhoods for every A;

22 Step 4: Stopping Criteria

23 if evals < max_evals then
24 L Go to Step 2;

25 Output the non-dominated solutions in X.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental study to evaluate paA\-MOEA/D against other
competing approaches using jMetal 3.0, a Java-based frame-
work that is aimed at facilitating the development of meta-
heuristics for solving MOPs, on benchmark problems.!

A. Test Problems and Experimental Setting

The test problems are ZDTx and DTLZx. ZDTx prob-
lem family include five bi-objective problems (ZDT1, ZDT2,
7ZDT3, ZDT4 and ZDT6). DTLZx problem family include sev-
en tri-objective problems (DTLZ1, DTLZ2, DTLZ3, DTLZA4,
DTLZS, DTLZ6 and DTLZ7).

Five algorithms are tested including one Pareto dominance-
based algorithm and four decomposition-based algorithm-
s: NSGA-II, Non-Dominated Sorting Genetic Algorithm-
II [2]; MOEA/D™*, MOEA/D with the weight sum approach;
MOEA/D*, MOEA/D with the Tchebycheff approach [5];
MOEA/DP**, MOEA/D with the penalty-based boundary in-
tersection approach [7]; and paA-MOEA/D, MOEA/D with
Pareto-adaptive weight vectors.

The parameter settings are outlined as follows. The popu-
lation size is 25 for ZDTx and 105 for DTLZx respectively.
The number of weight vectors for the tri-objective problems
in classical MOEA/D can be drew CE;;A = Cf3,, =105
when H = 13. The number of fitness function evaluations is
25,000 for ZDTx and 50,000 for DTLZx. Every algorithm
launches 100 times independently for each test problem, to
obtain statistically significant results. The number of neigh-
borhoods 1" is 20. For DE (Differential Evolution) operator
CR = 1.0 and F' = 0.5. The probability of SBX crossover is
0.9. For polynomial mutation, 7 = 20 and p,, = 1/n, where
n is the number of decisional variables.

We adopt five performance metrics: Hypervolume, Inverted
Generational Distance (IGD), Generational Distance (GD),
Unary Additive Epsilon Indicator (I} -) and Spread. The higher
Hypervolume and lower IGD, GD, I} - and Spread indicate the
better performance. Results are compared using median values
and the superior results of test problem are highlighted as grey
background.

TABLE I
MEDIAN OF HYPERVOLUME (HYV)

MOEA/D”® | MOEA/D'® |MOEA/DP??| NSGA-Il |paA-MOEA/D
ZDT1 | [GIB2Ielsi0i6.392¢ — 01]6.057¢ — 01]6.381e — 01]6.412¢ — 01
ZDT2 |[0.000e + 00[3.097e — 01[2.957¢ — 01|3.060e — 01
ZDT3 ||4.863¢ — 01[4.870e — 01[4.642¢ — 01 4.873¢ — 01
ZDT4 |[3.534e — 01[6.360e — 01[6.244e — 01[6.359¢ — 01 |GISOTEE=ION
ZDT6 |[0.000e + 00[3.857¢ — 01[3.857¢ — 01|3.709¢ — 01 |SIS50EE=I0N
DTLZ! ||2.259¢ — 01[7.434e — 01 7.262e — 01|7.814e — 01
DTLZ2 |{0.000e + 00[3.777e — 01/3.812¢ — 01]3.766¢ — 01| EIOTAEE=0N
DTLZ3 ||0.000e + 00[3.605¢ — 01]2.633¢ — 01|1.901e — 01|BISTTEE=0N
DTLZ4 ||0.000e + 00[3.774e — 01/3.583¢ — 01|3.759¢ — 01|BIOG2EE=0N
DTLZ5 ||0.000e + 00[8.936e — 02/7.789¢ — 02 9.156e — 02
DTLZ6 ||0.000e + 00]9.035¢ — 02/7.786¢ — 02[4.259¢ — 03| DI266EE=I02
DTLZ7 ||2.673¢ — 02[1.944e — 01/2.151e — 01 2.471e — 01

Uhttp://jmetal.sourceforge.net [11]



B. Statistical Results of Performance Metrics

Table I summarizes the performance for the hypervolume
measure, which evaluates both convergence and distribution of
non-dominated solutions. Among the 12 test problems, pa-
MOEA/D obtains the best results on 7 problems. MOEA/D"?
obtains zero hypervolume for ZDT2, ZDT6 (PF: fZ+ fo = 1)
and DTLZ2-6 (PF: f? + f2 + f2 = 1). The result indicates
that weighted sum approach is not suitable for dealing with
concave PF.

Both MOEA/D* and paA-MOEA/D use Tchebycheff
approach, paA\-MOEA/D obtains higher hypervolume than
MOEA/D?¢ on all the 12 problems. Comparing the dominance-
based and decomposition-based algorithms, NSGA-II out-
performs MOEA/D on ZDT3, DTLZS and DTLZ7. Future
analysis on the shape of ZDT3 and DTLZ7, they are formed to
be discrete PF , respectively. This indicates that decomposition
methods are generally less suitable for dealing with problems
with discrete PF.

TABLE 11
MEDIAN OF INVERTED GENETIC DISTANCE (IGD)

MOEA/D™® [ MOEA/D?*® [MOEA/DP?* | NSGA-II [paA-MOEA/D]
ZDT1 6.484¢ — 041.143¢ — 03[7.943e — 04]5.797¢ — 04
ZDT2 8.155¢ — 046.022¢ — 04
ZDT3 1.973e — 03
ZDT4 5.938¢ — 04
7ZDT6 4.131e — 04
DTLZ1 4.520e — 04
DTLZ2 5.779¢ — 04
DTLZ3 1.179¢ — 03
DTLZ4 7.215¢ — 04
DTLZ5 2.789¢ — 05
DTLZ6 6.776e — 05
DTLZ7 3.555e — 03

Table II shows the performance for the Inverted Genetic
Distance metric, which also evaluates both convergence and
distribution of non-dominated solutions. For 12 test problems,
paA-MOEA/D obtains the best results on more problems than
any other methods do. Comparing MOEA/D and NSGA-II ex-
cept for the discrete PF (ZDT3 and DTLZ7), MOEA/DP®* out-
perform NSGA-II on 8 problems (except ZDT1 and DTLZS),
which is similar to the results reported in [7]. For the same
Tchebycheff approach, paA\-MOEA/D outperform MOEA/D®*
on 10 problems except ZDT2 and ZDT6.

TABLE III
MEDIAN OF GENETIC DISTANCE (GD)

MOEA/D"* | MOEA/D*® | MOEA/DP®"| NSGA-II
ZDTI |d.41le — 02]9.595¢ — 04]6.162¢ — 03|1.007¢ — 03
ZDT2 |}4.400e — 02[5IS0GERSI0E
ZDT3 |[2.374e — 02]1.732e — 03[8.772¢ — 03
ZDT4  |[1.760e + 00|1.536¢ — 03[3.422¢ — 03
ZDT6 |[2.632e — 02]9.647¢ — 04
DTLZ! |[2.874e + 01/1.137¢ — 03(1.123¢ — 03
DTLZ2 |[5.362e — 02/9.088¢ — 04/2.585¢ — 03)1.
DTLZ3 |[3.115¢ + 01/1.977e — 03|1.114e — 02/6.101e — 02
DTLZ4 |[5.262¢ — 02/7.847¢ — 03(6.524e — 03|MIOUSEE=I03)
DTLZ5 |[1.773e — 02/2.990e — 04]9.180e — 02[3.625¢ — 04
DTLZ6 |[1.153e — 01/6.546¢ — 04]9.217e — 02/3.321e — 02| FI264EE=I0Z
DTLZ7 |[1.433e — 01/1.663e — 03|4.780e — 03|2.741e — 03| N566EE=I08

Tables IIT and IV show the performance for the Genetic
Distance and epsilon metrics respectively. Among the 12 test

problems, pa\-MOEA/D obtains the best results of these two
metrics on most of the problems.

TABLE IV
MEDIAN OF EPSILON (I€1+) METRIC

MOEA/D™® | MOEA/D*® [MOEA/DP®* | NSGA-Il |paA-MOEA/D)
ZDTI |[2.964e — 02]3.381e — 02/4.810e — 02|4.457¢ — 02
ZDT2 |[3.819¢ — 01 |[2EIGHEESI0Z|3.831e — 02]4.497e — 02]3.200e — 02
ZDT3 |[6.133e — 026.034e — 02]9.272¢ — 02 5.514e — 02

ZDT4 |[3.126e — 01/3.438¢ — 02/3.879¢ — 02[4.749¢ — 02| 2IG5SEE=02
ZDT6 |[3.470¢ — 01/1.931e — 02(1.932¢ — 02]4.058¢ — 02

DTLZI |[[2.721¢ — 01/4.752¢ — 02 7.337¢ — 02|3.546¢ — 02
DTLZ2 |[4.215¢ — 01/1.004e — 01(9.093¢ — 02[1.214e — 01| BI2TOEE=02
DTLZ3 |[[1.009¢ + 00|1.156¢ — 01[1.698¢ — 01|2.788¢ — 01 |INOGTEE=0N
DTLZ4 [|4.060e — 01/9.668¢ — 02/9.978¢ — 02/1.068¢ — 01

DTLZ5 |[[2.437¢ — 01/1.887¢ — 02|4.289¢ — 02 1.454¢ — 02
DTLZ6 |[[2.437¢ — 01/1.863¢ — 02|4.242¢ — 02[2.223¢ — 01

DTLZ7 |[7.474e — 01]2.605¢ — 01]2.396¢ — 01 1.849¢ — 01
Table V shows the performance for the Spread metric,

which evaluates distribution of non-dominated solutions. paA-
MOEA/D obtains the best results on 8 problems. NSGA-II
gets 3 best results on ZDT3, DTLZS and DTLZ7. For the bi-
objective problems by MOEA/D, pa\-MOEA/D brings about
a larger spread value improvement when PF is convex (ZDT]I,
ZDT4), but smaller when PF is concave (ZDT6). The poor
performance on ZDT3 for paA\-MOEA/D may attribute that
paA cannot estimate well the parameter p for discrete PF.
For the tri-objective problems by MOEA/D, paA\-MOEA/D
improves the spread values on almost all problems.

TABLE V
MEDIAN OF SPREAD METRIC

MOEA/D®® [ MOEA/D®® [MOEA/DP** | NSGA-Il _[paA-MOEA/D
ZDTI |[1.299¢ + 002.841c — 01|2.433¢ — 01[4.093¢ — 01| A28e==00
ZDT2 |[1.960e + 00/1.427¢ — 01/1.559¢ — 01]4.253¢ — 01
ZDT3 |[1.800e + 00[7.760e — 01/5.816e — 01 8.184e — 01
ZDT4 |[1.945€ + 002.912¢ — 01/2.538e — 01|4.812e — 01
ZDT6 |[1.939¢ + 00[1.496¢ — 01|1.494e — 01|7.566¢ — 01 |INZG2EE=I0N
DTLZ1 |[1.440e 4 00[8.717e — 01|6.221e — 01[8.434¢ — 01 |FI592EE=I0M
DTLZ2 |[1.642e + 009.028¢ — 01|6.470e — 01]6.982¢ — 01
DTLZ3 |[1.573€ + 0009.199¢ — 01|GE20EE=I0N8.352¢ — 01|7.196¢ — 01
DTLZ4 |[1.572e + 009.223¢ — 01/6.705¢ — 01[6.661e — 01
DTLZ5 |[1.633€ + 00[1.138¢ + 00|1.050e + 00 6.993¢ — 01
DTLZ6 |[1.513¢ + 00[1.153¢ + 00|1.193¢ + 00|8.
DTLZ7 |[1.493e 4+ 00[1.111e + 00]9.475¢ — 01 9.711e — 01

In conclusion, the results in Tables 1-5 confirm that pa\-
MOEA/D is able to obtain consistently higher hypervolume,
better convergence and more evenly distributed solutions than
classical MOEA/D and NSGA-II on most of the benchmark
problems considered. The core feature of pa) views the
elasticity of the weight vectors that adapts according to the
geometrical characteristics of PF. In addition, paA\-MOEA/D
largely dominates other MOEA/D methods especially for
solving tri-objective problems.

C. pa)\ with Arbitrary Number of Weight Vectors

The number of weight vectors in classical MOEA/D is
set to be N = CEL;A. For tri-objective problems, N =
{45, 55, ...,91, 105,120, 136, 153,171, 190, 210, 231, 253},
which is discrete for H = {8,9,---,25}. paA\-MOEA/D,
on the other hand, is not constrain to specific size, and able
to generate an arbitrary number of weight vectors when the
number of objectives is larger than 2 (Section II-A).
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In Table VI, we compare paA\-MOEA/D with NSGA-II on
tri-objective problem DTLZ2. The population size is set as
N = 50,100, 150, 200, 250. The maximum evaluation times
is 50000. Table VI exhibits that paA\-MOEA/D gets higher
hypervolume than NSGA-II for different population sizes. The
statistical results thus indicate that pa A\-MOEA/D is not only
able to generate an arbitrary number of weight vectors, but
also more efficient than NSGA-IIL.

TABLE VI
MEDIAN OF HV FOR ARBITRARY NUM OF WEIGHT VECTORS

N =50 [ N = 100 [ N =150 [ N = 200 [ N = 250 ]
3.383e — 1|3.728¢ — 1|3.914e — 1|4.037¢ — 1{4.110e — 1

NSGA-II
paA-MOEA/D|

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we propose the novel paA\-MOEA/D algorith-
m. It automatically adjusts the weight vectors based on the
geometrical characteristics of PF. Experiments on 12 bench-
mark problems confirm that it outperforms classical MOEA/D
and NSGA-II in term of the hypervolume, Inverted Genetic
Distance, Genetic Distance, epsilon and Spread metrics.

paA-MOEA/D assumes that PF is symmetric. For an asym-
metric curve ' + f3? = 1 (p1 # p2), classical MOEA/D
are not suitable to deal with such asymmetric MOPs. The
future research will focus on the challenging problem of
automatically adjusting weight vectors for asymmetric PF.
Another interesting issue is to adopt Memetic Computation
to optimize the MOPs [12], [13], [14].
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