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Abstract— Traffic has become a universal metropolitan
problem. This paper aims at easing the traffic jam situation
through routing multiple cars cooperatively. We propose
a novel distributed multi-vehicle routing algorithm with
an objective of minimizing the road network breakdown
probability. The algorithm is distributed, and hence highly
scalable, making it applicable for large scale metropolitan road
networks. Our algorithm always guarantees a much faster
convergence rate than traditional distributed optimization
techniques such as dual decomposition. Additionally, the
algorithm always guarantees a feasible solution during
the optimization process. This feature allows for real time
decision making when applied to scenarios with time limits.
We show the effectiveness of the algorithm by applying it
to an arbitrarily large road network in simulation environment.
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I. INTRODUCTION
As the number of vehicles grows rapidly each year, traffic

congestion has become a big issue for civil engineers in
almost all metropolitan cities. Statistics tell an alarming
story: the Americans spend 4.2 billion hours a year stuck
in traffic, trying to commute or transport goods to market
[1]. The Annual Mobility Report released by the Texas
Transportation Institute tracks the costs of traffic immobility.
Its latest study reported that travelers in 68 urban areas spent
more than $72 billion in lost time and wasted fuel, or about
$755 annually per driver. That is more than the cost of auto
insurance in many places [2]. After stating those statistics,
our research initiative becomes quite straightforward; we are
trying to save money through reducing the occurrence of
traffic jams in transportation networks.

In this paper, we consider the problem of routing multiple
cars in an urban area. Our objective is to ease the traffic jam
situation through routing some of the cars away from con-
gested regions. In particular, we rely on the optimal principle
for traffic and transportation networks with road bottlenecks
introduced by Kerner recently in [3]. Then we formulate the
optimization problem of routing multiple cars as minimizing
the road network breakdown probability. Specifically, the
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road network breakdown minimization principle [3] states
that the network optimum is achieved, when dynamic traffic
optimization and/or control are performed in the network in
such a way that the probability for spontaneous occurrence of
traffic breakdown at one of the network bottlenecks during a
given observation time reaches the minimum possible value.
The statement is equivalent to maximizing the probability
that traffic breakdown occurs at none of the network bot-
tlenecks. Here, it is worth pointing out clearly that in this
paper, we treat the terms like ”routing multiple cars” and
”multi-vehicle routing” as the same problem.

A. Related Work

The research area of multi-vehicle routing has gained
increasing interest over the past decades. There are, in gen-
eral, two perspectives to look into the multi-vehicle routing
problem. One is from individual’s perspective, and the other
is from network’s perspective.

1) Agent Perspective: Since vehicles and urban traffic
lights can be naturally modelled as agents, most of the re-
searchers are applying multi-agent/agent-based technologies
to solve the multi-vehicle routing problem [4], [5], [6], [7].

Agents may represent drivers, vehicles, or other traffic
participants. They are explicitly present as active entities in
an environment representing the road network where they
may exhibit arbitrary complex information processing and
decision making. Their behaviour, especially those resulting
in simulated movement, can be visualized, monitored, and
validated at individual level, leading to new possibilities for
analysing, debugging, and illustrating traffic phenomena [8].
We can divide the agent-based approaches within the ap-
plication domain of traffic management into three subareas,
namely, agent-based vehicle control [4], [9], [10], [11], [12],
agent-based traffic light control [6], [13], [14], and hybrid
agent-based control [7], [15].

Literatures in agent-based vehicle control [4], [9], [10],
[11], [12] model vehicles as agents. In this case, multiple
vehicles are naturally mapped to multiple agents, and agents
negotiate with each other and reach optimal policies for
routing. Agents may follow certain behavior rules [9], or
they may be able to learn [10], [11] and react to changing
environments.

Another direction is to solve the multi-vehicle routing
problem from traffic light control point of view [6], [13],
[14]. They model traffic lights (in contrast to vehicles) as
agents, and agents coordinate and achieve optimal policies
for effective multi-vehicle routing.



Recently, there is a new trend of modeling both traffic
lights and vehicles as agents [7], [15]. In this case, it is a
hybrid agent-based control. Jiang et al. [15] proposed a co-
evolutionary strategy to control both the traffic lights and
vehicles. Appealing results are demonstrated in simulation.

2) Network Perspective: Compared to agent-based ap-
proaches, there is not so much literature reported from
network perspective. Literatures in this direction tend to
find a certain network equilibrium [16], [17], [18] (i.e.,
Wardrop equilibrium [19]) which ensures system-level op-
timum. Recently, Kerner [16] points out that there is a
general problem in traffic network theories. Principles for
network optimization are usually with the objective func-
tion associated with the minimization of some travel cost
(travel time, fuel consumption, etc.). These principles do
not take into account the empirical features of traffic break-
down, which occurs with some probability in the network.
Traffic breakdown usually leads to complex spatiotemporal
congestion propagation, and hence changes the dynamics
of travel cost (travel time, fuel consumption) dramatically.
Therefore, Kerner proposes a novel network optimization
objective, which is to minimize the road network breakdown
probability. We adopt this objective in the paper.

Agent-based approaches are, in general, scalable with
the road network size and the number of participating
agents, because each agent is trying to maximize its own
objective. However, it is almost impossible for agent-based
approaches to guarantee achieving a global optimum. On the
other hand, network-based approaches will take the system’s
overall performance as the evaluation metric. Therefore, the
global optimum is well defined and achievable. However, the
network-based approaches suffer from the scalability issue,
both in terms of the road network size and the number of
agents.

B. Contributions

This paper aims at bridging the gap between the two
kinds of approaches by developing a distributed network
optimization algorithm. We introduce several matrix decom-
position techniques into the network optimization process,
and make the network optimization process always satisfy
the constraints. The algorithm makes use of the second order
derivative of the objective function (Hessian matrix), hence
it is faster than canonical distributed algorithms which only
make use of the first order derivative.

Traditional distributed optimization algorithms, like dual
decomposition [20], suffer from two main drawbacks: slow
convergence rate and infeasible points during iteration. The
latter implies that we have to wait until the end of the algo-
rithm to get a feasible point, making the algorithm inefficient.
In our algorithm, we decompose the global problem after
the interior point method (IPM) [21]. In this way, we always
guarantee a feasible solution during the update. Moreover,
since we make use of the second order derivative during the
update, the convergence rate of our algorithm is much faster
than that of dual decomposition. Unlike the typical multi-
vehicle routing problem, in which all vehicles in the road

network are controllable, we consider the case that there are
uncontrollable default traffic loads in the road network. Our
contribution can then be summarized as follows:
• We propose a distributed approach to solve the network

optimization problem, which achieves both scalability
and global optimum.

• We consider more realistic cases that there are default
road network loads which are uncontrollable.

• Our distributed approach always guarantees a much
faster convergence rate than traditional distributed op-
timization techniques, e.g., dual decomposition, as will
be shown in the simulation section.

• We guarantee to achieve an always-feasible solution
during the iteration process, which is unachievable for
canonical distributed optimization techniques.

C. Paper Structure

The rest of the paper is organized as follows: we first
pose the road network breakdown probability problem as
a convex optimization problem in Section II. Then, we
present the distributed algorithm in Section III. Section IV
shows the simulation results and finally, Section V states
the conclusion of the current work and proposes our future
research directions.

II. PROBLEM FORMULATION

We want to minimize the road network breakdown prob-
ability. That is, we will minimize:

1−
∏

(1− Prob(ri + xi)) (1)

where ri is the default road network load. Prob(·) is the road
breakdown probability function, and the input parameter, xi,
is the controllable load of the road.

We have an equality constraint which is the network flow
conservation equation defined as follows:

Ax = b (2)

where A is the road network topology description, which is
assumed to be known, and b is a column vector specifying
the origin and destination of the vehicles. A is a m×n ma-
trix, where m is the number of nodes in the road network, and
n is the number of edges in the network. Additionally, the
controllable load should be nonnegative defined as follows:

x � 0. (3)

We take logistic regression [22], [23] as the mathematical
model for road network breakdown probability, which can
be expressed as:

p(x) =
ewx+c

1 + ewx+c
(4)

where p is the probability that there occurs a traffic break-
down in the road segment and x is the load of the road
segment, and w and c are model parameters, where w gauges
the unit impact of road load to road breakdown, and c
quantifies miscellaneous other factors (e.g., weather and road



width) which influence road breakdown. In this paper, we
assume that we already know the default road load ri in Eq. 1
and the mathematic model of the road breakdown probability
(w and c ).

Applying log transformation of Eq. 1, and taking into
account of Eq. 4, we can transform the objective in Eq. 1
to be:

minimize:
x

ln(−
∏

(1− Prob(ri + xi)))

=
∑
i

ln(1 + ewi(xi+ri)+ci).

(5)

Summarizing the transformed objective in Eq. 5 and the
original constraints, we can formally pose our problem as:

minimize
x

∑
i

ln(1 + ewi(xi+ri)+ci)

subject to Ax = b

x � 0.

(6)

III. METHODOLOGY

Before going into the details of the methodology, we will
first lay down the algorithm’s logical flow. We apply the
canonical interior point method (IPM) [21], and use matrix
decomposition techniques to make the key matrix inversion
process distributed. When IPM is finished, our algorithm
reaches global optimum. We are, in essence, providing a dis-
tributed IPM for large scale convex optimization problems.

A. Problem Characteristic Analysis

Apparently, the problem as defined by Eq. 6 is a con-
vex optimization problem [21]. However, different from the
canonical convex optimization problem, we have to solve
a large scale problem. Matrix A is large (i.e., m and n
are large), which prohibits us from applying the traditional
interior point method (IPM) [21].

B. Distributed Interior Point Method and Newton-Step Level
Matrix Decomposition

In this subsection, we directly apply IPM and decompose
the core computation step into small computation units. For
representation simplicity, we define

f(x, r, w, c) = ln(1 + ew(x+r)+c) (7)

Apply the interior point method [21]: initialize t0 = 1,
and set µ0 = 10. At the kth optimization step, we solve
the following transformed optimization problem (with log-
barrier function) with µ = kµ0:

minimize
x

µt

n∑
i=1

f(xi, ri, wi, ci)−
n∑

i=1

ln(xi)

subject to Ax = b.

The Newton step can be calculated by solving the follow-
ing equation:[

H A>

A 0

](
∆x
∆w

)
= −

(
∇f(x)
Ax− b

)
. (8)

where
H = diag(µt∇2f(xi) +

1

x2i
). (9)

Here, we wish to note that all ∇ operations are performed
with respect to x, i.e., ∇f(xi) = ∂f

∂x |x=xi .
Solving Eq. 8 directly is very difficult when matrix A is

of high dimension. Here, we solve it via elimination, and the
key computation step is:

AH−1A
>

∆w = Ax− b−AH−15f(x) . (10)

Now, the key step is to calculate the inverse of the
term AH−1A

> in a distributed and efficient way. Because
after the computation of the inverse of AH−1A

>, we can
calculate w. Then, ∆x can be calculated as follows:

H∆x = −(∇f(x) + A
>

∆w). (11)

Since H is diagonal, its inverse can be obtained with a
reasonable computation effort, i.e., we only need to compute
the inverse of its diagonal element. Therefore, the solution
of Eq. 11 is straightforward. In the next subsection, we
will display the algorithm for the distributed solution of the
inverse of the term AH−1A

>.

C. Distributed Solution for the Inverse of AH−1A
>

Problem: Calculating the inverse of AH−1A
>

Input: A ∈ Rm×n; H ∈ (diag)n×n ∩ Sn
++. Here, the

term Rm×n refers to all m× n real matrices [24]; the term
(diag)n×n refers to all n×n diagonal real matrices; the term
Sn
++ refers to all n×n symmetric positive definite matrices.
Solution:
Step (1): Represent matrix A in a column distributed

manner, which is:

A =
(
A1,A2, · · · ,AN

)
(12)

where N is the number of computers (computation entities)
that we have, Ai ∈ Rm×ni , and

N∑
i=1

ni = n. (13)

Step (2): Calculate H−
1
2 and represent it (H−

1
2 ) in a row

distributed manner as expressed in Eq. 15.
Since H ∈ (diag)n×n∩Sn

++, the computation of H−1 is
fairly straightforward, which is just to obtain every diagonal
element of matrix H and take the inverse of it. We define
H−

1
2 as a matrix, which makes H−

1
2 (H−

1
2 )> = H−1.

The computation of H−
1
2 is to take every diagonal ele-

ment of the H−1 and compute the square root of it. Now,
we have the representation of H−

1
2 , and define it as follows:

Λ = H−
1
2 . (14)



Now, we represent Λ as:

Λ =


Λ1

Λ2

...
ΛN

 (15)

where Λi ∈ Rni×n

Step (3): Transform the representation of AH−1A
>.

Combining Eq. 12 and Eq. 15, we have:

AH−1A
>

=
(
A1,A2, · · · ,AN

)


Λ1

Λ2

...
ΛN




Λ1

Λ2

...
ΛN


>

(
A1,A2, · · · ,AN

)>

= (

N∑
i=1

AiΛi)(

N∑
i=1

AiΛi)
>

=

N∑
i=1

N∑
j=1

AiΛiΛ
>
j A>j

(16)

Since the matrix Λ is a diagonal matrix, it provides an
orthogonal decomposition basis over the space of Rn. It
means that:

ΛiΛ
>
j =

{
0 if i 6= j
ΛiΛ

>
i if i = j

Therefore, we can continue transforming Eq. 16 as:

AH−1A
>

=

N∑
i=1

N∑
j=1

AiΛiΛjAj

=

N∑
i=1

AiΛiΛi
>Ai

>

(17)

Now, we need to do one more transformation over the
term ΛiΛi

>. Recall the definition of Λ in Eq. 15. We have
Λi ∈ Rni×n. Since Λ is a n×n diagonal matrix, we know
that ΛiΛi

> is a ni × ni diagonal matrix. Define:

Σi = ΛiΛi
> (18)

and define Σ
1
2

i ∈ Rni×ni as a matrix, which calculates the
square root of the diagonal elements of Σi. We have:

Σ
1
2

i (Σ
1
2

i )> = Σi. (19)

Now, Eq. 17 can be transformed to:

AH−1A
>

=

N∑
i=1

AiΛiΛi
>Ai

>

=

N∑
i=1

AiΣ
1
2

i (Σ
1
2

i )>A>i

(20)

Here, we wish to highlight that the computation of AiΣ
1
2

i

is simple, because Σi
1
2 is a diagonal matrix and we only

need to perform a column-wise product over matrix Ai.
Performing singular value decomposition (SVD) over the

result of AiΣ
1
2

i , we can obtain:

AiΣ
1
2

i = UiΛ
′
iVi
> (21)

where Ui and Vi are mi ×mi unitary matrices, and Λ′i is
diagonal matrix.

Now, Eq. 20 can be further transformed to:

AH−1A
>

=

N∑
i=1

AiΣ
1
2

i (Σ
1
2

i )>A>i

=

N∑
i=1

UiΛ
′
iVi
>
Vi(Λ

′
i)
>
Ui
>

=

N∑
i=1

UiΛ
′
i(Λ
′
i)
>
Ui
>.

(22)

The term Λ′i(Λ
′
i)
> is a diagonal matrix, and we define:

Γi = Λ′i(Λ
′
i)
> (23)

Eq. 22 can be expressed as:

AH−1A
>

=

N∑
i=1

UiΓiUi
>. (24)

Now, the question is how to compute the inverse of the
right hand side (RHS) of Eq. 24. The solution can be found
in the Appendix.

D. Computation Complexity Analysis

In this section, we analyze the computation complexity
of the proposed algorithm. Before analyzing the algorithm’s
computation complexity, we first lay down the evaluation
metric.

1) Flops and baseline computation complexity: The com-
putation cost of an operation can often be expressed through
the number of floating-point operations (flops). A flop is de-
fined as an addition, subtraction, multiplication or division of
two floating-point numbers [21]. To evaluate the complexity
of an algorithm, we count the total number of flops, express it
as a function (usually a polynomial) of the dimensions of the
matrices and vectors involved, and simplify the expression
by omitting all terms except the leading terms.

Following the flop definition, we can express the computa-
tion complexity of an SVD (Singular Value Decomposition)
operation over a matrix A ∈ Rm×n as O(m2n + n3). The
computation complexity of a matrix-matrix product (C) =
AB, where A ∈ Rm×n and B ∈ Rn×p, is O(mnp).

2) Worst case computation complexity of the algorithm
over a single computation unit: Since we are developing
a distributed algorithm, calculating the overall computation
complexity is not meaningful. What we concern the most is
how the computation effort is distributed across the compu-
tation units.



In this subsection, we calculate the computation com-
plexity over one single computation unit. Since the data
size is not the same, and the computation process for one
computation unit may end before the algorithm exits, i.e.,
when one computation unit/agent is merged to another com-
putation unit, this agent exits. We consider the computation
complexity of the ‘worst’ computation unit/agent. Here, the
term ‘worst computation unit’ means that the computation
unit/agent performs the most complex computation over the
whole process.

Examining the algorithm flow process in the Appendix,
we can see that we are required to perform SVD over
matrices Xi, which needs O(m2

in+n3) flops. Since we are
considering the ‘worst computation unit’, the computation
complexity can be expressed as O(maxi (m2

i )n+ n3).
Then, the algorithm requires the computation of Uq and

P−1. The computation of Uq requires three steps of n× n
matrix-matrix multiplication, and one step of SVD over
an n × n matrix, and the computation complexity of the
matrix-matrix multiplication and SVD are both O(n3). Thus,
the computation complexity of calculating Uq is O(n3).
Likewise, the computation of P−1 requires two steps of
n × n matrix-matrix multiplication, and thus the computa-
tion complexity is O(n3). Multiplying the matrices together
involves two steps of n×n matrix-matrix multiplication, and
hence the computation complexity is also O(n3). Performing
SVD over the final n× n matrix requires O(n3). Summing
together, and dropping the constant terms, we can conclude
that the computation complexity is O(n3).

The above computation complexity is for one matrix
merge operation. Now we need to count how many op-
erations of matrix merge we actually need. We have N
computation units. After one round of two-computer merge,
we are left with dN2 e computers, where dxe is the ceiling
operator returning the smallest integer which is larger than
x. Therefore, after at most dlog2Ne operations of matrix
merge process, we can finish the algorithm.

In summary, the computation complexity for the worst
computer is O(maxi (m2

i )n + n3 + dlog2Nen3). Dropping
constant terms, we can reach O(maxi (m2

i )n+dlog2Nen3).

IV. SIMULATION RESULTS

In this section, we will evaluate our proposed algorithm
through answering the following three common questions:
• Are we calculating the inverse of AH−1A

> correctly?
• Are we much faster than canonical distributed optimiza-

tion methods like dual decomposition and ADMM [20]?
• Are we guaranteeing an always-feasible solution during

the optimization process?

A. Simulation Setup

1) Simulation Environment: We consider a realistic box
area of the Singapore road network as the simulation envi-
ronment. The selected area is shown in Fig. 1. The number
of nodes is 1703, and there are 3136 connections altogether.
As a result, the matrix A in the equality constraint is of size
1703×3136. We select a relatively small network size as the

testing environment, because this size of the problem can be
solved for a centralized solution which allows us to compare
it with the proposed distributed solution.

Fig. 1. The targeted road network sample

2) Parameter Setup: We set w = 0.01 and c = −3 in
Eq. 4, and the total number of vehicles is 100/w = 10000.
The uncontrollable road network loads (ri) are set to be
random variables between 0 and 90% of the total number
of vehicles. In this setting, we assume that we are able to
control 10% of the total vehicles on the road.

For the algorithm parameters: we set IPM-related param-
eters as: t = 1, u = 10 and ε = 10−4. The parameters
for performing Newton’s method are set as: α = 0.3 and
β = 0.8, the stopping criteria for Newton decrement λ is set
as: εnt = 10−4.

3) Results and Analysis: The test road network size is
small enough so that we are able to obtain the central-
ized solution, which is through calculating the inverse of
AH−1A

> directly.
Fig. 2 shows the ’error’ as computed by our distributed

methods. Here, we calculate the inverse of AH−1A
>

through central direct methods and our proposed distributed
methods. Then the Frobenius norm [25] of the difference
between the two result matrix is defined as the error.

Although we can observe a slight increase of the error
as we increase the number of computers, we are confident
that we always achieve the correct inverse the AH−1A

>

because the error is in the scale of 10−21.
Fig. 3 shows the convergence process of our distributed

algorithm. Here, we calculate the absolute optimal point
using the centralized method directly. Then we implement
our distributed methods and compare the result with the
optimal solution. As we can see from Fig. 3, after about
21 Newton iterations, we are able to reach the solution with
arbitrarily small deviation (the deviation magnitude in the
order of 10−5).

Here, we wish to highlight that, empirically, the required
number of Newton iterations (21 in our simulation) does
not grow with the size of the problem. It means that for
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Fig. 2. The computation error versus the number of computers

an arbitrarily large network, the number of required New-
ton iterations is still around 20. However, the computation
complexity per Newton step grows as the the network size
increases. Therefore, our aim is to make this part distributed
and scalable.

Fig. 3. The difference between the kth-step solution and the optimal
solution VS computation steps. (Different curves correspond to different
initial points.)

We also implemented dual decomposition and ADMM
[20]. The required number of iterations for convergence
is around 7 million steps. So far, we still cannot simply
conclude that our proposed algorithm is much faster than
traditional distributed algorithms, because each iteration in
our computation is much more complex than the iterations
in dual decomposition or ADMM.

The computation complexity of each iteration in dual
decomposition or ADMM is O(mn), where m and n are
the nodes and edges in the network, respectively, while the
computation complexity of each iteration of our algorithm
is O(mn2i ), where ni is the number of edges allocated to
the computer. In the worst case, ni = n, the computation
complexity in each iteration of our algorithm is n = 3703
times larger than that of dual decomposition. Multiplying
the total steps together, and defining the computation com-
plexity of each iteration in dual decomposition as a unit,
we can obtain that the total computation complexity of our
algorithm is 21×3703 = 77763. While the total computation
complexity of dual decomposition and ADMM is 7 million.

Our algorithm is significantly better in this case study.
Fig. 4 shows the feasibilty metric during the optimization

process. We need to define a metric for feasibility. Since we
use IPM [21] with log barrier function, we can guarantee
that the inequality constraint is always satisfied. Thus, we
only consider the equality constraint. We define feasibility
as the Frobenius norm [25] of the residual between Ax and
b.

Both dual decomposition and ADMM unify the equality
constraint into the objective (i.e., forming the Lagrangian
function) and perform decomposition thereafter. In this case,
they can only achieve a feasible point after the whole
optimization process is done. In real world applications, we
might need a suboptimal solution within the computation
time limit.
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Fig. 4. Feasibility versus the number of Newton iterations

In Fig. 4, we can see that, after every Newton step,
the feasibility measurement is always in the scale of 10−21,
which means that it is always feasible. This feature is not
present in dual decomposition and ADMM.

4) Summary: In this section, we use a simple network to
show that (1) our algorithm is able to calculate the inverse of
AH−1A

> correctly; (2) the total computation complexity
is much smaller than traditional algorithms; (3) we always
guarantee a feasible solution during the optimization process.

V. CONCLUSION AND FUTURE WORKS

This paper has presented a distributed network optimiza-
tion algorithm for multi-vehicle routing. We have formulated
the multi-vehicle routing problem as a network optimization
problem. Different from traditional distributed optimization
techniques like dual decomposition and ADMM, we distrib-
utize the Newton-step calculation process through a novel
matrix decomposition algorithm. In this way, firstly, we make
use of the second derivative information, hence speed up our
optimization process; secondly, we can always guarantee a
feasible solution during the iterations of optimization. Simu-
lation results have shown both advantages of our algorithm.

However, we have not tested our algorithm in traffic
simulators like SUMO [26]. In the future work, we will



implement our algorithm in traffic simulators, and further test
the performance. We will also apply the proposed algorithm
into real world after the simulator step. The road network
breakdown probability is assumed to be given in this paper;
in the next step, we will adopt different methods to obtain
the model of road network breakdown probability.

APPENDIX

A. Matrix Merging Process

We are interested in solving for the inverse of
∑

ViΛiVi
>

efficiently and distributedly. We represent the term as:

M =

N∑
i=1

ViΛiVi
> (25)

where Vi is unitary matrix and Λi is diagonal matrix. Ideally,
if we can represent M as follows:

M = V ΛV > (26)

where, V is a unitary matrix, and Λ is a diagonal matrix with
positive diagonal values, then it is easy for us to compute
the inverse of M .

Before transforming Eq. 25 into the form of Eq. 26
directly, we start with an easier step by merging two matrices.
The problem is to represent ViΛiVi

> + VjΛjVj
> into the

form of Eq. 26. Define:

Mij = ViΛiVi
> + VjΛjVj

>. (27)

Since both of the two terms in Eq. 27 are symmetric
positive definite matrices, according to Theorem 5.1 in
the next subsection, there exists an invertible matrix P ,
such that P>ViΛiVi

>P = I , and P>VjΛjVj
>P =

diag(λ1, λ2, . . . , λn).
Therefore, matrix P satisfies the following equation:

P>MijP = I + diag(λ1, λ2, · · · , λn). (28)

After simple deduction, we can get that:

Mij = (P−1)>(I + diag(λ1, λ2, · · · , λn))P−1

= (P−1)>diag(λ1 + 1, λ2 + 1, · · · , λn + 1)P−1.
(29)

Continue to apply singular value decomposition to the second
half of Eq. 29, we can represent Mij as:

Mij = VijΛijVij
> (30)

Now, we have finished the merging process of the ma-
trices. The merged matrix (Mij) is also represented in the
same form as before the merging. We can continue with the
merging process when Mij ‘meets’ other matrix. Thus, the
key computation step is to compute matrix P−1.

1) The computation process of P−1: Consider Eq. 27,
since Λi is a diagonal matrix with all positive diagonal
elements. Suppose Λi = diag(λ1, λ2, · · · , λn); we define:

Λ
− 1

2

i = diag(λ
− 1

2
1 , λ

− 1
2

2 , · · · , λ−
1
2

n ) (31)

and then we define

P1 = Λ
− 1

2

i Vi
>. (32)

Now, we have:
P1
−1 = ViΛ

1
2

i . (33)

We multiply Eq. 27 by P1 from the left and by P1
> from

the right, then we can get:

P1MijP1
> = P1ViΛiVi

>P1
> + P1VjΛjVj

>P1
>

= I + Λ
− 1

2

i Vi
>VjΛjVj

>Vi(Λ
− 1

2

i )>.
(34)

Here, we define

Λ
1
2

j = diag(λ
1
2
1 , λ

1
2
2 , · · · , λ

1
2
n ). (35)

Then, Eq. 34 can be further transformed to:

P1MijP1
> = I + Λ

− 1
2

i Vi
>VjΛ

1
2

j (Λ
1
2

j )>Vj
>Vi(Λ

− 1
2

i )>.
(36)

Define:
Q = Λ

− 1
2

i Vi
>VjΛ

1
2

j (37)

Then Eq. 36 is simply in the form of:

P1MijP1
> = I + QQ> (38)

Applying singular value decomposition on Q, we can get:

Q = UqΛqVq
> (39)

where Uq and Vq are unitary matrices, and Λq is diagonal
matrix. Replacing Q in Eq. 38 through Eq. 39, we can get:

P1MijP1
> = I + UqΛqVq

>(UqΛqVq
>)>

= I + UqΛqVq
>Vq(Λq)

>
Uq
>

= I + UqΛq(Λq)
>
Uq
>

= UqUq
> + UqΛq(Λq)

>
Uq
>

= Uq(I + ΛqΛq
>)Uq

>

(40)

Solving Eq. 40 for Mij , and replacing P−1
1 by Eq. 33, we

can obtain:

Mij = P−1
1 Uq(I + ΛqΛq

>)Uq
>(P−1

1 )
>

= ViΛ
1
2

i Uq(I + ΛqΛq
>)Uq

>(ViΛ
1
2

i )>
(41)

The inverse of the matrix P as described in Eq. 28 can be
directly calculated out as:

P−1 = (ViΛ
1
2

i Uq)> (42)



2) Transforming the Merged Matrix into Standard Form:
Now, we know P−1, then the merged matrix can be repre-
sented as:

Mij = (P−1)
>

(I + ΛqΛq
>)P−1. (43)

Mij is a nxn matrix, and applying singular value decom-
position over Mij , we can represent Mij :

Mij = VijΛijVij
> (44)

where Vij is a unitary matrix and Λij is a diagonal matrix
with all positive diagonal elements.

Here, we are able to merge two matrices, each of which
is in the form as represented in Eq. 26, and continue to
represent the merged matrix in the form of Eq. 26. As the
process continues, we will reach the final representation also
in the form of Eq. 26.

B. Theorem: Simultaneously Congruentization and Diago-
nalization of Two Matrices

Theorem 5.1: ∀ A ∈ Sn
++, B ∈ Sn, ∃P , s.t.: (1) ∃P−1;

(2) P>AP = I ; (3) P>BP =diag(λ1, λ2, · · · , λn).
Suppose A and B are both n× n matrices, A is positive

definite, and B is symmetric, then, there exists an invertible
matrix P , which makes A congruent to identity matrix and in
the meanwhile, makes B diagonal. Here, the term I denotes
identity matrices.
Proof: Since A is positive definite, A is congruent to the
identity matrix, i.e., A ∈ Sn

++ ⇒ ∃P1, s.t. P1
>AP1 = I .

Since P1
>BP1 is symmetric, then we can orthogo-

nally diagonalize it to a diagonal matrix. B ∈ S ⇒
P1
>BP1 ∈ S ⇒ ∃P2 s.t. (1) P2

>P2 = P2P2
> = I;

(2) P2
>P1

>BP1P2 = diag(λ1, λ2, · · · , λn).
Define P = P1P2, we have: P>AP = I , and

P>BP=diag(λ1, λ2, . . . , λn).
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