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Abstract
Unfair rating attacks happen in existing trust and
reputation systems, lowering the quality of the
systems. There exists a formal model that mea-
sures the maximum impact of independent attack-
ers [Wang et al., 2015] – based on information the-
ory. We improve on these results in multiple ways:
(1) we alter the methodology to be able to reason
about colluding attackers as well, and (2) we ex-
tend the method to be able to measure the strength
of any attacks (rather than just the strongest attack).
Using (1), we identify the strongest collusion at-
tacks, helping construct robust trust system. Us-
ing (2), we identify the strength of (classes of) at-
tacks that we found in the literature. Based on this,
we helps to overcome a shortcoming of current re-
search into collusion-resistance – specific (types of)
attacks are used in simulations, disallowing direct
comparisons between analyses of systems.

1 Introduction
Trust and reputation systems are designed to help users se-
lect trustworthy agents for interactions. Due to their rising
popularity (e.g., e-marketplaces), various attacks have been
discovered, and are threatening the security of these systems.
Considering the threats, trust and reputation systems should
be designed to mitigate these attacks (i.e. be robust). In this
paper, we analyze collusive unfair rating (CUR) attacks.

CUR attacks are among various unfair ratings attacks,
which aim to influence the trust evaluations made by users.
CUR attacks differ from other unfair rating attacks, as mali-
cious users (attackers) collude to achieve a same goal. Ro-
bustness issues of trust and reputation systems against collu-
sion attacks are extensively studied. Some work focuses on
detection of collusive unfair rating behaviours, while others
aim to design mechanisms to defend against such attacks.

There can be various ways of colluding. Designers of
trust and reputation systems sometimes verify the robust-
ness only under specific CUR attacks [Qureshi et al., 2010;
Swamynathan et al., 2010; Li et al., 2013; Weng et al., 2010].
This results in the following problems: first, these systems
can only be known to be robust against the assumed attacks.
Hence, one cannot know whether they are also robust to all

other kinds of CUR attacks. Second, comparing the robust-
ness of two trust models under specific attacks is not fair. The
designer may design a system to be robust against a given at-
tack, and use that specific attack to compare his system with
another. Such a comparison is biased in favour of the pro-
posed system.

Considering these two problems, we argue that if the gen-
eral robustness of a trust system against CUR attacks are mea-
sured, then it should be tested against the strongest CUR at-
tacks. If a trust system functions well under the strongest
attack, then it is generally robust. Otherwise, if trust systems
are merely robust to some given CUR attacks, which they are
tested against, then we need to be able to compare the strength
of these attack(s). In both the cases, we need to measure the
strength of CUR attacks.

In [Wang et al., 2015], we introduced information theory to
identify and measure the worst-case (strongest) attacks by in-
dependent attackers. There, we focused on general robustness
only, which depends on how effective the system is, given the
strongest attacks. Here, we focus on how strong arbitrary at-
tacks are (also using information theory), which allows us to
reason about the quality of the validation of a trust system.
Moreover, we shift focus from independent attackers to col-
luding attackers (including Sybil attackers). The formalism
from [Wang et al., 2015] must be fundamentally altered to
allow for measurements of coalitions of attackers.

Contributions: We extend the methodology from [Wang
et al., 2015] to 1) quantify and compare CUR attacks found
in the literature (Section 4), 2) quantify types of CUR attacks
(Section 5), and 3) identify the strongest possible CUR at-
tacks. Doing this, we found 1) attacks from the literature are
not suitable to stress-test trust systems, 2) strongest CUR at-
tacks are not considered in the literature, 3) always assum-
ing the strongest attacks barely reduces the effectiveness, but
greatly increases the robustness of trust systems. We consider
the results from [Wang et al., 2015] explicitly as a special case
of CUR attacks.

2 Preliminaries
Our approach uses concepts from information theory:
Definition 1. (Shannon entropy [McEliece, 2001]) The Shan-
non entropy of a discrete random variable X is:

H(X) = E(I(X)) = −
∑
xi∈X

P (xi) · log(P (xi))



The Shannon entropy measures the uncertainty of a random
variable, which reflects the expected amount of information
carried in it. W.l.o.g. let 2 be the base of the logarithms.
Since x log(x) is a common term, we introduce the shortcut
f(x) = x log(x). For practical reasons, we let 0 log(0) = 0.
Definition 2. (Conditional entropy [McEliece, 2001]) The
conditional entropy of discrete random variable X given Y
is:

H(X|Y ) = −
∑
yj∈Y

P (yj) ·
∑

xi∈Xf(P (xi|yj))

The conditional entropy measures the uncertainty of a ran-
dom variable, given that another random variable is known.
In other words, it measures the reduction of the expected in-
formation of a random variable when another random vari-
able is revealed. Note that H(X|Y ) = H(X) if and only
if X and Y are independent random variables, and 0 ≤
H(X|Y ) ≤ H(X).
Definition 3. (Joint entropy [Plunkett and Elman, 1997]) The
joint entropy of discrete random variables X,Y (given Z) is:

H(X,Y ) = −
∑
xi∈X

∑
yj∈Y

f(P (xi, yj))

H(X,Y |Z) = −
∑
zh∈Z

P (zh) ·
∑
xi∈X

∑
yj∈Y

f(P (xi, yj |zh))

The joint entropy of X and Y is at most equal to the sum of
the entropy of X and Y , with equality holds only if X and Y
are independent.
Definition 4. (Information Leakage) The information leak-
age of X under Y is given as: H(X)−H(X|Y ).

Information leakage measures the gain of information about
one random variable by learning another random variable.
This definition coincides with mutual information [Papoulis
and Pillai, 2002]. Information leakage is zero, if and only if
the two variables are independent.
Definition 5. (Hamming distance [Hamming, 1950]) The
Hamming distance between a = a0, . . . , an and b =
b0, . . . , bn, denoted δ(a, b) is the number of 0 ≤ i ≤ n where
ai 6= bi.

Theorem 1. (Jensen’s inequality [Jensen, 1906]) For a con-
vex function f :

f(

∑
i ai · xi∑
i ai

) ≤
∑
i aif(xi)∑

i ai
,

where equality holds iff x1 = x2 = . . . = xn or f is linear.
Two instances of convex functions are f(x) and − log(x).

For brevity, we may use X to represent a collection of
random variables, e.g., {X1, X2, . . . , Xn}. Moreover, we
may write p(a) to mean p(A = a), or even p(a) to mean
p(A1=a1, . . . , An=an).

3 Modeling CUR Attacks
In trust systems, users make trust decisions based on the

available information. Part of such information comes from
ratings. A user aims to learn from ratings to make deductions

O\R 00 01 10 11
00 0 0 0 1
01 0 1 0 0
10 0 0 1 0
11 1 0 0 0

Table 1: Strategy matrix of the
colluders from Example 1.

Advisors’ opinions
11011001011110

Advisors’ ratings
01001101011110

Attackers’ control
?10?1?010??110

Figure 1: Advisors mo-
deled as channel.

about an advisor’s real opinion. For the user, an attacker hin-
ders such learning, hiding its real opinion. In [Wang et al.,
2015], we proposed to quantify how much a user can learn
as the information leakage of the ratings, which can then be
used to measure the strength of the corresponding attacks.

From an information theoretic perspective, advisors can be
seen as a (noisy) channel. See Figure 1. The opinions of the
advisors are being output as ratings, where the ratings need
not match the true opinions (i.e., noise). Like in digital chan-
nels, not just the amount of noise matters, but also the shape
of the noise. Thus, not just the amount of attackers matters,
but also their behaviour. The difference in noise-per-advisor
is often ignored in the literature, potentially skewing analysis
of the attacker-resistance.

However, in [Wang et al., 2015], only the strongest inde-
pendent attackers are considered. In this paper, we extend
the quantification method there to cover 1) collusive attack-
ers and 2) non-strongest attacks. To measure the strength of a
collusion attack, we need to measure the information leakage
of the coalition as a unit. The ratings provided by colluders
are interdependent, (potentially) revealing extra information
to the user. Hence, when measuring the information leakage
of a coalition, we cannot simply sum up the information leak-
age of individuals. (as can be seen below)

Example 1. Consider a trust system with 4 advisors, 2 of
which are colluding attackers.1 Take the perspective of a
user; he gets a rating from each of the advisors about their
opinions of the target, and he does not know which two advi-
sors are colluding. We assume that the opinions are positive
and negative with 50% probability each. Non-colluding ad-
visors always report the truth. Colluding advisors have one
shared strategy. Here, the strategy dictates that if the attack-
ers agree, then they both lie, and if they disagree, then they
report the truth. The user received four ratings, three positive
and one negative.

We model the attackers’ strategy in this example with the
matrix in Table 1. The left column represents the real opin-
ions (observations) of the two colluding advisors, represented
as the combinations of positive: 1 and negative: 0. The top
row represents the ratings which are in the same form. The
cells provide the probability that the attackers report the col-
umn’s rating, given the row’s observation.

1Note that there exist many methods which can estimate the
number of colluders in a system [Liu et al., 2008; Allahbakhsh et
al., 2013]. Hence we make the reasonable assumption in this work
that the number or percentage of colluders is known.



The user wants to learn about the observations of all ad-
visors from the received ratings. We use random variables
Oi, Ri, i ∈ {1, . . . , 4} to represent the observation and the
rating of advisor i respectively. And we use random variable
C2 to represent two colluding advisors.

Before receiving the ratings, the information that the user
has about the observations can be represented using joint
entropy (Definition 3): H(O1, O2, O3, O4). The joint en-
tropy expresses the uncertainty associated with these four
observations. Given the ratings, the information the user
has of the observations becomes the conditional entropy:
H(O1, O2, O3, O4|R1, R2, R3, R4). Thus, the information
that the ratings leak about the observations (information leak-
age) can be represented as follows:

H(O1, O2, O3, O4)−H(O1, O2, O3, O4|R1, R2, R3, R4)

The conditional entropy of observations given the ratings is:

H(O1, O2, O3, O4|R1=1, R2=1, R3=1, R4=0)

= −
∑

o1,o2,o3,o4

f(p(o1, o2, o3, o4|R1=1, R2=1, R3=1, R4=0))

= −
∑

o1,o2,o3,o4

f(
∑
i,j

p(C2=(i, j)|R1=1, R2=1, R3=1, R4=0)

· p(o1, o2, o3, o4|R1=1, R2=1, R3=1, R4=0, C2=(i, j)))

=− 1

2
log(

1

12
) ≈ 1.79

All combinations of O1,O2,O3,O4 are captured in o1,o2, o3,
o4. The second equality follows from the law of total proba-
bility.

The entropy H(O1, O2, O3, O4) = log(24), since each Oi
is positive or negative with exactly 50% probability. By Defi-
nition 4, therefore, we get log(24)− (−1/2 log(1/12)) ≈ 2.21
bits of information leakage.

We now consider more general collusion attacks from the
perspective of users. There are m advisors, k attackers (0 ≤
k ≤ m), and we assume non-attacking advisors always report
the truth. The random variable Oi represents the opinion of
the ith advisor. We assume maximum entropy for the ran-
dom variables O, meaning H(O) = m. Similarly, Ri repre-
sents the rating of the ith advisor. For non-attacking advisors,
Oi = Ri. For attacking advisors, we use σo,r to represent
the probability that attackers that have observed o provide the
ratings r. The random variable C represents the coalition; its
outcomes are, therefore, sets of advisors. The probability that
a set c of k advisors are colluding is p(c) = 1/(mk ). The strate-
gies of attackers are expressed using the matrix in Table 2.
The sum of each row equals 1, since, given an observation,
the sum of the probabilities of all ratings is one.

The information leakage of all advisors’ observations given
their ratings is

H(O)−H(O|R). (1)

The conditional entropy of observations given ratings is as

O\R 0 · · · 0 · · · 1 · · · 1
0 · · · 0 σ0···0,0···0 · · · σ0···0,1···1
0 · · · 1 σ0···1,0···0 · · · σ0···1,1···1
...

...
. . .

...
1 · · · 1 σ1···1,0···0 · · · σ1···1,1···1

Table 2: Strategy matrix of general collusion attacks

follows:

H(O|R) =−
∑
r

p(r) ·H(O|r)

=−
∑
r

p(r)
∑
o

f(p(o|r))

=−
∑
r

p(r)
∑
o

f(
∑
c

p(c|r) · p(o|r, c))

The general modeling and measurement of collusion at-
tacks in this section can give us a way to quantify different
attacks in the literature.

4 Quantifying CUR Attacks
Collusive unfair rating attacks have been studied by many
researchers [Jiang et al., 2013; Swamynathan et al., 2010;
Li et al., 2013; Weng et al., 2010; Jurca and Faltings, 2007].
They propose various methods to counter such attacks, e.g.,
detection based approaches [Qureshi et al., 2010], incentive
based approaches [Jurca and Faltings, 2007], and defense-
mechanism design based approaches [Swamynathan et al.,
2010; Jiang et al., 2013]. Based on simulations or experi-
ments, they verify how effective their methods are in min-
imizing the influence of collusion attacks, namely improv-
ing the robustness of trust models. Sometimes such verifi-
cation only covers specific attacks that are assumed or de-
signed by the researchers themselves [Qureshi et al., 2010;
Swamynathan et al., 2010; Li et al., 2013; Weng et al., 2010].
To compare the robustness of two trust models under specific
attacks is unfair. One that fails under these attacks may be-
have better for some other attacks.

We argue that to equitably compare the robustness of two
trust models, we need to compare the strength of attacks that
they are tested against. A trust model should be considered
more robust if it is verified under stronger attacks. From the
section above, we know that information leakage of ratings
can be used to measure the strength of attacks. We apply the
method to some attacks found in the literature.

The authors in [Weng et al., 2010] propose to mitigate the
influence of unfair ratings by helping users to evaluate the
credibility of the advisors, based on which to further filter and
aggregate ratings. For collusive unfair ratings, the authors
only consider the case in which malicious advisors provide
unfairly high ratings for the colluding target, to boost its trust-
worthiness – ballot-stuffing. When evaluating the method,
such attacks are configured as various percentages of attack-
ers, namely 20%, 40%, 60%, 80%.

We use parameter m=100 to represent the number of all
advisors in the system, then the number of attackers can be



0.2m, 0.4m, 0.6m, 0.8m. The expected information leakage
is 61.13, 39.69, 23.72, 10.84 bits, respectively2.

The “FIRE+” trust model is proposed in [Qureshi et al.,
2010]. FIRE+ aims to detect and prevent collusion attacks.
It considers two kinds of collusion attacks: in the first type,
advisors collude with the target under evaluation, providing
false positive ratings to promote the target as trustable. In the
second type, advisors may collude to degrade the target, by
providing false negative ratings. When evaluating the perfor-
mance of “FIRE+”, the authors consider three types of advi-
sors: 10 honest advisors who always report the truth, 20 at-
tackers that report all others as trustworthy, and 20 attackers
that report the opposite of the truth. The information leakage
for the second type of advisors is 6.79 bits1, and for the third
type of advisors is 22.52 bits3.

The authors in [Li et al., 2013] design a SocialTrust mech-
anism to counter the suspicious collusion attacks, the patterns
of which are learned from an online e-commerce website. In-
stead of filtering collusive unfair ratings or preventing collu-
sion behaviours, SocialTrust adjusts the weights of detected
collusive ratings based on social closeness and interest simi-
larity between a pair of nodes.

To evaluate the mechanism, it considers three attack sce-
narios: pairwise collusion in which two agents promote each
other, multiple agents collusion in which agents all promote a
boosted agent, and the collusion in which multiple agents pro-
mote each other. All the three scenarios are essentially about
colluders ballot-stuffing to boost trustworthiness of other at-
tackers that are under evaluation. The attacks for testing are
configured as 9 pretrusted nodes and 30 attackers. Based on
Theorem 3, the information leakage is 5.96 bits1.

The authors in [Swamynathan et al., 2010] aim to design a
reliable reputation systems against two leading threats, one of
which is user collusion. For performance evaluation of their
system, the three same collusion scenarios as in the Social-
Trust are considered. For the configuration of attacks, the per-
centage of attackers are varied from 10 to 50 percent. Based
on Theorem 3, the information leakage is between 31.33 bits
(for 50% attackers) to 75.97 bits (for 10% attackers)1.

In summary, the CUR attacks used above are essentially
ballot-stuffing and lying. From the quantification, we get fol-
lowing results: 1) referring to [Swamynathan et al., 2010;
Weng et al., 2010], the information leakage of ballot-stuffing
CUR attack decreases with the increase of the percentage of
attackers. 2) Given the same number of attackers, the at-
tack strategy of ballot-stuffing leads to much less information
leakage than the strategy of lying (6.97<22.52 bits).

By relating these results with the strength of attacks, we
get following conclusions. The ballot-stuffing attack gets
stronger as the number of attackers increase. On the other
hand, with the same amount of attackers, ballot-stuffing at-
tack is stronger than the lying based attack.

2The computation of these values is omitted, as their generaliza-
tion is provided in Theorem 3.

3The computation of these values is omitted, as their generaliza-
tion is provided in Theorem 4.

5 Quantifying Types of CUR Attacks
The papers we discussed in the previous section only consider
specific attacks in the verification of trust systems. As a re-
sult, we cannot know whether these systems are also robust
against other attacks. We argue that to verify the robustness
of a trust system, it should be tested against all kinds of at-
tacks. However, this is not generally feasible. Therefore, we
identify the strength of each attack type (and if it is a range,
we identify the strongest attack within the type). To verify the
robustness of a trust system to a type of attacks, we propose
to test it against the strongest attack in that type.

We summarize various types of collusive unfair rating at-
tacks from the literature. Information leakage measures the
strength of the attacks. The information leakage is totally or-
dered, with an infimum (zero information leakage), therefore,
there exists a least element. We refer to these least elements
as the strongest attacks.

The types of collusion attacks are summarized as follows:
I There is no colluding among malicious advisors, and

they are behaving independently.
II All attackers either boost (affiliated) targets, by unfairly

providing good ratings (ballot-stuffing), or degrade (un-
affiliated) targets, by unfairly providing bad ratings (bad-
mouthing).

III All the colluding advisors lie regarding their true opin-
ions. As ratings are binary, they always report the oppo-
site.

IV The colluding advisors coordinate on their strategies in
any arbitrary fashion.

The first attacking type is a special case of the collusion at-
tacks, namely those that coincide with the independent at-
tacks. The second type of attacks is commonly found in the
literature, where all attackers are either ballot-stuffing or bad-
mouthing (see, e.g., [Swamynathan et al., 2010; Weng et al.,
2010; Li et al., 2013]). There are also papers considering the
other two types of attacks [Jurca and Faltings, 2007]. The last
type of attacks is interesting, since it covers the three preced-
ing types, as well as all other conceivable types.

We use the general CUR attack model from Section 3 to
quantify these types of attacks. We use m, k to represent the
number of advisors and the number of attackers, and use 0 to
represent negative ratings, and 1 to represent positive ratings.

In the first type of attacks, all attackers operate indepen-
dently. Each attacker chooses to report the truth with proba-
bility q, and lie with probability 1− q.
Theorem 2. The information leakage of any attacks of type
I, is m−

∑k
d=0

(
m
d

)
· f(
(
m−d
k−d

)
· (1−q)

d·qk−d

(mk )
).

Proof sketch. Since, when δ(o, r) > k, p(o|r) = 0, wlog,∑
o

p(o|r) =
m∑
d=0

∑
o:δ(o,r)=d

p(o|r) =
k∑
d=0

∑
o:δ(o,r)=d

p(o|r).

Moreover, since if ∃i6∈cri 6= oi then p(o|r, c) = 0, wlog,∑
c p(o|r, c)p(c|r) =

∑
c:∀i6∈cri=oi p(o|r, c)p(c|r).

Substituting p(r) by 1/2m, p(c|r) by 1/(mk ) and p(o|r, c) by
(1− q)dqd, we obtain the information leakage.



In the second type of attacks, we use x, (1 − x) to repre-
sent the probability that all attackers are ballot-stuffing and
bad-mouthing, respectively. For x = 1, attackers are al-
ways ballot-stuffing and for x = 0, attackers are always bad-
mouthing. To express this using the general attack model in
Table 2, we assign the probability of “all ratings are 0” (mean-
ing bad-mouthing) to be 1−x and “all ratings are 1” (meaning
ballot-stuffing) to be x.

Before showing the next theorem, we introduce a short-

hand notation. Let αk,h,y,0 = 0, let αk,h,y, =
(hk)·y

(mk )·2m−k
and

let βk,i,j,z = 1/2k −
∑k
`=1

(
i
`

)
· f( z·(i−`

k−`)
z·(i

k)·(1−z)·(
j
k)·2k

) +
(
j
`

)
·

f(
(1−z)·(j−`

k−`)
z·(i

k)·(1−z)·(
j
k)·2k

). And let i be the number of “1” ratings,

j = m − i the “0” ratings, and Ri,j be the set of all ratings
with i “1” ratings and j “0” ratings.
Theorem 3. If i<k, let z=0; if j<k, let z=1; otherwise,
let z=x. The information leakage of any attack of type II, is
m−

∑
r∈Ri,j

(αk,i,x,z + αk,j,1−x,1−z) · βk,i,j,z bits.

Proof sketch. Note that i < k and j < k cannot simultane-
ously be the case, since at least k attackers rated “1” or k
attackers rated “0”. If i < k, then the attackers must have de-
graded (and if j < k, then boosted). The analysis of these two
cases contains the same elements as the general case, which
we prove below.

If i ≥ k and j ≥ k, then the conditional entropy fol-
lows (via Definition 2), as −

∑
r p(r) ·

∑
o f(p(o|r)). Re-

mains to prove that p(r) = αk,i,x,z + αk,j,1−x,1−z and that∑
o f(p(o|r)) = βk,i,j,z .
The equality p(r) = αk,i,x,z + αk,j,1−x,1−z follows from

simple combinatorics, given that p(r) =
∑
c p(r|c) · p(c).

The equality
∑
o f(p(o|r)) = βk,i,j,z also follows from

total probability over c via
∑
o f(
∑
c p(o|r, c) · p(c|r)).

Straightforwardly, p(o|r, c) = 1/2k, provided for all ` 6∈
c, o` = r`, and zero otherwise. Furthermore, p((|r) =

x

(1−x)·(jk)+x·(
i
k)

if for all i ∈ c, ri = 1, and symmetrically

when for all i ∈ c, ri = 1. If neither is the case p(c|r) = 0.
The equality

∑
o f(p(o|r)) = βk,i,j,z follows by applying

these substitutions.

In the third type of attacks, with probability q, all attackers
report their true opinion, and with probability 1 − q, they all
report the opposite. In the strategy model, we assign proba-
bilities of reporting the opposite ratings as 1 − q, and proba-
bilities of other cases as q. Then we compute the information
leakage as follows:
Theorem 4. The information leakage of the attack of type III,
is m+ ((1− q) · log( 1−q

(mk )
) + q · log q) bits.

Proof sketch. Either o = r, or δ(o, r) = k, since either
all attackers tell the truth, or all lie. Wlog

∑
o f(p(o|r)) =∑

o:δ(o,r)=k f(p(o|r)) + f(p(O = r|r)).
Straightforwardly, p(o|r) = 1−q

(mk )
, when δ(o, r) = k, and

p(o|r) = q, when o = r; substituting these terms yields the
theorem.

O\R 00 01 10 11
00 1/11 2/11 2/11 6/11
01 2/11 1/11 6/11 2/11
10 2/11 6/11 1/11 2/11
11 6/11 2/11 2/11 1/11

Table 3: Ex. strongest collusion attack strategy matrix

For q = 0 and k/m < 1/2, log(
(
m
k

)
) ≈ mH2(k/m), where

H2(p) is the entropy of a bernoulli distribution with param-
eter p. Thus, for small k and x = 1, information leakage
roughly equals m(1−H2(k/m), which models the entropy m
transmissions of bits that arrive intact with probability k/m.

In the fourth type of attacks, attackers are allowed to take
any strategies, including the cases when they coordinate on
different strategies. We aim to find a range of the strength of
all of these attacks:

Theorem 5. The information leakage of any attack of type
IV, is between m and 2k∑

0≤i≤k (
m
i )

bits.

Proof sketch. The upper bound happens when H(O|R) = 0,
which is satisfied R completely decides the value of O. The
crux is the lower bound; the minimal information leakage of
type IV.

No matter what the attackers’ strategy matrix is, k attack-
ers can change at most k values. Therefore,

∑
o p(o|r) =∑

o:δ(o,r)≤k p(o|r). There are ζ =
∑k
i=0

(
m
k

)
possibilities

for o given r.
By Jensen’s inequality (Theorem 1):∑

o:δ(o,r)

f(p(o|r)) ≥ ζ · f(
∑
o p(o|r)
ζ

) (2)

The equality holds iff for all o with δ(o, r) ≤ k, p(o|r) is
equal; meaning p(o|r) = 1/ζ iff δ(o, r) ≤ k. Note that the
number of o with δ(o, r) ≤ k is the same for any r, hence
the minimum of each H(O|r) is the same, allowing us to
ignore p(r). Filling in p(o|r) = 1/ζ, the minimal information
leakage can be computed: 2k∑

0≤i≤k (
m
i )

.

The corresponding strategy matrix that leads to the mini-
mal information leakage can be easily derived:

σok,rk =
1

ζ ·
(
m−i
k−i
)
· p(ck)

, (3)

where 0 ≤ i ≤ k represents the Hamming distance between
observations o and ratings r. To give a concrete example of
such a strategy, let there be 4 advisors, 2 of which are collud-
ing, the strongest attack strategy is given in Table 3. Naively,
one may expect the attackers to always lie, to ensure the prob-
ability that a given rating is truthful is half. However, each
attacker in Table 3 reports the truth 3/11 times on average,
disproving the naive view.

Finally, we show that attacks of types I, II and III are not the
strongest attacks. In other words, the strongest attacks only
occur in type IV (except in edge cases like k=1 or k=m):



Theorem 6. For 1 < k < m, there are attacks of type IV,
such that every attack in type I, II or III has strictly more
information leakage.

Proof sketch. The proof of Theorem 5 applies Jensen’s in-
equality, to prove that setting all p(o|r) equal (when δ(o, r) <
k) provides the optimal solution. Jensen’s inequality is strict
when not all those p(o|r) are equal. Thus, it suffices to prove
that for types I, II and III, with 1 < k < m, p(o|r) 6= 1/ζ.

For types I, II and III, there is only one degree of freedom
(q, x and q, respectively). For no value for q or x, for all o
with Hamming distance below k, p(o|r) = 1/ζ.

6 Discussion
We model a group of m advisors, containing k attackers, as
a channel transmitting m bits, of which k bits are subject to
noise (Figure 1). Like there are different types of noise, there
are different types of attackers. We studied attack models
found in the literature, and the types themselves. In this sec-
tion, we analyze our findings, and put them into context.

The information leakage of the attacks from the literature
(Section 4) is high compared to the minimum (e,g, FIRE+
provides 5.79 or 22.52 bits, whereas 0.03 bits is optimal).
Higher information leakage means that it is easier for a user
to learn from ratings. Models of attacks with high information
leakage may not be suitable to stress-test a trust system, since
it would be too easy to learn from ratings.

When interpreting these results, we must keep in mind that
existing papers do not aim to minimize information leakage,
but to faithfully model existing attacks. However, underap-
proximating attacks is undesirable. This is why we focus on
the strength of attacks, even if minimizing the information
leakage is not the original intention of the attackers. In fact,
a robust system may never underapproximate the strength of
attacks, linking robustness to the strength of attacks.

We now propose a method of designing robust trust sys-
tems based on the above. Given the attackers’ behavior,
trust evaluation becomes relatively simple. In [Muller and
Schweitzer, 2013], the authors provide a general formula that
allows mathematically correcting trust evaluations, given the
attackers’ behaviour. We propose to use computations in
the formula, based on the assumption that the attackers’ be-
haviour is the strongest possible attacks – minimal informa-
tion leakage. Since such a model, by definition, can resist the
strongest attacks, the system is robust. Whenever the system
makes a trust evaluation, the actual information content of the
evaluation can only exceed the systems’ estimate.

The possible downside of assuming the strongest attacks,
is that information available when attacks are weaker, is not
being used effectively. However, the amount of information
leakage when k � m is high, even in the strongest attacks.
When, on the other hand, k ≈ m, the information leakage is
significantly lower in the strongest attacks. We argue, how-
ever, that if k ≈ m, it is unsafe to try to use the ratings as a
source of information anyway. When the group of attackers
is too large, no robust solution should use the ratings, as us-
ing the ratings would open a user to be easily manipulated.
For small groups of attackers, the robust solution loses lit-
tle performance, and for large groups of attackers, non-robust

solutions are not safe. Therefore, we propose robust solution
(and the strongest attack) to be the standard.

We distinguish four types of attacks. Attacks without col-
lusion (I), attacks where the coalition boosts or degrades (II),
attacks where the coalition lies (III), and the class of all at-
tacks with collusion (IV). The former three are all instances
of the latter. Attacks I, II and III deserve extra attention, since
most unfair rating attacks in the literature are instances of
them. However, while attacks I, II and III are interesting,
they are trivially special cases of IV. Moreover, per Theo-
rem 6, there are attacks in IV, not present in either I, II, and
III – particularly, the strongest attacks.

The differences between the strongest attacks of type I and
IV are remarkably small. For attacks of type I, we can only
set one parameter, p, whereas for IV, we have k(k − 1) pa-
rameters that we can set. However, if, for example, we take
m=30 and k=10, then attacks of type IV have at most a con-
ditional entropy of 25.6597 (at least 4.3403 bits information
leakage), whereas attacks of type I have at most a conditional
entropy of 25.6210 (at least 4.3790 bits information leakage).
The difference in conditional entropy is less than one part in
a thousand. We conjecture that the minute difference is an ar-
tifact of the fact that the size of the coalition is given, and that
if we remove that, the difference disappears entirely. Effec-
tively, we suppose that the coalition does not effectively help
minimize information leakage about observations, but rather
help minimize information leakage about the shape and size
of the coalition.

In Section 3, we have made several assumptions about rat-
ings, advisors and targets. Non-binary ratings are also com-
mon in the literature. Our approach can generalize to other
rating types by extending the alphabet of the ratings, at the
expense of elegance. Our assumption that observations are 1
or 0 with 50% probability is just a simplifying assumption.
In reality, these probabilities depend on the target. Since we
are not interested in the target, but rather the advisors, we
assumed maximum entropy from the target. The entropy is,
therefore, lower for real targets – meaning the user has more
information in practice than in theory.

7 Conclusion
In this paper we quantify and and analyze the strength of
collusive unfair rating attacks. Sybil attacks where Sybil ac-
counts provide unfair ratings are important examples of such
attacks. Compared with independent attackers, the additional
attacker strength gained by collusion is surprisingly small.

We apply our quantification to collusive unfair rating
attacks found in the literature, where ballot-stuffing/bad-
mouthing form the most well-studied types. The attacks in
the literature are not maximally strong. We also quantify dif-
ferent types of attacks. And we identify the strongest possible
collusive unfair attacks. Based on these strongest attacks, we
propose trust systems robust against unfair rating attacks.

By this paper, the approach of applying information theory
to quantify the strength of attacks becomes general and adapt-
able. Different types of unfair rating attacks (whitewashing,
camouflage, etc.) can be quantified if the assumptions are
changed accordingly.
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