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Abstract
It is indispensable for users to evaluate the trust-
worthiness of other users (referred to as advisors),
to cope with possible misleading opinions provided
by them. Advisors’ misleading opinions may be
induced by their dishonesty, subjectivity difference
with users, or both. Existing approaches do not
well distinguish the two different causes. In this
paper, we propose a novel probabilistic graphical
trust model to separately consider these two factors,
involving three types of latent variables: benevo-
lence, integrity and competence of advisors, trust
propensity of users, and subjectivity difference be-
tween users and advisors. Experimental results on
real datasets demonstrate that our method advances
state-of-the-art approaches to a large extent.

1 Introduction
In large, open online communities, users often encounter en-
tities (e.g. people, products and information) which they have
no previous experience with or prior knowledge of. To choose
which entities to interact with, they usually rely on the ex-
perience or knowledge of other users (advisors). However,
advisors might provide misleading opinions for two very dif-
ferent reasons. Firstly, some advisors might be dishonest due
to their intrinsic natures such as the low level of benevolence,
integrity and competency [McKnight and Chervany, 2001].
They tend to intentionally provide overly positive or nega-
tive opinions for some entities which are completely contra-
dict with their real experience. Secondly, advisors might be
honest, but are subjectively different [Fang et al., 2012] from
users. They provide true opinions based on their experience,
which might be unintentionally misleading for users due to
their salient subjectivity difference with users.

It is thus important for users to evaluate the quality of
advisors’ opinions in order to determine how much to be
relied on. One generally adopted approach [Teacy et al.,
2006] is to model the trustworthiness of advisors. The ba-
sic idea is that a more trustworthy advisor to a user will pro-
vide higher quality opinions to the user. However, some ex-
isting trust models may only consider either advisors’ dis-
honesty [Zhang and Cohen, 2007] or subjectivity differ-
ence [Fang et al., 2012], while others cannot accurately

distinguish these two different factors [Regan et al., 2006;
Noorian et al., 2011]. As indicated, dishonesty is an intrin-
sic property of advisors, while subjectivity difference exists
between users and advisors. Even for a same (dis)honest ad-
visor, different users may have different perceptions on her
trustworthiness due to the different level of subjectivity dif-
ference between the advisor and each user. It is thus neces-
sary to clearly distinguish these two factors.

In this paper, we propose a novel probabilistic graphical
trust model that explicitly distinguishes the factors of dis-
honesty and subjectivity difference. Specifically, in an on-
line community involving users, advisors and entities, both
users and advisors can provide ratings to entities. Some users
may explicitly identify their (dis)trust towards some advi-
sors. Given information about ratings and trust relationships
(if any), we model the factors of advisors’ intrinsic nature
(i.e. benevolence, integrity and competence), users’ propen-
sity to trust advisors, and subjectivity difference between users
and advisors, as latent variables in the model that may influ-
ence users’ trust towards advisors. Through detailed exper-
iments on three real datasets, it is confirmed that our model
largely outperforms competing approaches for modeling ad-
visor trustworthiness.

2 Related Work
Different approaches have been proposed to model advisor
trustworthiness for users. Some approaches, such as [Teacy
et al., 2006; Zhang and Cohen, 2007; Liu et al., 2011], fo-
cus on low quality opinions (unfair ratings) intentionally pro-
vided by dishonest advisors. Due to the ignorance of subjec-
tivity difference between advisors and users, they may mis-
use some important information caused by subjectivity dif-
ference, rather than dishonesty. Some other approaches, such
as [Fang et al., 2012], only consider subjectivity difference
between users and advisors, but ignore the dishonesty char-
acteristic of advisors. They may mistakenly treat dishonest
advisors as those having subjectivity difference with users.

To model both dishonesty and subjectivity of advisors,
BLADE [Regan et al., 2006] and Prob-Cog [Noorian et al.,
2011] are proposed recently. BLADE applies Bayesian learn-
ing to model the correlations between entities’ properties and
ratings of users and advisors. However, it does not explicitly
distinguish dishonesty and subjectivity in its modeling pro-
cess. If the correlations learned for users’ ratings are based



on entities’ properties that are different from those for advi-
sors, it is likely that advisors having subjectivity difference
are treated as dishonest. Prob-Cog is a two-layered behav-
ioral modeling approach. First, it filters dishonest advisors
according to the rating similarity between users and advisors.
Second, trustworthiness of honest advisors is discounted ac-
cording to their subjective trends. However, Prob-Cog has
the assumption that advisors providing very different ratings
with a user are dishonest to the user. In consequence, ad-
visors having large subjectivity difference with the user will
be misclassified as dishonest. In contrast, our model explic-
itly distinguishes (dis)honesty and subjectivity difference by
modeling them using different sources of rating information,
and captures their relationships with trust through the influ-
ence of chains in our probabilistic graphical model.

Our model also adopts the trust topology widely studied
in Social Science [McKnight and Chervany, 2001] to model
advisor (dis)honesty. A similar model is TAF of Chua and
Lim [2010], which considers entities’ competency, and users’
trust propensity and contingency. TAF targets at a different
research problem that models users’ trust towards entities in
online communities. We model advisor trustworthiness and
additionally consider benevolence and integrity of advisors.
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Figure 1: The Conceptual Framework of Trust

3 The Probabilistic Graphical Trust Model
We first identify the factors that influence users’ trust towards
advisors, to construct a conceptual framework of trust shown
in Figure 1. More specifically, in Social Science, benevo-
lence, integrity and competence are regarded as antecedents
of trust [McKnight and Chervany, 2001] to explore the rela-
tionship between a trustor (user) and a trustee (advisor). They
are the intrinsic characteristics of advisors’ (dis)honesty that
may directly influence users’ trust towards advisors (drawn as
solid lines). An intrinsic characteristic of users–trust propen-
sity, referring to users’ initial trust towards unknown advisors
before interacting with them, may also have direct effect on
users’ perception on advisor trustworthiness [Mayer et al.,
1995]. In reality, users’ different background will conduce
to their different initial trust towards others. Different users
may have different subjectivity in evaluating same entities.
Even an advisor is honest, a user may have different experi-
ence with the same entity compared to what the advisor has.
In other words, subjectivity difference between a user and an
advisor can affect the user’s satisfaction level of the opinions
provided by the honest advisor, and further indirectly influ-
ence the user’s perception on the advisor’s trustworthiness

(drawn as the dashed line). Furthermore, experience differ-
ence between the user and the advisor, as well as that between
the advisor and other advisors (users) can have direct impact
on the user’s perception towards the advisor’s benevolence,
integrity and competence.

In the next subsections, we first show the probabilistic
graphical trust model designed according to the conceptual
framework. We then present its parameters and the generative
process of sampling observable variables. We also elaborate
the inference process of the model and estimation of parame-
ters. Finally, we predict advisor trustworthiness for users.

3.1 Parameters and Generative Process
In some online communities, e.g. Epinions (epinions.
com), users may explicitly indicate their trust towards some
advisors (trust links), while in others, e.g. eBay (ebay.
com), no trust links are available. We thus design two graph-
ical models, shown in Figures 2(a) and 2(b), for the two types
of communities, respectively. We use graphical model mainly
because it can fully interpret our conceptual framework, and
seamlessly merge supervised and unsupervised learning (la-
beled and unlabeled relationship) [Jordan et al., 1999].

We assume a user u and an advisor a in a community, and
denote a’s trustworthiness perceived by u as tu,a ∈ [0, 1]
where 1 means totally trust and 0 totally distrust1. Some other
parameters are: 1) u’s trust propensity yu; 2) a’s competence
ca, benevolence ba and integrity ia; and 3) a’s subjectivity
difference with u, su,a. All these parameters are modeled as
distribution parameters, and the expected values are in [0, 1].
Specifically, the expected trust propensity yu of 1 represents
complete propensity to trust, while that of 0 no propensity.

Competence (c) indicates whether an advisor has ability to
provide reliable ratings (opinions) to users. Hence, it is rea-
sonable to regard it as a latent variable that directly connects
with the trustworthiness of the advisor. Its expected value 1
refers to full competence, while 0 means no competence.

Benevolence (b) refers to the degree that an advisor cares
about the preferences of users [McKnight and Chervany,
2001]. Thus, we can easily observe its relationship with the
rating difference (r) towards the same entity between every
user and the advisor. The higher benevolence of the advisor
with respect to users will lead to the smaller rating difference
between every user and the advisor. Through the chains in the
graphical models (see Figure 2, where r is observable), we
capture the relationship of benevolence b with advisor trust-
worthiness t. The benevolence of advisor a consists of two
components, one for trust and another for distrust denoted by
ba|t=1 and ba|t=0 respectively.

Integrity (i) emphasizes on the degree that a person follows
rules in an organization [McKnight and Chervany, 2001].
Then, it can be inferred that integrity affects rating difference
(R) between the advisor and average of all other users for
the same entity. Higher integrity implies smaller rating dif-
ference. Similar to benevolence, we model the relationship

1In model inference, users’ trust towards advisors is labeled as
either t = 1 (trust) or t = 0 (distrust) with respect to a predefined
threshold, and its corresponding probability value refers to the exact
trustworthiness of advisors perceived by each specific user.



of integrity with advisor trustworthiness (see Figure 2, where
R is observable), and ia|t=1 and ia|t=0 represent a’s integrity
for trust and distrust respectively.

Subjectivity difference su,a between user u and advisor a
may directly influence rating difference (r) between u and a.
Through the chains in the models, we seize its influence on
trust modeling. Similarly, subjectivity difference also con-
sists of two components, one for trust and another for distrust
denoted by su,a|t=1 and su,a|t=0 respectively.

In addition, for communities where trust links are partially
observable, we identify a new latent parameter called expres-
siveness denoted as eu, representing user u’s tendency to ex-
press her trust eu|t=1 or distrust eu|t=0 links towards advi-
sors. Note that Figure 2(b) is a special case for Figure 2(a),
of which the expected expressiveness eu always equals to 0.
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Figure 2: Graphical Model: (a) with (b) without Trust Links
Figure 2 shows dependencies among variables and parame-

ters. The directed arrows represent dependency relationships.
Variables in shaded circles (e.g. ru,a,k and ou,a) denote ob-
servable variables, while the remaining variables are not ob-
servable. The variable in grey circle (i.e. tu,a) is partially
observable in Figure 2(a). The boxes are “plates” represent-
ing replicates, where A represents all advisors, U all users
andK all entities, respectively. The generative process of our
model follows the steps below:
Step 1: For each user u ∈ U , sample distribution parame-
ter of propensity yu, using Beta distribution with symmetric
hyper-parameters, as yu ∼ Beta(ψ).
Step 2: For each advisor a ∈ A, sample distribution pa-
rameters: competence ca, benevolence ba|t and integrity ia|t
using Beta distribution with symmetric hyper-parameters, as
ca ∼ Beta(α), ba|t ∼ Beta(ϕ), and ia|t ∼ Beta(θ).
Step 3: For each user u ∈ U and each advisor a ∈ A:
[3.1] u generates trust for a, tu,a (0 or 1), based on u’s
propensity yu and a’s competence ca, as tu,a ∼ Bern(yu) ·
Bern(ca); [3.2] u samples distribution parameters: expres-
siveness eu|t and subjectivity difference su,a|t using Beta dis-
tribution with symmetric parameters, as eu|t ∼ Beta(ε) and
su,a|t ∼ Beta(β); [3.3] u generates observability of link ou,a
based on u’s expressiveness eu and trust of the link tu,a, as
ou,a ∼ Bern(eu|t); [3.4] for each entity k ∈ K, generate a’s
rating difference with u, ru,a,k, and a’s rating difference with
all the other users, RU−a,a,k, as ru,a,k ∼ Bin(m, 1 − ba|t) ·
Bin(m, su,a|t) and RU−a,a,k ∼ Bin(m, 1 − ia|t), where
RU−a,a,k and ru,a,k are in [0,m].

We use Binomial distribution [Chua and Lim, 2010] to
model rating difference (r and R). The basic idea is that,
by dividing an entity intom parts, we obtain rating difference
of m if the difference for every part is 1, m − 1 if that for
every part is 1 except one part, and 0 if that for every part is
0. We model each part as a Bernoulli event, and then the rat-
ing difference can be generated as Binomial distribution. We
choose Binomial distribution instead of multinomial distribu-
tion mainly because: 1) the assumption of multinomial distri-
bution (each state is independent and identically distributed)
does not hold here; and 2) Binomial distribution fits our prob-
lem well since r and R are in a finite range.

Also note that there are two kinds of trust links between
users and advisors (trust and distrust). We thus choose Beta
distribution with symmetric hyper-parameters for parameters,
where each expected value of these parameters from prior dis-
tribution is assumed to be 0.5.

3.2 Model Inference and Parameter Estimation
We use Gibbs sampling [Casella and George, 1992] to infer
our two models (Figures 2(a) and 2(b)), and then update pos-
terior distribution for each parameter, correspondingly.

Model Inference
Gibbs sampling, as a means of approximate inference, is easy
to derive for Bayesian inference (our research case), and com-
parable in speed to other estimators (e.g. EM algorithm). It
is well-adapted to sample posterior distribution of a Bayesian
network and approximate a global maximum. Because the
conjugacy of Beta and Binomial distributions, we apply col-
lapsed Gibbs sampling [Liu, 1994], which integrates the pa-
rameters in Figure 2, for model inference.

Specifically, when trust links are partially observable, as
shown in Figure 2(a), we conduct sampling whenever we en-
counter a trust link of tu,a that is needed to be identified. The
Gibbs sampling inference process is:

P (tu,a = t|tu,−a, o, r, R, α, ϕ, θ, β, ψ, ε)

∝ P (tu,a = t|tu,−a, α, ψ)P (RU−a,a|tu,a = t, RU−a,−a, θ)

P (ou,a|tu,a = t, ou,−a, ε)P (ru,a|tu,a = t, ru,−a, ϕ, β)

where tu,−a refers to user u’s trust links with other advisors
except advisor a; ou,−a represents the observability of u’s
trust links except that with a; RU−a,−a is the rating differ-
ence between each of other advisors (except advisor a) and
the average rating; and ru,−a is the rating difference between
user u and each of other advisors.

We then evaluate the above 4 components independently:

P (ou,a|tu,a = t, ou,−a, ε) =
n(o1u|t) + ε

n(o0u|t) + n(o1u|t) + 2ε
where n(o1

u|t) and n(o0
u|t) are the numbers of times that user

u shows and hides the trust t to advisors, respectively. n(o1
u|t)

and n(o0
u|t) must exclude the counts between u and a because

of the condition on ou,−a.

P (tu,a = t|tu,−a, α, ψ)=

[
n(tta) + α

n(t0a) + n(t1a) + 2α

][
n(ttu) + ψ

n(t0u) + n(t1u) + 2ψ

]

where n(ttu) is the number of links with trust value t from user
u, and n(tta) is the number of links with value t to advisor a.
Similarly, due to tu,−a, n(ttu) and n(tta) must exclude the
counts between u and a.



P (RU−a,a|tu,a = t, RU−a,−a, θ)
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where n(Rra|t) refers to the number of rating difference r be-
tween a with all the other users if a has been given trust t.
n(RU−a,a|t) denotes the number of rating difference r be-
tween a and the average of all the other ratings with regard to
commonly rated entities with u given that u’s trust on a is t.
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where n(rru,a|t) and n(rra|t) denote the number of rating dif-
ference r between a and u given trust value t, and the number
of rating difference r between a and other users given that
trust value to a is t, respectively.

When trust links are not observable, as shown in Fig-
ure 2(b). The corresponding sampling process is:

P (tu,a = t|r,R, α, ϕ, θ, β, ψ) ∝ P (tu,a = t|α,ψ)
P (ru,a|tu,a = t, ru,−a, ϕ, β)P (RU−a,a|tu,a = t, RU−a,−a, θ)

The inference process is similar to the Gibbs sampling pro-
cess where the trust links are partially observable. The only
difference is that we need to conduct sampling for each trust
link between users and advisors.

Parameter Estimation
After the inference on tu,a, we can update posterior distribu-
tions of y, c, e, i, b and s, as follows:2

P (yu|tu, ψ, α) ∼ Beta
(
ψ + n(t

1
u), ψ + n(t

0
u)
)

P (ca|ta, ψ, α) ∼ Beta
(
α+ n(t

1
a), α+ n(t

0
a)
)

P (eu|t|tu, ou, ε) ∼ Beta
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ε+ n(o
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0
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2Due to space limitation, we omit detailed derivation process.
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3.3 Trust Prediction
After learning the parameters, we can evaluate the trust be-
tween user u and advisor a, tu,a, using the Markov blan-
ket [Pearl, 1988] of node t in Figure 2. The Markov blanket of
a node contains all the variables that shield the node from the
rest of the network: its parent, its children and its children’s
parents. This determines that, for our scenario, the Markov
blanket of node t becomes the only knowledge needed to pre-
dict the behavior of the node t. Thus, we identify the proba-
bility of ti,j = t as follows:

P (tu,a = t|ou,a, ru,a, RU−a,a, ca, ba, ia, su,a, yu, eu)

∝ P (tu,a = t|yu, ca)P (RU−a,a|tu,a = t, ia)

P (ou,a|tu,a = t, eu)P (ru,a|tu,a = t, ba, su,a)

We can use the probability value (tu,a = 1) as the trust value
if we expect to obtain continues trust values ranged in [0, 1].

4 Experiments
In this section, we carry out experiments to evaluate the per-
formance of our probabilistic graphical trust model (PGTM)
on predicting advisors’ trustworthiness perceived by users,
and conduct comparisons with some competing approaches.

4.1 Benchmark Approaches
We compare our approach with two state-of-the-art models,
including BLADE [Regan et al., 2006] and Prob-Cog [Noo-
rian et al., 2011] detailed in Section 2. For BLADE imple-
mentation, we treat the average ratings of entities as the at-
tribute modeled on the three datasets. For the Prob-Cog, we
tune the parameters so that the model achieves its best per-
formance. Specifically, in the first layer, an advisor is con-
sidered as dishonest when its rating difference with a user is
larger than threshold µ (µ ∈ [0.5, 0.8]). In the second layer,
the trustworthiness of an advisor is further adjusted by her
tendency (positive or negative) (β + ε ≤ µ). We also show
the performance of a naive baseline approach where a user
judges an advisor’s trustworthiness based on commonly rated
entities. If the rating difference on a same entity is smaller
than a predefined threshold, the user’s experience with the
advisor on the entity is positive, otherwise negative. Positive
and negative experiences are aggregated to compute the advi-
sor’s trustworthiness using the Beta function.

4.2 Data Description
Each of our dataset consists of two files. One file stores the
(dis)trust links with 3-tuples (user, user, (dis)trust) which
serve as ground-truth, and the other file stores users’ ratings
of entities with 3-tuples (user, entity, rating). Notice that
the links are directed: user a (dis)trusts user b does not imply
that b also (dis)trusts a. The goal of all models is to pre-
dict the ground-truth (dis)trust links based on the commonly
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Figure 3: Model Effectiveness by Varying the Trust Threshold

rated entities between users. To obtain our data, we pro-
cess three available datasets, including FilmTrust (trust.
mindswap.org/FilmTrust), Flixster.com and Epin-
ions.com. Specifically, we use the original FilmTrust dataset,
and randomly sample a small portion of original Flixster
dataset. For Epinions dataset, the (dis)trust links between
users might be due to their direct rating interactions since the
entity (i.e. article) is created by users who in turn could rate
others’ entities. We thus exclude all (dis)trust links in which
users have rated some entities created by advisors. The sta-
tistical information is summarized in Table 1.

Datasets Epinions Flixster FilmTrust
Trust value 0,1 1 1
Rating scale 1-5 1-10 1-8

Users 999 617 874
Entities 545,499 4,683 1,957
Ratings 2,089,872 18,436 18,662

Trust links 753 453 1,437
Distrust links 240 - -

Avg. commonly
rated entities 71.4 4.71 8.00

Table 1: Statistical Information about the Three Datasets

4.3 Evaluation Metrics
To measure the performance of models, we use the commonly
used metrics, including precision, recall, f-value, and MAE.
Precision= tp

tp+fp
, recall= tp

tp+fn
, and f-value= 2×precision×recall

precision+recall ,
where tp, fp and fn is the number of correctly predicted trust
links, incorrectly predicted trust links, and incorrectly pre-
dicted distrust links respectively. MAE (mean absolute error)
refers to the average of the difference between the predicted
trust value of each user-advisor pair and the ground-truth trust
value (0 or 1). Since there are merely trust links but no dis-
trust links on FilmTrust and Flixster datasets, only precision
and MAE are used for these two datasets.
4.4 Results and Discussion
In this section, we first check the effectiveness of latent vari-
ables in our model. Then, we present the performance of our
model and three benchmark approaches on the three datasets.
We further examine these approaches in detail by varying the
threshold for trust prediction. If a predicted trust value of ad-
visor a from user u is larger than the threshold, u trusts a.

Model Effectiveness
In Figure 3, we analyze the effectiveness of each latent
variable in our model by showing the performance of the
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Figure 4: Model Effectiveness (Subjectivity vs. Dishonesty)

model with only propensity latent variable (PGTM(y)), with
propensity and competence latent variables (PGTM(y, c)),
with propensity, competence, benevolence and subjectivity
difference latent variables (PGTM(y, c, b, s)), with all but
expressiveness latent variable (PGTM(y, c, b, s, i)) and the
complete model (PGTM(full)) which includes all latent vari-
ables. As can be seen, PGTM(y, c) performs better than
PGTM(y) when trust threshold is larger than 0.5. This might
be due to the fact that PGTM(y, c) rather than PGTM(y)
could enable the risk-aversion users (with higher trust thresh-
old) to adjust their propensity to (dis)trust according to advi-
sors’ competence through interactions. Next, the superiority
of PGTM(y, c, b, s) over PGTM(y, c) becomes more salient
when the number of commonly rated entities between users
and advisors increases (Epinions>FilmTrust>Flixster as
shown in Table 1). This is in accordance with the struc-
ture of our probabilistic trust model where subjectivity dif-
ference between users and advisors and the benevolence of
advisors are directly connected with the rating difference be-
tween users and advisors. With more commonly rated items,
we could model rating difference more accurately. More-
over, PGTM(y, c, b, s, i) could outperform PGTM(y, c, b, s)
saliently when the number of commonly rated items between
a user and an advisor is limited. This is because that the addi-
tional variable integrity is mainly modeled by the rating dif-
ference between the advisor and all other users and thus is less
sensitive to the number of commonly rated items. Finally, the
complete model PGTM(full) performs best because instead
of using the ratings, we use partially observable trust links to
model the expressiveness latent variable. Here, 20% of the
trust links are observable.

We also investigate the effects of subjectivity difference be-
tween users and advisors and dishonesty of advisors in our
model. The result on Epinions dataset is illustrated in Fig-
ure 4, where subjectivity denotes the model with only propen-



``````````Approach
Dataset Epinions Flixster FilmTrust

Precision Recall F-value MAE Precision MAE Precision MAE
PGTM (y, c, b, s, i) 0.843 0.896 0.866 0.077 0.766 0.296 0.848 0.161

Baseline 0.789 0.866 0.826 0.374 0.662 0.452 0.582 0.477
BLADE 0.779 0.910 0.839 0.312 0.340 0.665 0.769 0.394

Prob-Cog 0.780 0.920 0.844 0.281 0.627 0.468 0.721 0.422

Table 2: Performance Comparison on the FilmTrust, Epinions and Flixster Datasets
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Figure 5: Performance Comparison by Varying the Trust Threshold

sity and subjectivity difference latent variables, while dis-
honesty denotes the model with propensity and competence,
benevolence, and integrity latent variables. It can be observed
that PGTM(y, c, b, s, i) outperforms subjectivity model and
dishonesty model, demonstrating that the subjectivity differ-
ence factor which is paid less attention before, in addition to
the dishonesty factor, improve the performance of our model.
We also find that the dishonesty plays a more important role
than subjectivity difference. Specifically, the omission of the
dishonesty related latent variables (i.e. competence, benevo-
lence and integrity) will lead to a more salient drop than the
omission of subjectivity-related latent variable (i.e., subjec-
tivity difference) when the trust threshold is larger than 0.5.

Model Comparison
Table 2 and Figure 5 show the performance comparisons
between our approach (PGTM(y, c, b, s, i)) and other ap-
proaches on three datasets. In order to make fair compar-
isons, we assume that all trust links are not observable in our
model (i.e. we adopt the model in Figure 2 (b)). First of all,
although our approach is a little more time-consuming than
other approaches, we find that the running time is acceptable.
Specifically, it takes 0.312s (0.061s for Prob-Cog and 0.218s
for BLADE) to run each iteration of our model on Epinions
dataset. Second, as shown in Table 2, our model (with trust
threshold 0.5) achieves much better performance than other
approaches in terms of all metrics on all three datasets (except
recall on Epinions). The performance of BLADE and Prob-
Cog are better than Baseline on the Epinions and FilmTrust,
but worse than that on the Flixster. This is mainly because
there are fewer commonly rated entities in Flixster dataset
than in other two datasets (see Table 1). Without enough com-
monly rated items, Prob-Cog may mistakenly treat subjective
users as dishonest ones, and thus filter them in the first layer,
while BLADE cannot model advisors’ evaluation functions
on attribute accurately. On the other hand, our model is not so
sensitive to the number of commonly rated entities, because
only subjectivity difference between a user and an advisor is
measured with regard to the commonly rated entities. Benev-
olence, competence and integrity are measured based on the

advisor’s past experience with all other users, and propensity
is measured according to all the past experiences of the user.

Figure 5 presents the performance of different approaches
by varying the trust threshold. It shows that in general
our model outperforms the other approaches. It consistently
achieves high precision on the three datasets, demonstrating
its effectiveness on modeling the trustworthiness of advisors.
It also implies the ability of our model on inferring the (un-
observed) (dis)trust links. This is especially important in the
current online communities, where users are reluctant to ex-
plicitly identify their relationship with other users.

5 Conclusions and Future Work
We proposed a novel probabilistic graphical trust model, sep-
arately considering dishonesty of advisors and their subjec-
tivity difference between users, to model the trustworthiness
of advisors. Specifically, our model involves three types of
latent variables: 1) the dishonesty related variables: benevo-
lence, integrity and competence of advisors; 2) trust propen-
sity of users; and 3) subjectivity difference between users and
advisors. We compared our model with a baseline approach,
and two state-of-the-art approaches including BLADE and
Prob-Cog. Experimental results indicated that the latent vari-
ables in our model are both theoretically reasonable and com-
putationally effective, and dishonesty and subjectivity dif-
ference are successfully distinguished. Besides, we demon-
strated that our model can more accurately model advisor
trustworthiness without using the partially observable trust
links. Our approach also mitigates the research gap between
computational trust in Computer Science and psychological
and behavioral trust in Social Science. For future work, we
will extend the current model to address other scenarios (e.g.,
multi-nominal degrees of trust other than binary case).
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