
A Multi-Agent Simulation Framework to
Support Agent Interactions under Different

Domains

Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

?School of Computer Engineering, Nanyang Technological University, Singapore
∗Chief Scientist, RTSync Corporation, Arizona, USA

†Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore
{hmoath,zhangj}@ntu.edu.sg

berniezeigler@rtsync.com

cxu@simtech.a-star.edu.sg

Abstract. The ability to study complex systems has become feasible
with the new intensive computing resources such as GPU, multi-core,
clusters, and Cloud infrastructures. Many companies and scientific appli-
cations use multi-agent modeling and simulation platforms to study com-
plex processes where analytical approach is not feasible. In this paper, we
use two negotiation protocols to generalize the interaction behaviors be-
tween agents in multi-agent environments. The negotiation protocols are
enforced by a domain-independent marketplace agent. In order to provide
the agents with flexible language structure, a domain-dependent ontology
is used. The integration of the domain-independent marketplace with the
domain-dependent language ontology is accomplished through an auto-
matic code generation tool. The tool simplifies deploying the framework
for a specific domain of interest. Our methodology is implemented in
FD-DEVS simulation environment and SES ontological framework.

Keywords: Multi-agent modeling and simulation, business process, ne-
gotiation, ontology, automate, FD-DEVS, SES.

1 Introduction

Agent based simulation platforms have been in research in the last decades
with the promising that they will give understandings to natural phenomena.
However, the computing power was not feasible to tackle the ever-increasing com-
plexity of systems. With the current development in high performance clusters,
cloud environment, multi-core, and graphical processing unit, scientists and de-
cision makers are even more ambitious that multi-agent modeling and simulation
field will help them study complex systems such as in social sciences, command
and control, business processes, chemical reactions, forecast, and many others.
Simulating and understanding a system helps decision makers to be proactive
and not reactive. Also, it helps companies to make proper decisions to increase
their profit and lower their risks. A system consists of many components and

2 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

each component has its own behavior and interacts with other components in
the system. A natural modeling for systems is to represent each component as
an agent. Agents interact according to rules of interactions. Some agents are
intelligent and go through evolution as in the artificial life proposed by Epstein
and Axtell in their famous Sugarscape model of artificial societies [6]. Multi-
agent based modeling and simulation is needed because systems are becoming
more and more complex in their heterogeneity, intelligence, and interactions.
In this regard, SciDAC and Argonne lab are collaborating to build a high end
framework that demands huge processing power (where IBM Blue gene is to
be used) to tackle the most challenging scientific phenomena in the universe
through simulation, visualization, and analysis [12] [13] [18].

Researchers in the domain of industry have been using agent based modeling
and simulating for their business processes in order to achieve better perfor-
mance. One application of a business process is in stock markets. In this appli-
cation, investors try to buy stocks at low prices and sell them when the stock
price is high. Investors try to maximize their profits. Hence, taking risks and
studying historical data profiles are very useful in making predictions. Examples
of such models as in [2] and [16], where heterogeneous agents buy, sell, and hold
stocks and bonds.

Supply chain is another suitable domain for applying the multi-agent sim-
ulation framework where a network of retailers, distributors, factories or ware-
houses, and suppliers interact to achieve profits. Every entity is represented by
an agent in the simulation and the output results are used to analyze the sup-
ply chain performance to better plan and predict future rules. Many industrial
companies have focused on this domain of research such as the work by Boeing
on automation of their supply chain interactions[11].

The ability to manage and utilize software and/or hardware products and
services in current complex distributed system has become increasingly difficult.
The complexity results from the fact that there are many aspects and factors that
represent the characteristics of these systems. Many attempts exist in literature
where solutions were proposed to exploit these resources such as in [4] and [5].
However, the development of methods to experiment and study complex systems
is still far from being sophisticated.

Complex systems are dynamic and seldom static in the sense that new compo-
nents emerge and some components disappear. An example on complex systems
can be the Web services. Web Services developments are growing dramatically
and millions of resources are being added every day to the World Wide Web.
The success in e-commerce, e-learning, online auctions, online marketplaces, in-
formation discovery and retrieval has encouraged more and more companies to
provide Web Services either to satisfy customer requirements or to manage their
distributed computing resources. Hence, a natural modeling and simulation solu-
tion is to map a complex system into a multi-agent simulation environment. More
on multi-agent design issues and challenges can be found in [19]. Manual software
management is not feasible in such dynamic behaviors because of the number
of service providers and the heterogeneity in their information management. In

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 3

this work, we aim at providing a generic automated integration of negotiation
protocols with application-specific messaging capabilities. The framework pro-
vides a flexible and easy to implement, design, tailor, and deploy a modeling and
simulation platform under different applications.

Negotiation rules are mechanisms to allow agents’ interaction in order to
achieve their goals. However, in designing negotiation systems, the designer needs
to address three main issues [1]. First, negotiation techniques should provide bro-
kering in managing loosely coupled service providers. Secondly, the engineering
design of management tools should provide enough expressive capabilities for
various behaviors or when different domains are encountered. Thirdly, lack of
interaction between different requesters and providers yields inefficient and very
costly agreements. In summary, negotiation systems should provide an interac-
tion environment where many parties (agents) can be engaged in the negotiation
using flexible rules and powerful language capabilities.

In order to reach to a successful modeling and simulation framework design,
we identified the following issues to be supported:

– The framework should provide flexible brokering and negotiation capabili-
ties.

– The framework should provide transparency to its subscribers whenever they
need.

– New resources should be able to subscribe in a simple and efficient way.
– The framework should provide decision making capabilities on behalf of the

agents whenever a user’s agent requires it.
– The framework must provide simple and rich expressive primitives and be

able to specialize them under different domains in a simple and automated
approach.

– The design of the framework must be easy to develop it for a specific domain
to shorten the development time which is vital for adding and removing new
heterogeneous components to the simulation environment.

Hence, in this work, we show how we developed a flexible, efficient, and au-
tomated agent-interaction model that can be utilized by different engineering
domains [8]. The model defines different concepts and principles in the negotia-
tion process. Our method consists of an automated domain-independent market-
place architecture that allows agents to interact using two simple and yet pow-
erful negotiation protocols which define the rules of interactions in multi-agent
environments. Having a third party ”marketplace” supports privacy and trans-
parency among interacted agents. The marketplace agent is implemented using
FD-DEVS [7]. In order to provide negotiation in different domains, a dynamic
message structuring capability is needed where a message can have different for-
mats based on the selected application. We develop an ontology that contains
specialization relations between the different domains of interest [9]. We focus in
this paper on the automation and integration of the domain-dependent message
structure ontology with the domain-independent marketplace architecture. This
paper shows how a designer of a multi-agent platform will have a powerful tool
where systems can be tailored based on the operational purpose and objectives.

4 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

This paper is organized as follows: section 2 provides a summary of the
negotiation protocols for agents interactions. Section 3 provides a summary of
the ontology design and message specialization. Section 4 discusses in details the
automation phase in developing a tailored platform for a specific application.
Section 5 shows a running example for digital photo and printing markets; and
finally, we conclude our paper in section 6.

2 Agents Interactions

Marketplace

Agent B

(ID:23101)

Agent A

(ID: 35)

RoutingItemRequest
ItemRequest

ItemRequest

Offer

RoutingOfferOffer

RoutingAccept
Accept Reject

Accept

RoutingReject Reject CounterOffer

RoutingCounterOffer CounterOffer

Accept

RoutingAcceptAccept
Reject

RoutingRejectReject

Item TransactionReview

ItemCheckResult Log

files

Fig. 1. One-to-One Negotiation Protocol

In most of business and distributed systems, managing the resources and ser-
vices manually is impossible and autonomous agents are needed to act on behalf
of system users. Agents interact using a negotiation process, which is a method-
ology that is applied to provide bargaining and brokering capabilities between
the different agents in a multi-agent environment. In multi-agent domain, agents
are not just capable of making decisions in predictable situations, but also they

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 5

Agent A

(ID:44)
Agents Marketplace

Advertise DB

ProcessingCapabilityQuery

InterpretQueryBusy

DecisionMakingRouting

Wait & Select
Accept

Reject

Offer

Offer

Task Completed

Monitoring

CapabilityQuery

CapabilityStatement

ContractQuery

Decline

ContractQuery

BestProvider BestProvider

One!To!One

LinkEstablished

Fig. 2. Service Discovery Negotiation Protocol

can be intelligent to act in dynamic interaction. The agents need to communicate
with each other, exchange data, and share same semantic language (can be an
ontology). The objective of interactions is to reach to some agreements that are
acceptable by those agents who are engaged in the negotiation. Game theory is a
branch of economics that is concerned with interactions between agents to reach
to decisions [10] [14] [17]. It imposes mathematical models (functions) that de-
scribe each agent’s utility function in multi-agent systems in which strategically
each agent tries to maximize its individual profit or preference. Autonomous
agents have been used in many areas such as search engines, where they crawl
the Web to find data or information.

In this framework, we have designed the interaction between agents through
a marketplace that insures two negotiation scenarios: one-to-one rule, and service
discovery rule. Figures 1 and 2 show the two negotiation scenarios. In one-to-
one rule, the marketplace forwards a message received from an agent to the
corresponding agent using the destination ID field. Hence, in the one-to-one rule,
each agent should know the corresponding agent ID. An agent can send to many
agents using their IDs. In the service discovery, an agent sends a query to the

6 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

marketplace which has access to the database of all subscribers, to find service
providers. The marketplace responds to the request with a group of service
providers or agents (IDs) who potentially can fulfill the request. An agents uses
the list of the available service providers (agents) and their capabilities to engage
in one-to-one negotiation to reach to an agreement on a specific contract. Any
agent can decide on whether to proceed with the negotiation process or not.
If the agent chooses to proceed with the interaction, it sends a contract query
message to the marketplace agent, and then the marketplace in turn forwards
that message to the appropriate agents and wait for responses from them. For
more details on the negotiation protocols, refer to [8]. DEVS formalism was used
to implement the states of the agents. Coupling and de-coupling is used between
agents to reflect the interaction. The messages are sent through the in ports and
out ports of the agents.

3 Language of Interaction

Agents interact with each other according to the rules of interaction (negotia-
tion protocols). During an interaction, they send and receive different messages.
Messages (for example, Offer) carry different information according to their
structure (fields). For example, you can have the message Offer to contain three
fields of information and have the message Link Established to have 7 fields, and
so on. We have identified five groups of messages. The total number of messages
are 17 divided into five groups as shown in table 1. Detailed description on the
messages can be found in [8].

In order to support negotiation services under different domains, a dynamic
message structure is implemented using shared ontology that defines each mes-
sage and its structure under different domains [9]. Each domain would be a
specialization of the message. Each message type has a separate structural on-
tology defining its variables/fields. System Entity Structure (SES) formalism is
used to define the specialization and structuring of each of the messages [20].
Hence, the user of our platform decides the structure of each of the messages to
be used in the interaction. The agents who engage in the interaction should be
designed to utilize these information embedded in the messages.

Table 1. Classification of the Messages

Abort Initiators Reactors Completers Informative

Terminate ContractQuery Offer Reject Busy

NotMet CapabilityQuery CounterOffer Accept LinkEstablished

ItemRequest Decline Item

CapabilityStatement ItemCheckResult

BestProvider

ProvidersChosen

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 7

3.1 Specialization and Structuring

Fig. 3. Contract Query Specialization and Decomposition under Different Domains

In this subsection, we discuss how the message (language of encounter) is
designed and implemented in order to support many application in a simple and
automated way. Each message has a SES ontology that defines its structure under
different domains. In this paper, we consider three applications as examples
which are: Supply chain, photo development market [3], and a generic online store
(e-commerce site). We will explain how to build the ontology for one message
(ContractQuery) and the rest follow the same methodology. In supply chain
domain, supplier and demand agents interact on contract variables that usually
include: inventory level, price, product quantity, and lead time. Hence, a natural
ContractQuery message will contain the aforementioned fields. In the domain
of photo printing/development market, a contract usually consists of variables
such as: print job ID, customer name, technology type, paper quality, number of
copies, deadline, color. Hence, autonomous agents in a multi-agent environment
exchange (interact) offers and counter offers in order to reach to an agreement
that is acceptable by the engaged agents. Figure 3 shows how the ontology of
the ContractQuery looks like.

8 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

4 Automatic Tailored Framework Generation For a
Specific Application

In this section, we show the integration details and the automatic code
generation capabilities. The integration is required to attach the interaction rules
with the message structure in order to result in a working platform where agents
can communicate, understand, and negotiate to accomplish their tasks. The
implementation and proof-of-the-concept are done in DEVS environment along
with the SES ontological framework.

4.1 Integration of the Domain-Independent Negotiation Protocols
with the Domain-Dependent Ontology

The marketplace that enforces generic (domain-independent) negotiation
rules is created using FD-DEVS GUI tool [9], which is a useful tool to generate
Java templates [21]. The output of the tool is a Java file which is a domain-
independent generic marketplace template that enforces the negotiation proto-
cols.

In order to integrate the message structures into the domain-independent
marketplace, the system designer must create Java classes for each message type
consisting of the fields that are defined under the domain of interest. For example,
if the designer is developing a framework for supply chain, then all messages
specialization for supply chain must be imported. If another designer wants to
develop the system for printing jobs, then the corresponding Java classes must
be imported into the marketplace Java code. Hence, based on the domain of
interest, the designer must manually import the same domain message packages,
and that requires plenty of coding since there are 17 different messages and each
has different structure according to the application.
Also, it requires the designer to manually unwrap message classes and wrap them
in the marketplace code and the database where all subscribers information exist.
For more details, refer to [8].

In summary, the manual steps require writing SES natural language for each
message and domain and care must be taken in not making syntax errors. After
SES natural language, it is required to run the SES builder on each of the 17
SES text files to create SES XML schema (ontologies). Afterwards, a conversion
from SES schemas to Java packages using JAXB compiler (requires 17 different
commands) is needed. Deceleration and adding many lines of codes to the header
file of the marketplace Java file requires tedious work from the designer whenever
a modification or a new application is to be supported. The following subsection
shows how we automated all the tedious and time consuming steps by developing
an automatic code generation tool that does the work on behalf of the designer.
The tool reduces the human interactions into two very simple inputs from the
designer using GUI interface.

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 9

4.2 Automatic Generation and Integration of the Negotiation
Marketplace

In order to help the designer in defining the message structures, we have
developed a simple and easy to use Graphical User Interface which is shown in
figure 4. The user of the GUI can add any domain (for example supply chain) to
a message ontology; and define the structure of that message under the domain.
For example, The user inputs how many fields the message ContractQuery has,
and the name of each field in the structure. The user or the designer might
select four fields with the name: Inventory, Price, Quantity, and Lead time. If a
message type is not used in agent interactions, then the designer can select that
the number of fields for that specific message is zero.

Fig. 4. Domain-Dependent Ontology Creation GUI

The output of the GUI tool is a collection of SES natural language text files
(17 files), one for each message type. Those files are automatically converted into
XML representation of the SES ontology in the automatic code generation tool.
The tool then converts the XML representation (String sesinxml) into an XML
schema by executing the line of code:

String schema = XmlToSes.getSchema(sesinxml);

The returned value of the above code is a schema, where the tool writes au-
tomatically 17 schema files for each of the messages into files with the extension
.xsd to prepare them for the JAXB compiler. The SES schema is the represen-
tation of a master ontology that contains all domains that were defined. A Java
method (ExecJAXBSchemaCompiler) is called to execute the JAXB compiler to
translate the schema files into Java classes using the compiler command (with
the appropriate parameters):

10 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

xjc schema.xsd d dirName p PackageName

The method iterates on each file and executes the command. Then another
Java method named (PostProcessingJavaClasses) is called to extend (derived
class) of type (entity) which is the base class for exchanging messages in DE-
VSJAVA. Also, the Java method imports the package (import GenCol.*;). At
this point, the Java packages are complete and can be used by the marketplace
generic model to declare the appropriate messages for the specific domain of
interest.

4.3 Tailoring of the Marketplace Agent for a Specific Application

The first step in designing the framework is simple as mentioned in the pre-
vious subsection, which is to use the GUI to define the message structures. The
second step that needs human interaction is very simple as well and all what
it needs is to call a Java method (namely CreateFDDEVSModelFor) with the
domain of interest as a string input such as Supply Chain” or ”PrintingJobs.
The Java method CreateFDDEVSModelFor uses the marketplace XML file that
was created in FD-DEVS which defines the negotiation protocols, the in ports,
and out ports of the marketplace agents. The in ports and out ports are through
which messages are received and sent respectively. Hence, if the designer exe-
cutes the code:

CreateFDDEVSModelFor(”Supply Chain”);

Then it generates a tailored marketplace agent model for supply chain do-
main. The model enforces the negotiation protocols and the message structures
defined using the GUI interface for supply chain. The Java method CreateFD-
DEVSModelFor is responsible of performing the following code generation steps:

1. Import the required Java classes for the negotiation process to take place,
and the appropriate message package for a specific application.

2. Declare an instance of each of the negotiation primitives (messages).

3. When receiving a message, it stores it in the corresponding local instance
produced in step 2. Then it generates the appropriate code to unwrap the
message to get the domain message structure class that has the get and set
methods to allow the designers to access the data received or to set variables
to be sent in the message. The objective of storing the messages into local
variables provides the capabilities for future data access and processing.

4. Create the JAXB Unmarshaller code to provide the marketplace agent to
access its database when search for subscribers services.

5. Prepare domain message structure classes and wrapping them into the cor-
responding primitive; and then send it through the appropriate out port.
This step provides the designer with the flexibility of adding setV methods
to marshal the messages with data as needed.

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 11

In summary, this section showed how we automated the process of generat-
ing the marketplace agent given the language of interaction and the domain of
interest. For example, if the message is ContractQuery and the domain is Print-
ingJobs, the tool will select the pruned SES of the ContractQuery ontology that
defines the message structure under the domain ”PrintingJobs”.

5 Experiments and Proof of the Concept

The application of the negotiation activity can be applied into many multi-
agent disciplines where a user or an agent initiates the process by asking a
query or a request to be fulfilled. The user seeks to find either the best provider
for the request or just any provider that can meet the requirements. In this
section we show how agents interact to reach an agreement on a contract for
online printing jobs; similar to the photo development market where an agent
tries to get the service, within specific deadline, price, quality, and color. The
marketplace agent helps all negotiating parties to reach to an agreement. For
example, if a customer is concerning with printing business cards, the customer
might choose thermography, Engraving or Letterpress technology. Also, other
aspects for paper could be quality, deadline, color and duplex.

We have designed a user agent model that is searching for a provider who has
Business Cards printing capabilities. The user would accept an offer if a contract
with the following conditions occurs:

1. If the paper quality is medium or high, the color is RGB and deadline is less
than 30.

2. If the paper quality is medium or high, the color is full HD and the deadline
is less than 80.

3. If the paper quality is medium or high, the color is grayscale and the deadline
is less than 20.

If the offer does not match any of the previous conditions, the user sends
back a counter offer asking for the first contract or a modified one based on the
history of the offers that were received. In our model, we chose that the user
sends the first preference back again.

For the service provider agents, we have arbitrary assigned different photo
and printing capabilities using the following pool of technologies: Digital print-
ing can be : Brochures, Journals, Booklets, photos. Embossing Printing can
be: Greeting Cards, Metals, Garments. Flexography Printing can be: Milk and
Beverage Cartons, Disposable Cups, Containers, Adhesive Tapes, Envelopes,
Newspapers, Food and Candy Wrappers. Letterpress Printing can be: Business
Cards, Company Letterhead, Proofs, Billheads, Forms, Posters, Embossing, Hot-
leaf Stamping. Engraving Printing can be: Stationery, Wedding Cards, Business
Cards, Letterhead. Gravure Printing can be: Label, Flexible Packaging, Carton-
ing. Thermography Printing can be: Fax Printers, Business Cards, Letter Head,
Invitation.

12 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

Some of the service agents are designed to update their deadline to accom-
plish the job using some constant value. Others do not and stick to the same
deadline value through the whole simulation. The marketplace agent enforces
the rules of interaction via reacting and routing the messages accordingly. We
have used one agent to represent the user demand and seven agents to represent
the service providers. After we ran the simulation in DEVS environment on a
single machine, we found that an agreement has been reached with the following
contract terms:
Customer : Customer, Job Type : Business Cards, Print Server : Print Server
6, Color : FullHDColor, Paper Quality : High, Deadline : 78, Duplex : Yes,
Number of Copies : 1, Technology Type : Thermography.
The contract terms that was reached actually satisfy the conditions in the sec-
ond item of the user agent decision making which is:

– If the paper quality is medium or high, the color is full HD and the deadline
is less than 80.

In order to provide a proof of the concept and deploy the framework in a
distributed cluster; we have created the model agents and uploaded them on
five machines in a DEVS/Service Oriented Architecture cluster. DEVS Service
Oriented Architecture is a web services multi-server environment to support
DEVS simulator. The system consists of two services, namely MainService and
Simulation Service. For more details on DEVS/SOA system specifications and
services, refer to [15].

The same logical behaviors as in the single machine simulation is used for
DEVS/SOA. One user agent is used and seven service provider agents were used,
and distributed on five machines in the cluster according to table 2. As expected,
agent (Print Server 6) established the agreement with the user agent.

Table 2. Agent Distribution in DEVS/SOA Cluster

Machine IP Agent

150.135.218.200 Customer, Print Server 2, Print Server 4,
Print Server 5, and Print Server 7

150.135.218.201 Print Server 1

150.135.218.203 Print Server 3

150.135.218.204 SOAMarketPlace and the Coupled model
(ServicesSOAEnv)

150.135.218.206 Print Server 6

The 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems 13

6 Conclusion

Two powerful and yet flexible negotiation protocols are used to enforce the
rules of interactions in multi-agent modeling and simulation platform. The rules
are implemented through a third party marketplace agent, which supervises the
negotiation process while preserving privacy and transparency among the system
users. Discrete event modeling and simulation environment (DEVS formalism)
is used to implement the generic marketplace model. In order to accompany
the negotiation protocols with flexible messaging capabilities to handle differ-
ent complex domains and applications, a dynamic structure of the language of
interaction is implemented in SES ontological framework. Each negotiation mes-
sage has a separate ontology that defines its structure under different domain
specialization.

The domain-independent marketplace model integrated with the domain-
dependent language of interaction ontology gives system designers a very pow-
erful and easy to use tool. Given the language of interaction structures under
a specific domain of interest and the domain name as inputs to the automated
code generation tool, it produces a tailored negotiation marketplace agent that
is ready to be used. The automated marketplace code generation deceases sig-
nificantly the time spent to tailor the platform for a specific domain. Different
applications in industry and academia can utilize our framework to study their
processes and phenomenon while reducing the development time and changing
the messages contents in a flexible and simple way.

Acknowledgment. This work is supported by the SIMTech-NTU Joint Lab
on Complex Systems.

References

1. Addis, M. J., Allen, P. J., Surridge, M.: Negotiating for Software Services. In:
Eleventh International Workshop on Database and Expert Systems Applications
(DEXA2000), September (2000).

2. Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R., Tayler, P.: Asset pricing
under endogenous expectations in an artificial stock market. In: The economy as an
evolving, complex system II, pp. 15-44. Addison Wesley, Redwood City, CA (1997).

3. Chan, Y., Chen, X., Chou, M., Goh, B. H., Haw, C. S., Koh, S., Lee, h. K., Ye, h. Q.,
Yuan, X. M.: Analysis of a Software Focused Supply Chain in Photo Development
Market. In: IEEE International Conference on Industrial Informatics, pp. 759-764,
August (2006).

4. Cooper, T.: Case studies of four industrial meta-applications. Lecture Notes in Com-
puter Science, 1593, pp. 1077–1086, (1999).

5. DISTAL, Distributed Software On-Demand For Large Scale Engineering Applica-
tions, http://cordis.europa.eu/esprit/src/26386.htm.

6. Epstein, J. M., Axtell, R.: Growing artificial societies: social science from the bottom
up. Brookings Institution Press, (1996).

14 Moath Jarrah?, Bernard P. Zeigler∗, Chi Xu†, and Jie Zhang?

7. Hwang, M. H., Zeigler, B. P.: Reachability Graph of Finite and Deterministic DEVS
Networks. IEEE Transactions on Automation Science and Engineering, 6, pp. 468–
478, July (2009).

8. Jarrah, M, Zeigler, B. P.: A Modeling and Simulation-based Methodology to Support
Dynamic Negotiation for Web Service Applications. journal Simulation. 88, pp. 315–
328, March (2012).

9. Jarrah, M., Zeigler, B. P.: Ontology-based marketplace for supporting negotiation
in different scientific applications. In: IEEE Conference on Systems, Man, and Cy-
bernetics (SMC), pp. 667-672, October (2012).

10. Krishna V., Ramesh VC.: Intelligent Agents for Negotiations and Market Games,
Part 1: Model. IEEE transaction on Power Systems. 13, pp. 1103–1108, August
(1998).

11. Kruse, S., Brintrup, A., McFarlane, D., Sanchez, L. T., Owens, K., Krechel, W.E.
:Designing Automated Allocation Mechanisms for Service Procurement of Imper-
fectly Substitutable Services. IEEE Transactions on Computational Intelligence and
AI in Games, 5, pp. 15–32, March, (2013).

12. Macal, C. M., North, M. J.: Agent-Based Modeling and Simulation: Desktop
ABMS. In: 39th Conference on Winter Simulation, WSC07, pp. 95-106. IEEE Press,
NJ, USA (2007).

13. Macal, C. M., North, M. J.: Agent-based modeling and simulation. In: Conference
on Winter Simulation, WSC’09, pp. 86-98. (2009).

14. Mahajan R., Rodrig M., Wetherall D., Zahorjan J.: Experiences Applying Game
Theory to System Design. In: Proceeding SIGCOMM PINS Workshop, pp. 183–190,
(2004).

15. Mittal, S., Risco-Mart J. L., Zeigler, B. P.: DEVS/SOA: A Cross-Platform Frame-
work for Net-centric Modeling and Simulation in DEVS Unified Process. Simulation
Journal, 85, pp. 419–450, July (2009).

16. Palmer, R. G., Arthur, W. B., Holland, J. H., LeBaron, B., Tayler, P.: Artificial
economic life: a simple model of a stock market. J. Physica D. 75, 264-274 (1994).

17. Persons S., Wooldridge M.: Game Theory and Decisions Theory in Multi-Agent
Systems. Journal on Autonomous Agents and Multi-agent Systems. 5, pp. 243–254,
September (2002).

18. Scientific Discovery through Advanced Computing, agent-based modeling and sim-
ulation for exascale computing, http://www.scidacreview.org/0802/html/abms.
html (2014).

19. Susan E. L.: Issues in Multi agent Design Systems. Journal IEEE Expert: Intelligent
Systems and Their Applications, 12, pp. 18–26, March (1997).

20. System Entity Structure, SES, http://www.ms4systems.com/pages/devs/ses.

php (2014).
21. W3C XML Schema for Finite Deterministic(FD) DEVS Models, http://www.

duniptechnologies.com/research/xfddevs/ (2014).

