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Abstract

Collaborative filtering, a widely-used user-centric
recommendation technique, predicts an item’s rat-
ing by aggregating its ratings from similar users.
User similarity is usually calculated by cosine sim-
ilarity or Pearson correlation coefficient. However,
both of them consider only the direction of rating
vectors, and suffer from a range of drawbacks. To
solve these issues, we propose a novel Bayesian
similarity measure based on the Dirichlet distribu-
tion, taking into consideration both the direction
and length of rating vectors. Further, our principled
method reduces correlation due to chance. Experi-
mental results on six real-world data sets show that
our method achieves superior accuracy.

1 Introduction
Collaborative filtering (CF) is one of the most widely-used
user-centric recommendation techniques in practice [Zheng et
al., 2010]. The intuition is that users with similar preferences
will have similar opinions (ratings) on new items. Similarity
plays an important role. First, it serves as a criterion to select
a group of similar users whose ratings will be aggregated as
a basis of recommendations. Second, it is also used to weigh
the ratings so that more similar users will have greater impact
on the recommendations. Hence, similarity computation has
direct and significant influence on the performance of CF. It
is widely applied in both memory-based [Guo et al., 2012]
and model-based [Ma et al., 2011] CF approaches.

The methods historically adopted to calculate user similar-
ity in CF are cosine similarity (COS) and Pearson correlation
coefficient (PCC) [Breese et al., 1998]. COS defines user
similarity as the cosine value of the angle between two vec-
tors of ratings (the rating profiles); PCC defines user similar-
ity as the linear correlation between the two profiles. It is well
recognized that PCC and COS only consider the direction of
rating vectors but ignore their length [Ma et al., 2007]. Ahn
points out that the computed similarity could even be mislead-
ing if vector length is ignored. PCC and COS are also known
to suffer from several inherent drawbacks [Ahn, 2008]. These
drawbacks can be summarized in four specific cases: (1) Flat-
value problem: if all the rating values are flat, e.g., (1, 1, 1),

PCC is not computable as the correlation formula denomina-
tor becomes 0, and COS is always 1 regardless of the rating
values; (2) Opposite-value problem: if two users specify to-
tally opposite ratings on the commonly-rated items, PCC is
always −1; (3) Single-value problem: if two users have only
rated one item in common, PCC is not computable, and COS
results in 1 regardless of the rating values; (4) Cross-value
problem: if two users have only rated two items in common,
PCC is always −1 when the vectors cross, e.g., (1, 3) and
(2, 1); otherwise PCC is 1 if computable.

To address the above issues and propose a better similarity
measure, we design a novel Bayesian approach by taking into
account both the direction and length of rating vectors. An
attractive advantage of Bayesian approaches is that one can
infer in the same manner from a small sample as from a large
sample [O’Hagan, 2004]. This is especially useful when the
length of rating vectors is short. We apply the Dirichlet dis-
tribution to accommodate the multi-level distances between
two ratings towards the same item (rating pair). Similarity is
defined as the inverse normalization of user distance, which
is computed by the weighted average of rating distances and
of importance weights corresponding to the amount of rating
pairs falling in that distance. We further exclude the proba-
bility of the scenario where users happen to be ‘similar’ due
to a small number of co-rated items, termed as chance corre-
lation. Experimental results based on six real-world data sets
show that our approach can achieve superior accuracy.

2 Related Work
The ‘traditional approaches’ of PCC and COS are the most
adopted similarity measures in the literature. Although it is
reported that PCC works better than COS in CF [Breese et al.,
1998]—as the former performs data standardization whereas
the latter does not—others show that COS rivals or outper-
forms PCC in some scenarios [Lathia et al., 2008]. However,
the literature rarely has sought to investigate the reasons for
such phenomena, rather simply attributing them to the dif-
ference of data sets. We provide a reasonable and insightful
explanation by conducting an empirical study on the nature
of PCC, COS, and our method in Sections 3.2 and 3.3.

Various similarity measures have been proposed in the
literature, given the ineffectiveness of the traditional ap-
proaches [Lathia et al., 2008]. Broadly, they can be classified
into two categories. First, some researchers attempt to mod-



ify the traditional measures in some way. Ma et al. [2007]
propose a significance weight factor min(n, γ)/γ to devalue
the PCC value when the number n of co-rated items is small,
where γ is a constant and generally determined empirically.
Shi et al. [2009] categorize users into different pools accord-
ing to their preferences of items and then compute PCC simi-
larity for each pool. However, these approaches do not make
any changes to the calculation of PCC itself, and hence the
inherent issues are not addressed.

Second, other researchers propose new similarity mea-
sures to substitute the traditional ones. Shardanand and Maes
[1995] propose a measure based on the mean square differ-
ence (MSD) normalized by the number of commonly rated
items. However, as we will show in Section 4, its perfor-
mance is worse than PCC or COS. Lathia et al. [2007] de-
velop a concordance-based measure which estimates the cor-
relation based on the number of concordant, discordant and
tied pairs of common ratings. It finds the proportion of agree-
ment between two users. Since it depends on the mean of
ratings to determine the concordance, this approach also suf-
fers from the flat-value and single-value problems where user
similarity is not computable. Ahn [2008] proposes the PIP
measure based on three semantic heuristics: Proximity, Im-
pact and Popularity. PIP attempts to enlarge the discrepan-
cies of similarity between users with semantic agreements
and those with semantic disagreements in ratings. However,
the computed similarity is not bounded and often greater than
1, resulting in less meaningful user correlation. Bobadilla et
al. [2012] propose the singularities measure (SM) based on
the intuition that users with close ratings different from the
majority (high singularity) are more similar than those with
close ratings consistent with the others (low singularity). Al-
though SM considers the mean of agreements, the length of
rating vector is not taken into consideration. It tends to treat
users with similar opinions as un-correlated if all of their rat-
ings are consistent with others’. SM is evaluated only on a
single data set in comparison with traditional approaches.

3 Bayesian Similarity
The proposed Bayesian similarity measure is distinct from
PCC and COS, and aims to solve the issues of these tradi-
tional similarity measures. It takes into consideration both the
direction (rating distances) and the length (rating amount) of
rating vectors. Specifically, the rating distances are modelled
by the Dirichlet distribution based on the amount of observed
evidences, each of which is a pair of ratings (from the two
vectors) towards a commonly rated item. Then the overall
user similarity is modelled as the weighted average of rating
distances according to their importance weights, correspond-
ing to the amount of new evidences falling in the distance.
Further, we consider the scenario where users happen to be
‘similar’ due to the small length of rating vectors, termed as
chance correlation. Therefore, the length of rating vectors is
taken into account via (1) the modelling of Dirichlet distribu-
tion, and (2) the chance correlation in our approach.

3.1 Dirichlet-based Measure
The Dirichlet distribution represents an unknown event by a
prior distribution on the basis of initial beliefs [Russell and

Norvig, 2009]. As more evidences come in, the beliefs of
the event can be represented and updated by a posterior dis-
tribution. The posterior distribution well suits the similarity
measure since the similarity is updated based on the records
of new ratings of commonly-rated items issued by two users.

We first mathematically model the similarity computation
using the Dirichlet distribution. Let (ru,k, rv,k) be a pair
of ratings (i.e., rating pair) reported by users u and v on
item k. The rating values are drawn from a discrete set
L = {l1, . . . , ln} (lj+1 > lj , j ∈ [1, n]) of rating scales
defined by a recommender system, where n is the number
of rating scales. Thus the rating distance can be denoted as
d = |ru,k − rv,k|. We use the rating distance rather than
rating difference in order to ensure the symmetry of sim-
ilarity measure, i.e., su,v = sv,u, where su,v denotes the
similarity between users u and v. Let D be a discrete ran-
dom variable representing the level of rating distance be-
tween two ratings in a rating pair. D takes values in the set
D = {d1, . . . , dn} of the supported levels of rating distances,
where di = |lj+i−1−lj |, di+1 > di, and i, j, i+j−1 ∈ [1, n].
For example, d1 is the distance between two identical rating
scales lj . Let x = (x1, . . . , xn) be the probability distribu-
tion vector of D, i.e., P (D = di) = xi, which satisfies the
additivity requirement

∑n
i=1 xi = 1. The probability density

of the Dirichlet distribution for variables x = (x1, . . . , xn)
with parameters α = (α1, . . . , αn) is:

p(x|α) =
Γ(α0)∏n
i=1 Γ(αi)

n∏
i=1

xαi−1
i , (1)

where x1, . . . , xn ≥ 0, α1, . . . , αn > 0 and α0 =
∑n
i=1 αi.

The parameter αi can be interpreted as the amount of pseudo-
observations of the event in question, i.e., rating pairs that are
observed before real events happen. Hence, α0 is the total
amount of prior observations. It is important to set appro-
priate values for the parameters αi as they will significantly
influence the posterior probability.

Before observing any rating pairs, and without any prior
knowledge to the contrary, we assume that ratings from two
users are random and uncorrelated. There are n2 pseudo-
observations corresponding to all the possible combinations
of rating scales. Thus, parameter αi will be the number of
pseudo observations located in distance level di. Let pj be
the prior probabilities of rating scales lj . Thus we set the
values of parameters αi as follows:

αi =

{ ∑n
j=1 n

2p2j if i = 1;

2
∑n−i+1
j=1 n2pjpj+i−1 if 1 < i ≤ n. (2)

Observe that the case of distance level d1 only occurs when
both ratings in a rating pair are identical, i.e., (lj , lj). For
other distance levels di, 1 < i ≤ n, two combinations
(lj , lj+i−1) and (lj+i−1, lj) could produce the same rating
distance at that level. Rather than setting these uninformed
uniform parameters αi, we tried to learn prior probability of
rating distances from the training data. However, experimen-
tal results did not show any advantages in performance. One
possible explanation is that learning the exact distribution of
ratings from training set may give rise to certain overfitting.



New evidence for the Dirichlet distribution is often repre-
sented by a vector. Specifically, the rating pair (ru,k, rv,k)
can be represented by a vector γ = (γ1, . . . , γn) where only
γi = 1 (where i is such that di = |ru,k − rv,k|) and the
remaining entries equal zero. For example, a rating pair (5,
3) on a certain item can be represented as γ = (0, 0, 1, 0, 0)
if the rating scales are integers from 1 to 5. However, not
all evidences will be considered as equally useful for simi-
larity computation. Instead, we posit that realistic user sim-
ilarity can only be calculated based on the (reliable) items
with consistent ratings, and using the (unreliable) items with
inconsistent ratings is risky and may cause unexpected in-
fluence on similarity computation. The rating consistency is
determined by two factors: (1) the standard deviation σk of
ratings on item k; and (2) the rating tendency of all users.
First, generally, the value of σk reflects the extent of incon-
sistency of user ratings on item k. We define the acceptable
range of rating deviations by cσk, where c is a scale con-
stant that can be adapted for different data sets. Second,
however, the value of σk may be less meaningful if the rat-
ings on all items are highly deviated, i.e., users tend to dis-
agree with each other in general. In this case, we consider
the distance between the mode rm and mean rµ of ratings,
i.e., dm,µ = |rm − rµ|. Since the mode represents the most
frequently occurred value, the distance dm,µ reflects the ten-
dency of all user ratings. The greater the value of dm,µ is, the
more deviated user ratings are indicated and the less mean-
ingful σk will be. When dm,u > 1,1 σk is not meaningful
at all. Hence, the important evidences will be those whose
rating distance for reliable item k is within a small range cσk,
given that users achieve agreements in most cases.

We define the evidence weight of γi as:

ei =


1 if cσk = 0;
1− di

cσk
if 0 ≤ di < 2cσk;

−1 otherwise.
(3)

Let σ be the standard deviation of all ratings in a recom-
mender system. We restrict the important evidences within
a range cσ no more than the minimal rating scale l1, i.e.,
c = l1/σ. In case that the distributions of user ratings are un-
known or that users generally do not have consensus ratings,
we may set c = 0 so as not to consider evidence weights.

Now the Dirichlet distribution can be updated based on the
observations of new evidences. Specifically, for an observa-
tion of a vector γ, the posterior probability density distribu-
tion will be p(x|α + γ). This procedure can be conducted
sequentially to update the posterior probability density dis-
tribution when new rating pairs come in. Upon observation
of N rating pairs γ1, . . . ,γN , the latest posterior probabil-
ity density function becomes p(x|α+

∑N
j=1 γ

j). Hence, the
expected value of the posterior probability variable xi equals

E(xi|αi + γ0i ) =
αi + γ0i
α0 + γ0

, (4)

where γ0i =
∑N
j=1 γ

j
i e
j
i and γ0 =

∑N
i=0 γ

0
i . γji represents

1The value 1 is empirically determined based on the analysis of
specifications of data sets that we will use in Section 4.

the i-th component of the j-th observation γj and hence γ0i is
the amount of evidences whose rating distance is di.

Based on the posterior probability of each rating distance,
we define user distance as the weighted average of rating dis-
tances di according to their importance weights wi:

du,v =

∑n
i=1 wi · di∑n
i=1 |wi|

, (5)

where du,v denotes the distance between two users u and v,
and wi represents the importance of the rating distance di
for calculating the user distance. Intuitively, the more new
evidences that are accumulated at a rating distance di, the
more important the distance di will be. Hence, the impor-
tance weight of di is computed by:

wi = E(xi|αi + r0i )− E(xi|αi), (6)

where we constrain wi > 0 in order to remove the situa-
tion where posterior probability is less than priori probability,
which can arise when a rating level receives few evidences
(relative to all evidences). Then, normalizing the distance:

s′u,v = 1− du,v
dn

, (7)

where s′u,v denotes the ‘raw’ similarity between two users u
and v, and dn is the maximum rating distance.

Until now, we have defined user similarity according to
the distributions of rating distances. However, it is possible
that two users are regarded as similar just because their rating
distances happen to be relatively small, especially when the
number of ratings is small. Hence it would be useful to re-
duce such correlation due to chance. Of γ0 evidences, γ0i ev-
idences locate at the level of distance di. Recall that the prior
probability of rating pairs with rating distance di is αi/α0,
and so the chance that γ0i evidences fall in that level indepen-
dently will be (αi/α0)γ

0
i . Hence, the chance correlation is

computed as the probability that amount of evidences fall in
different distance levels independently:

s′′u,v =

n∏
i=1

(
αi
α0

)γ
0
i . (8)

Thus, the smaller γ0i is, the larger s′′u,v will be.
Another concern is that similarity measures usually pos-

sess a certain level of user bias, i.e., the estimated similarity
tending to be higher or lower to some extent than the real-
istic one. We will elaborate this issue later in Section 3.3.
Therefore, the user similarity can be derived by excluding the
chance correlation and user bias from the overall similarity:

su,v = max(s′u,v − s′′u,v − δ, 0), (9)

where su,v denotes the user similarity between users u and v,
and δ is a constant representing the general user bias. As ana-
lyzed in Section 3.3, our method will generally hold a limited
user bias around 0.04, i.e., δ = 0.04.

3.2 Examples
Earlier we summarized four specific problems that PCC and
COS suffer from. Here we illustrate by examples the differ-
ences among the similarity values computed by our Bayesian



Table 1: Examples of PCC, COS and BS similarity metrics

Problem Examples PCC COS BS BS-1ID Vector u Vector v
Flat- a1 [1, 1, 1] [1, 1, 1] NaN 1.0 0.952 0.96
value a2 [1, 1, 1] [2, 2, 2] NaN 1.0 0.677 0.71

a3 [1, 1, 1] [5, 5, 5] NaN 1.0 0.0 0.0
Opp.- a4 [1, 5, 1] [5, 1, 5] -1.0 0.404 0.0 0.0
value a5 [2, 4, 4] [4, 2, 2] -1.0 0.816 0.446 0.46

a6 [2, 4, 4, 1][4, 2, 2, 5]-1.0 0.681 0.334 0.335
Single- a7 [1] [1] NaN 1.0 0.76 0.96
value a8 [1] [2] NaN 1.0 0.39 0.71

a9 [1] [5] NaN 1.0 0.0 0.0
Cross- a10 [1, 5] [5, 1] -1.0 0.385 0.0 0.0
value a11 [1, 3] [4, 2] -1.0 0.707 0.332 0.383

a12 [5, 1] [5, 4] 1.0 0.888 0.530 0.5616
a13 [4, 3] [3, 1] 1.0 0.949 0.485 0.5623

similarity (BS) measure and the others. We denote BS-1 as
the variant of our method that does not remove chance cor-
relation. The results are shown in Table 1. All ratings in the
table are integers in the range [1, 5]. We assume all the ratings
are randomly distributed, i.e., pj = 0.2 for Equation 2.

It is observed that our method can solve the four prob-
lems of PCC and COS, and generate more realistic similar-
ity measurements overall. Specifically, for the flat-value and
single-value problems, PCC is non-computable and COS is
always 1, whereas BS produces more reasonable similarities.
In addition, BS generates higher similarity in a1, a2 than in
a7, a8 respectively. Although the rating directions are the
same, the former situations have more amount of information
than the latter. However, BS-1 computes the same values in
these cases where chance correlation is not considered. BS-1
tends to generate larger values than BS. The differences be-
tween BS and BS-1 could be large, especially when the length
of rating vectors is short (e.g., a2, a7, a8, a12, a13). Further,
when the ratings are diametrically opposite (a3, a4, a9, a10),
BS always gives 0 no matter how much information we have.
However, COS continues to generate relatively high similar-
ity; PCC may not be computable and hence these values are
unreasonable. When the ratings are opposite but not extreme
(a5, a6, a11), PCC gives the extreme value−1 all the time and
COS tends to produce high similarity, whereas the similarity
calculated by BS is kept low. Finally, if the ratings are not
crossing (a12, a13), PCC will yield 1 if computable and COS
produces large values relative to BS even if some of the rat-
ings are conflicting. Hence, these values are counter-intuitive
and misleading, as pointed out by Ahn [2008]. In contrast,
our method can produce more realistic measurements.

3.3 Similarity Trend Analysis
In this subsection, we further investigate the nature of the
three similarity measures in a more general way. The trends
of computed similarity values are analyzed when the length of
rating vectors varies in a large range, using the same settings
as previous subsection. In particular, a normal distribution
is used to describe the distribution of user similarity. Since
similarity value is located in [0, 1], the mean value of user
similarity will be equal to the median of the normal distribu-
tion, i.e., 0.5. Note that for comparison purpose, PCC sim-
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Figure 1: The trends of similarity measures

ilarity is normalized from [−1, 1] to [0, 1] via (1 + PCC)/2.
We vary the length of rating vectors from 1 to 200. For each
length, we randomly generate one million samples of two rat-
ing vectors and calculate the similarity for each pair by ap-
plying PCC, COS, and BS. The mean and standard deviation
for each length are summarized and shown in Figure 1.

For the mean value, PCC stays at the value of 0.5, while
COS starts with high values and decreases quickly (length ≤
10), reaching a stable state with value of 0.82. In contrast,
BS begins with a low value at length 1 and then stays around
0.54 with a limited fluctuation when the length is short. These
results indicate that in general for any two users: (1) PCC
is able to remove user bias; (2) COS always tends to gener-
ate high similarity around 0.82, i.e., with a large bias around
0.32; and (3) BS exhibits only a limited bias (δ = 0.04). This
phenomena is also observed by Lathia et al. [2008] who find
that in the MovieLens data set (movielens.umn.edu),
nearly 80% of the whole community has COS similarity be-
tween 0.9 and 1.0, and that the most frequent PCC values
are distributed around 0 (without normalization), which cor-
responds to 0.5 in our settings. For the standard deviation,
PCC makes large deviations when the length of vectors is less
than 20, COS generates very limited deviation, whereas BS
keeps a stable deviation around 0.22. In conclusion: (1) PCC
is not stable and varies considerably when the vector length
is short; (2) COS similarity is distributed densely around its
mean value which makes it less distinguishable; and (3) BS
tends to be distributed within a range of 0.22 which makes its
value more easily distinguishable from others.

4 Experiments
We evaluate recommendation performance using the 5-fold
cross validation method. The data set is split into five disjoint
sets; for each iteration, four folds are used as training data
and one as a testing set. We apply the K-NN approach to
select a group of similar users whose ranking is in the top K
according to similarity; we vary K from 5 to 50 with step 5.
The ratings of selected similar users are aggregated to predict
items’ ratings by a mean-centring approach [Desrosiers and
Karypis, 2011]. Accuracy is measured by mean absolute er-
ror (MAE) between the prediction and the ground truth. Thus
lower MAE indicates better accuracy. While our experiments
use memory-based CF, we emphasize that similarity compu-
tation is equally relevant to model-based methods, including
those based on matrix factorization such as Ma et al. [2011].
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Figure 2: The effects of evidence weight and chance correlation

Table 2: Specifications of data sets in the experiments
Data Set # users # items # ratings scales c
BookCrossing 77.8K 186K 433K [1, 10] 0.5
Epinions 40.2K 139.7K 664.8K [1, 5] 0.0
Flixster 53.2K 18.2K 409.8K [0.5, 5.0] 0.0
FilmTrust 1508 2071 35.5K [1, 5] 0.6
MovieLens 100K 943 1682 100K [1, 5] 0.9
MovieLens 1M 6040 3952 1M [1, 5] 0.9

Data Sets. Six real-world data sets are used in our ex-
periments. Bookcrossing.com contains book ratings issued
by users from the BookCrossing community. Epinions.com
allows users to rate many items (books, movies, etc.)
while Flixster.com is a movie rating and sharing commu-
nity. FilmTrust (trust.mindswap.org/FilmTrust/)
is also a movie sharing and rating website. Both MovieLens
data sets (100K and 1M) are provided by the GroupLens
group; each user has rated at least 20 items. The specifi-
cations of data sets are shown in Table 2, together with the
computed values of c (see Equation 3) in the last column.

4.1 Performance of BS and its Variants
We first investigate the effects of two components in our ap-
proach BS, namely chance correlation and evidence weights.
We denote BS-1 and BS-2 as the variants that disable chance
correlation (setting s′′u,v = 0) and evidence weights (setting
c = 0) from BS, respectively. The results on three data
sets are illustrated in Figure 2 (and similar results occur in
other data sets: graphs omitted for space reasons). It can be
observed that BS consistently outperforms BS-2 which is in
turn superior to BS-1, demonstrating the importance of both
factors to our approach, and further indicating that disabling
chance correlation will decrease the performance more than
disabling the use of evidence weights. In other words, consid-
ering the length of rating vectors may have a greater impact
on the predictive performance than other factors.

4.2 Comparison with other Measures
The baseline approaches are PCC, COS, and MSD. Besides
these, we also compare with recent works, namely PIP and
SM, as described in Section 2. The performance of these ap-
proaches is shown in Figure 3 in terms of MAE.

Table 3: Significance test results on all data sets
Data Set t value p value Best of OthersAlternative
FilmTrust -7.0619 2.954e-05 PCC Less
MovieLens 1M -4.4532 0.0007964 SM Less
BookCrossing -40.3933 8.695e-12 COS Less
Flixster -2.9545 0.008052 SM Less
MovieLens 100K-0.9248 0.3792 PIP Two Sided
Epinions 3.5688 0.003018 SM Greater

The results show that BS outperforms traditional measures
(i.e., PCC and COS, also MSD) consistently in all data sets.
Of the traditional measures, the performance of MSD is al-
ways between that of PCC and COS. PCC works better than
COS in some cases (sub-figures a, b, e) and worse in oth-
ers. One explanation is that PCC only removes local bias (the
average of ratings on co-rated items) rather than global bias
(the average of all ratings); hence it is not a standard data
standardization. Of the newer methods, SM generally works
better than PIP except for MovieLens 100K. One explanation
is that PIP is especially designed for cold-start users whereas
our experimental setting is for general users. Interestingly,
PIP and SM outperform the traditional methods only in the
two MovieLens data sets. This underscores the necessity of
comparing performance in several different data sets. Ado-
mavicius and Zhang [2012] also show that the accuracy of CF
recommendations is highly influenced by the structural char-
acteristics of data sets. By contrast, our method performs bet-
ter than both PIP and SM in all data sets, except MovieLens
100K and Epinions, and exhibits greater improvements (with
respect to traditional approaches). In MovieLens 100K, BS
is still the best measure when k is less than 25; after that, BS
converges to the performance of SM which is slightly worse
than the best performance achieved by PIP. In Epinions, BS
and SM have very close performance and beat the others.

We conduct a series of paired two sample t-tests on all data
sets to study the significance of accuracy improvement that
our method achieves in comparison with the best of other
methods (BOM) (confidence level 0.95). The results are
shown in Table 3, where the types of alternative hypotheses
are presented in the last column. The resultant p values in-
dicate that our method significantly (p < 0.01) outperforms
all others for the first four data sets. For MovieLens 100K,
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Figure 3: The predictive accuracy of comparative approaches

Table 4: Precision, Recall, F-measure on MovieLens 100K
L BS SM PIP MSD COS PCC
2 0.9801 0.9608 0.9653 0.9618 0.9602 0.9750

0.4461 0.4365 0.4377 0.4365 0.4362 0.4426
0.6131 0.6003 0.6023 0.6005 0.5999 0.6088

5 0.9580 0.9310 0.9453 0.9320 0.9286 0.9529
0.5945 0.5805 0.5844 0.5805 0.5794 0.5903
0.7337 0.7151 0.7223 0.7154 0.7136 0.7290

10 0.9119 0.8764 0.9049 0.8755 0.8709 0.9063
0.6971 0.6787 0.6869 0.6785 0.6767 0.6921
0.7902 0.7650 0.7810 0.7645 0.7616 0.7849

15 0.8706 0.8277 0.8609 0.8279 0.8211 0.8635
0.7468 0.7251 0.7357 0.7249 0.7227 0.7410
0.8040 0.7730 0.7934 0.7730 0.7688 0.7975

20 0.8338 0.7849 0.8216 0.7864 0.7777 0.8265
0.7763 0.7521 0.7645 0.7521 0.7494 0.7701
0.8040 0.7682 0.7920 0.7689 0.7633 0.7973

neither BS nor BOM are significantly better than the other.
Only for Epinions is BS outperformed by another method
(SM). Another set of significance tests show that our method
achieves significantly better performance than the second best
of other methods, i.e., SM (p < 0.05) and COS (p < 0.01) in
MovieLens 100K and Epinions, respectively. Hence, looking
across the range of data sets, we conclude that our method
outperforms in general each other method considered.

Finally, to further explore MovieLens 100K, we look into
the classification performance of all similarity methods in
terms of precision, recall, and F-measure. We classify pre-
dictions greater than 4.5/5 as relevant (to have a clear perfor-

mance discrepancy) and otherwise as irrelevant. In Table 4,
the first column (L) is the length of the recommended item
list. The results confirm that BS consistently outperforms its
counterparts on this data set as well.

5 Conclusion and Future Work
This paper proposed a novel Bayesian similarity measure
for recommender systems based on the Dirichlet distribution,
taking into account both the direction and length of rating
vectors. In addition, correlation due to chance and user bias
were removed to accurately measure users’ correlation. Us-
ing typical examples, we showed that our Bayesian measure
can address the issues of traditional similarity measures (i.e.,
PCC and COS). More generally, we empirically analyzed the
trends of these measures and concluded that our method was
expected to generate more realistic and distinguishable user
similarity. The experimental results based on six real-world
data sets further demonstrated the robust effectiveness of our
method in improving the recommendation performance.

Our approach only relies on numerical ratings to model
user correlation and hence it can be applied into many other
domains, such as information retrieval. We plan to integrate
more information about user ratings, such as the time when
ratings were issued, in order to consider the dynamics of user
interest [Li et al., 2011], and to apply parameter learning for
values δ and c in our method.
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