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Abstract— This paper aims at solving a stochastic shortest
path problem. The objective is to determine an optimal path
which maximizes the probability of arriving on time given a
time constraint (i.e., a deadline). To solve this problem, we pro-
pose a data-driven approach. We first reformulate the original
finding optimal path problem as a cardinality minimization
problem. Then, we apply an L1 norm minimization technique
to solve the cardinality problem. The problem is transformed
into a mix integer linear programming problem, which can
be solved using standard solvers. This proposed approach has
three advantages over the traditional methods: (1) the proposed
approach can handle various or even unknown travel time
distributions, while traditional stochastic routing algorithms
can only work on specified distributions; (2) the proposed
approach does not rely on the assumption that the travel time
on different road segments is independent from each other;
(3) unlike other existing approaches which require that the
deadline must be larger than a certain value, the proposed
approach can support more flexible deadline definition. Then
we test our approach respectively on artificial and real-world
road networks, the experimental results show that the proposed
approach can achieve a comparatively high accuracy when the
sampling size of travel time is large enough. Moreover, under
some reasonable assumptions, the accuracy could be 100%.

I. INTRODUCTION

Stochastic shortest path problems have been studied exten-
sively in the fields of operations research and transportation
engineering, especially in emergency response and disaster
management [1]. The objective is usually to determine an
optimal path with the shortest travel time. However, in
real world, the traffic condition is often random because of
various uncertainties, such as road work, bad weather, traffic
accident, unexpected traffic lights. All those uncertain factors
may prevent the vehicle from achieving an absolute shortest
travel time. Therefore, it is necessary to redefine the optimal
route in stochastic context.

A. Related Work

In stochastic shortest path problems, the least expected
travel time (LET) is often used as the routing criterion.
According to this criterion, the path is optimal if it guarantees
the least expected travel time [2]. There have been many
researchers studying on this: [3] provides a thorough review
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and discussion on the time dependent LET path problem
without waiting policy; [4] solves the time-dependent LET
path problem with waiting policy; [5] addresses the LET
path problem considering the correlation between random
link travel times. One reason why researchers employ LET
is that under this criterion, the problem can be transformed
into a deterministic routing problem and solved to obtain an
optimal path. However, a path with minimum expected travel
time may still have a high variance, which is undesirable for
some drivers.

To address the risk issue in LET, [6] and [7] propose
a Mean-Risk model. In this model, they seek the path
that minimizes the weighted combination of expected travel
time and the path’s travel time standard deviation (minimize
E(x) + γV ar(x), where x is the path’s travel time distri-
bution). This is a convex combination problem, which can
be converted into a deterministic shortest-path problem with
respect to road link lengths equal to the linear combination
of corresponding mean and variance. The model does help
solve the risk problem to some extent, but it still has
one obvious limitation: the drivers may not understand the
physical meaning of this model and they also do not know
what γ is suitable.

To overcome the above disadvantages, a probability tail
model, which also incorporates both expected travel time
and reliability, is proposed as an optimal criterion in [8]. It
defines the optimal path to be the one that maximizes the
probability of arriving on time. This criterion is reasonable
in that it is consistent with people’s travel planning behavior.
For example, people would rather spend more traveling time
but do not want to be late when they plan for important
events. The key objective of routing in such a circumstance
is to reduce the risk of arriving late rather than to minimize
the expected travel time [9]. Unfortunately, the algorithm on
how to compute such kind of optimal path is not laid out
in [8]. Many subsequent researchers investigate this problem
and many solutions have been achieved as in [1], [2], [9],
[10] and [11].

Among the works to solve the probability tail model,
three seminal works are [1], [10] and [11]. An adaptive
method is developed in [1] to achieve maximal probability of
arriving on time. This method provides an optimal policy for
selecting the next road junction rather a prior path. It only
computes the optimal road junction to visit next. A further
road junction will only be determined when the vehicle
arrives at the preceding one. Although it claims in [1] that
the optimal path determined in this way is accurate, it is
inconvenient and not applicable to implement this method
at each road junction in a pre-planning scenario, as the



driver needs a pre-set route when he/she drives toward the
destination. By contrast, it aims to search for an optimal
path in [10] and [11]. In [10], it shows that for a large
range of deadlines, the problem requires the maximization
of a quasi-convex function over the path polytope. Due to
the particular form of its quasi-convex objective, the optimal
path is obtained at an extreme point of the dominant of
the projection (shadow) of the path polytope onto a two-
dimensional plane. Based on the work in [10], it proposed
a stochastic motion planning algorithm and applied it to
traffic navigation in [11]. This algorithm searched for the
optimal path efficiently by examining probe points which
can efficiently help eliminate futile searching space. This
algorithm improves the results in terms of computation
complexity compared with [10].

B. Limitations of Existing Work

The methods in [10] and [11] seem more desirable since
they can find exact solutions instead of approximated ones.
However, they rely on three common assumptions: (1) the
travel time for each road link must follow a normal distribu-
tion; (2) the travel time distribution on different road links
is independent from each other; (3) the deadline should be
large enough, i.e., at least larger than the expected travel time
of the path with the least expected travel time.

The first two assumptions are made to simplify the
computation. However, in real world, the travel time on
road links dose not necessarily always follow a normal
distribution, and they might not be independent either. There
are literatures challenging these assumptions: travel times
following a skewed distribution is identified in [12]; travel
times best fitting a gamma distribution is concluded in [13];
a log-normal fit is derived in [14], [15], [16] and [17]; a bi-
normal distribution is claimed in [18], one is for congestion
situation and the other is for non-congestion; correlation for
travel time on adjacent road links is also claimed in [15] and
[16].

The third assumption is made to guarantee the quasi-
convexity of the problem so as to facilitate the computation.
However, in real traffic planning, people may not know what
value for the deadline would be large enough especially when
they are on an unfamiliar path.

C. Contribution

To solve these problems, we propose a data-driven ap-
proach, which does not need to assume one fixed distribution
for travel time on road links. It can also work well when the
travel time on some different road links are correlated with
each other. Moreover, it can handle different deadlines. Al-
though our approach only provides an approximated solution,
the accuracy is satisfactorily high as it will be shown in the
simulation results.

More specifically, to determine the optimal path, we
formulate the problem of searching the path which guar-
antees the maximum probability of arriving on time into
a cardinality minimization problem. The general model-
driven optimization methods [19] cannot solve this problem

efficiently since this optimization is not convex nor quasi-
convex if we do not make the necessary assumptions on the
travel time distribution, correlation and deadlines. However,
the cardinality minimization, which is data-driven in this
context, can avoid above assumptions, because it is directly
applied on the detected or sampled travel time data set to
approximate the real probability by frequency. To solve this
cardinality minimization problem, we relax it by L1 norm
minimization, which in turn can be efficiently solved by mix
integer linear programming.

The data-driven approach has been widely used in many
areas [20], [21], [22], especially in machine learning, where
a classifier is always built based on known data set and
prediction is conducted upon coming unknown data. The
nature of the data-driven approach in machine learning is
usually to minimize the chance of mis-classification [20],
while the data-driven approach in this paper is used to
minimize the frequency of being later than the deadline on
known data set, and to this end, they are similar with each
other. However, the main part of the data-driven method in
this paper is to minimize certain cardinality, and to our best
knowledge, it is the first time that cardinality minimization
is used to solve the stochastic shortest path problem where
the objective is to find a path that maximizes the probability
of arriving destination before one deadline.

The remainder of the paper is organized as follows: In
Section II, we formulate the stochastic shortest path problem
as finding a path that maximizes the probability of arriving on
time and then we reformulate it as a cardinality minimization
problem. In Section III, we use the L1 norm minimization
to relax and solve the cardinality problem, which is further
formulated as a mix integer linear programming. In Section
IV, we carry out various experiments to justify the advantages
of our approach and provide analysis on the obtained results.
Section V states the conclusions and our future work.

II. PROBLEM FORMULATION FOR STOCHASTIC
SHORTEST PATH

In this section, we first introduce the road network in
terms of graph, then we formulate the stochastic shortest
path problem based on it. In a general situation, e.g., without
the normal distribution assumption, independent assumption
or deadline assumption, this routing problem is usually not
convex nor quasi-convex, and there is no efficient method
to solve it. Considering that the probability of arriving on
time usually can be approximated by the frequency of not
being late, and this frequency is closely related with the
number of times of being late based on travel time data, the
routing problem can be directly formulated as cardinality
minimization. The hope is that, when the travel time data
size or the sampling data size is large enough, the frequency
of being late will closely reflect the true probability of
arriving on time. More importantly, this method with respect
to cardinality minimization is not concerned with the travel
time distribution type, correlation or deadline. Details about
cardinality minimization problem is also introduced in this
section.



A. Original Problem Formulation

We model the road network as a graph. Let G = (V,Ar)
be a directed graph, where V = {1, 2, . . . , n} represents
the set of nodes and Ar ⊆ {(v, w) : v, w ∈ V, v 6= w}
represents the set of arcs, which also refer to the road links.
More specifically, (v, w) means an arc from v to w. Then
the stochastic shortest path problem which maximizes the
probability of arriving the destination d from origin o not
later than deadline T can be mathematically formulated as
follows:

max
x

. P rob(W
′
x ≤ T )

s.t.

∀v ∈ V :
∑

w∈V,(v,w)∈Ar

x(v, w)−
∑

w∈V,(w,v)∈Ar

x(w, v) =


1, if v = o

−1, if v = d

0, otherwise

(1)

where the vector W denotes the real travel time for each arc;
the vector x ∈ {0, 1}|Ar|, and each component of x refers
to one arc on G, e.g., the arc (w, v) ∈ Ar is on this optimal
path if x(v, w) is equal to 1, not on this optimal path if 0.
Then this problem can be further compactly written as:

max
x

. P rob(W
′
x ≤ T )

s.t. Mx = b

x ∈ {0, 1}|Ar|

(2)

where M ∈ Rn×|Ar| is the node-arc incidence matrix and
b ∈ Rn, where all elements are zeros except the s− th and
t − th element, which are 1 and -1, and refers to origin o
and destination d respectively [23].

In the general situation, the optimization problem in Eq.(2)
is not convex or quasi-convex if we do not make further
assumptions on the travel time distribution, correlation and
deadlines, which also means there is no efficient method
to solve this problem. So we seek to approximate the
probability by frequency to avoid these difficulties, where
cardinality minimization is needed. To this end, we first
rewrite the “maximizing” problem in Eq.(2) as “minimizing”.
Considering that maximizing the probability of arriving not
later than the deadline is equivalent to minimizing the prob-
ability of arriving later than the deadline, we can reformulate
Eq.(2) as follows:

min
x
. P rob(W

′
x > T )

s.t. Mx = b

x ∈ {0, 1}|Ar|.

(3)

B. Problem Reformulation as Cardinality Minimization

Definition 1: Cardinality is the number of non-zero ele-
ments in one vector or matrix. If x = (x1, x2, x3) = (0, 0, 4),
then the cardinality of x is 1.

With respect to cardinality optimization, there are usually
two typical problems: cardinality minimization problem and
cardinality constrained problem [24], which are respectively

described as follows:

min
x
. Card(x)

s.t. x ∈ F
(4)

min
x
. f(x)

s.t. Card(x) ≤ τ
x ∈ F

(5)

where f(x) is the objective function, x is a vector, τ is a
constant, and F is the feasible set.

Regarding our routing problem, the objective is to mini-
mize the probability of arriving later than the deadline (i.e.,
Eq.(3)), and statistically speaking, it is equal to minimizing
the number of times of arriving later than the deadline if the
sampling size for each path is large enough. If we travel 1000
times respectively on two paths from o to d, and there are
20 times being later than deadline for path 1, and 10 times
for path 2, then path 2 should be optimal. The problem in
this context can be formulated as a cardinality minimization
problem, which is to minimize the cardinality of vector C
defined as follows:

C(x) = (c1, c2, . . . , cS)

= ([W
′

1x− T ]+, [W
′

2x− T ]+, . . . , [W
′

Sx− T ]+)
(6)

where [·]+ = max{0, ·}, Wi is the travel time data for the
whole graph at i − th time, and S is the travel time data
size.

Then our objective to minimize the probability of arriving
later than deadline can be approximately formulated as:

min
x
. Card(C(x))

s.t. Mx = b

x ∈ {0, 1}|Ar|

(7)

where x is the decision variable, which denotes the optimal
path. Now, the original problem to find an optimal path
that maximizes the probability of arriving not later than
deadline becomes the cardinality minimization problem. In
this problem, we could directly use the real detected or
sampled travel time data on arcs instead of some distributions
to arrive the optimal solution. The hope is that when the
sampling size S is large enough, the frequency of not being
late will closely reflect the probability of arriving on time,
and the solution for this cardinality optimization problem
is almost the same as the optimal path that we consider in
Eq.(1).

III. METHODOLOGY

L1 norm minimization and mix integer linear program-
ming are respectively introduced in this section. The former
is usually used to relax cardinality minimization problems
while the latter always solves the former problem efficiently.



A. L1 Norm Minimization to Solve Cardinality Minimization

Least-squares is usually used in optimization problems,
especially the object of which is to minimize the squares of
errors. However, for cardinality optimization problem, least-
squares method does not perform well. A typical approach
to solve cardinality minimization problems is to relax the
problem by the L1 norm, and the relaxed problem can be
solved efficiently, where the L1 norm is usually known as
the convex envelop of the function Card(x) [25].
L1 norm of one vector is usually denoted by ‖•‖1, which

refers to the absolute sum of its elements. The mathematical
form of L1 norm for vector x is stated as:

‖x‖1 = |x1|+ · · ·+ |xn| (8)

where n is the length of x. Accordingly, minimization of L1

norm for x can be formulated as:

min
x
. ‖x‖1

s.t. x ∈ F
(9)

where F is the feasible set.
Incorporating L1 norm, Eq.(7) can be reformulated as

follows:

min
x
.

S∑
i=1

ξi

s.t. W
′

1x− T ≤ ξ1
...

W
′

Sx− T ≤ ξS
Mx = b,

ξi ≥ 0,

x ∈ {0, 1}|Ar|.

(10)

where ξi is an intermediate variable which refers to the
[W

′

i x−T ]+ in Eq.(6); x is the decision variable which refers
to the optimal path.

By analyzing the optimization problem in Eq.(10), we find
that the L1 minimization problem can be easily transformed
to a mix integer linear programming problem, for which there
already exists mature solutions.

B. Mix Integer Linear Programming

Considering Eq.(10), we can further transform it into the
standard form of Mixed Integer Linear Programming (MILP)
which is written as follows:

min
y
. cy

s.t. Ay ≤ B
Aeqy = Beq

Lb ≤ y ≤ Ub

y(1 : |E|) ∈ Z

(11)

where

y = (x1, . . . , x|Ar|, ξ1, . . . , ξS)(|Ar|+S)×1 (12)

c = (01, . . . , 0|Ar|, 11, . . . , 1S)1×(|Ar|+S) (13)

A =


W11 W12 · · · W1|Ar| −1 0 · · · 0
W21 W22 · · · W2|Ar| 0 −1 · · · 0

...
...

. . .
...

...
...

. . .
...

WS1 WS2 · · · WS|Ar| 0 0 · · · −1


(14)

B = (T, . . . , T )S×1 (15)

Aeq = (M, 0|V |×S) (16)

Beq = b (17)

Lb = 0(|Ar|+S)×1 (18)

Ub = (11×|Ar|,∞1×S)(|Ar|+S)×1. (19)

In this problem, y is the decision variable, and x in Eq.(12)
is the optimal path. To solve the MILP efficiently, we use the
intlinprog function in Matlab 2014a, which is mainly based
on the branch and bound algorithm. The steps are stated as
follows [26]:
• Initially reduce the problem size: in this step, linear

program pre-processing is performed on the dual prob-
lem, the purpose of which is to eliminate the redundant
variables and constraints;

• Solve the relaxed linear programming: the interior point
method [27] is employed to determine the optimal
solution for the relaxed problem, which is an efficient
method for the linear programming and guarantees
polynomial complexity;

• Tighten the LP relaxation of the mixed-integer problem:
mixed-integer program pre-processing is conducted to
analyze the linear inequalities and determine whether
some bounds can be tightened;

• Further tighten the LP relaxation: cut generation is
implemented in this step, where the cuts are some
additional linear inequality constraints added to the
problem, the function of which is restricting the feasible
region of the LP relaxations to make sure the solution
are closer to integers;

• Compute the integer-feasible solutions: heuristics are
used to find feasible points for the branch and bound
step below so that an upper bound on the objective
functions can be determined [28]. Heuristics always
refers to the methods which are used to speed up
the process of finding a satisfactory solution where
exhaustive search is impractical;

• Systematically search for the optimal solution: branch
and bound method [29] is constructed as a sequence of
sub-problems that attempt to converge to a solution of
the MILP, where the sub-problems give a sequence of
upper and lower bounds on the solution.



In this way, the function can solve the problem in any of
the steps. If it solves the problem in one step, intlinprog
does not execute the later steps. More details about these
steps can be found in [26].

IV. SIMULATION RESULTS AND ANALYSIS

Our approach makes two approximations: (1) we use
frequency of not being late on sampling data to approximate
the probability of arriving on time; (2) we use L1 norm
to relax the cardinality minimization problem. Therefore,
it is necessary to analyze the accuracy of our approach.
To this end, we test our approach and compare the results
with the exact solution which is obtained by enumerating
all possible paths and computing corresponding probability,
and then the accuracy is computed as the frequency that the
two solutions are the same. Besides, we also compute the
accuracy after a tolerance of 3%, which means that we accept
the solution by our approach as optimal if the probability
difference (the probability here refers to the chance that
one path guarantees arriving the destination no later than
the deadline) between the actual optimal path and the path
provided by our approach is not larger than 3%.

Our approach has three advantages over other methods be-
cause it can address different distributions, correlation issue
and different deadlines. To better justify these advantages,
we classify the experiment into 3 cases with respect to travel
time on arc: Case 1 involves single independent distribution;
Case 2 involves blended independent distributions; Case 3
involves correlated distributions, where Case 1 and Case 2
help show that our approach is able to handle various or even
unknown distributions; Case 3 helps show that our approach
is able to address the correlation issue with respect to travel
time; In all cases, we test with a large variety of deadlines,
which shows that our approach works for different deadlines.
Especially, when the data size is 500 (highlighted in 3 tables),
most of the accuracy after tolerance for the 3 cases is already
larger than 95%. When the data size becomes larger, most
of the tolerated accuracy is close to 100%. Moreover, when
tested in real-world road networking using real traffic data,
our approach also offers satisfactory results.

A. Test Scenario I: Artificial Network with Artificial Data

We test our approach on an artificial network to validate
the accuracy of the solution and provide useful insights
into the nature of the results. Consider the 65-node, 123-arc
network in Fig. 1, which is a directed graph. This is a fairly
representative spatial network: (1) the graph contains cycles,
and some arcs between two nodes are bi-directional; (2) there
are some clusters in this graph and they are connected with
each other. These clusters can represent a road network in
a city. These two features make the graph consistent with
actual traffic network.

Our approach is data-driven, and in real life, we will
use the sensor-detected travel time data for each road link.
For the testing on this graph, we employ some random
distribution functions to generate data for each arc. In the
following experiments, we consider Normal, Bi-Normal,
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Fig. 1: A 65-node, 123-arc road network

Gamma and Log-normal distribution and their combinations.
We randomly select one starting and ending point pair out
of ten: {(1, 3), (3, 1), (3, 2), (2, 3), (10, 2), (2, 10), (1, 10),
(10, 1), (3, 10), (10, 3)}.

B. Explanation of Symbols and Other Settings

1) S − the value of sampling data size. We take the values
of 100, 500, 1000, and 1500.

2) α − the deadline coefficient with respect to T : T =
T1 + α ∗ (T2 − T1), where T is the deadline, T2 is
the minimum longest travel time for all paths based
on all the generated data, and T1 is the shortest travel
time with respect to the same path, and we take α =
0.2, 0.4, 0.6, 0.8, 1.0, 1.2.

3) NE − the number of times to run our approach to
reach one accuracy, which is 1000 in this experiment.

4) N − denotes Normal distribution.
5) Bi − denotes Bi-normal distribution.
6) G − denotes Gamma distribution.
7) L − denotes Log-normal distribution.
8) N +Bi − denotes Normal distribution combined with

Bi-normal distribution.
9) N +G − denotes Normal distribution combined with

Gamma distribution.
10) N + L − denotes Normal distribution combined with

Log-normal distribution.

C. Case Study 1: Single Independent Distribution

For each arc, we generate S data respectively according
to the four distributions. For each distribution, the data on
different arcs are independent from each other. The results
are shown in TABLE I, the structure of which is stated as:

1) the 1st column stands for the types of distributions;
2) the 2nd column stands for the value of deadline coef-

ficient α;



TABLE I: Case 1: Accuracy for independent single distribu-
tion (%)

α 100 500 1000 1500
0.2 59.1, 90.1 56.3, 99.6 56.9, 100 57.5, 100
0.4 63.0, 84.5 62.4, 96.9 61.1, 99.7 59.0, 99.9

N 0.6 67.5, 83.6 67.6, 96.6 67.0, 98.9 68.6, 100
0.8 71.4, 93.5 72.6, 100 70.6, 100 71.4, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 57.9, 90.9 60.9, 99.8 58.5, 100 58.8, 100
0.4 64.4, 85.9 62.1, 95.6 64.3, 99.1 62.9, 99.9

Bi 0.6 67.6, 86.6 66.8, 95.9 69.0, 99.9 67.2, 99.9
0.8 69.9, 93.1 69.3, 100 71.5, 100 69.8, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 60.4, 89.2 57.4, 99.8 57.6, 100 56.5, 100
0.4 64.6, 83.1 59.8, 95.1 63.1, 98.7 63.8, 99.9

G 0.6 65.9, 84.9 68.4, 97.4 69.3, 99.6 68.7, 99.9
0.8 68.6, 93.2 69.6, 100 70.7, 100 73.4, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 60.4, 89.2 58.7, 99.8 58.4, 100 59.7, 100
0.4 62.7, 82.2 60.9, 94.4 61.7, 99.1 60.0, 99.7

L 0.6 68.2, 84.5 68.8, 98.4 68.1, 99.6 68.3, 99.9
0.8 69.9, 94.8 71.6, 100 71.0, 100 71.6, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100

3) In each of the 3rd − 6th column, there are two sub-
columns. The first sub-column is for the accuracy and
and the second sub-column is for the accuracy with
3%-tolerance.

Looking into each distribution in Table I, we can see that
the accuracy always increases (until up to 100%) as the
deadline becomes longer. When α is not less than 1, which
corresponds to the situation that there exists at least one path
guaranteeing arriving on time with 100% probability, our
approach can always correctly find the actual optimal path. It
is expected since the L1 norm minimization in our approach
is to minimize the total delay with respect to deadline T . If
the deadline T is large enough, there always exists at least
one path with zero total delay. When α is smaller than 1,
i.e., 0.2, 0.4, 0.6, 0.8, which corresponds to the situation
that there is no path that can guarantee arriving on time with
100%, the accuracy always falls between 50%-80%. It is not
comparatively high because L1 norm minimization is only an
approximation of the cardinality minimization. However, the
result by our approach is always close to the actual optimal
solution because the 3%-tolerance accuracy is satisfactorily
high, most of which are above 95% and close to 100%. Since
in real life travel planning, people may not be concerned
about a 3% gap regarding the actual optimal path, so our
approach is quite acceptable in this sense.

Regarding the data size, we can see that the accuracy dose
not necessarily increase with it, this is still because of the L1

norm minimization. However, the results become closer to
the actual optimal solutions since from the table, the accuracy
with a 3%-tolerance always increases (until up to 100%) as
the data size becomes larger. This happens because the L1

norm minimization can better approximate the cardinality
minimization although it is not the exact one. When the data

TABLE II: Case 2: Accuracy for blended independent dis-
tribution (%)

α 100 500 1000 1500
0.2 76.8, 96.0 79.1, 100 69.7, 100 78.2, 100
0.4 79.8, 92.3 82.7, 99.2 72.8, 99.4 81.2, 100

N 0.6 80.4, 91.4 83.3, 99.2 78.4, 99.6 83.3, 999
+ 0.8 76.9, 95.0 80.8, 99.8 78.4, 100 83.9, 100
Bi 1.0 100 , 100 100 , 100 100, 100 100, 100

1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 61.4, 89.8 58.6, 100 54.8, 100 55.6, 100
0.4 65.1, 84.2 63.0, 96.7 62.4, 98.9 62.6, 99.8

N 0.6 65.5, 83.7 66.9, 97.3 69.5, 99.7 68.9, 100
+ 0.8 68.2, 92.6 70.9, 100 71.4, 100 73.1, 100
G 1.0 100 , 100 100 , 100 100, 100 100, 100

1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 76.0, 96.1 76.1, 100 77.2, 100 78.5, 100
0.4 82.0, 92.5 82.0, 98.9 81.6, 99.9 80.3, 100

N 0.6 83.6, 93.6 83.6, 99.0 82.9, 100 84.4, 100
+ 0.8 83.5, 96.0 83.5, 100 84.1, 100 86.0, 100
L 1.0 100 , 100 100 , 100 100, 100 100, 100

1.2 100 , 100 100 , 100 100, 100 100, 100

size is not less than 1000, the accuracy with tolerance is
almost 100%.

Another notable result is that the four different distribu-
tions share one similar pattern for the accuracy and 3%-
tolerance accuracy under different deadlines and data sizes.
The main reason is because the proposed approach is based
on real data, and Eq.(10) only takes the collected data into
account.

Based on above analysis, we can conclude that our ap-
proach is able to handle different independent distributions
with different deadlines. Especially, when data size is large,
our approach can achieve accuracy with a reasonable toler-
ance.

D. Case Study 2: Blended Distributions

For each arc, we adopt combinations of distributions to
generate S data. We first use the sequence in the matrix M
to order the arcs. Then, each time, the odd arcs use one
distribution, and the even arcs will use a different one. The
combinations are set as follows: Normal combined with Bi-
normal (N+Bi), Normal combined with Gamma (N+G), and
Normal combined with Log-normal (N+L). We also assume
that the data on different arcs are independent from each
other. Additionally, the accuracy and 3%-tolerance accuracy
are shown in Table II.

Compared with the results for Case 1, the accuracy and
3%-tolerance accuracy for Case 2 share similar pattern under
different deadlines and data size. From Table II, our approach
can accommodate the blind distributions with different dead-
lines.

E. Case Study 3: Correlated Distributions

For each arc, we generate S data respectively according
to the four distributions. Then we randomly choose some
adjacent arc pairs, and the travel time data on which would
be correlated with each other. Additionally, the accuracy and
3%-tolerance accuracy are shown in Table III.

Compared with the results for Case 1 and Case 2, the
accuracy and 3%-tolerance accuracy for Case 3 also share a



TABLE III: Case 3: Accuracy for correlated single distribu-
tion (%)

α 100 500 1000 1500
0.2 57.1, 89.9 57.3, 99.6 57.2, 100 56.3, 100
0.4 64.1, 85.0 61.4, 96.8 63.5, 99.2 60.2, 99.9

N 0.6 69.0, 85.4 69.0, 97.1 69.3, 99.6 67.6, 99.8
0.8 73.1, 92.9 72.1, 99.8 69.3, 100 72.0, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 60.1, 89.4 59.4, 99.7 58.9, 100 55.3, 100
0.4 61.5, 82.1 61.9, 96.2 62.6, 99.2 60.0, 100

Bi 0.6 68.7, 85.7 64.4, 97.0 68.9, 99.3 66.6, 99.9
0.8 73.6, 92.5 69.9, 100 71.5, 100 74.8, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 59.0, 88.5 58.1, 99.6 58.4, 100 57.8, 100
0.4 65.5, 84.3 63.0, 96.5 62.2, 99.2 63.9, 99.5

G 0.6 65.1, 81.8 69.2, 97.4 66.5, 99.4 71.0, 99.9
0.8 71.8, 93.9 71.8, 100 70.8, 100 71.8, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100
0.2 59.6, 88.5 57.9, 99.2 58.1, 100 58.4, 100
0.4 61.4, 81.3 66.4, 94.6 65.5, 99.6 63.1, 100

L 0.6 67.1, 83.9 68.2, 99.1 67.3, 99.7 68.7, 100
0.8 70.6, 93.9 73.0, 99.9 71.5, 100 73.9, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100

similar pattern under different deadlines and data size. From
Tables III, our approach can address the correlation issue
well.

F. Time Complexity

In all previous cases, to determine whether our approach
can achieve the optimal path, we use the enumerating method
to compute the real optimal one. To show that our approach
is more efficient with respect to time complexity, we record
all the running time for above experiments, which ran on
a computer with Inter Core i7-3540M processor and 8.00
GB RAM. And the average running time regarding different
travel time data sizes are shown in Table IV.

TABLE IV: Time complexity for the enumerating method
and our approach (s)

100 500 1000 1500
Enumerating method 0.6419 0.6389 0.5993 0.6108

Our approach 0.0546 0.2042 0.4052 0.4452

From Table IV we see that the average running time for
our approach is always shorter than that of the enumerating
method with respect to different travel time data sizes. The
important reason is that the MILP can be solved more
smartly compared with enumerating methods. Although the
running time always increases with travel time data size
in our approach, we do not necessarily need a very large
set of travel time data to obtain the satisfactory solution
based on the conclusions for the 3 cases we studied, which
means that we can obtain the satisfactory path faster than the
enumerating methods.

G. Test Scenario II: Real Traffic Data on Munich City

To better justify our method, we also use real traffic data to
perform the test on one area of Munich city, which is shown

Fig. 2: One area of the Munich city, Germany

in the Fig. 2. The underlying graph of this area includes
270 nodes and 277 arcs. The experiment settings are similar
with that in Scenario I, the major difference is that the travel
time is the real traffic data, so there is no distribution or
correlation assumptions in Scenario II. The results regarding
the accuracy are provided in Table V.

TABLE V: Real test on Munich city using real traffic data(%)

α 100 500 1000 1500
0.2 86.0, 95.3 77.2, 99.8 74.2, 100 75.4, 100
0.4 81.2, 96.8 70.0, 100 68.7, 100 67.7, 100
0.6 74.8, 99.2 65.8, 100 61.5, 100 63.8, 100
0.8 66.8, 99.5 61.0, 100 61.7, 100 58.6, 100
1.0 100 , 100 100 , 100 100, 100 100, 100
1.2 100 , 100 100 , 100 100, 100 100, 100

In addition, the average time complexity regarding differ-
ent travel time data sizes are displayed in Table VI.

TABLE VI: Time complexity for the enumerating method
and our approach on real data and real map (s)

100 500 1000 1500
Enumerating method 0.0703 0.0644 0.0607 0.0528

Our approach 0.0097 0.0248 0.0487 0.0684

Compared the Table V and Table VI with the results for
Scenario I, it is evident to tell that Scenario II shares the
similar pattern with Scenario I with respect to the accuracy
and the time complexity. Then it is reasonable to evaluate the
results in Scenario II by the analysis of Scenario I, which
also means that our approach is applicable for the real world
routing problem.

In summary, we can conclude that our approach works
well for various typical situations. Three advantages are
that it can handle the distribution, correlation and deadline
issues efficiently. Additionally, the proposed approach can
guarantee a comparatively high accuracy. More importantly,
our approach can almost achieve 100% accuracy if we
tolerate an error of 3.0% when the sampling data size is
comparatively large, i.e., not less than 1000. This claim is
reasonable since in real traffic planning, people may not be
concerned much on the difference between actual optimal
path and the path close to an optimal one. Besides, regarding
the time complexity, our approach is more efficient than



enumerating method within the same road network. Last but
not least, the proposed approach is satisfactorily applicable
to both the artificial and the real world routing service.

V. CONCLUSIONS AND FUTURE WORK

This paper aims at solving a stochastic shortest path
problem. The objective is to determine an optimal path that
maximizes the probability of arriving on time. We have
transformed the problem into a cardinality minimization
problem, and further used an L1 technique to solve the
problem. The simulation results on artificial and real-world
road networks have shown that the algorithm works well
under a variety of distributions. The performance is not
affected even when we consider the travel time dependencies.
Moreover, it can solve the problem with different deadlines.

In the future, we will improve the algorithm in the follow-
ing aspects. Firstly, the computation complexity in MILP is
still high. We will improve the computation complexity, e.g.,
using approximate/heuristic algorithms. Secondly, we will
theoretically study the proper amount of sampling data size
that guarantees satisfactory results, based on for example the
Chernoff-Hoeffding Bound [30]. Thirdly, extensive experi-
ments on real large-scale road networks will be conducted.
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