
On Robustness of Trust Systems

Tim Muller1, Yang Liu1, Sjouke Mauw2, and Jie Zhang1

1 Nanyang Technological University
{tmuller,yangliu,zhangj}@ntu.edu.sg

2 University of Luxembourg
sjouke.mauw@uni.lu

Abstract. Trust systems assist in dealing with users who may betray
one another. Cunning users (attackers) may attempt to hide the fact
that they betray others, deceiving the system. Trust systems that are
difficult to deceive are considered more robust. To formally reason about
robustness, we formally model the abilities of an attacker. We prove
that the attacker model is maximal, i.e. 1) the attacker can perform
any feasible attack and 2) if a single attacker cannot perform an attack,
then a group of attackers cannot perform that attack. Therefore, we can
formulate robustness analogous to security.

1 Introduction

Robustness refers to the ability of a trust system to function properly under all
circumstances. Users may purposely perform actions to attempt to prevent the
trust system from functioning properly.

For example, a famous food critic travels around the country visiting restau-
rants. The critic tastes the food and enjoys the service. A restaurant with good
food and good service gets positive reviews. Potential customers read the reviews,
knowing that the food critic has a keen eye and are eager to try the restaurants
he recommends. Some restaurants recognise the famous food critic, and go above
and beyond to provide the critic better food and service than usual. The posi-
tive impression sketched by the critic in his review does not translate well to the
regular customer, who gets substandard food and service. The restaurant got an
unfair advantage over its neighbour, who provides equal quality food and ser-
vice to all customers. The restaurant exploited the mechanism of the procedure
which provides restaurant reviews, and the system malfunctioned.

In trust systems, the intrinsic interactions have the property that one party
can betray another party. Such behaviour is unfair and dishonest on the interper-
sonal level. However, on the level of the trust system, this is expected behaviour.
The trust system can deal with users betraying other users; if trusted users would
never betray, then trust systems can trivially trust anyone. However, as in the
aforementioned example regarding the food critic, there are behaviours that are
more than merely unfair and dishonest on the interpersonal level, rather, they
deceive the entire system. We study such deceptions of the system, and refer to
them as attacks - examples are listed in Section 2.1.

Trust systems that are less vulnerable to attacks are deemed more robust. A
general and formal definition of robustness of trust systems helps in detecting

1

and fixing vulnerabilities, and possibly to verify exploit-freeness. In this paper,
we precisely establish the notion of robustness of trust systems, and its aspects.

Robustness of trust systems is related to robustness of (other) software sys-
tems, and related to security of software systems. Robustness of a software sys-
tem typically refers to the capability of the system to deal with or recover from
unexpected input. Given two similar algorithms performing a division, the algo-
rithm that checks for and deals with divide-by-zero issues is more robust than
the algorithm which does not. Robustness correlates, in software systems, with
the number of different input that leads to faulty states.

Security of a software system typically refers to the impossibility of reaching
a particular class of faulty states, regardless of input. Secrecy of a message, as a
classical example, holds when there are no actions that the attacker can perform
that lead to a state where the attacker knows the message. Security is the absence
of input that leads to a faulty state.

The notion of robustness of trust systems, as many currently hold (e.g. [24,13]),
is somewhere in between these two notions. Lack of robustness in software sys-
tems is bad, primarily because a legitimate user may experience problems if he
accidentally inputs the wrong data. Lack of security is bad, primarily because
an attacker may seek to input the wrong data. Robust trust systems seek to
prevent the latter, as we do not want attackers to exploit the workings of the
trust system. However, in security, legitimate users are assumed to always input
data that does not lead to faulty states (they are assumed to follow protocol). In
robust trust systems, we cannot make such assumptions about legitimate users’
input - any user could fail at any time. In other words, in robust trust systems
we must assume that there are attackers that purposely enter bad input (like
security), but we may not assume that non-attackers will not enter bad input
(like standard robustness). Our proposal is based on this key notion; the notion
that an attackers’ devious choice of input should be no more likely to lead to a
faulty state than a normal users’ randomly selected (and potentially bad) input.

In computer security - be it symbolic security [3] or provable security [15]
- the notions surrounding the attacker model and security properties are well
established. Deviations from the default attacker model are subject to extra
scrutiny. We can learn from computer security that we should not formulate an
ad-hoc notion of robustness. Our main contribution is exactly that - an attacker
model and notions of robustness properties that are independent of the trust
system at hand. Moreover, we learn from computer security that the strategy
of the attackers in the attacker model should not be limited by our own ideas
regarding attacks on a system. We prove that our attacker model indeed captures
all possible strategies of an attacker. Furthermore, again akin to security, we
prove that it suffices to verify a robustness property under one attacker, and
that robustness against multiple attackers follows automatically.

In Section 2, we introduce the notions and formalisms that we use throughout
the paper. Notably, we define types of users and accounts, their states, actions
and behaviours and how they synthesise abstract trust systems. In Section 2.1,
we list attacks on trust systems found in the literature to establish archetypical

2

attacks that we want to capture with our notions. In Section 3, we define the
possible actions of an attacker, called malicious behaviour, in the attacker model.
We show that the attacker model matches our intuition, and that it has maximal
strength. In Section 4, we define notions related to robustness of trust systems.
We define robustness properties, analogous to security properties. We show that
if a robustness property holds for one attacker, it holds for several attackers.

2 Formalisation of Trust Systems

Trust systems revolve around interactions with an asymmetric power balance,
and trust is employed to deal with this imbalance in the form of trust opinions
(O is the set of trust opinions). Trust opinions are the building blocks of trust
systems, and indicate the likelihood that the target allows the interactions to
succeed or fail. A subject constructs a trust opinion about a target, before allow-
ing the target to control the interaction. The trust opinion determines whether
the subject accepts an interaction with a target, possibly together with the pay-
off of success and payoff of failure (α and β are the sets of payoff of success
and failure, respectively). Before a subject can accept an interaction, the target
needs to offer the interaction. The offer (implicitly or explicitly) sets the pay-off
of success and of failure.

Since we study the robustness, we want to reason about behaviour that the
designer did not anticipate. We refer to behaviour anticipated by the designer as
ideal behaviour. Formal correctness is a property of a trust system which holds
when the trust system provides mathematically correct probabilities in trust
opinions, provided all users are ideal. The Beta model [18,11] is an example of
a system where formal correctness holds. The Beta model produces mathemat-
ically correct results in an ideal trust system [20]. Robustness, as defined more
precisely later, is roughly the ability of the system to deal with behaviour that
is not ideal. Robustness is sometimes viewed as an extension of correctness, but
we argue that it should be seen as a trade-off against correctness, in Section 4.

As motivated in Section 3, even the non-ideal behaviour that concerns ro-
bustness is, in some way, restricted. We refer to these non-ideal behaviours as
malicious behaviour, and a user with malicious behaviour as an attacker. There
are goals (e.g. obtain a large profit) that attackers should not be more likely to
achieve than ideal users. Since, if the malicious users are more likely to achieve
these goals, then they have an unfair advantage. We refer to the negation of
these goals as robustness properties - after their similarity to security properties.
A malicious behaviour that breaks a robustness property is an attack.

Before we can reason formally about such behaviours, we need to formalise
a system in which these behaviours are expressed. We adopt a semantic view of
the trust system, philosophically related to transition system spaces [1]. A trust
system space (Definition 1) encompasses all trust systems that arise when actual
users are instantiated in the trust system space. Figure 1 contains an example
of a part of a trust system space.

A trust system space consists of a set of users, a set of actions, a set of
states and a set of transitions. There are conditions on each of these sets (e.g. an

3

create(e,V) s2

create(b,V)
s3offer(b, {a}, 1,-1)

s4offer(e, {a}, 1,-1)
s6accept(a, {e}, 1,-1)

s5accept(a, {b}, 1,-1) φ

¬φ

φ

φ
φ

s1 φ
s0 φ create(b,UA) s7 φ

isAccepted(b, a, 1,-1)
︷ ︸︸ ︷

Fig. 1. Fraction of an example of a trust system space.

account must be created before it can make an offer), and we call such sets valid
when the conditions are satisfied. First we identify which sets of users, actions,
states and transitions are valid, then we define trust system spaces.

Every trust system has a set of users, which in turn control accounts of given
types. We say that a set of users U is valid when there is a set of accounts V,
such that every account belongs to exactly one user. Formally, there is a function
owner : V → U , if owner(a) = u then u owns a. The set of subjects and the set
of targets are subsets of the set of accounts, VS ⊆ V and VT ⊆ V, respectively.

Every trust system space has a collection of actions, and every step of the
system is an action, as depicted in Figure 1. Each action has an executor and
listeners - denoted by its first and second parameter, respectively. The owner of
the executor is the originator and the owners of the listeners are the recipients.
We identify a collection of parameterised actions that are sufficiently ubiquitous
in trust systems that we elevate them to a special status:

– create : V×P(V); create(a,B) denotes creation of account a, with accounts
in B being notified.

– offer : VT × P(VS) × α × β; offer(a,B, x, y) denotes that target a makes
an offer to subjects in B, with payoff of success x and payoff of failure y.

– accept : VS ×{{b}|b ∈ VT }×α× β; accept(a,B, x, y) denotes that subject
a accepts the offer made by b (with B = {b}) with outcome (x, y).

– succeed : VT ×{{b}|b ∈ VS}×α× β and fail : VT ×{{b}|b ∈ VS}×α× β;
succeed(a,B, x, y) and fail(a,B, x, y) denote that target a succeeds or fails
the offer accepted by b (with B = {b}) with outcome x and y, respectively.

– recommend : VS×P(VS)×VT ×O; recommend(a,B, c, t) denotes that subject
a claims to B that his trust opinion about c equals t.

The set of actions A is valid, if it contains at least these six groups of actions.
A trust system space has a set of states S, which determines which actions

are possible and which predicates hold, as depicted in Figure 1. For a state space
S of a trust system space to be valid, there must exist a projection function π,
which projects the system state onto the state of a single user. In other words,
π : U × S → SU , where SU is the state space of a single user. We shorthand
π(u, s) to πu(s). If πu(s) = πu(t), then we say that s and t are indistinguishable to
user u. We identify three state predicates existss(a), isOffereds(a, b, x, y) and
isAccepteds(a, b, x, y), which are supposed to hold in the state s when account
a has been created, target b offers (x, y) to a, and a accepts the offer (x, y) from
b, respectively. In Figure 1, isAccepteds5(b, a, 1,-1) holds, for example.

4

The set of transitions T ⊆ S × A× S is the core of the definition of a trust
system space. Transitions are labelled edges that represent steps from one state
to another. We identify two types of requirements on valid transitions:

First, there are requirements regarding proper functioning of the trust sys-
tems. In a trust system space, (L1) only the originator and the recipients of an
action are aware of it, (L2) the result of performing an action in a given state is
deterministic, (L3) if two states are indistinguishable to a user, then the effects
of an action are identical to that user, (L4) if two states are indistinguishable to
a user, that user can perform the same actions (L5) accounts that are created
remain existent (to avoid impersonation after deletion) and (L6) offers and ac-
ceptances by given users remain unchanged when these users are unaware that
an action happened.

L1. For all transitions (s, a, t) ∈ T , for all u ∈ U that are neither the originator
nor a recipient of action a, πu(s) = πu(t).

L2. For all transitions (s, a, t) ∈ T and (s, a, t′) ∈ T , t = t′.
L3. For all transitions (s, a, t) ∈ T and (s′, a, t′) ∈ T , if πu(s) = πu(s′) then

πu(t) = πu(t′).
L4. For all transitions (s, a, t) ∈ T , where u ∈ U is the originator of a, for all

states s′ ∈ S where πu(s) = πu(s′), there is a state t′ ∈ S, such that (s′, a, t′).
L5. For all transitions (s, a, t), if existss(b) then existst(b).
L6. For all transitions (s, a, t), if b ∈ V and c ∈ V are neither executors

nor listeners, then isOffereds(b, c, x, y) iff isOfferedt(b, c, x, y), and
isAccepteds(b, c, x, y) iff isAcceptedt(b, c, x, y), for all x ∈ α, y ∈ β.

Second, there are requirements regarding the actions that users can perform.
It is (R1) always possible to create new subject or target accounts, (R2) always
possible for targets to make any offer, (R3) always possible for subjects to accept
existing offers, (R4) always possible for targets to succeed or fail accepted offers
and (R5) always possible for subjects to make any recommendations.

R1. For some C ⊆ P(V), C 6= ∅, for every user u ∈ U , state s ∈ S and set
of accounts C ∈ C, for some a ∈ VS (with ¬existss(a) and owner(a) =
u), b ∈ VT (with ¬existss(b) and owner(b) = u) and t, t′ ∈ S, we have
(s, create(a,C), t) ∈ T and (s, create(b, C), t′) ∈ T .

R2. For every state s ∈ S, target a ∈ VT with existss(a), set of accounts C ∈
P(V), payoff of success x ∈ α and payoff of failure y ∈ β, for some states
t ∈ S, we have (s, offer(a,C, x, y), t) ∈ T .

R3. For every state s ∈ S, subject a ∈ VS , target b ∈ VT , payoff of success x ∈ α
and payoff of failure y ∈ β with isOffereds(a, b, x, y), for some t ∈ S, we
have (s, accept(a, {b}, x, y), t) ∈ T .

R4. For every state s∈S, target a∈VT , subject b∈VS , payoff of success x∈α and
payoff of failure y ∈ β, with isAccepteds(a, b, x, y), for some t ∈ S (or t′ ∈
S), we have (s, succeed(a, {b}, x, y), t) ∈ T (or (s, fail(a, {b}, x, y), t′) ∈ T).

R5. For every state s ∈ S, subject a ∈ VS with existss(a), target c ∈ VT with
existss(c), trust opinion o ∈ O for some B ∈ P(V) and t ∈ S, we have
(s, recommend(a,B, c, o), t) ∈ T .

5

Remark 1. We introduce one additional requirement for purely technical reasons,
namely that the trust system space is finitely branching; that there are finitely
many outgoing transitions in every state. See the technical report [19].

A trust system space is like a chess rule book; a chess rule book defines
the users (white and black), the actions (“move pawn C4-C5”, etc.), the states
(placement of pieces on the board) and the transitions (“move pawn C4-C5” is
only possible if it is white turn, if there is a pawn on C4, if C5 is free, and if the
resulting state does not put white’s king in check).

Definition 1 (Trust System Space). A trust system space is a 4-tuple
(U ,S,A, T), where U , S, A and T are valid sets of users, states, actions and
transitions.

A trust system space is not an actual trust system - similar to how a chess
rule book is not a game of chess, To obtain a trust system, users need to be
instantiated with a strategy - similar to how a game of chess needs two players
with a strategy. We first introduce the notion of a strategy, then we define how a
strategy can be applied to a trust system space to obtain an actual trust system.

The users’ strategies determine the relative probability of their available ac-
tions, as well as the expected time they spend in a certain state. The expected
time is also known as a rate (in rated transition systems [14] and continuous-
time Markov chains [22]). Rates are an effective way to model the behaviour of
independent entities without a global scheduler. Intuitively, each user can in-
crease the probability of performing an action, (only) by increasing the rate of
that action.

We define strategies and behaviour based on rates as follows:

Definition 2 (Strategy and Behaviour). A strategy is a function f ∈ F =
SU → (A 9 R≥0), which assigns a rate to every action available in a state to
the user. A combined strategy is a function γ ∈ Γ = U → F .
A behaviour is a distribution over strategies. A discrete behaviour has probability
mass function B ∈ B = F → [0, 1]. If B is a discrete behaviour, then its sup-
port, supp(B), is the set of strategies where B(f) > 0. A combined behaviour
is a distribution over combined strategies. A discrete combined behaviour has
probability mass function θ ∈ Θ = Γ → [0, 1].

In chess, a strategy is, e.g., Kasparov’s strategy, and combined strategy is Kas-
parov versus Fischer3. A behaviour is, e.g., “some grandmaster’s strategy”, and
a combined behaviour is “some grandmaster versus an unknown player”.

The strategy provides rates, rather than probabilities. Given a combined
strategy, we can normalise the rates to probabilities by dividing the rate of a
transition from state s by the sum of the rates of the other transitions s. The

normalisation of γ is γ(u, s, a) = γ(u)(πu(s))(a)∑
u′∈U∧a′∈A γ(u′)(πu′ (s))(a

′) , where γ(u)(s)(a)

is taken as 0 when undefined. An assignment of behaviour is a shorthand way
of defining a combined behaviour. The assignment of behaviour θ : U → B, is
shorthand for θ, with θ(γ) =

∏
u∈U θ(u)(γ(u)).

3 Kasparov and Fischer are famous chess players.

6

The result of applying behaviour to a trust system space is a rated transition
system (with an initial state), as defined in [14]:

Definition 3 (Rated Trust System). A rated trust system is a rated transi-
tion system (S,A, s0,W), where S is a set of states, A is a set of actions, s0 an
initial state and W : S ×A× S → R≥0 is a rate function.
Let M = (U ,S,A, T) be a trust system space, θ be an assignment of behaviour
and s0 ∈ S a state. Then [[M, θ, s0]] is a rated transition system (S,A, s0,W)
where: 1) S ⊆ S × Θ, 2) A = A, 3) s0 = (s0, θ), and 4) when (s, a, t) 6∈
T , W satisfies W ((s, f), a, (t, g)) = 0 for all f, g : Θ, and when (s, a, t) ∈
T where u originates a, W satisfies W ((s, f), a, (t, g)) = Ea(f) for f, g : Θ,
where 4a) the expected rate Ea(f)=

∑
γ∈supp(f) f(γ) · γ(u)(πu(s))(a) and 4b)

g(γ)= γ(u,s,a)·f(γ)∑
δ∈Γ δ(u,s,a)·f(δ)

.

The rated trust system is the natural result of applying combined behaviour
to a trust system space in an initial state. The state of a rated trust system
is determined by both the state in the trust system space and the combined
behaviour. The rated transitions can be interpreted as a labelling on the trust
system space, where transitions that do not occur in the trust system receive
rate 0, and rates of other transitions are determined by the combined behaviour
in a straightforward manner, via (4a). Note that after a transition, a combined
strategy that assigns low normalised probability to that transition is less likely
to be the actual combined strategy, via Bayes’ theorem (4b). This is similar to
concluding that an opponent that sacrifices his queen without apparent benefit,
is unlikely to have Kasparov’s strategy.

In this section, we have defined trust system spaces, which define the possible
input and the relation between input and output. We define strategies (and
distributions thereof) to model how users choose the input they provide. We
further define rated trust systems, which model a running trust system with
users with strategies.

2.1 Known Attacks

We are setting out to provide a general, formal definition of robustness. In order
to ensure the applicability and relevance of such a definition, we must keep real
attacks in mind. We identify the following attacks:

– The on/off attack, in which the attacker builds his trust value, then fails in
one or more interactions and depletes his trust value, and slowly rebuild his
trust value with time on his side [23]. This attack is particularly powerful on
systems where subjects forget behaviour of targets over time.

– The value imbalance attack, in which an attacker builds his trust value in
low stake interactions, and depletes his trust value in high stake interac-
tions [13,10]. This works on systems where the stakes of interactions vary.
On some game-theoretical systems, this is expected behaviour and not an
attack.

7

– The reputation lag attack, in which an attacker builds his trust value, then
fails interactions in quick succession, before his lowered trust value propa-
gates through the system [13,10].

– The discrimination attack, which is essentially our food critic example from
the introduction [10]. It is also known as the conflicting behaviour attack [23].

– The re-entry attack, which is akin to the on/off attack, except depleted
accounts are replaced by newly created accounts [13,10].

– The distraction attack, in which the attacker creates many superfluous of-
fers, requests or recommendations in order to prevent its victim to perform
relevant actions. It is a special case of the denial-of-service attack in [8].

– The proliferation attack, in which the attacker creates many target accounts
and thus represents a large portion of all target accounts, meaning that he
may receive a large portion of all interactions too.

– The composite trust attack, which asserts that there are composite interac-
tions [20] where multiple targets are involved. In some cases, the action of
the attacker does not influence the outcome of the interaction. The attacker
to abuses the action to manipulate his trust value.

– The unfair ratings attack, in which the attacker manipulates the reputation
of some targets by providing unfair ratings [10,8,23]. This attack has many
subdivisions, some of which are studied in great detail. [25,9].

– The shilling attack, in which the attacker matches the profiles of (groups of)
users, to ensure his unfair ratings carry more weight [17]. This attack works
for recommender systems.

– The Sybil attack is an extremely powerful attack, in which the attacker
creates multiple accounts to perform combinations of the aforementioned
attacks [6].

3 Malicious Behaviour

As mentioned in the introduction, our notion of robustness hinges on notions of
ideal behaviour and malicious behaviour. Each user, ideal or malicious, performs
certain actions with a certain probability, at certain times, depending on its state.
A function that assigns probability to actions given a state is called a strategy
(see Definition 2). Which strategies are ideal depends on the trust system at
hand. Typically, trust systems make assumptions about the behaviours of users,
denoted in the form of an ideal behaviour. At a formal level, we simply assert
that we are given an ideal behaviour I together with the trust system space M .

Ideally, a trust system can compute the probabilities of future actions of
ideal users. That is, some trust systems (such as [11,18]) provide formally correct
answers, provided that users adhere to the assumptions of the system. We refer
to the ability of a trust system to provide formally correct answers for ideal
users as correctness. However, we are interested in users who do not exhibit
ideal behaviour. Robustness is the inability of non-ideal behaviour to achieve
something that the ideal users cannot. It is clear that these non-ideal behaviours
have limitations. As in computer security, we need to construct a model of which
non-ideal behaviours an attacker can exhibit. In formal computer security, the

8

default attacker model is called the Dolev-Yao model [5]. The Dolev-Yao model
defines what strategies an attacker (in the security domain) may perform - and
by elimination, which he may not perform. We define a default attacker - inspired
by the Dolev-Yao model - in the trust domain, by providing the set of strategies
that the attacker may perform.

The Dolev-Yao attacker is maximally powerful in that he can accomplish
anything that a group of attackers can accomplish. This is in fact a key property
of the Dolev-Yao attacker, as we do not need to model groups of attackers
communicating and coordinating. Modelling one attacker is, provably, enough.
Our attacker exhibits the same property, as proven in Theorem 2.

First, we define the attacker model informally, but precisely. An attacker is
a user with a malicious behaviour. At any time in a malicious behaviour :

C1. The attacker has a complete understanding of the system. The attacker
(only) has access to all private information of his accounts. The attacker can
reason with this information.

C2. The attacker can create accounts.
C3. The attacker can offer any interactions with any of his target accounts.
C4. The attacker can decide to succeed or fail at any interaction with any of his

target accounts.
C5. The attacker can make arbitrary recommendations with any of his subject

accounts.
C6. The attacker can perform any auxiliary actions (including accepting offers)

for subject or targets, with his subject or target accounts, respectively.

The first ability, C1, ensures that our attacker model captures the attacker that
uses the available information to optimize his decisions. Effectively, C1 disallows
security through obscurity - a well-known anti-pattern in computer security.
The other abilities, C2-C5 match at least some of the actions in the attacks
from Section 2.1. Account creation, C2, is required for Sybil attacks. Offering
interactions, C3, is required for proliferation attacks. The ability to succeed or
fail at will,f C4, is required for on/off attacks. The ability to make arbitrary
recommendations, C5, is required for unfair ratings attacks. Hence, we see that
any reasonable attacker model capturing the attacks from Section 2.1 has at
least these capabilities. Finally, the capability to perform any of the auxiliary
actions, C6, is included mostly for completeness’ sake. It is clear that a real
attacker would abuse auxiliary actions, if this would help him achieve his goal.
Hence our model should include this capability.

Before introducing the attacker, we need to formalise what it means for a
user (i.e. the attacker) to have volition. A user with volition can pick its own
strategy in the trust system. We model this by letting a volitional trust system be
a set of rated trust systems, each generated by a malicious strategy. A choice of
strategy equates to a choice of a rated trust system from a volitional trust system.

Definition 4 (Volitional Trust System). Let M be a trust system space, I
be an ideal behaviour, s0 be the initial state, and e be a user. A volitional trust
system is a set of rated trust systems denoted Υ e / F(M,I,s0)

, for some F ⊆ F . Let

[[M, θ′, s0]] ∈ Υ e / F(M,I,s0)
iff θ′(u 6= e) = I and θ′(e)(f ∈ F) = 1.

9

The volitional trust system Υ e / F(M,I,s0)
only contains rated trust systems based

on the trust system space M and initial state s0, where all users except e have
behaviour I. The only difference between the elements in Υ e / F(M,I,s0)

is the strategy
of e, which can be any strategy in F .

We define the maximal attacker model as follows:

Definition 5 (Maximal Attacker Model). The maximal attacker model is
Υ e /F(M,I,s0)

, for trust system space M , ideal behaviour I, initial state s0 and at-
tacker e.

We may refer to a volitional trust system with an attacker as a subverted trust
system. If an attacker behaviour f can be imagined within the restraints of our
action alphabet A and the attacker’s state space SU , then there is an subverted
trust system υ ∈ Υ e /F(M,I,s0)

where the attacker uses strategy f .
We define the intuitive attacker model as follows:

Definition 6 (Intuitive Attacker Model). The intuitive attacker model is
a volitional trust system Υ e /X(M,I,s0)

, where: First, for all (S,A, s0,W) ∈ Υ e /X(M,I,s0)
,

s, s′ ∈ S and a ∈ A, if πu(s) = πu(s′) then W (s, a, t) = W (s′, a, t′) - for those
t, t′ ∈ S with W (s, a, t) 6= 0 and W (s′, a, t′) 6= 0. Second, for all collections
of transitions (s0, a0, t0), . . . , (sn, an, tn) ∈ T where e is the originator of all ai
and there is no pair of transitions (si, ai, ti), (sj , aj , tj) with both πe(si) = πe(sj)
and ai = aj, there is a volitional trust system (S,A, s0,W) ∈ Υ e /X(M,I,s0)

such that

every W ((si, fi), ai, (ti, gi)) is equal to any predetermined value ri.

The first rule limits the attacker’s behaviour in indistinguishable states, i.e., his
private information, according to C1. The second rule captures C2-C6, as the set
of strategies contains any combination of rates for all actions (including create
- C2, offer- C3, succeed and fail - C4, recommend - C5 - and others - C6) that
respect rule C1. Since the rate of each action can have an arbitrarily large value,
the attacker can perform the action with arbitrary probability smaller than one.

Remark 2. The rate is the inverse of time, in an exponential distribution (see,
e. g. [2]) - this forms the theoretical basis of rated transitions systems [14] and
continuous-time Markov chains [22]. If we accept that the attacker acts according
to an exponential distribution, then any positive time corresponds to a rate (as
the inverse of time). In this case our notion that the attacker can perform any
of his actions (C2-C6) with any probability is trivially satisfied.

Arguably we may reject the notion that the attacker acts according to an
exponential distribution. If an attack exists for this attacker, but not for an
attacker that acts according to an exponential distribution, then the attack is
purely based on exact timing (but not on expected timing). However, we should
compare the attacker with an ideal user that also does not act according to an
exponential distribution. Thus, the attack cannot purely be based on exact tim-
ing. If we, nevertheless, reject the notion that the attacker acts according to an
exponential distribution, we must generalise the notion of subverted trust mod-
els to hybrid automata [7] or probabilistic timed automata [16] - both automata
with both time and probability.

10

Our intuitive notion of an attacker (Definition 6) corresponds with the at-
tacker that is strongest by definition (Definition 5):

Theorem 1. The maximal and intuitive attacker models are equal.

Proof. See [19].

Malicious behaviour can only be performed by attackers and, by definition,
not by ideal users. However, not all malicious behaviour is an attack. Consider
a user that only creates an additional account, but never uses that account to
make offers, interactions and recommendations, nor uses the private information
of that account. Such a user is an attacker on a system where additional account
creation is not ideal behaviour, but the behaviour does not accomplish anything,
and thus is not an attack. In Section 4, we define additional notions to define
attacks and robustness. For now, it suffices to realise that C1-C6 (Definition 5/6)
do not define attacks, but rather the toolset of an attacker.

In computer security, security is relative to so-called security properties. A
typical example of a security property is secrecy of a certain message m. The
system is secure, when there is no reachable state in which the security property
is violated. In the next section, we define robustness in a similar way, differing
from security only where necessary.

4 Robustness

We have motivated why we need a formal generic definition of robustness of
trust systems. So far, we have introduced the formal machinery and the attacker
model, similar to (symbolic) formal security [3] - a methodology that has proven
itself in practice. Our definition of robustness properties are also similar to for-
mal computer security. However, there is an alternative way to reason about
robustness in a formal and general way, e.g. in [12]. We refer to the alternative
approach as the game-theoretical approach, because it gives attackers a utility
function and it assumes rationality.

The game-theoretical approach is elegant and powerful, however, our ap-
proach has two advantages over the game-theoretical approach: First, we do
not have a utility function, but robustness properties. That means that, e.g.,
distorting trust opinions is bad in itself, rather than because the utility func-
tion increases, due to an increased probability that the user interacts with the
attacker, due to the distorted trust opinion. In the game-theoretical model, there-
fore, the notion that distorting trust opinions is an attack, relies on assumptions
about the system and the users, whereas intuitively, distorting trust opinions
is an attack regardless of the attacker’s gains. Second, the game-theoretical no-
tion of robustness is an extension of the notion of correctness - game-theoretic
robustness fails trivially in incorrect systems. There are three drawbacks of hav-
ing robustness as an extension of correctness, rather than a trade-off: Firstly, in
many existing systems, correctness cannot be proven, hence robustness cannot
be compared. Secondly, a trust system may have goals other than correctness
and robustness, thus having users make suboptimal choices by design, and triv-
ially having superior strategies for an attacker. Thirdly, viewing robustness and

11

correctness as a trade-off more naturally represents design decisions in creating
trust systems. For example, not incorporating recommendations in trust opin-
ions makes the system robust against unfair rating attacks at the expense of
correctness of trust opinions [21].

A robustness property is a predicate that holds in a collection of system
states. A robustness property is a predicate, for which it is undesirable that
attackers are more likely to satisfy it than ideal users; e.g., “gain 1000$ in failed
interactions”. Typically, the probability of breaking the robustness property is
non-zero, however, the probability of an ideal user breaking such a property is
also non-zero. A trust system is robust when an attacker is no more likely to
break the property than an ideal user. The rationale is that the designer modelled
the system with ideal users in mind, hence whatever probability the ideal user
has to break a property, that probability is acceptable.

In formal computer security, there are tools (e.g. ProVerif [4]) that can de-
termine whether a security property holds, given a specification of the protocol.
The algorithms used by the tools are of intractable complexity, but solve the
problem at hand sufficiently often to be of practical value. Such tools would be a
valuable asset in determining the robustness of a system. The first step towards
automated verification, is a standardised formalisation of the problem. We shall
use the notion of volitional trust systems and the notion of robustness properties
to define robustness. This is fully analogous to how, in formal computer security,
the notions of protocols and security properties define security.

We define the notion of a robustness property in a trust system space:

Definition 7 (Robustness Property). A robustness property φ is a state
predicate over the trust system space. If φ holds in a state s in a trust system
space, then φ also holds in any state (s, g) in a rated trust system.

Observe that the assignment of probabilities has no impact on which properties
hold after a given sequence of actions.

We define the notion of probability of reaching φ:

Definition 8 (Probability of Reaching φ). Given a rated trust system
(S,A, s0,W), the probability of reaching φ is recursively defined as pφ(s0), where

for s ∈ S: pφ(s) = 1 if φ(s), and pφ(s) =
∑

t∈S,a∈AW (s,a,t)·pφ(t)∑
t∈S,a∈AW (s,a,t) if ¬φ(s).

The equation defining the probability of reaching φ does not necessarily termi-
nate. Nevertheless, the value of pφ(s0) is well-defined4, even if computation is
infeasible. For predicates φ that only hold in a finite number of states, pφ(s0)
can always be computed.

Now, we are interested in two volitional trust systems in particular, one where
the user with volition is ideal, and one where the user with volition is malicious.
In Section 3, we have defined what volitional trust systems result from malicious
behaviours - equivalently in Definitions 5 and 6. A volitional trust system on
based on a volitional ideal user is defined as:

4 Assuming absence of cycles in the trust system space, which follows from perfect
recall.

12

Definition 9 (Ideal Trust System). An ideal trust system based on trust
system space M , ideal behaviour I, initial state s0 and user e is the volitional

trust system Υ
e / supp(I)
(M,I,s0)

.

Based on these two types of volitional trust systems, we can verify whether
a robustness property holds in a trust system:

Definition 10 (Robustness of φ). In a trust system space M with ideal be-
haviour I and initial state s0, robustness of φ holds when the maximal probability
of reaching ¬φ in a subverted trust system υ ∈ Υ e /F(M,I,s0)

is no greater than the

maximal probability of reaching ¬φ in an ideal trust system υ′ ∈ Υ e / supp(I)(M,I,s0)
.

Observe that robustness of φ only holds regardless of trust system space (M)
and initial state (s0) when the support of the ideal behaviour is equal to the set
of all strategies. In other words, robustness of φ trivially holds, when all possible
strategies are ideal (supp(I) = F). However, correctness is more difficult to
achieve for larger sets of ideal strategies. Thus, as remarked before, robustness
and correctness are a trade-off.

The Dolev-Yao attacker, in security, is sufficiently powerful, that any attack
that can be performed by a group of attackers, can be performed by a single
attacker. Our attacker has the same property, albeit under the assumption that
users do not discriminate between users a priori. (Non-discrimination implies
that substituting a user for another user with identical behaviour does not es-
sentially change anything.)

Theorem 2. For any robustness property φ and trust system space, that do not
discriminate users, the probability of reaching φ under two cooperating attackers
is equal to the probability of reaching φ under one attacker.

Proof. See [19].

There are two ways to interpret the implications of Theorem 2. The first is the
straightforward interpretation, that our attacker model is sufficiently strong to
capture attacks with multiple attackers. It is obvious that this result follows from
the capability of creating accounts arbitrarily. The alternative interpretation is
relevant when the capability to create accounts at liberty is rejected. Our result
shows that if an attack exists for colluding attackers, this attack exists for our
maximal attacker. Thus, if robustness of φ holds in a system where accounts can
be created freely, then φ holds in an otherwise identical system where several
attackers, each with a single account, collude.

Example 1 (Verifying Robustness). In order to verify robustness of a system, we
need to specify a trust system space, specify ideal behaviour and specify robust-
ness properties. In practice, these may come in another specification language
than assumed in this paper, in which case translation is necessary. We let the
trust system space contain the fraction depicted in Figure 1. After applying the
ideal strategies of the owners of a, b and e, we obtain a rated transition system.
The rated transition system can be represented, simply by labelling the edges in

13

the graph with rates. The property φ in Figure 1 corresponds to “the attacker’s
(owner(e)’s) offer is not accepted before the ideal target’s (owner(b)’s)”. Both
the subverted trust system and the ideal trust system are sets of rated trust sys-
tems, thus collections of different labellings of edges. For every labelling, we can
compute the probability that we end up in a state where ¬φ holds. Now, we can
compute the maximal probability that we end up in a state where ¬φ holds in
a set of labellings. We can compare the maximal probability in the subverted
trust system with the maximal probability in the ideal trust system. If they are
equal, robustness holds, if they differ, robustness does not hold.

The robustness property is a qualitative property, not a quantitative property.
There is a straightforward way to introduce a quantitative aspect to robustness
properties:

Definition 11 (Quantitative Robustness Properties). In a trust system
space M with ideal behaviour I and initial state s0, the amount of robustness of
φ is defined as the difference between the maximal probability of reaching φ in a
subverted trust system υ ∈ Υ e /F(M,I,s0)

, and the maximal probability of reaching φ

in an ideal trust system υ′ ∈ Υ e / supp(I)(M,I,s0)
.

The advantage of the quantitative robustness properties, is that it allows reason-
ing about robustness of systems where qualitative robustness does not hold. Our
quantitative robustness property is more useful than a quantification based on
the number/set of strategies that can break the security property. Even if there
is only one attack available for the attacker, the attacker can select this strategy.
Thus if that strategy exceeds the maximal ideal strategy by 0.5, then the at-
tacker has an unfair advantage of 0.5. When there are multiple attacks available,
the attacker can only select one strategy - presumably the most effective one.

5 Conclusion

We have introduced formal machinery that allows us to express the notion of
trust systems semantically, in the form of trust system spaces. We argue that ro-
bustness refers to the distance between a system operating under the designers’
assumptions and a real system. The designers’ assumptions come in the form of
ideal behaviour. When applying (ideal) behaviour to users, non-determinism is
replaced by probability, transforming trust system spaces into rated trust sys-
tems. The attacker is a special user, whose behaviour is not ideal, but malicious.

Not all non-ideal behaviour can be performed by an attacker. Hence, we
provide a model of malicious behaviour, in the form of two equivalent attacker
models. Both models define a toolset of strategies of the attacker, in the form
of a volitional trust system. One attacker model is based on an intuitive under-
standing of what an attacker should be able to do. The other attacker model
contains, by definition, all strategies that can be performed within a trust system
space. They mutually support each other’s validity via their equivalence. The
definition of the attacker model is one of the main contributions of the paper.

Behaviour being malicious is not sufficient for it to be an attack. An attack is
a malicious behaviour that breaks a property with a probability exceeding that

14

of an ideal behaviour. A robustness property is a state predicate that attackers
want to break. We introduce probabilistic notions of reachability of a property.
We define robustness with respect to a certain robustness property based on the
probabilistic reachability of the negation of the state predicate. The definition
of robustness with respect to a robustness property (Definition 10) is another of
the main contributions of the paper. We further extend the robustness property
to a quantified variant, that allows comparison between two systems that both
fail to uphold a certain robustness property.

We prove that a multitude of attackers is no more powerful than a single
attacker (Theorem 2). This notion is crucial to our initial choice to model all
users except the attacker as ideal users, which is, therefore, validated by The-
orem 2. The choice to restrict ourselves to one attacker severely simplifies the
analysis of robustness properties - both for manual analysis and for possible
future automated verification tools.

We identify four different, albeit intertwined, directions of future work. First,
to analyse the robustness of real trust systems - to link theory to practice,
e.g. in cloud computing, e-commerce or vehicular networks. Second, to research
theoretical implications of our approach, e.g. complexity, expressivity, extensions
or simplifications. Third, to implement our ideas to allow automated verification
(based on tools as PRISM5 or PAT6). Fourth, to find (or at least characterise)
trust systems that satisfy given robustness properties.

Acknowledgements. This work is supported by “Formal Verification on Cloud”
project under Grant No: M4081155.020. This work is partially supported by the
A*Star SERC grant (1224104047) awarded to Dr. Jie Zhang.

References

1. Jos C.M. Baeten, Twan Basten, and Michel A. Reniers. Process algebra: equational
theories of communicating processes, volume 50. Cambridge university press, 2010.

2. Patrick Billingsley. Probability and measure. Wiley, 3 edition, 1995.

3. Bruno Blanchet. Security protocol verification: Symbolic and computational mod-
els. In Proceedings of the First international conference on Principles of Security
and Trust, pages 3–29. Springer, 2012.

4. Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. In Logic in Computer Science, pages
331–340. IEEE, 2005.

5. Danny Dolev and Andrew C Yao. On the security of public key protocols. Infor-
mation Theory, IEEE Transactions on, 29(2):198–208, 1983.

6. John R Douceur. The sybil attack. In Peer-to-peer Systems, pages 251–260.
Springer, 2002.

7. Thomas A Henzinger. The theory of hybrid automata. Springer, 2000.

8. Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Comput. Surv., 42(1):1–31, 2009.

5 http://www.prismmodelchecker.org 6 http://www.patroot.com

15

9. Siwei Jiang, Jie Zhang, and Yew-Soon Ong. An evolutionary model for constructing
robust trust networks. In Autonomous Agents and Multi-Agent Systems, pages
813–820. IFAAMAS, 2013.

10. Audun Jøsang and Jennifer Golbeck. Challenges for robust trust and reputation
systems. In Security and Trust Management, Saint Malo, France, 2009.

11. Audun Jøsang and Roslan Ismail. The beta reputation system. In Bled Electronic
Commerce Conference, pages 41–55, 2002.

12. Reid Kerr and Robin Cohen. Towards provably secure trust and reputation sys-
tems in e-marketplaces. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, page 172. ACM, 2007.

13. Reid Kerr and Robin Cohen. Smart cheaters do prosper: defeating trust and
reputation systems. In Autonomous Agents and Multiagent Systems, volume 2,
pages 993–1000. International Foundation for Autonomous Agents and Multiagent
Systems, 2009.

14. Bartek Klin and Vladimiro Sassone. Structural operational semantics for stochastic
process calculi. In Foundations of Software Science and Computational Structures,
pages 428–442. Springer, 2008.

15. Neal Koblitz and Alfred Menezes. Another look at “provable security”. Cryptology
ePrint Archive, Report 2004/152, 2004.

16. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. In Y. Lakhnech and S. Yovine, editors, Proc.
Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant Systems (FORMATS/FTRTFT’04),
volume 3253 of LNCS, pages 293–308. Springer, 2004.

17. Shyong K Lam and John Riedl. Shilling recommender systems for fun and profit.
In International Conference on World Wide Web, pages 393–402. ACM, 2004.

18. Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A computational model of
trust and reputation. In System Sciences, 2002. HICSS., pages 2431–2439. IEEE,
2002.

19. Tim Muller, Yang Liu, Sjouke Mauw, and Jie Zhang. On robustness of trust
systems. Technical report, Nanyang Technological University. http://pat.sce.

ntu.edu.sg/tim/papers/robustnesstechreport.pdf, 2014.
20. Tim Muller and Patrick Schweitzer. A formal derivation of composite trust. In

Foundations and Practice of Security, volume 7743, pages 132–148. 2013.
21. Tim Muller and Patrick Schweitzer. On beta models with trust chains. In Trust

Management VII, volume 401, pages 49–65. 2013.
22. William J Stewart. Introduction to the numerical solution of Markov chains, vol-

ume 41. Princeton University Press Princeton, 1994.
23. Yan Lindsay Sun, Zhu Han, Wei Yu, and KJ Ray Liu. Attacks on trust evaluation

in distributed networks. In Information Sciences and Systems, pages 1461–1466.
IEEE, 2006.

24. Jie Zhang and Robin Cohen. Evaluating the trustworthiness of advice about seller
agents in e-marketplaces: A personalized approach. Electronic Commerce Research
and Applications, 7(3):330–340, 2008.

25. Lizi Zhang, Siwei Jiang, Jie Zhang, and Wee Keong Ng. Robustness of trust models
and combinations for handling unfair ratings. In Trust Management VI, pages 36–
51. Springer, 2012.

16

http://pat.sce.ntu.edu.sg/tim/papers/robustnesstechreport.pdf
http://pat.sce.ntu.edu.sg/tim/papers/robustnesstechreport.pdf

	On Robustness of Trust Systems-0.3cm

