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Abstract
The performance of trust models highly depend on the characteristics of the environments

where they are applied. Thus, it becomes challenging to choose a suitable trust model for a given
e-marketplace environment, especially when ground truth about the agent (buyer and seller) behav-
ior is unknown (called unknown environment). We propose a case-based reasoning framework to
choose suitable trust models for unknown environments, based on the intuition that if a trust model
performs well in one environment, it will do so in another similar environment. Firstly, we build a
case base with a number of simulated environments (with known ground truth) along with the trust
models most suitable for each of them. Given an unknown environment, case-based retrieval algo-
rithms retrieve the most similar case(s), and the trust model of the most similar case(s) is chosen as
the most suitable model for the unknown environment. Evaluation results confirm the effectiveness
of our framework in choosing suitable trust models for different e-marketplace environments.

1. Introduction

In multiagent e-marketplaces, self-interested selling agents may act maliciously by not delivering
products with the same quality as promised. It is thus important for buying agents to reason about
the trustworthiness (quality) of sellers in providing good quality products and determine which
sellers to do business with. However, in such open and large environments, buyers often encounter
sellers with which they have no previous experience. In this case, buyers often obtain advice (i.e.,
ratings) about the sellers from other buyers (called advisors). However, some advisors may also be
dishonest and provide unfair ratings, to promote or demote some sellers (Irissappane et al., 2014).

Many trust models (Sabater & Sierra, 2005) have been proposed to assess seller trustworthiness,
some of which, such as BLADE (Regan et al., 2006), also address the unfair rating problem. How-
ever, the performance (accuracy in predicting seller trustworthiness) of trust models is often highly
affected by the environments where they are applied. Specifically, Fullam and Barber (2007) found
out that the performance of trust models is influenced by environmental settings such as frequency
of transactions, honesty of sellers and accuracy of advisors’ ratings. A detailed comparison between
BRS (Whitby et al., 2004), TRAVOS (Teacy et al., 2006) and Personalized (Zhang & Cohen, 2008)
(see Sec. 2 for details) has been conducted by Zhang (2009) in a simulated dynamic e-marketplace
environment. The results show that 1) BRS performs the best when buyers do not have much expe-
rience with sellers in the environment and the majority of advisors provide fair ratings about sellers;
2) TRAVOS has the advantage in the scenario where buyers have sufficient experience but advisors
only lie about some specific sellers and 3) Personalized fares well when the majority of advisors are
dishonest and sellers widely change their behavior over time.
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In addition, almost all trust models rely on certain tuning parameters which may significantly
affect their performance. For example, to identify a dishonest advisor, BRS uses the quantile pa-
rameter (q) to determine whether the trustworthiness of a seller falls between q quantile and 1 − q
quantile of the distribution formed by the advisor’s ratings to the seller. TRAVOS has the bin param-
eter to divide [0, 1] into bin number of equal intervals, and Personalized uses the parameter of the
minimum number of ratings required by buyers to have accurate modeling of seller trustworthiness.

Further, most trust models have only been evaluated in simulated e-marketplace environments,
where ground truth i.e., the actual truth about agents’ malicious behavior is known upfront, such as
whether sellers deliver products with lower quality than what they promised and whether advisors
provide unfair ratings. In simulated environments, the performance of trust models with specific
parameter values can be evaluated, and the best models can then be easily chosen. However, for real
e-marketplaces, it is difficult to obtain ground truth because it is expensive or time consuming to
manually inspect every transaction. Even if we manage to find ground truth for a few real environ-
ments, we cannot guarantee that the best models in these environments will be the most suitable for
all other environments. In addition, environments may keep changing, and a suitable model for an
environment in one period may not be so in another period. Thus, choosing suitable trust models for
real environments (where ground truth about agents’ behavior is unknown, hence called unknown
environments) is challenging and not well addressed, but important for practical applications.

In this paper, we propose a novel Case-Based Reasoning (CBR) framework to choose suitable
trust models for unknown e-marketplace environments. CBR is a well-known artificial intelligence
technique, which can be applied to complicated and unstructured problems relatively easily (Sormo
et al., 2005). The fundamental concept in CBR is that similar problems will have similar solutions,
with the advantage of learning continuously by just adding new cases to the case base. For the
problem of choosing trust models, a similar intuition is that if a trust model performs well in one
environment, it will do so in another similar environment. Thus, CBR becomes a suitable technique
to address the problem by finding the trust models that are suitable for similar e-marketplace en-
vironments (i.e., similar problems). Specifically, in the proposed framework, we first find out the
best trust models with their best parameter settings in a set of simulated environments, representing
the case base. For a given unknown real environment, we find the most similar case(s) from the
case base using case-based retrieval methods (Watson & Marir, 1994) such as k-nearest neighbors,
K-dimension (K-d) trees, decision trees, etc. The trust model of the most similar case(s) is then
chosen to be the most suitable trust model for the unknown environment.

The presented work is an extension to our previous work (Irissappane et al., 2013), which de-
scribes a simple framework to choose trust models using similarity based computation. In this
paper, we make a number of additional contributions: 1) we formalize the framework to choose
trust models using a case-based reasoning paradigm. Doing so, we have explored CBR techniques
i.e., case representation and retrieval methodologies, to choose suitable trust models in an efficient
manner; 2) we introduce additional case indexing and retrieval schemes, K-d trees and decision trees
apart from k-nearest neighbors; 3) we introduce feature weights (in addition to feature selection),
to improve the accuracy in determining the nearest neighbors in k-nearest neighbors and K-d tree
retrieval techniques. While the above are contributions from the research perspective, we have also
conducted more extensive and detailed experimentation to further demonstrate the effectiveness of
the framework. Experimental results show that with a very high probability, our framework can
choose the most suitable trust models to evaluate seller trustworthiness for different unknown envi-
ronments. Evaluations also indicate that seller trustworthiness evaluated using trust models chosen
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by our framework in a set of different e-market environments is more accurate than applying any
specific trust model with its best parameter values in those environments. Specifically, the additional
experiments: 1) justify the impact of using suitable trust models in e-marketplaces by demonstrating
that suitable trust models produce more accurate estimate of seller trustworthiness and help buyers
to make informed decisions, thereby resulting in greater utility for buyers than when using other
(unsuitable) trust models; 2) consider an extended data set by increasing the number of cases in the
case base from 972 to 2268 and show that the performance of the framework has improved using
a larger case base; 3) compare the accuracy of k-nearest neighbors, K-d trees and decision trees in
choosing suitable trust models and show that k-nearest neighbors and K-d trees outperform decision
trees, while performing equally well; 4) compare the time complexity of the retrieval techniques,
showing that decision trees require slightly lesser retrieval time than K-d trees, which in turn require
lesser time than k-nearest neighbors; 5) show that adding weights to the features while determin-
ing the nearest neighbors in k-nearest neighbors and K-d trees improves the accuracy in choosing
suitable trust models by a slight margin; 6) demonstrate that if the buyer chooses to aggregate the
outcomes of all the trust models to determine seller trustworthiness instead of using a single most
suitable trust model, it results in a high margin of error; 7) analyze the time complexity involved in
extending the framework by adding new features to represent the environments in the case base and
adding new defense models, both of which will improve the accuracy of the framework.

The rest of the paper is organized as follows. In Sec. 2, we provide an overview of the related
research on choosing trust models. We clearly point out the shortcomings of the existing approaches,
and explain how we cope with those shortcomings in our work. Sec. 3 describes the background on
case-based reasoning. The detailed description of the framework is presented in Sec. 4. Here, we
also describe how the framework can be extended to accommodate more trust models and different
e-marketplace environments. In Sec. 5, we present the experimental results using seven trust models
to demonstrate the accuracy of the framework (using k-nearest neighbors, K-d tree and decision tree
retrieval) in correctly selecting the most suitable trust models for unknown environments. Finally,
Sec. 6 concludes the current work and proposes future work.

2. Related Work

Trust Models Many trust models have been proposed in the literature. The Beta Reputation System
(BRS) (Jøsang & Ismail, 2002) models seller trustworthiness as the expected value of the beta
probability distribution of the (binary) ratings given by the advisors to the seller. To handle unfair
ratings provided by advisors, Whitby et al. (2004) extend BRS to filter out those ratings that are
not in the majority amongst other ones by using the Iterated Filtering approach. Specifically, if the
cumulated trustworthiness score of a seller falls in the rejection area (q quantile or 1−q quantile) of
the beta distribution of an advisor’s ratings to that seller, the advisor will be considered dishonest and
filtered out. However, the Iterated Filtering approach is only effective when a significant majority of
the ratings are fair, thereby leading to lower performance when the number of dishonest advisors is
large. Teacy et al. (2006) propose TRAVOS to evaluate advisor trustworthiness, using it to discount
their ratings before being aggregated to evaluate seller quality. TRAVOS divides the interval of
[0, 1] into bin number of equal bins to determine the previous advice provided by the advisor that
are similar to its current advice. Two pieces of advice are similar if they are within the same bin.
The trustworthiness of the advisor is then calculated as the expected value of the beta probability
density function representing the amount of the successful and unsuccessful interactions between
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the buyer and the seller based on the previous advice. However, this model assumes that sellers
behave consistently towards all the buyers in the e-marketplace, which might not be true in many
cases. Yu and Singh (2003) use belief theory to represent trustworthiness scores. To determine
seller quality, they rely on a referral network to find advisors, and thereby combine the beliefs of
the advisors regarding the seller. The referral process begins with the buyer initially contacting a
pre-defined number of neighbors/advisors, who may give an opinion about the seller or refer other
advisors and continues until termination is reached. The referral process terminates in success when
an opinion is received from an advisor and in failure when the depth limit of the referral network
is reached or when it arrives at an advisor who neither gives an opinion nor a referral. Weights are
also assigned to each advisor, in order to identify the deceptive ones.

The BLADE approach (Regan et al., 2006) applies Bayesian learning to reinterpret advisors’
ratings instead of filtering the unfair ones. By establishing a correlation between seller properties
and advisors’ ratings, the buyer can infer advisors’ subjective evaluation functions to derive certain
properties of the seller. Though the reinterpretation helps to cope with advisors’ subjectivity and
deception simultaneously, a significant amount of evidence (ratings) is required to accurately deter-
mine the behavior of the advisors. Thereby, BLADE cannot perform effectively in sparse scenarios,
where buyers do not have sufficient ratings to the sellers. In the personalized approach (Zhang &
Cohen, 2008), the trustworthiness of a seller takes into account both the buyer’s personal experi-
ence with the seller and the public knowledge about the seller. When the buyer has enough private
information about (personal experience with) the seller (determined by the minimum number of
transactions with the seller using the acceptable level of error ε and a confidence level γ), the buyer
uses private knowledge alone, otherwise it uses an aggregation of both the private and public knowl-
edge to compute the trustworthiness of the seller. A similar approach is used to compute advisor
trustworthiness. Noorian et al. (2011) propose Prob-Cog, a two-layered cognitive approach to filter
the ratings provided by advisors, based on the similarity between the ratings of the buyer and those
of the advisor and the advisors’ behavioral characteristics. In the first layer, advisors are filtered out
if the average difference between the advisors’ opinions and the buyer’s personal ratings exceeds a
threshold value µ. In the second layer, the approach recognizes the behavioral characteristics of the
advisors who have passed the first layer and subjectively evaluates their degree of trustworthiness.
The approach has the advantage that it proposed the idea to differentiate advisors’ behavior patterns.
However, Prob-Cog assumes advisors’ behavior to be consistent across all sellers, thereby making
it inefficient when they dynamically change behavior by behaving honestly towards some sellers
while being dishonest to others. The iCLUB approach (Liu et al., 2011) adopts a clustering tech-
nique DBSCAN, to filter out dishonest advisors based on local and global information. DBSCAN
works by grouping points which are density-reachable i.e., not farther away than a given distance θ
from each other. It also requires a pre-defined minimum number of points minPts to form a dense
region i.e., a cluster to be specified. In iCLUB, the DBSCAN clusters are formed using the ratings
given by the buyer and advisors to the sellers. For a target seller, if advisors’ ratings are not in the
cluster containing the active buyer’s ratings, the advisors are considered to be dishonest. When the
buyer has no sufficient direct experience with the target seller (number of transactions is less than
threshold τ ), the same process is applied on the non-target sellers.

As we can see, the performance of each trust model mentioned above varies depending on the
environmental settings (especially buyer and seller behavior), where they are applied. Each trust
model may not be the most suitable model for all the environments. Thus, for a given unknown
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environment, it is necessary to choose from among a pool of trust models, in order to accurately
assess seller trustworthiness and choose a good quality seller for a transaction.

Existing Frameworks to Choose Trust Models Only a few approaches have been proposed to
choose trust models. For example, Hang et al. (2009) make use of explicitly indicated trust relation-
ships by users in real-world systems (e.g., FilmTrust) to evaluate trust models. For a weighted graph
with vertices denoting agents and edges representing the direct relationship of trust from the agent
at the source vertex to the agent at the target vertex, the weight (extent of trust between the agents
at the vertices) of a particular edge can be determined from other relevant edges. For evaluation, an
edge is temporarily removed and the weight on the edge is estimated. The accuracy in predicting the
weight on the edge determines the effectiveness of the trust model. The major drawback with this
method is that users may lie about their trust relationships, which in turn may affect the evaluation
process. Some works (Wang et al., 2011; Irissappane & Zhang, 2014) use data from real-world
e-markets (e.g., eBay and Amazon) to evaluate the performance of trust models by their accuracy in
predicting ratings of given transactions (i.e., for each seller, the ratings of the previous i transactions
are used to predict the (i + 1)th rating to the seller). However, the ground truth about whether the
ratings of those transactions are unfair may be unknown. One may argue that we can rely on buyers
themselves to choose trust models because they know their true experience with sellers. But, it will
be costly for buyers to evaluate each trust model with various parameters in the given environment.

Closely related to our work is the Personalized Trust Framework (PTF) (Huynh, 2009) that se-
lects an appropriate trust model for a particular environment based on users’ choice. Here, users
can specify how to select a trust model based on the information about whose trustworthiness is
to be evaluated and the configuration of trust models. In the framework, 1) a subject whose trust-
worthiness is to be evaluated is first sent to the trust manager. The trust manager stores many trust
profiles which contain rules suggested by the end users, regarding which trust model to use for
which subject; 2) the trust manager matches the subject’s information with the trust profiles to find
a suitable trust model and initializes the trust engine for the selected model; 3) the selected trust
model then derives the trust value of the subject. PTF relies entirely on human intervention (users
specify rules to select trust models). Though it is possible to identify certain rules to determine the
most suitable trust model for some environments (e.g., BRS performs well when majority advisors
are honest, BLADE performs well when advisors have subjective differences, etc.), it is impossible
to know which models will perform the best in complex real world environments as they may have
a variety of buyer and seller behavior. Also, the ground truth about the honesty and subjectivity of
buyers and sellers is extremely challenging to determine, resulting in rules that will only be partial
and thus insufficient to accurately choose suitable trust models when using PTF. On the other hand,
in our case-based reasoning framework, we compare the properties of the unknown environment
with existing cases in the case-base using an automated approach and choose suitable trust models,
which are shown to be highly accurate through our experiments in Sec. 5.

3. Background

Case-Based Reasoning (CBR) is the process of solving new problems based on the solutions of
similar past problems. Conceptually, CBR is commonly described by the CBR-cycle (Aamodt &
Plaza, 1994). The CBR-cycle comprises of four activities: retrieve, reuse, revise and retain.

In the retrieve phase, one or more cases, similar to the new problem are selected from the case
base. Many case-based retrieval algorithms exist in literature (Watson & Marir, 1994). Nearest
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neighbor techniques (Duda & Hart, 1973) are perhaps the most widely used retrieval techniques
in CBR. Distance measures such as Euclidean distance can be employed to identify the nearest
neighbors (cases). Despite its simplicity, nearest neighbor retrieval has been successful in a large
number of classification problems (Hastie et al., 2009). However, when the case base grows, the
efficiency of retrieval decreases, because an increasing number of cases must be taken into account
to find the most similar case. K-d trees (Wess et al., 1994), which organize the case base into
a binary tree structure have been shown to reduce the complexity in the retrieval of the nearest
neighbors. Alternatively, inductive retrieval algorithms (Soltani, 2013; Watson, 1999), determining
which features do the best job in discriminating cases and generate a decision tree type structure to
organize the cases in memory, can also be used to improve retrieval efficiency.

When one or more similar cases have been retrieved, the solution (or other problem solving
information) contained in these cases is reused to solve the current problem. Reusing a retrieved
solution can be quite simple, if the solution is returned unchanged as the proposed solution for the
new problem. This is specifically the case for classification tasks with a limited number of solutions
(classes) and a large number of cases. In such scenarios, every potential solution is contained in the
case base and hence adaptation is usually not required. On the other hand, for synthetic tasks (such
as configuration or planning) solution adaptation for the new problem is necessary.

In the revise phase, the solution determined so far is verified in the real world and possibly
corrected or improved, e.g., by a domain expert. Finally, the retain phase takes the feedback from
the revise phase and updates the knowledge, particularly the case base and the new problem solving
experience becomes available for reuse in future problem solving episodes.

The major challenge in CBR resides in the retrieval of existing cases that are sufficiently similar
to the new problem. Since e-marketplace environments with ground truth (existing cases) may not
exist (or may be difficult to obtain), in our framework, we have to create them by simulations. In
addition, in our framework, the features (characteristics of the e-marketplace environments) used
to represent the cases in the case base are not known beforehand. We thus have to come up with
an exhaustive list of potential features (to describe the e-marketplace) and carefully select the most
relevant ones, in order to efficiently choose suitable trust models.

4. The Proposed Case-Based Reasoning Framework

Fig. 1 illustrates the detailed design of the framework. The most important component of the frame-
work is the case base. To build the case base, we first simulate a large set of e-marketplace envi-
ronments with known ground truth about the honesty of agents’ behavior. Given a set of available
trust models with specific values of their parameters (referred to as candidate trust models), we
evaluate their performance in each simulated environment, where the best model is identified and
forms a best environment-model pair (representing a case in the case base). In this process, we also
choose the most relevant features to represent the cases, for efficient retrieval. Given an unknown
real environment, the framework then extracts the set of carefully selected (most relevant) features
and determines the most similar case(s) from the case base using case-based retrieval techniques.
The trust model of the most similar case(s) is then reused as the solution for the unknown real envi-
ronment. The given unknown environment along with the most suitable trust model is then retained
in the framework for reuse in the future problem solving episodes. The major components of the
framework and the detailed procedures are described in the following subsections.
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Figure 1: Design of the case-based reasoning framework

4.1 The Case Base

CBR is heavily dependant on the structure and content of the case base. In our framework, a case
in the case base is described by an e-marketplace environment (represented by a set of carefully
selected features) along with the trust model which performs the best in the environment. Unlike
other domains, real e-marketplace environments with ground truth about the honesty of sellers and
buyers are rare and may not exist, hence it becomes challenging to build the case base. We will
mainly rely on simulations to create the existing cases in the case base.

E-Marketplace Environments An e-marketplace environment (E) consists of a set of sellers, a
set of buyers, transactions (each of which is between a seller and a buyer with a certain monetary
value) and ratings (each of which is given by a buyer to a seller at a specific time indicating whether
the buyer is satisfied or not with the transaction). So, E is a tuple,

E = 〈S,B, {Ts,b |s = 1...Ns, b = 1...Nb} , {Rs,b |s = 1...Ns, b = 1...Nb}〉 (1)

where S represents the set of all sellers, B represents the set of all buyers, Ns and Nb are the
numbers of sellers and buyers in E, respectively. Rs,b denotes the set of ratings from buyer b to
seller s for the transactions Ts,b . Each rating rs,b ∈ Rs,b for the transaction ts,b ∈ Ts,b is a tuple,

rs,b = 〈id, s, b, hs, hb, t, val〉 (2)

where id, s, b denote the rating index, index of the seller and that of the buyer, respectively.
hs(∈ [0, 1]) and hb(∈ {honest, dishonest}) denote the ground truth i.e., the actual seller trust-
worthiness and honesty of the buyer for this transaction, respectively. A dishonest seller (with low
trustworthiness) may advertise its products having high quality but actually deliver low quality ones
or not deliver at all. Also, a dishonest buyer may lie about its satisfaction level of a transaction by
providing an unfair rating. The hs and hb attributes help to distinguish such dishonest behaviors
from the honest ones. The time (integer value denoting the day of simulation) when the rating is
given is denoted by t. val denotes the actual value of the rating, which can be binary (e.g., 0 or 1),
multi-nominal (e.g., 1 - 5) or real (e.g., in the range [0, 1]).

There are two types of environments in our framework: 1) known environments (Eknown ), where
the ground truth about seller and buyer honesty is known. The known environments along with their

7



most suitable trust models help in building the case base for our framework; 2) unknown environ-
ments (Etest ) are those where ground truth is not known. They represent the test environments for
which the most suitable trust models need to be determined.

To build the case base, we will simulate a large number of Eknown environments, to cover as
many scenarios as possible and closely depict real-world environments. For example, we may simu-
late an environment with many sellers but fewer buyers (to represent a high provision e-marketplace)
or with many buyers but fewer sellers (to illustrate a competitive e-marketplace). We may simulate a
very sparse environment with few ratings provided by buyers, and a very dense environment where
each seller is flooded with a large number of ratings. We may also simulate different scenarios
where buyers are active or inactive in providing ratings. In these environments, we may also sim-
ulate sellers with different levels of honesty, and buyers launching different types of unfair rating
attacks (Hoffman et al., 2009), including for example, unfair ratings to only reputable or disrep-
utable sellers, a lot or few unfair ratings, unfair ratings given in a short or long time period, etc.

Candidate Trust Models As exemplified in Sec. 2, many trust models have been proposed to
evaluate seller trustworthiness in e-marketplaces. New trust models will also likely be proposed in
the future. All these trust models can be considered as candidate trust models in our framework. In
addition, most of them have some parameters to tune, which may result in different performance.
Thus, a candidate trust model (TM ) is defined as a trust model with a specific value for each of its
parameters. For a parameter varying in a range, we divide its range into a number of equal intervals
and randomly choose a value in each interval. Ideally, the larger number of intervals is better.

Feature Extraction and Selection To formally represent an environment in the case base, each en-
vironment can be described by a set of features, representing the characteristics of the environment
(e.g., ratio of number of buyers versus sellers, variance of ratings per seller or per buyer, average
number of transactions per time period, percentage of rated sellers, etc.). An exhaustive list of
potential features is extracted from which the most relevant features can be identified and used to
represent the environment, in order to reduce the computational cost and increase the efficiency of
the framework. If F = {f1, ..., fn} is the set of all features and P (F̂ ) be the performance of the
framework while using a subset F̂ ⊂ F of features. The most relevant subset of features F̂ ∗ is
chosen such that the framework achieves the best performance, formalized as follows:

F̂ ∗ = arg max
F̂⊂F

P (F̂ ) (3)

Before constructing the case base, we simulate another set of e-marketplace environments and
evaluate the performance of our framework in these environments using all the possible features.
The features whose values significantly correlate to the performance of the framework are deter-
mined using five widely used correlation and regression analysis techniques, namely Pearson corre-
lation, Kendall rank correlation, Spearman rank correlation, linear regression (backward) and linear
regression (stepwise). The results of the correlation are also analyzed by the Paired-Samples T-test
to check for statistical significance. Each correlation and regression analysis technique results in a
subset of significantly relevant features recognized by that technique (F̂ ⊂ F ). The most influential
set of features (F̂ ∗) is then determined1 from the five subsets of features (each recognized by the
above five techniques, respectively) using Eqn. 3, the details of which will be presented in Sec. 5.1.
Thereby, only the features in F̂ ∗ will be used to represent the environments in the case base.

1. This feature selection process will be used to determine the most influential features only while using k-nearest
neighbors, K-d tree retrieval and not decision trees as it employs its own embedded feature selection methodology.
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Best Environment-Model Pairs Given a set of known environments and a set of candidate trust
models, we find out in each environment (Eknown), which candidate model (TM ) shows the best
performance. Specifically, the performance P (Eknown, TM) is measured in terms of a performance
metric, such as the Mean Absolute Error (MAE) in determining seller trustworthiness, given by
Eqn. 4, where T trues and T predicteds represent the actual and predicted trustworthiness of seller s,
respectively. The lower the MAE, the better is the performance of the trust model. The above
evaluations result in a set of best environment-model pairs (Eknown, TM

∗), which form the case
base. If several models perform equally best in an environment, we keep them all in the case base.

MAE =
1

Ns

∑
s∈S
|T trues − T predicteds | (4)

4.2 Case Retrieval

Given an unknown environment Etest, case-based retrieval algorithms will retrieve the most similar
case(s), (Eknown, TM) pair(s), whose simulated environment Eknown is the most similar to Etest.
Every retrieval algorithm is a combination of a procedure for searching the case base to find the
most similar case and a similarity assessment procedure, which determines the similarity between
the given unknown environment Etest and a known environment Eknown in the case base.

Firstly, we will consider the structural manner in which cases are represented in the case base,
which plays a major role in the efficient retrieval of cases. The choice of such case representation
chiefly depends on the type of problems the CBR system is intended to solve, varying from relatively
simple feature-value vectors, to complex data-structures. In the framework, we propose to represent
the case base using two structural representations (Watson & Marir, 1994): 1) flat representation; 2)
hierarchical representation, and analyze the performance of the framework in both scenarios.

Flat Representation The simplest format to represent the cases in the case base is to have simple
feature-value vectors for the environments (Eqn. 5), obtained from the most influential features
(more suitable for cases with numeric feature values). In this flat memory model, all cases are
organized at the same level and no relationships between features or between cases are shown.

E =< fi | ∀fi ∈ F̂ ∗ > (5)

Classical nearest neighbor (Duda & Hart, 1973) retrieval is a method of choice for the retrieval
of the cases with flat representation, as shown in Fig. 2. Given an unknown environment Etest, it is
compared with the cases in the case base and similar cases are found according to the similarity in
the features between Etest and Eknown environments, measured in terms of Euclidean distance,

dist(Etest, Eknown) =

√ ∑
fi∈F̂ ∗

(Etest(fi)− Eknown(fi))2 (6)

TM∗ = arg max
TM∈TM

N(TM) (7)

Additionally, we can also assign weights to the different features while calculating the distance in
Eqn. 6. In k-nearest neighbors, k cases, which are closest to Etest based on similarity, are retrieved
and the most similar case(s) are chosen by a majority vote, such that the suitable trust model of the
most similar case(s) occurs the maximum number of times among the k closest cases, as shown in
Eqn. 7, where N(TM) represents the number of times the trust model TM appears in the k closest
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cases, TM represents the set of all candidate trust models in the framework and TM∗ represents the
trust model of the most similar case(s), which is the most suitable trust model for Etest.

The retrieval time in this memory organization is very high (O(|C|), where |C| is the number
of cases in the case base), since for each retrieval, all the cases in the case base must be compared
to the target case Etest, making it unsuitable for large case bases. However, this approach has been
verified to provide maximum accuracy and easy retention.

Most Suitable 
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Case Base

 

(Environment, Model)

Feature Values of 

Unknown Environment

Unknown 
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Case Retrieval

Case Reuse

Case 

Representation

Majority Vote

Flat Storage
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Figure 2: k-Nearest Neighbors retrieval

Hierarchical Representation For a more efficient and rapid retrieval, a more structured repre-
sentation of the cases is necessary, because only a small subset of cases is needed to be considered
during the retrieval from a large case base. Following a hierarchical representation helps to organize
cases which share similar features under a more generalized structure. We demonstrate the use of
two hierarchical tree structures which differ in their method of indexing (assigning indices to cases)
but improve the efficiency of retrieval to a great extent.

K-d Trees Traditionally, K-dimensional (K-d) tree representation has been demonstrated to be
very useful to reduce the retrieval time of the similar cases using nearest neighbors (Wess et al.,
1994). K-d tree, where K represents the number of feature dimensions representing a case (i.e.,
K = |F̂ ∗|), is a multi-dimensional binary search tree that splits the case base into groups of cases
in such a way that each group contain cases that are similar to each other according to a given
similarity measure. Each node in the K-d tree splits all its children along a specific feature, using
a hyperplane that is perpendicular to the corresponding axis. At the root (which contains the entire
case base), all children are split based on the first feature (f1 ∈ F̂ ∗), i.e., cases with f1 less than
(or equal to) the root will be in the left sub-tree and those greater than the root will be in the right
sub-tree, as shown in Fig. 3. Each level down the tree divides the cases on the next feature fi ∈ F̂ ∗,
returning to the first dimension f1 once all other features have been exhausted. The leaves of the
tree which contain a specific number of cases are called buckets. For partitioning, the median point
of the feature (f1 = m1 as shown in Fig. 3) is selected for the root node and all cases with a smaller
value (than m1 for f1) are placed to the left and larger to the right. A similar procedure is followed
for the left and right sub-trees until the last trees to be partitioned are composed of few cases (not
more than bucketsize).
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For retrieval, a recursive search procedure is adopted. A queue containing k most similar cases
is maintained throughout the search. If the search examines a leaf node, the similarity of each case
in the bucket with the given unknown environment Etest, is computed using Eqn. 6 as in k-nearest
neighbors and the queue is updated. In case of a non-leaf node, the search is recursively called on
the child node, where Etest belongs (by comparing the features of Etest with the partitioning value
at each node). When this recursion terminates (at the non-leaf node), it is tested whether the other
child of the node needs to be examined (if the geometric boundaries delimiting the cases under the
node overlap the ball centered at Etest with radius equal to the similarity of the kth nearest neighbor
encountered so far, then the other child needs to be examined, and can be ignored otherwise). The
procedure (unwinding the recursive search) is repeated until the root is reached. After determining
the k most similar cases (present in the queue), the most suitable trust model is determined using
Eqn. 7. The average retrieval time for determining the k most similar cases in K-d trees is found to
be O(k × log|C|), where |C| is the size of the case base.

Decision Trees Another hierarchical organization frequently used in CBR is Decision trees. De-
cision trees are induction-based models (Soltani, 2013) which learn general domain-specific knowl-
edge from a set of training data and represent the knowledge in the form of trees. Decision trees
(when compared to the other classes of learning methods), are quite fast, can be directly applied to
the training data without much pre-processing and produce relatively interpretable models (Hastie
et al., 2009). Unlike k-nearest neighbors and K-d trees, which use similarity based retrieval tech-
niques, decision trees learn rules in order to determine the most suitable trust model. They also have
an implicit feature selection process. Each node in the decision tree specifies a test of some feature
attribute (e.g., f1 in Fig. 4), and each branch descending from that node corresponds to possible
values (e.g., f1 ≤ v1 in Fig. 4 ) for this feature attribute. In making these trees, how much a feature
can discriminate the cases is calculated (e.g., with information gain of cases) and the feature with
highest discriminative power is located at the top of the tree. The calculation is again performed for
the remaining features, thereby building the tree in a top-down fashion. The solution i.e., the most
suitable trust model is located at the leaves of the tree.
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Algorithms developed for decision trees are mostly the variations of a top-down, greedy search
algorithm exemplified by ID3 (Quinlan, 1986) and its successor C4.5 (Quinlan, 1993). The algo-
rithms construct the decision tree using the divide and conquer strategy i.e., they build the decision
tree by recursively dividing the case base into subsets according to a splitting criterion called the
information gain ratio. The intuition is to partition the case base in such a way that the information
needed to classify a new case is reduced as much as possible. Eqn. 8 represents the information gain
(discriminative power) for a feature fi ∈ F , regarding a set of cases C in the case base.

InformationGain(fi, C) = Entropy(C) −
∑

v∈V (fi)

|Cv|
|C|

Entropy(Cv) (8)

where, Entropy(C) =
∑

TM∈TM
−p(TM) log2 p(TM) (9)

V (fi) is the set of all possible values for feature fi and Cv ∈ C is a set of cases with feature fi
taking the value v. p(TM) is the proportion of cases in the case base for which trust model TM
is the most suitable. Since decision trees have such a built-in feature selection methodology, with
the most influential features selected and used in building the decision tree, we do not employ the
feature selection process described in Sec. 4.1 before the case retrieval using decision trees, as it
might affect the retrieval accuracy otherwise. For retrieval, features of the unknown environment
(Etest) are compared with nodes in the tree, until it gets to one of the leaves that contains the most
suitable trust model (TM as shown in Fig. 4).

4.3 Case Reuse

After retrieving the most similar case(s) (using retrieval methods as discussed in the previous sub-
section) to the target case (Etest), the framework needs to reason according to the retrieved cases
to find a reasonable and accurate solution (most suitable trust model) for Etest. The reuse of the
solution can be done in two ways (Soltani, 2013): 1) reusing the solution of the retrieved case
as the solution for the target case without any adaptation (applicable to classification problems);
2) adapting the retrieved solution to the target case, which is necessary for problem-solving tasks
such as design, configuration, and planning. Since we deal with a classification problem, by iden-
tifying to which class (candidate trust model in our case) a given unknown environment belongs,
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we do not perform any adaption and simply reuse the solution of the retrieved case(s)2. Thereby,
our framework will choose the trust model of the retrieved case(s) as the most suitable model for
Etest (using k-nearest neighbors and K-d trees, while for decision tree retrieval the framework will
directly choose the trust model suggested by the decision tree as no similar case(s) will be retrieved).

4.4 Case Retain

Case-based reasoning favors learning from experience. After choosing to reuse a solution from the
retrieved case(s) for Etest, it may be found that the solution is, in fact, incorrect, thus providing an
opportunity to learn from failure. Our framework offers a simple procedure, where the case solution
is evaluated and if the solution is incorrect, it is revised and the best solution for Etest is found.
Then the new case along with the best trust model (Etest, TM∗) is retained in the case base (Fig. 1).

The proposed case-based reasoning framework is generic and can be further extended or concretized
in the following aspects: 1) whenever a new trust model is proposed, it can be added into the frame-
work. Our framework is capable of taking advantage of the trust model to improve the performance
in evaluating seller trustworthiness; 2) whenever a new insightful feature is identified, it can be
added into the framework to participate in the feature selection process and in fact may further
improve the performance of the framework; 3) more promising feature selection methods such as
incremental hill-climbers (Wettschereck & Aha, 1995), a wrapper model to measure the importance
of features, can be adopted to enhance the performance of the framework and 4) more sophisticated
memory representations can be used for a more efficient and fast retrieval of the cases.

5. Experimentation

We instantiate our framework and conduct a series of experiments to demonstrate its effectiveness in
choosing suitable trust models. Firstly, we build the case base by generating a number of simulated
environments and finding the most suitable trust models for them. In this process, we also determine
the most influential features to represent the simulated environments in the case base. We then
generate unknown (both simulated and real) environments for testing and verify the performance of
the framework in choosing the best trust models for these unknown environments. We also compare
the performance of k-nearest neighbors (k-NN), K-d tree (K-dT) and decision tree (DT) retrieval
techniques, in finding the most suitable trust model for the given unknown environments.

5.1 The Case Base

Simulated Environments In the framework, 2268 e-marketplace environments (Eknown) are sim-
ulated, consisting of different numbers of sellers (chosen from {10, 25, 50}) with different levels
of trustworthiness T trues , uniformly distributed over [0, 1]. Sellers provide good quality products
with a probability T trues when interacting with each of the buyers. Honest buyers always provide
correct opinions (similar to the actual seller trustworthiness T trues ) about the sellers, while dishonest
buyers3 provide unfair ratings4 i.e., incorrect opinions which are complimentary to the actual seller
trustworthiness (1− T trues ). We simulate different distributions of fair ratings given by honest buy-

2. For more than one most similar cases, with different solutions, we randomly choose one of the solutions.
3. Buyers providing incorrect opinions due to subjective differences or ignorance are also considered dishonest.
4. Ratings in simulated environments are of the real type for being easily mapped to other types (binary, multi-nominal).
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ers: 1) sparse, where a honest buyer rates a seller at most once; 2) intensive, where a honest buyer
rates a seller more than once; 3) mixed, which is combination of sparse and intensive scenarios.
We also simulate different unfair rating attack scenarios for dishonest buyers by adjusting 4 pa-
rameters: 1) individual attack frequency denoting the average number of unfair ratings provided by
each dishonest buyer which exhibit sparse, intensive or mixed behavior; 2) attack period referring
to the period when unfair ratings are given, where 7 and 100 denote that dishonest buyers provide
unfair ratings over one week (a concentrated attack) and 100 days (a distributed attack), respec-
tively. While dishonest buyers provide unfair ratings during the attack period, they behave honestly
by providing fair ratings outside the attack period. This helps to simulate dynamic environments
where buyers change their behaviors; (3) attack target taking a value of 0 or 1, indicating that attack
targets are sellers with low trustworthiness (T trues ≤ 0.5) or high trustworthiness (T trues > 0.5),
respectively; 4) overall attack rate denoting the ratio of number of unfair ratings to fair ratings,
chosen from {0.25, 1, 4}. Through the parameters of individual attack frequency and overall attack
rate, the numbers of dishonest and honest buyers are determined. The marketplaces operate for 100
days. The total number of ratings is chosen from {50, 75, 100, 150, 175, 200, 250}. We also limit
the total number of ratings to {50}, {50, 100}, {50, 100, 200} and {50, 100, 175, 250} to simulate
324, 648, 972 and 1296 environments, respectively, in order to examine the influence of the number
of simulated environments (size of the case base) on the performance of our framework.

Candidate Trust Models The framework includes 7 representative trust models: BRS (Whitby
et al., 2004), iCLUB (Liu et al., 2011), TRAVOS (Teacy et al., 2006), Personalized (Zhang & Cohen,
2008), Referral Networks (Yu & Singh, 2003), BLADE (Regan et al., 2006) and Prob-Cog (Noorian
et al., 2011). The following parameters (as described in Sec. 2) are considered to design the candi-
date trust models: 1) for BRS, the quantile parameter q ∈ {0.05, 0.1, 0.3, 0.5}, which is used to filter
dishonest buyers is considered; 2) for TRAVOS, the number of bins to determine the acceptable er-
ror level in buyers’ ratings bin ∈ {2, 3, 5, 8, 10} is considered; 3) for Referral Networks, number
of neighbors ∈ {2, 4, 6} and depth limit of referral networks ∈ {4, 6, 8} are considered; 4) for Per-
sonalized, error level ε ∈ {0.3, 0.5, 0.7} and confidence level γ ∈ {0.3, 0.5, 0.7} are considered;
5) for Prob-Cog, we consider the threshold to filter out dishonest buyers µ ∈ {0.1, 0.2, . . . , 0.9};
6) for iCLUB, we consider the minimum number of ratings required to form a DBSCAN cluster
minPts ∈ [1, 6], maximum neighbor distance θ ∈ [0.3, 0.7] and threshold to choose the local or
global component τ ∈ [3, 6]. In the end, we obtain 45 candidate trust models (TM) in total.

Feature Selection We consider a set of 18 potential features (F ) to analyze the characteristics of
the simulated environments, as listed in Table 1. We use some general statistical metrics to describe
the features. For example, variance refers to the spread of values, skewness describes the asymmetry
from the normal distribution, etc. A satisfactory seller refers to the one who receives more positive
ratings than negative ones from buyers. An active buyer refers to the buyer, who provides at least
one rating to any seller. The feature values for the simulated environments are extracted using the
parameters to generate the simulated environments, as described in the above subsection. Since the
features (in Table 1) do not depend on the ground truth (buyer and seller honesty), it is also easier
to extract such feature values for unknown environments (with no ground truth).

To select the most relevant features (for efficient retrieval using k-NN and K-dT), we adopt the
five correlation and regression analysis techniques mentioned in Sec. 4.1. The results of the analysis
of the 18 features on how they are correlated to the performance (MAE) of the framework is shown
in Table 1. Here, ’*’ denotes that the feature has a significant correlation (after Paired-Samples
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Table 1: Selection of the most relevant features
Features Pearson Kendall Spearman Backward Stepwise All

(C1) (C2) (C3) (C4) (C5) (C6)
1 Variance of the Percentage of Ratings for each Seller ∗ ∗
2 Avg. Number of Ratings Provided by each Buyer for each Seller ∗ ∗ ∗ ∗ ∗ ∗
3 Ratio of Number of Buyers versus Number of Sellers ∗ ∗ ∗ ∗
4 Skewness of Rating Period ∗ ∗ ∗ ∗
5 Variance of Percentage of Ratings Provided by each Buyer ∗ ∗ ∗ ∗ ∗ ∗
6 Skewness of Number of Ratings Provided by each Buyer ∗ ∗ ∗
7 Percentage of Satisfactory Sellers ∗ ∗ ∗ ∗ ∗ ∗
8 Number of Buyers ∗ ∗ ∗ ∗ ∗
9 Avg. Number of Ratings for each Seller ∗ ∗ ∗ ∗ ∗ ∗

10 Variance of Number of Ratings provided by each Buyer ∗ ∗ ∗
11 Total Number of Ratings ∗ ∗ ∗ ∗ ∗ ∗
12 Variance of Number of Ratings for each Seller ∗ ∗ ∗ ∗ ∗ ∗
13 Skewness of Number of Ratings for each Seller ∗ ∗ ∗ ∗ ∗
14 Avg. Number of Transactions in each Day ∗ ∗ ∗
15 Total Percentage of Sellers Rated by Buyers ∗ ∗ ∗ ∗ ∗ ∗
16 Time Period the Marketplace Operates ∗ ∗ ∗ ∗
17 Maximum Percentage of Ratings for Sellers ∗ ∗ ∗ ∗ ∗
18 Total Percentage of Buyers who are Active in the Marketplace ∗ ∗ ∗ ∗

T-test) to the performance of the framework. In Table 1, columns C1, C2, C3, C4 and C5 represent
the combination of the features flagged with ‘*’. C6 represents a combination of all the features.
To verify the effectiveness of the 6 feature combinations, we randomly generate a large number of
unknown environments and compare the results. We obtain an average MAE (using k-NN retrieval5)
of 0.44, 0.36, 0.36, 0.25, 0.33, 0.32 for the combinations C1, C2, C3, C4, C5 and C6, respectively.
C4 has the lowest MAE and is chosen as the set of most influential features (F̂ ∗), by Eqn. 3. The
features in C4 will be used for comparing the unknown and simulated environments in the rest of
the experiments (using k-NN and K-dT retrieval to obtain the similar case(s) for Etest).

Best Environment-Model Pairs For each simulated environment, we find out the best candidate
trust model based on the performance metric MAE. MAE is a suitable metric to assess the perfor-
mance of the trust models because accurately determining the trustworthiness of sellers helps buyers
to choose good transaction partners, thereby increasing their utility in the long run (as demonstrated
by the experiments in Sec. 5.4). We first calculate the MAE of all candidate trust models in pre-
dicting seller trustworthiness for the simulated environments and select the one with the lowest
MAE value. Here, we also compute the difference in MAE (for each seller in the e-marketplace
environment) between pairs of trust models to assess if the MAE values of the most suitable trust
model is significantly better than all the others (using Paired-Samples T-test). In the end, we obtain
3664 best environment-model pairs6 (Eknown, TM

∗), which form the case base for the framework.
Fig. 5(a) illustrates the number of simulated environments in the case base where each candidate
trust model achieves the best performance, which are 733, 306, 448, 979, 190, 253 and 755 for
BRS, iCLUB, TRAVOS, Personalized, Referral, BLADE and Prob-Cog, respectively. The numbers
indicate that the case base contains sufficient number of cases for each trust model. A sample case
i.e., (Eknown, TM∗) is shown in Eqn. 10. Here Eknown is described by the 18 features (we show
all the features considered before the feature selection process for clarity) in the order as mentioned
in Table 1 and TM∗ is the BLADE model for this environment.

5. K-d tree retrieval obtains similar MAE values.
6. A simulated environment can have more than one most suitable trust model (which do not significantly outperform

each other) with the lowest MAE.
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(Eknown, TM
∗) =(< 0.30, 0.09, 18.2, 0.04, 0.4, 2.5, 0.6, 182, 19, 0.36, 200, 0.18,

4.3, 2, 1, 100, 0.62, 0.2 >,BLADE)
(10)

5.2 Case Retrieval Algorithms

We analyze the performance of k-NN, K-dT and DT retrieval techniques in identifying suitable trust
models for unknown environments.
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Figure 5: (a) No. of times each trust model is selected as the most suitable model for simulated

environments; (b) Influence of k on the MAE in determining seller trustworthiness using
k-NN and K-dT

We randomly generate 972 unknown environments (using different values for the parameters to
generate the simulated environments) and evaluate the performance of k-NN and k-dT in choosing
suitable trust models, for different values of k. Table 2 presents the influence of k on the accuracy
of choosing the most suitable trust models (with the most suitable parameters) for the 972 randomly
generated unknown environments, using k-NN and k-dT retrieval techniques. Correct Model indi-
cates that the trust model chosen is the same as the best model identified by evaluating all candidate
trust models in the given unknown environment. Correct Model and Paras indicates that the correct
trust model is chosen with the appropriate tuning parameters. Also, ε = 0.05 is a tolerance value,
indicating that the difference between the MAE of the chosen trust model and that of the truly most
suitable model is within ε. We find that the accuracy in choosing the correct trust models (with pa-
rameters) is the highest when k = 3 and acceptable when k = 1, 2 for both k-NN and K-dT. For k
values greater than 3, the performance decreases, signifying that the boundaries between the classes
(candidate trust models) become less distinct. Fig. 5(b) shows the MAE in determining seller trust-
worthiness (corresponding to the accuracy in Table 2), when the value of k is increased from 1 to
10. k-NN and K-dT obtain similar MAE values in determining seller trustworthiness for different
values of k. Again, we find that when k ∈ {2, 3}, the lowest MAE (0.24) is achieved. Hence, we
will use k = 3 for all the experiments (using k-NN and K-dT) in this paper.

For K-dT retrieval, we use the weka implementation (median based partitioning with a maxi-
mum of 20 instances in a leaf node). The K-d tree is built using the 3664 best environment-model
pairs (described in the previous subsection). For the DT retrieval, we use the C4.5 algorithm (J48
weka implementation with pruning confidence 0.25 and minimum number of instances as 2, which
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Table 2: Influence of k on the accuracy of the framework
k-NN k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Correct Model 94.0% 96.0% 97.0% 89.0% 82.0% 76.0% 75.0% 73.0% 71.0% 71.0%
Correct Model with ε 97.0% 97.0% 99.0% 91.0% 84.0% 78.0% 77.0% 75.0% 73.0% 73.0%
Correct Model and Paras 92.0% 94.0% 97.0% 85.0% 77.0% 71.0% 69.0% 67.0% 65.0% 65.0%
Correct Model and Paras with ε 96.0% 97.0% 98.0% 87.0% 79.0% 73.0% 71.0% 69.0% 67.0% 67.0%
K-dT k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Correct Model 94.0% 95.0% 97.0% 89.0% 83.0% 76.0% 75.0% 74.0% 72.0% 71.0%
Correct Model with ε 96.0% 97.0% 98.0% 92.0% 84.0% 78.0% 76.0% 75.0% 73.0% 73.0%
Correct Model and Paras 91.0% 94.0% 97.0% 86.0% 78.0% 71.0% 69.0% 68.0% 65.0% 65.0%
Correct Model and Paras with ε 95.0% 96.0% 98.0% 87.0% 79.0% 73.0% 71.0% 69.0% 67.0% 66.0%

are the default values). The decision tree is also built using the 3664 best environment-model pairs,
which will then be used to find the most suitable model for the unknown environments.

5.3 Unknown Environments for Testing

The framework is evaluated using 6 categories of unknown environments Etest (where ground truth
about seller and buyer honesty is in fact known) in both normal and extreme scenarios.

Unknown Random Environments are generated using parameter values different from simu-
lated environments such as: 1) number of sellers ∈ {33, 66, 99}; 2) total number of ratings ∈
{333, 666, 999}; 3) ratio of number of unfair ratings versus fair ratings ∈ {0.1, 1, 10}; 4) time
period of attacks ∈ {50, 100}, from which 100 environments are randomly chosen for testing.

Unknown Real Environments Real data is obtained from IMDB.com, where users rate movies
directed by different directors. We remove outlying ratings and select only directors whose movies
are very highly rated (resulting in 40 different directors, with 1142 movies rated by 188 users). We
then simulate 3 types of unfair rating attacks, namely RepBad, RepSelf and RepTrap (Yang et al.,
2008), to bad-mouth targeted directors (sellers in our case). We also employ a combination of these
attacks. Finally, we generate 48 real environments with simulated attacks.

Large Environments 160 environments where number of sellers is larger than 50, number of
ratings is larger than 100 and number of buyers is larger than 80 are generated.

Extremely Sparse Environments are those where buyers do not provide sufficient ratings. Specifi-
cally, each buyer gives an average of 0.1 ratings to sellers. We generate 36 such environments where
the number of sellers is 10, total number of ratings is 100, and overall attack rate ∈ {0.25, 1, 4}.
Environments with Dynamic Buyer and Seller Behavior 35 environments (number of sellers is
10 and total number of ratings is 50) where sellers/buyers change their behavior dynamically are
generated. Sellers change their behavior by providing complimentary quality products (than previ-
ously presented) after a random period of operation in the e-market. (Dishonest) buyers change their
behavior by providing unfair ratings only during specific periods and behaving honestly, otherwise.

Environments with Many Attacks 24 environments with intensive attacking scenarios, where
attack rate is larger than 10 are generated. We specifically use real data from IMDB.com and
simulate RepBad, RepSelf, RepTrap attacks and their combination.

17



5.4 Experimental Results

Performance Comparison in Unknown Random and Real Environments Table 3 presents the
accuracy of our framework in choosing the most suitable trust models (with the most suitable param-
eters) in unknown random and real environments (using k-NN, K-dT and DT retrieval techniques).
As mentioned in Sec. 5.2, a correct selection indicates that the trust model chosen is the same as the
best model identified by evaluating all candidate trust models in a given unknown environment and
ε is the tolerance value, indicating that the difference between the MAE of the chosen trust model
and that of the truly most suitable model is within ε.

Table 3: Accuracy of choosing most suitable trust models (with parameters) for unknown random
and real environments

Unknown Random Environments
k-Nearest Neighbors (k-NN) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 81.0% 84.0% 92.0% 96.0% 97.0%
Correct Model with ε 87.0% 89.0% 95.0% 98.0% 98.0%
Correct Models and Paras 72.0% 76.0% 82.0% 96.0% 97.0%
Correct Model and Paras with ε 85.0% 86.0% 94.0% 97.0% 98.0%
K-d Trees (K-dT) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 80.0% 84.0% 92.5% 95.0% 97.0%
Correct Model with ε 87.0% 90.0% 95.0% 98.0% 98.0%
Correct Models and Paras 71.0% 76.0% 82.5% 95.0% 97.0%
Correct Model and Paras with ε 85.0% 87.0% 94.2% 97.0% 98.0%
Decision Trees (DT) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 52.0% 54.0% 63.0% 72.0% 80.0%
Correct Model with ε 64.0% 67.0% 72.0% 78.0% 85.0%
Correct Model and Paras 31.0% 33.0% 35.0% 40.0% 46.0%
Correct Model and Paras with ε 49.0% 53.0% 58.0% 63.0% 67.0%

Unknown Real Environments
k-Nearest Neighbors (k-NN) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 81.3% 83.3% 83.3% 86.3% 87.0%
Correct Model with ε 89.6% 95.8% 95.8% 97.3% 97.3%
Correct Model and Paras 72.9% 75.0% 77.1% 79.3% 81.3%
Correct Model and Paras with ε 89.6% 95.8% 95.8% 96.3% 97.2%
K-d Trees (K-dT) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 80.1% 82.3% 83.3% 86.7% 87.5%
Correct Model with ε 89.0% 95.1% 96.2% 97.0% 97.0%
Correct Model and Paras 71.0% 74.0% 78.1% 79.0% 82.0%
Correct Model and Paras with ε 88.0% 95.0% 95.2% 96.0% 97.5%
Decision Trees (DT) 324 SE 648 SE 972 SE 1296 SE 2268 SE
Correct Model 08.3% 08.3% 14.6% 40.3% 45.0 %
Correct Model with ε 55.1% 58.3% 68.8% 80.3% 83.3%
Correct Model and Paras 00.0% 00.0% 00.0% 02.0% 02.1%
Correct Model and Paras with ε 54.3% 59.2% 68.8% 80.3% 83.3%

From Table 3 (under unknown random environments), we can see that the accuracy of our frame-
work increases as the number of simulated environments (SE) in the case base increases (the trend
is the same for k-NN, K-dT and DT), and is the best when there are 2268 simulated environments
(SE) in the case base. This is because with a larger number of cases in the case base, it is easier to
find a closely similar environment to the given unknown environment.

We also find that k-NN and K-dT show similar performance, while outperforming the DT re-
trieval technique. K-dT is mainly used to improve the retrieval time in k-NN through appropriate
organization of cases in the form of trees. However, for retrieval, K-dT uses the same similarity
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Figure 6: Influence of the number of simulated environments on the performance of k-NN, K-dT

and DT retrieval techniques: (a) random environments; (b) real environments

measure and the same number of nearest neighbors as k-NN. This is the reason for the similar
performance of k-NN and K-dT. On the other hand, DT retrieval shows a lower performance as
it requires more training instances (cases in the case base) to learn the entire problem space (and
build a complete decision tree) and is known to show a surge in performance when dealing with
continuous feature values (Quinlan, 1996) (in our framework the feature values are continuous).
With smaller number of cases (say 324 SE), DT obtains only an accuracy of 52.0% in choosing the
best trust model for the unknown random environments. Even with 2268 SE the accuracy is only
80.0%, which is less than the accuracy for k-NN with 324 SE. k-NN and K-dT obtain an accuracy
of 97.0% in selecting the most suitable models and a 98.0% accuracy with a tolerance ε = 0.05,
for 2268 simulated environments. Thus, it shows that our framework, using the k-NN, K-dT re-
trieval techniques can choose candidate models whose performance is very close to the ideal case.
Even with only 324 simulated environments, the performance of k-NN and K-dT is still acceptable,
selecting the most suitable models with an accuracy of 81.0% and 80.0%, respectively.

Fig. 6 shows the influence of the number of simulated environments (size of the case base) on the
MAE obtained, while determining seller trustworthiness using the candidate trust model suggested
by the k-NN, K-dT and DT retrieval techniques. The more accurate selection of the best trust model
results in a lower MAE value in determining seller trustworthiness. Fig. 6(a) shows that k-NN and
K-dT obtain a lower MAE than DT in all cases. When the number of simulated environments is
2268, k-NN and K-dT, both obtain an MAE of 0.25, while DT obtains an MAE of 0.31. However,
when the number of simulated environments is increased, we find that the rate at which the MAE
of DT decreases is greater than k-NN and K-dT, because with more training instances, DT can
produce more accurate results. Eventually, when the number of simulated environments is further
increased (greater than 2268), DT may show the same (even better) performance as k-NN and K-dT.
However, we do not further increase the number of simulated environments in our experiments due
to the complexity involved in building the case base, by evaluating all the 45 candidate trust models
in each simulated environment and selecting the most suitable model for each of them.

Table 3 (under unknown real environments) again shows that k-NN and K-dT perform equally
well (with accuracy of 87.0% and 87.5% in selecting the most suitable models with 2268 sim-
ulated environments, respectively), outperforming DT retrieval (with accuracy of 45.0%) in real
environments. We also notice that the accuracy of all the techniques is lower than that in the ran-
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Figure 7: MAE of our framework and other trust models for: (a) random environments; (b) real

environments; No. of times each trust model is selected as the most suitable for: (c)
random environments; (d) real environments

dom environments. This is because, characteristics of real environments may vary extensively from
those of the simulated environments in the case base, making it difficult for the retrieval algorithms
to identify similar cases whose simulated environment is similar to the real one. Nevertheless, the
performance of k-NN and K-dT in unknown real environments is also sufficient (greater than 86%).
Fig. 6(b) again shows that k-NN, K-dT perform better than decision trees. However, we can see
that the MAE values in Fig. 6(b) are smaller than those in Fig. 6(a), though the accuracy for real
environments (Table 3) is lower than unknown random environments. This is because, we assume
that the sellers (in real environments) are either of high or low quality (while in unknown random
environments seller quality is uniformly distributed in [0, 1]), thus easily identifiable by the candi-
date trust models. We also find that the average MAE in determining seller trustworthiness using the
truly most suitable trust models for the unknown real environments is 0.01, while for the unknown
random environments it is 0.22, a comparatively larger value. Thereby, for unknown real environ-
ments, the framework chooses a trust model whose MAE is similar to that of the truly most suitable
trust model to obtain better accuracy, which in this case has a lower value than the MAE for the

20



unknown random environments. The greater rate at which MAE decreases for DT is very evident
in Fig. 6(b), since in real environments we assume seller trustworthiness to be binary, thereby, even
a small variation in the choice of trust models can impact the MAE values to a great extent.

Fig. 7(a-b) show the MAE of our framework in comparison with the other trust models in un-
known random and unknown real environments. For the other trust models in the unknown environ-
ment, we use their best parameter values. We show the performance of k-NN, K-dT and DT using
2268 simulated environments, to obtain the best performance. To demonstrate the scenario when
buyers may choose to aggregate the outcomes of all trust models (instead of using a single most
suitable trust model), while determining seller trustworthiness, we also show the MAE obtained by
adopting such a heuristic denoted by AVG in Fig. 7(a-b). From Fig. 7(a), we find that k-NN and
K-dT obtain the lowest MAE of 0.25, showing that they are able to choose better trust models to
evaluate seller trustworthiness than always applying a single model. DT obtains an MAE of 0.31,
a higher value than Personalized with MAE 0.30. AVG obtains a higher MAE of 0.44, showing
that using the aggregated outcome of all trust models may not result in accurate values for seller
trustworthiness. For the unknown real environments (Fig. 7(b)), again k-NN and K-dT obtain the
lowest MAE (0.022 and 0.025, respectively) when compared to other trust models.

Fig. 7(c-d) shows the numbers of unknown random environments and unknown real environ-
ments, respectively for which each trust model is chosen as the most suitable one, using the k-NN
retrieval technique (K-dT also obtains similar values). The numbers are 28, 4, 19, 14, 2, 22 and 11
for BRS, iCLUB, TRAVOS, Personalized, Referral, BLADE and Prob-Cog, respectively for the 100
unknown random environments, and 3, 5, 13, 22, 1, 0 and 4 for these models in the 48 unknown real
environments. The numbers signify that our framework is able to choose different models from a
candidate set for various unknown environments. The difference in the use times of the trust mod-
els between random and real environments also indicate that trust models perform differently in
different kinds of environments.
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Figure 8: Average utility of buyers: (a) random environments; (b) real environments

Fig. 8(a-b) show the average utility of all the buyers in the e-marketplace corresponding to
the MAE of the trust models in Fig. 7(a-b). Specifically, a buyer gains a reward of +5 when he
chooses a high quality seller (by evaluating the trustworthiness of all the sellers in the market using
the prescribed trust model), with T trues > 0.5 and a penalty of −5, on choosing a low quality seller
with T trues ≤ 0.5, for a transaction. Fig. 8(a) shows that k-NN and K-dT obtain the highest utility of
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Figure 9: Time to choose the best trust models: (a) random environments; (b) real environments

2.20 and 2.18, respectively. The trend also shows that trust models with a higher MAE (in Fig. 7(a))
have a lower utility than those with a lower MAE, because when the buyers are able to accurately
predict seller trustworthiness, they can correctly choose good quality sellers as transaction partners.
Fig. 8(b) also shows that k-NN and K-dT obtain the highest utility of 3.50 and 3.53, respectively.
The experiments in Fig. 8(a-b) also justify that MAE is a suitable metric to assess the performance
of a trust model in a given environment, as it (indirectly) monitors the decisions of the buyers, by
having a large impact on the utility/value addition gained from their transactions with the sellers.

Fig. 9(a-b) show the time taken by the framework to choose the best trust models for the un-
known random and real environments, using k-NN, K-dT and DT retrieval techniques. Though
K-dT obtains a similar accuracy as k-NN (Table 3 and Fig. 7), it greatly improves the time taken to
find the most suitable trust model, as shown in Fig. 9(a-b). Specifically, Fig. 9(a) shows that the time
taken to find the suitable trust models for the 100 unknown random environments by k-NN, K-dT
and DT is 4.18s, 1.40s and 1.10s, using 2268 simulated environments in the case base, respectively.
We find that both K-dT and DT approaches are faster than k-NN, which compares the features of
the unknown environment with all the cases in the case base (Soltani, 2013). K-dT and DT use a
tree structure to represent the cases in the case base (as described in Sec. 4.2) and retrieve the most
suitable trust model by traversing the tree. However, decision tree retrieval is slightly faster than
K-dT. This is because in K-dT, the dimensionality (number of features) of the cases and the num-
ber of similar cases (k nearest neighbors) that are needed to be retrieved, affect the retrieval time
(requiring more number of leaves to be visited through backtracking). Literature (Ahmed, 2004;
Vempala, 2012) also shows that with high-dimensional data (greater than 20), most of the leaves in
the K-d tree are visited and the efficiency is no better than exhaustive k-NN search, which can be a
concern when the feature space in the framework is further increased. From Fig. 9(b), we can again
see that for unknown real environments K-dT and DT require lesser retrieval time than k-NN. The
time taken by k-NN, K-dT and DT is 3.15s, 0.83s and 0.35s, using 2268 simulated environments in
the case base, respectively. However, the values are lower than those in Fig. 9(a), since we consider
the time taken to choose the best trust models for all the 100 unknown random environments, while
the number of real environments considered is only 48. Though the time taken by K-dT is slightly
higher than DT, it is still comparable and shows a much better performance in terms of retrieval
accuracy (Table 3 and Fig. 7).
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Figure 10: MAE of our framework and other trust models in extreme scenarios: (a) large envi-

ronments; (b) extremely sparse environments; (c) environments with dynamic seller
behavior and (d) environments with many attacks

Performance Comparison in Extreme Scenarios Fig. 10 shows the MAE of trust models in the
4 extreme scenarios (i.e., large environments, extremely sparse environments, environments with
dynamic seller behavior and environments with many attacks). Table 4 presents the probability
of choosing trust models in each of these 4 extreme cases, using k-NN retrieval technique (K-dT
obtains almost the same probabilities as k-NN). Results show that k-NN and K-dT outperform DT,
AVG and all the other trust models, while performing equally well in these environments.

More specifically, Fig. 10(a) shows that k-NN and K-dT obtain the lowest MAE of 0.24 in large
environments. We also find that iCLUB, TRAVOS and Personalized obtain smaller MAE than other
trust models in these large environments. The reason is that these three trust models are able to
distinguish dishonest and honest advisors when they get sufficient rating sources. From Table 4
under large environments, we can see that k-NN selects iCLUB, TRAVOS and Personalized with
the highest probabilities, 26.9%, 23.8% and 38.2%, respectively. Fig. 10(a) also shows that DT and
AVG obtain a larger MAE value (0.27 and 0.28, respectively) than k-NN and K-dT.
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From Fig. 10(b), in sparse environments, again k-NN and K-dT obtain the lowest MAE of 0.24
and 0.23 and DT obtains a MAE value of 0.35. BRS and Prob-Cog perform better than other trust
models, because BRS adopts the ‘majority-rule’ to consider the opinions from other advisors, and
Prob-Cog extends the incompetence tolerance threshold to incorporate a larger number of advisors’
ratings. Both models obtain a comparatively low MAE as they are less restrictive in accepting
opinions from advisors than other trust models. In Table 4, under sparse environments, k-NN selects
BRS and Prob-Cog with the highest probabilities, 25.7% and 52.7%, respectively.

Fig. 10(c) shows that k-NN and K-dT obtain the lowest MAE and Personalized and BLADE
outperform other trust models in the environments where sellers change their behavior dynamically.
To explain, Personalized considers advisors’ latest ratings within a certain time window, which al-
leviates the influence of sellers’ dynamic behavior. BLADE re-interprets advisors’ ratings based on
learning, thereby takes into account the changing behavior of buyers and sellers. In Table 4, k-NN
selects Personalized and BLADE with the highest probabilities, 27.8% and 31.5%, respectively.
Fig. 10(c) also signifies that our framework is able to deal with scenarios where buyers and sell-
ers change their behavior, because the case base already contains environments representing such
dynamic behavior (as described in Sec. 5.1), along with their most suitable trust models.

Fig. 10(d) shows that k-NN an K-dT outperform other trust models with the lowest MAE of 0.02
and Personalized and TRAVOS perform well in the environments with many attacks. DT obtains an
MAE of 0.03, a comparable but greater value than k-NN and K-dT. The characteristics of attacks
play a major role in judging the performance of the trust models. In these extreme environments, the
attackers (dishonest advisors) first give honest ratings to non-target sellers to promote themselves,
and then provide unfair ratings to bad-mouth target sellers. The performance of Personalized and
TRAVOS is better because they both model advisor trustworthiness more accurately by comparing
buyers’ own opinions and advisors’ ratings on commonly rated sellers. Also, in the environments,
we select only buyers with sufficient personal experience (ratings) which Personalized and TRAVOS
take advantage of. In Table 4, k-NN selects Personalized and TRAVOS with probabilities 58.7%
and 13.8% for the environments with many attacks, respectively.

Table 4: Probability of choosing trust models in the four extreme e-market scenarios
Trust Models Large Sparse Dynamic Many Attacks
BRS 0.6% 25.7% 7.4% 6.9%
iCLUB 26.9% 13.9% 7.2% 10.3%
TRAVOS 23.8% 2.1% 4.6% 13.8%
Personalized 38.2% 2.8% 27.8% 58.7%
Referral 0.6% 2.8% 18.5% 0.0%
BLADE 9.3% 0.0% 31.5% 0.0%
Prob-Cog 0.6% 52.7% 3.0% 10.3%

In summary, from Fig. 10 and Table 4, the results indicate that our framework (using k-NN and
K-dT retrieval technique) is able to select suitable trust models for extreme scenarios and obtain
more accurate seller trustworthiness than AVG and any other individual trust model. Also, we find
that the performance of k-NN and K-dT retrieval is better than DT retrieval in all the cases. Decision
trees are induction models which learn rules (based on features) to determine suitable trust models.
This comes close to the method that PTF (described in Sec. 2) works, the only difference being that
in decision trees the rules are learned and organized in the form of trees, while in PTF the rules
need to be manually specified by the user in a pre-defined format (Huynh, 2009). However, we can
see that with the available number of simulated environments (2268) in the case base, decision trees
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cannot learn the complete domain knowledge to construct trees which help to accurately determine
suitable trust models. We can thereby infer that using a rule based system such as PTF will also
result in such moderate performance as decision trees (with the given size of the case base).

Analysis on the Possible Improvements to the Framework It has been demonstrated in literature
that feature weighting (assigning weights to individual features) after feature selection (selecting a
subset of relevant features and ignoring others), can improve the performance of k-NN (Tahir et al.,
2007). Thus, to further improve the performance of the framework (using k-NN and thereby, K-dT
retrieval), we can assign weights to each (most influential) feature. We conduct experiments using
the linear adaptive filters-least mean squares (Mitchell, 1997), with learning rate 0.2, to determine
the weights for the features, using 972 randomly generated environments. The weights for the 13
most influential features (in the same order as C4 in Table 1), determined using k-NN are, 0.16,
0.02, 0.01, 0.02, 0.03, 0.2, 0.09, 0.05, 0.04, 0.1, 0.17, 0.01 and 0.1, respectively. We use the same
weights for K-dT and analyze its performance. Table 5 shows the performance of k-NN and K-dT,
using the above feature weights while calculating the similarity between the environments in order
to determine the most suitable trust model. k-NN obtains an improvement of 1.0% and 2.0% in
terms of accuracy in selecting the suitable trust model for unknown random and real environments
(when compared to the values in Table 3, where k-NN and K-dT assign equal weights to all the 13
influential features), respectively. For extreme scenarios, k-NN obtains an improvement of (at most)
2.0%. K-dT obtains a similar accuracy improvement of 0.5% and 2.0% for unknown random and
real environments, while for the extreme scenarios, it obtains an improvement of (at most) 2.0%.

Table 5: Influence of using feature weights in k-NN and K-dT
k-NN + feature weights Random Real Large Sparse Dynamic Attacks
Correct Model 98.0% 89.0% 93.0% 90.0% 97.0% 86.0%
Correct Model with ε 98.5% 98.0% 95.0% 98.0% 97.0% 92.0%
Correct Models and Paras 97.0% 82.0% 95.0% 96.0% 97.0% 80.1%
Correct Model and Paras with ε 98.0% 97.2% 96.1% 97.0% 98.0% 95.4%
MAE 0.23 0.01 0.22 0.22 0.30 0.01
Accuracy Improvement 1.0% 2.0% 1.0% 1.0% 2.0% 0.0%
K-dT + feature weights Random Real Large Sparse Dynamic Attacks
Correct Model 97.5% 89.0% 94.0% 90.2% 97.1% 85.0%
Correct Model with ε 98.5% 97.0% 95.0% 97.0% 97.0% 92.0%
Correct Models and Paras 97.0% 82.0% 95.0% 96.0% 98.0% 80.0%
Correct Model and Paras with ε 98.0% 97.2% 96.1% 97.0% 98.0% 96.0%
MAE 0.23 0.02 0.21 0.22 0.30 0.01
Accuracy Improvement 0.5% 2.0% 1.0% 2.0% 2.0% 0.0%

Also, as mentioned in Sec. 4, the framework can be extended by adding new features and trust
models. Specifically, to add a new feature we need to: 1) generate a new set of Eknown environments,
including the new feature; 2) select the most influential features F̂ ∗ (using the 5 correlation and
regression techniques as mentioned in Table 1), from the new extended feature set, by testing them in
randomly generated Etest environments, and 3) build the new case base. Thus, the time complexity
for adding a new feature isO((|Eknown |+ |Etest |)∗TM+5∗ tmodel), which includes the time taken
to find the actual performance of all the defense models TM in the known |Eknown | and test |Etest |
environments (represented by (|Eknown | + |Etest |) ∗ TM) and the time taken by tmodel (model ∈
{k-NN, K-dT}) to find the most suitable trust models using the 5 different feature combinations
(represented by 5 ∗ tmodel). If Eknown = 2268, Etest = 972, TM = 45, k = 3 and model=K-
dT, then the total time taken to build the new case base on adding a new feature is nearly 3 hours.
Adding a new trust model simply takes 3.6 mins (O(|Eknown |)), as it only requires to run the new
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trust model on the 2268 environments to build the new case base. Though the above calculations
show that a considerable computation time is involved, adding a new feature or a trust model will
lead to an improvement in the performance of the framework. Specifically, adding a new feature
can help to more accurately select suitable trust models and adding a new trust model may result
in a lower MAE for certain environments, leading to better decision making and thereby improving
the utility for the buyers in the environment as shown in Fig. 8. Also, all the above computation
need to be done off-line and the online effort is much lower as can be seen in Fig. 9.

6. Conclusion and Future Work

In this paper, we propose a case-based reasoning framework to choose suitable trust models for
the environments where ground truth about agents’ behavior is unknown. In the framework, the
case base is built by generating a number of simulated environments and determining the most
suitable trust models for the environments. The framework also offers to choose between different
techniques (k-nearest neighbors, K-d trees and decision trees) for case retrieval. Given an unknown
environment, the most similar case(s) are retrieved using the retrieval techniques. Then, the trust
model corresponding to the most similar case(s) is chosen as the most suitable one for the unknown
environment. Experimental results confirm that our framework can accurately select suitable trust
models for various unknown environments (both simulated and real e-marketplaces). We also find
that k-nearest neighbors and K-d tree retrieval techniques can more accurately choose suitable trust
models by determining the most similar case(s) from the case base than decision trees, especially
when the number of simulated environments (cases in the case base) is much smaller. It is also
demonstrated that K-d trees significantly improve the time complexity in choosing suitable trust
models over k-nearest neighbors. Experiments also verify that using our framework to choose trust
models for unknown environments (using k-nearest neighbors and K-d tree retrieval) is better than
always applying any single trust model (or the aggregate of all trust models), in terms of the accuracy
in evaluating seller trustworthiness.

Currently, the framework achieves the best performance when the number of simulated envi-
ronments in the case base is as large as 2268 environments; the performance will further increase
by adding more simulated environments. While adding more simulated environments is a feasible
option to further improve the performance of the framework, it requires tremendous off-line com-
putation to determine suitable trust models for the simulated environments and build the case base.
In the future, we will investigate methods to generate simulated environments that are more repre-
sentative of real world e-marketplaces, such that the performance of the framework is much higher
even when the case base contains smaller number of simulated environments. We will also analyze
more effective feature selection techniques to accurately select trust models in this regard.

Another important direction of future work is to consider the scenario when the features of
the unknown environment deviate from the most similar simulated environment determined by the
framework, during its execution time. One possible solution is to use the proposed framework to
choose the most suitable trust model over regular intervals of time when the unknown environment
operates. We will conduct detailed experiments to analyze the performance of the framework in such
scenarios. We will also continue to evaluate our framework by incorporating more sophisticated
trust models and involving more real data sets.
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