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Abstract

In multi-agent systems, stereotypical trust models are widely used to bootstrap a priori trust in case historical trust
evidences are unavailable. These models can work well if and only if malicious agents share some common features
(i.e., stereotypes) in their profiles and these features can be detected. However, this condition may not hold for all the
adversarial scenarios. Smart attackers can show different trustworthiness to different agents and services (i.e., launching
context-correlated attacks). In this paper, we propose CAST, a novel Context-Aware Stereotypical Trust deep learning
framework. CAST coins a comprehensive set of seven context-aware stereotypes, each of which can capture an unique
type of context-correlated attacks, as well as a deep learning architecture to keep the trust stereotyping robust (i.e.,
resist training errors). The basic idea is to construct a multi-layer perceptive structure to learn the latent correlations
between context-aware stereotypes and the trustworthiness, and thus can estimate the new trust by taking into account
the context information. We have evaluated CAST using a rich set of experiments over a simulated multi-agent system.
The experimental results have successfully confirmed that, our CAST can achieve approximately tens of times higher
trust inference accuracy in average than the competing algorithms in the presence of context-correlated attacks, and
more importantly can maintain a much better trust inference robustness against stereotyping errors.

Keywords: Multi-agent systems, stereotypical trust model, deep learning.

1. Introduction

In multi-agent systems, trust is a vital element and
can be used to ensure the security and quality of service.
Each agent (i.e., a trustor) can assign a trust value to
another (i.e., trustees) based on the trustor’s direct expe-
riences on the trustee in the past (i.e. direct historical
trust evidences). The trust can be later used to evaluate
the possibility whether the trustee will perform particu-
lar services as expected by the trustor in the future [1].
That is, trust is a subjective concept and is with respect
to a trustor agent, a trustee agent and a particular ser-
vice the trustor expects the trustee to perform. All of the
three constitute a trust context. In general, the trust is es-
tablished through historical evidences in one context and
can only be reused to evaluate future behaviors within the
same context [1, 2, 3, 4, 5].

When direct historical evidences are not available in
a context, bootstrapping a priori trust for such contex-
t is quite challenging. In open and dynamic multi-agent
systems, new agents and services may join at any time [5].
These newcomers are necessarily suffering from evidence u-
navailability. To address this issue, a typical solution is to
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respect trust recommendations from other trustor agents
(i.e., advisors) [6], which is known as a reputation method.
However, this method cannot work well in case the trustee
is a newcomer (i.e., all the agents do not have experiences
on the newcomer and thus cannot do any recommenda-
tions). To bridge this gap, stereotypical trust modelling
has been proposed [7, 5]. The idea is to “borrows” the
trustworthiness from similar trustee agents through their
visible features (i.e., stereotypes), such as the agents’ geo-
graphical location/timezone [7] or their organization and
performance indices [5].

Although the stereotypical trust modelling can boot-
strap a priori trust for the contexts with new trustees, they
cannot cover all the initial cases (e.g., both the trustor
and the trustee are newcomers or the service is new), and
even worse cannot make an accurate and robust a priori
trust inference in the presence of sophisticated adversarial
scenarios. In particular, most of the existing stereotypi-
cal algorithms can only model stereotypes for the trustees
[7, 5, 8, 9, 10]. They have not considered which services
the trustees offer and which trustors the trustees serve,
and thus fail to capture the malicious patterns when the
attackers use different trustworthiness to serve different
trustors with different services (i.e., performing context-
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correlated attacks). Moreover, existing stereotypical trust
models have not well addressed the robustness problem
(i.e., trust accuracy against stereotyping errors), hence
being very difficult to be applied to practical scenarios
(in practice, benign agents may set incorrect features due
to ignorance or mistakes; adversarial agents may display
false features for some malicious purpose, or attack the
trust management system itself and thus mislead the sys-
tem giving high level of trustworthiness to malicious agents
[11]).

1.1. Problem statement

We list the main research problems we have to conquer
in this paper as follows.

1. How to avoid context-correlated attacks when infer-
ring trust using stereotypical models?

2. How to maintain the robustness of stereotypical trust
modelling in the presence of stereotype errors?

1.2. The contributions

To solve the two aforementioned problems, we propose
CAST, a new Context-Aware Stereotypical Trust deep
learning architecture to extend existing solutions to a com-
plete framework. In contrast to existing stereotypical trust
models which only consider stereotypes (visible features)
for trustees, we consider stereotypes from context’s per-
spective. That is, given a target context, we generate
context-aware stereotypes from other contexts where ei-
ther the trustor or the trustee or the service or a group of
them is different. We have seven this kind of stereotypes
in total and list them in Figure 1, where each circle (i.e.,
ni=1,2,3,4) represents an agent, each rectangle sk=1,2 is a
service and each arrow line indicates a trust value. As can
be seen, if n2 attempts to estimate a priori trust for n1

with respect to s1, the n2 can consult the posteriori trust
n2 has already modelled for a different service s2 (case
¬) or agent n3 (case ) or a different pair (case ¯), or
the posteriori trust another agent n3/4 has modelled for
the same target (case ®) or a different service (case °) or
agent (case ±) or the pair (case ²), through the visible
features from different agents and services.

CAST is novel in two aspects. First, CAST can be
considered as a generalization and extension of previous
research, and can cover a comprehensive set of initial cas-
es. For example, existing trustee stereotype is just the
case , while the reputation method could be covered by
the case ® or ¯ (in case the stereotypical information is
ignored). Second, each of the seven stereotypes in our
CAST can capture an unique kind of malicious pattern-
s that are correlated to the context. For example, if a
malicious trustee treats different trustors differently (i.e.,
discrimination attack), such patterns can be recognized
by the context-aware stereotype ® in Figure 1. But if
the malicious one provides different services with different
qualities (i.e., service selection attack), the stereotype ¬
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Figure 1: Seven kinds of context-aware stereotypes. In each
cubic, the left is the evidence-sparse context (target context)
while the right is the evidence-dense one (source context). n1,
n2, n3 and n4 are four different agents while s1 and s2 are
two different services. The arrow line represents that one agent
models the trustworthiness of another agent with respect to a
service.

plays the key role. Moreover, if an attacker combines the
two, we should rely on ° for detection.

In the design of CAST, we apply a deep learning ar-
chitecture [12] for trust stereotyping. The deep model de-
ploys a multi-layer perceptive structure [13, 14] to mimic
a human’s perception and decision making process [15].
It can be trained by learning context-aware stereotypes
from the contexts with enough direct historical evidences
(i.e., evidence-dense contexts or labelled samples), and lat-
er used to estimate a priori trust for the contexts with-
out enough direct historical evidences (i.e., evidence-sparse
contexts or test cases). We choose the deep model here s-
ince such model can maintain sufficient robustness against
training errors. Even if some evidence-dense contexts in-
volve inaccurate or incorrect stereotype information, the
deep model can still work well for trust stereotyping.

We summarize the key research contributions we have
made in this paper as follows.

1. We have taken into account a comprehensive set of
seven context-aware stereotypes for stereotypical trust
modelling, and hence being able to avoid context-
correlated attacks.

2. We have applied a deep learning architecture to main-
tain robustness for stereotypical trust modelling.

1.3. Paper structure

The remainder of this paper is organized as follows.
We first review related works and point out the novelty
of our work in Section 2. We then design CAST with
context-aware stereotypes in Section 3 and the deep mod-
el in Section 4. After evaluating CAST in Section 5, we
conclude the paper in Section 6.

2. Background and related work

In this section, we review state-of-the-art a priori trust
inference methods in the literature. We discuss the open
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problems of existing methods and thereby motivate the
new design.

In general, a priori trust inference is required when di-
rect historical trust evidences are lacking (here, we do not
consider the trust from social relationships [16, 17] and the
pre-trusted third parties [18]). One of the most popular
solutions is the reputation methods [19, 20, 21, 22, 23],
by which the trustor agent will respect the recommenda-
tions from some trustworthy advisors to build up initial
trust for the same trustee agent with the same service.
Although these reputation methods may have some minor
differences in their design (e.g., the works [19, 21] may
consider the trust is transitive and some others [22] may
not), they share the basic idea: trustor agents can infer
the trustworthiness for a given target by consulting some
trustworthy advisors who have direct experiences to the
target.

Although the reputation methods have dominated the
research domain for more than two decades, they all can-
not bootstrap the trust when the trustees are newcomers.
This issue has not been resolved until stereotypical trust
models [7, 5, 24, 8, 9, 10] appeared. On the one hand,
StereoTrust [7] is perhaps the first work that introduced
stereotypical models for a priori trust inference (case 
in Figure 1). It proposed a grouping method to build a
membership function for trustees’ visible features and then
used this function to calculate the trustworthiness for the
new trustees. Fang et al. [8] generalized StereoTrust with
fuzzy theory. On the other hand, Burnett et al. [5, 9] ap-
plied a classification and regression tree (e.g., M5 tree) to
learn from existing trustees through their visible features
and then used the tree to infer a priori trust for the new
ones (case  in Figure 1). Although Burnett et al. have
realized that trustee stereotypical models cannot work if
the trustors are newcomers, and have designed a stereo-
typical reputation method (partially case ± in Figure 1)
to address this issue, they have still overlooked that the
trustors and the advisors may be treated differently by
the trustees even if the advisors are trustworthy enough.
Moreover, the work [24] has discussed how to discover more
stereotypical sources to model trust in multi-agent systems
and pointed out the importance of stereotypes (i.e., visible
features) from the trustors (case ® in Figure 1). However,
that work [24] has not designed any practical stereotyping
algorithms for trustors. In the most recent research, Sen-
soy et al. [10] proposed a graph extraction algorithm to
mine a rich set of available features for stereotypical trust
modelling. But unfortunately, their mining method is still
restricted to trustees’ profiles (case  in Figure 1).

In contrast to state-of-the-art stereotypical trust mod-
els [7, 5, 24, 8, 9, 10], our CAST goes beyond in two as-
pects. One is the use of context-aware stereotypes, and
the other is learning the context-aware stereotypes using
a deep model. More precisely, CAST extends the avail-
able sources of stereotypes from trustees to trust contexts
which consist of the trustors, the trustees and the services.
With this extension, our CAST can naturally generalize

existing reputation methods and stereotypical models to a
complete framework and thereby is able to detect context-
correlated attacks (e.g., discrimination attack, service se-
lection attack or both). CAST also applies a deep architec-
ture [14] for stereotypical trust modelling. As one of the
most promising artificial intelligent techniques, the deep
model has been proved effective in a broad set of applica-
tion fields, including but not limited to image and video
processing [25], speech recognition [26] and natural lan-
guage processing [27] and so on. Following these successful
experiences, we introduce the deep model, specifically the
deep belief network [12], to solve the stereotypical trust
inference problem for the first time.

The deep model is a good approximation of human’s
neocortex [13, 14], while the stereotypical trust inference
is a typical human perception and decision making process
[28, 15]. The use of a deep model to solve the stereotypical
trust inference problem is nature and meaningful. More-
over and more importantly, our deep model can outper-
form the grouping method [7] and the classification tree
[5, 9], because it can abstract the stereotypes in a per-
ceptive manner layer by layer and thus can better repre-
sent the latent joint distribution between the stereotypes
and trustworthiness, even if the training set (i.e., evidence-
dense contexts) contain incorrect and/or inaccurate stereo-
typical trustworthiness samples. In another word, the deep
model can achieve a more robust trust stereotyping than
existing algorithms. Note that, we have confirmed this
finding through carefully designed experiments in Section
5.4.

3. Context-aware stereotyping

In this paper, we model a multi-agent system as a dou-
ble bipartite graph G = (N,N, S,N × N × S), where N
is the set of agents in the system and S is the set of ser-
vices. In this graph, each edge (ni, nj , sk) ∈ N × N × S
denotes an unique context for trust modelling. It can be
interpreted as an agent ni ∈ N models the trustworthiness
of another agent nj ∈ N with respect to a service sk ∈ S.

3.1. Trust Model

Given a context (ni, nj , sk), we model the trust asso-
ciated to this context using subjective logic [2], which en-
ables agents to express the trustworthiness as degrees of a
belief tij:k, a disbelief dij:k, an uncertainty uij:k and a base

rate aij:k (a priori degree of belief) about the context. We

write it as (tij:k, d
i
j:k, u

i
j:k, a

i
j:k), where tij:k +dij:k +uij:k = 1

and aij:k ∈ [0, 1]. We define a direct trust evidence regard-
ing to a context (ni, nj , sk) as a binary event of whether
the agent ni has successfully run the service sk in another
agent nj as expected. If this is true, the evidence is posi-
tive. Otherwise, it is negative. A sequence of independent
binary events can be modelled as a Bernoulli experiment,
and the posterior distribution of this experiment can be ap-
proximated as a beta distribution Beta(α, β) [2]. Let rij:k
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be the number of positive historical evidences observed in
the context (ni, nj , sk) and sij:k be the number of negative

ones. We have α = rij:k+1, β = sij:k+1 and thus can calcu-
late the belief (i.e., posterior trustworthiness), the disbelief
and the uncertainty using Eqn. (1).

t
i
j:k =

rij:k

rij:k+s
i
j:k+2

, d
i
j:k =

sij:k

rij:k+s
i
j:k+2

, u
i
j:k =

2

rij:k+s
i
j:k+2

. (1)

In Eqn. (1), if rij:k+sij:k is small, the uncertainty uij:k could

be quite large and the resulting tij:k (and dij:k) are not with
enough confidences. In this case, the trustworthiness can
be corrected using the base rate aij:k, which is a priori
trust value purely inferred without any historical trust ev-
idences. The correction function is t̂ij:k = tij:k + aij:k · uij:k
[2]. When rij:k + sij:k is large enough, the trustworthi-

ness can be mainly determined by tij:k. But if rij:k + sij:k
is too small, aij:k becomes the dominant factor. In this

paper, our ultimate goal is to infer aij:k for the contex-

t where rij:k + sij:k ≤ th by learning the available tij:k
values from the context where rij:k + sij:k > th. In the
following of this paper, we will regard the contexts with
rij:k + sij:k ≤ th as evidence-sparse contexts while the ones

with rij:k+sij:k > th as evidence-dense contexts. The th pa-
rameter is a threshold we should choose to classify whether
a context is evidence dense or sparse. Normally and sim-
ply, we choose th = 0 for this paper.

3.2. Context-Aware Stereotypes

It is known that we cannot calculate the trustworthi-
ness for evidence-sparse contexts using the Equation (1)
directly. Instead, we should infer tij:k ' aij:k with the help
of other evidence-dense contexts. The basic idea is to learn
a supervised model from evidence-dense contexts to cap-
ture the latent correlations between the trustworthiness
and visible features, and then use this model to infer a
priori trust for the evidence-sparse contexts. Since visible
features play the role as a mould to convey trust infor-
mation, we also call them stereotypes. In this paper, our
innovative design is to consider stereotypes with respect
to the trust contexts. We let Fn and Fs be the set of vis-
ible features (i.e., stereotypes) for the agents and services,
respectively.

Given an evidence-sparse context (ni, nj , sk), we can
group available evidence-dense contexts into seven cate-
gories by considering that the ni (trustor) or nj (trustee)
or sk (service) or multiple of them are different. We de-
fine the set of available evidence-dense/sparse contexts as
Cd/Cs, respectively:

Cd , {(ni, nj , sk) ∈ N ×N × S, rij:k + sij:k > th}
Cs , {(ni, nj , sk) ∈ N ×N × S, rij:k + sij:k ≤ th}

(2)

Obviously, Cd ∩ Cs = ∅ and Cd ∪ Cs = N × N × S.
Therefore, given a (ni, nj , sk) ∈ Cs, we can classify Cd
into seven subsets Cd =

⋃7
l=1 C

l
d(ni, nj , sk) (see Figure 1)

as:

C1
d(ni, nj , sk) , {(ni, nj , sk′ ) ∈ Cd, sk′ 6= sk}

C2
d(ni, nj , sk) , {(ni, nj′ , sk) ∈ Cd, nj′ 6= nj}
C3
d(ni, nj , sk) , {(ni′ , nj , sk) ∈ Cd, ni′ 6= ni}

C4
d(ni, nj , sk) , {(ni, nj′ , sk′ ) ∈ Cd, nj′ 6= nj , sk′ 6= sk}
C5
d(ni, nj , sk) , {(ni′ , nj , sk′ ) ∈ Cd, ni′ 6= ni, sk′ 6= sk}

C6
d(ni, nj , sk) , {(ni′ , nj′ , sk) ∈ Cd, ni′ 6= ni, nj′ 6= nj}

C7
d(ni, nj , sk),{(ni′ , nj′ , sk′ )∈Cd, ni′ 6=ni, nj′ 6=nj , sk′ 6=sk}

(3)

If we infer tij:k using C1
d , the model input in the train-

ing phase should be (tij:k′ , V (Fsk′)) where tij:k′ is the la-
bel and V (Fsk′) is the value vector of sk′ ’s features. But
if we consider C7

d , the model input can be extended to

(ti
′

j′:k′ , V (Fni′ ×Fnj′ ×Fsk′)) where ti
′

j′:k′ is the label and
V (Fni′ × Fnj′ × Fsk′) is the value vector of the combi-
nation of the features from ni′ , nj′ and sk′ . We define

F7 , Fni′ × Fnj′ × Fsk′ as a set of context-aware stereo-
types for C7

d . By this way, we can also define context-aware
stereotype sets for the other six Clds as follows:

F1 , Fsk′ , F2 , Fnj′ , F3 , Fni′

F4 , Fnj′ × Fsk′ , F5 , Fni′ × Fsk′ , F6 , Fni′ × Fnj′
(4)

In this paper, we consider a homogeneous multi-agent sys-
tem, in which each agent (and each service) has the same
feature set, that is Fni′ = Fnj′ = Fn and Fsk′ = Fs.

We differentiate the seven context-aware stereotype-
s in our design, because they can preserve more precise
discriminative information to correlate the visible profiles
of agents and services with the potential trustworthiness.
By this way, our solution can detect not only the malicious
patterns shown in trustee’s profile but also the smart ad-
versaries who hide their patterns among trustors, trustees
and the services (i.e., context-correlated attacks).

It is worth noting that, if we infer a priori trust based
on evidence-dense contexts from C3

d , C5
d , C6

d and C7
d , the

agent ni′ plays the role as an advisor. Our method cannot
detect malicious advisors when they recommend honest
agents as attackers or recommend attackers as honest ones.
To cope with this challenge, we need a set of trustworthy
advisors, denoted as R ⊆ N , in the system. We then
restrict ni′ ∈ R to refine the definition of C3

d , C5
d , C6

d

and C7
d . Many existing trust models, such as [20, 23],

can accurately model the trustworthiness of advisors from
which R can be chosen.

3.3. A Priori Trust Inference Algorithm

To infer a priori trust for a given evidence-sparse con-
text, we can train seven individual inference models based
on the seven different kinds of evidence-dense contexts. In
each training phase, the trustworthiness (from evidence-
dense contexts) is the label and the value vector of context-
aware stereotypes are the model inputs. We then use the
seven models one by one to infer the trustworthiness of
the target evidence-sparse context. We select the minimal
value of outputs as the final result, because the lower value
reported from the model on Cld indicates that some ma-
licious patterns are more likely being captured in Cld (in
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case ni′ ∈ R). We list the details in Algorithm 1. As can
be seen, the while loop (from line 3 to line 7) traversals all
the seven kinds of evidence-dense contexts given a target
evidence-sparse context. Inside the loop, the code in line
4 is used to train an inference model using one kind of
context-aware stereotype samples, while the code in line 5
is to use the trained model to infer a new trust for the tar-
get, and meanwhile keep the smallest inferred trust as the
final output. It is worth noting that, we implement the
InferModel in the algorithm using a deep architecture
[12] in this paper.

Input: (ni, nj , sk) ∈ Cs
Output: tij:k

1 l← 1;
2 tij:k ← 1;

3 while l ≤ 7 do
4 InferModel← Training(Cld(ni, nj , sk));
5 tij:k ← min(tij:k, InferModel(ni, nj , sk));

6 l← l + 1;

7 end
8 return tij:k;

Algorithm 1: Context-aware stereotypical trust infer-

ence algorithm

4. The stereotypical deep model

As a key step, a priori trust inference algorithm should
implement a function (i.e., the InferModel in Algorithm
1) to map context-aware stereotypes to trustworthiness. In
this paper, we choose the deep learning model, particular-
ly the deep belief network (DBN) [12], for this task due to
two reasons. First, DBN is a probability generative model
without any a priori assumption. It can learn the em-
pirical samples layer by layer and eventually can discover
more latent informative probabilities which can hardly be
achieved by other learning algorithms (such as the group
methods and the classification tree). Second, despite the
DBN requires the labelled samples to fine tune the whole
model, it has a pre-training phase which is aimed to recon-
struct layer-wise connections using restricted Boltzmann
machine (RBM). RBM is built with Gibbs sampling in
order to utilize unlabeled samples for the training. The
Gibbs sampling is a typical Markov chain Monte Carlo al-
gorithm which can obtain a sequence of samples from a
specified and practical sample set [29]. This algorithm is
able to re-construct a target sample set (e.g., the training
set) to approximate the real distribution, and can there-
fore lead the deep model to a much better robustness a-
gainst sampling errors in the training set (i.e., the set of
evidence-dense contexts).

4.1. Stereotypical Deep Model Overview

In general, a deep belief network (DBN) consists of an
input layer H0 in the bottom, several hidden layers Hn in

the middle and a label layer L on the top. Each of two
adjacent layers are fully interconnected, while the units in
the same layer are disconnected. By this design, the units
in each layer can independently interact with the units in
their adjacent layers. This architecture can well simulate
the physical structure of the human’s neocortex.

In this paper, we design a new stereotypical DBN mod-
el to suit our trust inference problem. In particular, we
build a meaningful deep architecture with three hidden
layers, each of which aims to take a particular task from
initial impressions to the final decision-making. We choose
three hidden layers, because such design can well reason
about the human’s brain and has many successful applica-
tions in solving real-world problems [12, 30]. We present
the overview of our architecture in Figure 2.
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Figure 2: Deep architecture for context-aware stereotypical
trust inference.

In this model, we use the first hidden layer H1 to simu-
late a human’s “initial impression” about the stereotypes.
That is, given an object, a human will quickly skim all the
visible features of this object in order to establish a first-
hand impression. We deploy |Fl|, the number of available
stereotypes in Fl, hidden units in this layer. If we take
Fl=7 as an example, we have |F7| = x2 · y where x = |Fn|
is the number of visible features associated to each agen-
t and y = |Fs| is the number of visible features for each
service.

For the second layer H2, we use it to mimic a human
selecting significant stereotypes for decision-making based
on his/her logical thinking. Although there may exist a
numerous stereotypes associated to a trust context, only
a few are significant and effective to characterize the con-
text. This phenomenon follows real-life scenarios, where
humans can abstract significant features to make a ratio-
nal decision. As a result, we set σ · |Fl|, 0 ≤ σ < 1 hidden
units in the layer H2. We can choose appropriate σ based
on our evaluations in Section 5.2.

We employ the last hidden layer H3 to mimic a human
making a decision to rate the context. It is well known
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that humans cannot provide fine-grained ratings. For ex-
ample, many online rating systems (such as Epinions and
Amazon) restrict their users to rate products in 10 levels
(from 1 star to 5 stars with each step in 0.5 star). More-
over, to mimic humans’ divergent thinking to some extent,
we use 10 hidden nodes to represent each trust level and
thus involve 100 hidden nodes in H3.

In multi-agent systems, the agents’ and services’ fea-
tures (i.e., stereotypes) may have diverse value ranges and
types. In order to input the values from different stereo-
types, we should normalize them at first. As the deep
model is designed to accept quantitative data only, we con-
sider two typical quantitative data value types: discrete
values and continuous values [31]. To normalize discrete-
valued stereotype, we can directly convert them to a bi-
nary vector, where the size of the vector is the logarithm
(based on 2) of possible values of this feature. For ex-
ample, if a feature has 10 candidate values, the length of
the vector is dlog210e = 4. In case the stereotype takes
the 2nd candidate value, we can convert it to 0010. For
the continuous-valued stereotypes, we can discrete them
using a segmentation method. The segmentation criteri-
on can be set according to the value distribution of each
continuous-valued stereotype. To sum up, we formalize
the input normalization process as follows. Let Bf be the
binary vector of a context-aware stereotype f ∈ Fl which
is associated to a context (ni, nj , sk). When we build the
deep model for a sample context (ni, nj , sk) ∈ Cld, we can
generate the input B(Fl) for this context by concatenating
the binary value vectors Bf , f ∈ Fl of (ni, nj , sk) into one
vector: B(Fl) = Concatf∈FlBf .

For the label layer, we determine the number of units
depending on how precise we expect the deep model can
output. Given a context (ni, nj , sk) ∈ Cld, the label is the
trustworthiness (or belief) tij:k ∈ [0, 1]. As a result, if we
expect the output precision is 0.1, we can use 10 units in
the label layer. But if we attempt to get 0.01 precision,
we need 100 units. In this paper, we choose the 100-unit
opinion. Note that, since tij:k is a continuous value, we
need to discrete it and convert it to a binary vector at
first.

We list the main learning steps of our stereotypical
DBN model given a Cld as follows.

Step 1 We prepare the input binary vectors B(Fl) for all
the (ni, nj , sk) ∈ Cld (or including (ni, nj , sk) ∈ Cs to
get more samples to rebuild the empirical distribu-
tion), and hence generate the empirical distribution
of the input layer.

Step 2 After the structure of the lower layer is deter-
mined, we reconstruct the upper layer and the layer-
wise connections between the two adjacent layers us-
ing a restricted Boltzmann machines.

Step 3 We repeat Step 2 until all the layer-wise connec-
tions are constructed.

Step 4 We fine-tune the whole deep model using the la-
belled samples (ni, nj , sk) with tij:k from Cld.

4.2. Layer-Wise Reconstruction via RBM

Given the input layer H0, our model can reconstruc-
t the first hidden layer H1 and the layer-wise connections
between H0 and H1 using a restricted Boltzmann machine
(RBM). We repeat this step to reconstruct H2 given H1,
H3 given H2, and L given H3, and eventually build the
whole deep model. The target of each layer-wise recon-
struction is to find a set of optimal layer-wise parameters
θ = (W,o,u) which can minimize the state energy for
each layer pair in RBM [32]. We will show the details of
RBM using the layer-wise reconstruction of the first hid-
den layer H1 given the input layer H0 as follows. The
layer-wise reconstructions for other layer pairs are similar.

Let h0 = B(Fl) be the input binary vector of H0 and
h1 be the hidden unit vector of H1. The layer-wise param-
eters of this layer pair is θ0 = (W0,o0,u0), where W0 is
the connection weight matrix between the layers H0 and
H1, o0 is the biased vector for H0 and u0 is the biased vec-
tor for H1. W0

ij ∈ W0 represents the connection weight

between the i-th unit in h0 and the j-th unit in h1. o0
i ∈ o0

is the bias of the i-th unit in h0, and u0
j ∈ u0 is the bias

of the j-th unit in h1.
We can calculate the state energy of this layer pair as

E(h
0
,h

1
, θ

0
) = −(h

1
)
′
W

0
h

0 − (o
0
)
′
h

0 − (u
0
)
′
h

1
(5)

and then generate a layer-by-layer joint distribution for
RBM as

P (h
0
,h

1
, θ

0
) =

e−E(h0,h1,θ0)∑
h0

∑
h1 e−E(h0,h1,θ0)

(6)

By factorizing the RBM’s joint distribution, we can get
two RBM associated layer-to-layer conditionals:

P (h
0
i = 1|h1

) = s(
∑
k

W
0
ikh

1
k + o

0
i )

P (h
1
j = 1|h0

) = s(
∑
k

W
0
kjh

0
k + u

0
j )

(7)

where s(x) = 1
1+exp(−x) and each unit value (i.e., h0

i and

h1
j ) is a binary value. Using Equation (7), we can eventual-

ly have the conditional probability distribution P (h0|h1)
and P (h1|h0). With these two conditionals, we can ap-
ply Gibbs sampling method to sample H1 given H0, and
then sample H0 given H1 and then repeat the two steps t
times. This process forms a Markov chain [33], which can
generate h1(t) only depending on h1(t − 1). h1(t) is the
t-th state of h1 in the Markov chain and the train starts
at h0(t = 0).

By using Gibbs sampling to reconstruct H0 and H1,
the layer-wise parameters θ0 should be optimized as well.
The optimization goal is to minimize a so-called log-likelihood
logP (h0). We have P (h0) =

∑
h1 P (h0,h1, θ0) and can

write its log version (i.e., the log-likelihood of P (h0)) as

logP (h
0
) = log

∑
h1

e
−E(h0,h1,θ0) − log

∑
h0

∑
h1

e
−E(h0,h1,θ0)

(8)
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We cannot minimize logP (h0) by finding the optimal θ0

directly, because the parameters depend on each other
(i.e., the partial derivative of logP (h0) with respect to one
parameter contains other parameters). To tackle this chal-
lenge, we apply a gradient descent (GD) method with the
line search. The GD method can calculate the derivative of
logP (h0) with respect to the parameter θ0 = (W0,o0,u0)
as

∂ logP (h0(0))

∂θ0
= −

∑
h1(0)

P (h
1
(0)|h0

(0))
∂E(h1(0)|h0(0))

∂θ0

+
∑
h1(t)

∑
h0(t)

P (h
1
(t)|h0

(t))
∂E(h1(t)|h0(t))

∂θ0

(9)

To determine how long the Markov chain is deserved
(i.e., determining the t), we refer to a contrastive diver-
gence algorithm [34], which can take a small t (typical-
ly take t = 1) to run the chain by referring a difference
between two Kullback-Leibler divergences. The Kullback-
Leibler divergence is a typical measure of the information
loss when one probability distribution is used to approx-
imate another [35]. The authors [34] chose the Kullback-
Leibler divergence in their design in order to ensure the
minimized information loss when the Markov chain is con-
structed. By doing so, we can calculate the derivative of
logP (h0) with respect to the parameter W0 as

∂ logP (h0(0))

∂W0
= 〈h1

(0)
′
h

0
(0)〉d − 〈h1

(1)
′
h

0
(1)〉m (10)

where, 〈·〉d is the expectation regarding to the data distri-
bution, and 〈·〉m is the expectation for the model distri-
bution which is sampled by one step Gibbs sampling. We
therefore can update the parameter W0 as

W
0
(t=1) = εWW

0
(0) + ρW (〈h1

(0)
′
h

0
(0)〉d − 〈h1

(1)
′
h

0
(1)〉m) (11)

where, εW is the momentum for smoothness and used here
to mitigate overfitting. ρW is the learning rate of W0 (i.e.,
the step length of gradient descent for W0). Similarly, we
can update the other two parameters o0 and u0 as

o
0
(t = 1) = εoo

0
(0) + ρo(h

0
(0)− h

0
(1))

u
0
(t = 1) = εuu

0
(0) + ρu(h

1
(0)− h

1
(1))

(12)

where, εo and εu are momentums. ρo and ρu are the learn-
ing rate of o0 and u0 respectively. Our model uses the
same values for the momentums and learning rates as the
typical deep learning method [32] used.

4.3. Supervised Global Fine-Tuning

As described in Section 4.2, the RBM reconstruction
is an unsupervised learning progress and thus cannot u-
tilize the labelled samples. To avoid this issue and make
a full utilization of the labelled samples in our learning
process, we implement a supervised mean-field posterior
approximation algorithm through back-propagation [12].
This method can fine-tune the deep model with labelled
samples (i.e., evidence-dense contexts). The tuning goal

is to minimize the model error by further optimizing the
parameter θ = (W,o,u) from the label layer back to the
input layer (down-pass). The model error can be measured
in terms of a cross-entropy between the probability distri-
bution of the true trustworthiness and that of the inferred
trustworthiness. The cross-entropy is a typical measure
that can be used to calculate the average number of error
bits when one distribution is used to approximate another
[36]. In our CAST, we can calculate the cross-entropy as
−
∑
tij:k log t̄ij:k, where tij:k is the correct trustworthiness

label of a context (ni, nj , sk) in the evidence-dense context
training set Cld, and t̄ij:k is the output trustworthiness la-
bel when inputting the stereotypes of the evidence-dense
context (ni, nj , sk) to the model.

5. Evaluation

In this section, we conduct a rich set of simulation-
based experiments to confirm the effectiveness of our CAST.
In particular, we first prove the effectiveness of context-
aware stereotypes against context-correlated attacks. We
then validate the effectiveness of our deep architecture in
making our stereotypical trust model robust. We also e-
valuate the performance overheads of CAST at the end.

5.1. Experiment Setup

In our experiments, we simulate a multi-agent system
with |N | = 100 agents and |S| = 50 services for each agent.
We then have |N×N×S| = 500, 000 distinct trust contexts
in total. If we exclude the context where the trustor and
the trustee are the same agent, we can obtain a reasonable
definition |N |·(|N |−1)·|S| = 495, 000. That is, each agen-
t will select any other agents to consume their services in
every simulated time slot. Moreover, we randomly choose
|R| = 10 agents from N as trustworthy advisors, and con-
sider that each agent can trust the recommendations from
these advisors with an equal belief. We set 100 visible
features (i.e., stereotypes) in each agent’s profile and 20
features in each service’s profile. Each feature contains a
binary value (the same value setting is used in [5]).

Moreover, we simulate context-correlated attacks and
investigate whether CAST can make an accurate a pri-
ori trust inference against this kind of attacks. Since all
the stereotypical trust inference models share a common
assumption that they can work if and only if malicious pat-
terns can be expressed in visible features [7, 5, 8, 9, 10],
we follow this assumption in our experiments but classify
the malicious patterns induced by the context-correlated
attacks into seven types (we list them in Table 1). By this
classification, our seven kinds of context-aware stereotype-
s can capture each type of the malicious patterns one to
one. In this paper, we use the malicious pattern to de-
scribe the attacking behaviors depending on the contexts.
For example, the malicious pattern ¬ in Table 1 indicates
that the attack will happen if and only if the targeted
service contains some specific stereotypes (i.e., visible fea-
tures), while the malicious pattern  means the attack
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should be launched according to the trustee’s stereotypes.
Further, we sample the posterior trustworthiness tij:k un-
der attack using a normal distribution N (0.1, 0.01), and
the posterior trustworthiness tij:k without being attacked
from N (0.9, 0.01). Our posterior trustworthiness sampling
method is reasonable and feasible, because it can well sim-
ulate the uncertainty of belief required by the subjective
logic. We use the posterior trustworthiness as the ground
truth when we apply stereotypical models to infer a pri-
ori trust. In our simulation, we consider the percentage
Pc ∈ (0, 1] of trust contexts are malicious and the mali-
cious pattern is expressed in the percentage Pf ∈ (0, 1]
of visible features. Since our investigation indicates that
our CAST and existing stereotypical models are all not
sensitive to Pc and Pf (the CAST case has been shown
in Section 5.2), we simply set Pc = Pf = 20% for our
experiments.

Table 1: Context-correlated malicious patterns.

Malicious pattern
Malicious features

Captured by
Trustor Trustee Service

Pattern ¬
√

Cl=1
d

Pattern 
√

Cl=2
d

Pattern ®
√

Cl=3
d

Pattern ¯
√ √

Cl=4
d

Pattern °
√ √

Cl=5
d

Pattern ±
√ √

Cl=6
d

Pattern ²
√ √ √

Cl=7
d

When we have established the ground truth trustwor-
thiness for every trust context, we will simulate one contex-
t as a evidence-sparse context and meanwhile assume all
the others are evidence-dense. We repeat this simulation
by traversing all the contexts as evidence-sparse one time,
and measure a priori trust inference accuracy in reverse of
a root-mean-square deviation (RMSD) [37]. The RMSD
is a very popular measurer of the differences between the
true values and the values predicted by a model. A lower
RMSD means a higher trust inference accuracy. In our
simulation, we calculate RMSD as

RMSD =

√√√√∑
(ni,nj,sk)∈Cs (t̄ij:k − t

i
j:k)2

|Cs|
(13)

where, tij:k is the ground truth and t̄ij:k is the trustworthi-
ness inferred by a model. Since we iterate every context
as evidence-sparse one by one, the Cs could include all the
trust contexts in our experiments. In the following of the
evaluations, we will run each experiment 100 rounds and
show the average RMSD. Without specified explanation,
we will simply use RMSD to represent the average RMSD
in Figure 3 to Figure 5.

We acknowledge that there exist another famous error
measure, the mean absolute error (MAE) in the literature
[37]. Compared with MAE which calculates the average
error of a set using the same weight to each sample error
in this set, the root-mean-square deviation (RMSD) can

assign a higher weight to a larger sample error when com-
puting the set error [37]. In our problem, we target to in-
fer the trustworthiness through context-aware stereotypes
for the agents without enough trust evidences. A higher
trust inference error necessarily leads to a higher negative
impact when the others relying on the inferred trustwor-
thiness to make a security-related decision. For example,
given an agent with the true trustworthiness 0.9, if we in-
correctly infer the trustworthiness as 0.89, this 0.01 error
could be tolerable. But if we mistakenly infer it as 0.1,
such 0.8 error may make a significant security risk with a
very high probability. To take into account this weighting
requirement, we choose RMSD as the accuracy/robustness
measurer in this paper.

5.2. Parameter Selection

As discussed in Section 3, we need to choose a param-
eter σ ∈ (0, 1] in order to determine the number of hidden
units in the second hidden layer, which is designed to mod-
el the significant feature selection process. To achieve this
goal, we investigate how accurate the trust inference we
can make when σ is increased from 0.1 to 1 with 0.1 as
the step. In particular, we calculate the RMSD for each
tested σ value by considering the seven types of context-
correlated malicious patterns one by one and report it-
s mean value in Figure 4. As can be seen, from case
Pc = Pf = 20% to case Pc = Pf = 80%, the RMSD
is changed from 1.19 to 1.16 in average (the difference
is less than 2.5%). We thereby confirm that CAST is
not sensitive to Pc and Pf . Moreover, we find that the
RMSD gets the smallest value 1.14 when σ = 0.9 in case
Pc = Pf = 80%. We thus use this value in the following
experiments.

0.2 0.4 0.6 0.8 1
1.1

1.2

σ

R
M

S
D

(a) Pc = 20% and Pf = 20%.

0.2 0.4 0.6 0.8 1
1.1

1.2

σ

R
M

S
D

(b) Pc = 80% and Pf = 80%.

Figure 4: The selection of σ to determine how many hidden
nodes (i.e., σ · |Fl|) we need to put in the second hidden layer
in our deep model. The accuracy is measured in terms of root-
mean-square deviation (RMSD). A lower RMSD indicates a
more accurate trust inference.

5.3. Reasons for Context-Aware Stereotypes

To demonstrate the effectiveness of the use of context-
aware stereotypes, we compare our CAST with two state-
of-the-art trustee stereotypical trust models [5, 7]. In [5],
the authors proposed to establish a classification and re-
gression tree, known as M5 tree, to learn from evidence-
dense contexts and then use the tree to infer a priori trust
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(h) Mixed malicious pattern.

Figure 3: We show the effectiveness of context-aware stereotypes by comparing trust inference accuracy between CAST and
trustee stereotypical methods such as M5 tree [5] and D-StereoTrust [7]. The accuracy is measured in terms of root-mean-square
deviation (RMSD). A lower RMSD indicates a more accurate inference. The error rate is the percentage of mis-classified labelled
samples in the training set. The mixed malicious pattern consists of the seven malicious patterns with an equal probability.
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Figure 5: We show the effectiveness of deep model by comparing trust inference accuracy when we applying context-aware
stereotypes to the deep model, the M5 tree [5] and the dichotomy enhanced group method [7]. The accuracy is measured in terms
of root-mean-square deviation (RMSD). A lower RMSD indicates a more accurate inference. The error rate is the percentage of
mis-classified labelled samples in the training set. The mixed malicious pattern consists of the seven malicious patterns with an
equal probability.

for the evidence-sparse contexts. We refer it as M5-tree
in our comparison. While in [7], the authors designed a
group-based method for trust stereotyping as well as a
dichotomy based enhancement. We choose the dichoto-
my enhancement (referred as D-StereoTrust) in our com-
parison because this one has better inference performance
than its original version. As described in [7], the authors
claimed that the D-StereoTrust’s effectiveness mainly re-
lies on how accurate the membership functions can be ap-
proximated when grouping stereotypes, but they do not

give the details on how to generate an appropriate mem-
bership function in their design. Instead, we simply as-
sume the optimal membership function can be obtained
in advance and thus can show the best inference perfor-
mance (i.e., theoretical upper bound) of D-StereoTrust.
Note that, we do not need to compare our method with [8]
and [10]. The former one [8] suggested a fuzzy model as the
membership functions to approximate the D-StereoTrust’s
upper bound performance for trust inference, but we have
already assumed the best membership function to show
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the upper bound. The latter one [10] discussed how to
extract more available features from trustees for the trust
inference. In our design, we just consider that the set of
visible features is readily prepared.

In Figure 3, we compare CAST with M5-tree and D-
StereoTrust against the seven types of context-correlated
malicious patterns (listed in Table 1) as well as a mixed
malicious pattern which involves the seven kinds of pat-
terns with an equal probability. We append (RP) to M5-
tree and D-StereoTrust in Figures 3(c) and 3(e)-3(h), be-
cause these malicious patterns, which indicate the mali-
cious trustee agents launch attacks according to different
trustors stereotypes, can only make effects when consult-
ing advisors for trust inference. In these cases, we need
to use the stereotypical reputation method [5] in our com-
parison. The (RP) represents the trustworthy advisors run
stereotypical methods such as M5-tree and D-StereoTrust
for the target trustees on behalf of the trustors, and final-
ly recommend the results to the trustors. The error rate
is the percentage of mis-classified labelled samples in the
training set and will be elaborated on in Section 5.4.

As shown in Figure 3, CAST demonstrates a much
higher accuracy (the RMSD keeps in around 1 for all the
sub figures) than both the M5-tree and D-StereoTrust (the
RMSD is about 45 and 30 respectively, except in the sub
figure 3(b)). Due to the overlook of context-aware stereo-
types, the trustee stereotypical methods (including M5-
tree and D-StereoTrust) cannot discover the malicious pat-
terns in Figures 3(a) and 3(c)-3(h), hence getting a more
than 30 times accuracy reduction compared with our de-
sign. While for the sub figure 3(b), the malicious pattern
only appears in trustee’s features and thus can be cap-
tured by the trustee stereotypical methods. In this case,
our CAST can still make a trust inference with a slightly
higher accuracy but the level is much lower than other cas-
es. We will further investigate this case with more details
in Section 5.4.

5.4. Reasons for Applying Deep Model

Although Section 5.3 has proved that our CAST can
do a much better job to infer a priori trust compared with
the state-of-the-art techniques [5, 7] which do not take
into account context-aware stereotypes, it is still unclear
how much benefit we can obtain due to the use of the
deep model. We fill this gap in this section. In particular,
we purposely introduce modify existing trustee stereotyp-
ical models to accept context-aware stereotypes and then
compare our deep model with these modified versions us-
ing the same set of context-aware stereotypes. In anoth-
er word, we can use the M5 tree [5] and dichotomy based
group method (D-group method in short) [7] to implemen-
t the InferModel function in Algorithm 1, and then use
these models to compare with CAST which implements
the InferModel function using a deep model.

Our comparison is mainly against an error rate which
is the percentage of mis-classified labelled samples in the
training set. This rate can well reflect a common practical

phenomenon where some contexts with malicious patterns
may be regarded with a high trustworthiness due to the
attacks that are targeted trust management system itself.
A stereotypical trust inference model that maintains suffi-
cient accuracy against a higher error rate can be considered
with a sound robustness.

We show our results in Figure 5. As can be seen, in
the presence of all the seven types of context-correlated
malicious patterns as well as the mixed pattern, our deep
model remains in a high accuracy (the RMSD is at around
1 for all the cases), while the accuracy of M5 tree and D-
group method decreases sharply (the RMSD grows up at
least three times) when the error rate is increasing from
0 to 0.1, despite the M5 tree and D-group method can
sometimes have a slightly better result when the error rate
is 0. Therefore, we have successfully confirmed that our
deep model can achieve a better trust inference robustness
than previous solutions.

5.5. Performance overheads

We analyze the time complexity of CAST (specifically
the deep model) as well as evaluate its practical perfor-
mance overheads in this section. In general, CAST’s time
complexity largely depends on the structure of the deep
model, such as the number of layers and the number of
units in each layer. As described in Section 4, our stereo-
typical deep model includes five layers: one input layer,
three hidden layers and an output layer. As the input lay-
er is for the value vector of context-aware stereotypes, it
has |V (Fl)| units inside. Moreover, the number of units
in the first hidden layer equals to the number of context-
aware stereotypes |Fl|. The second hidden layer has σ · |Fl|
units and the third hidden layer has 100 units. The out-
put layer has 100 units. Then the numbers of layer-wise
connections for each layer pair are |V (Fl)| · |Fl|, σ · |Fl|2,
100 · σ · |Fl| and 10000 respectively.

In the training phase, the RBM should run two times
of Gibbs sampling for each layer pair and the supervised
fine-tuning should run from the output layer back to the
input layer one time, each layer-wise connection should be
calculated three times. Therefore, we can compute the
time complexity of training phase as O(k · 3 · (|V (Fl)| ·
|Fl| + σ · |Fl|2 + 100 · σ · |Fl| + 10000)), where k is the
number of iterations we will run in the training phase. In
our experiments, we use k = 1000. In the trust inference
phase, the calculation is from the input layer to the output
layer one time. We thus can get the time complexity of
this phase as O(|V (Fl)|·|Fl|+σ ·|Fl|2+100·σ ·|Fl|+10000).

As can be seen, CAST’s time complexity is mainly de-
termined by |Fl|. We then evaluate CAST’s performance
overheads from |Fl| = 100 to |Fl| = 1000 in our exper-
iments. The computer we use for this evaluation has a
8-core CPU at 1.73 GHz each and 8 GB memory. We
run the evaluation for each setting 20 times and report
the results using boxplot in Table 2 and Figure 6. In the
experimental results, we confirm that the CAST’s perfor-
mance overhead can grow up when the |Fl| becomes larger.
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Moreover, the overheads induced by the training phase is
about 3000 times bigger in average than those induced by
the inference phase. This is in accordance with our time
complexity analysis: the training phase has a 3 · k = 3000
times larger complexity than the inference phase.

These performance evaluation results indicate that, our
CAST is more appropriate to be run in powerful agents,
since the training phase will induce a large delay (around
160 seconds when |Fl| = 1000). For the lightweight agents,
a better solution is to out source the training phase to an-
other powerful third parties (such as a public cloud ser-
vices) and only run the inference phase in the lightweight
agents themselves. We leave a future work for this study.

Table 2: Performance overheads (in terms of time cost) in-
duced by CAST.

|Fl|
Lower|Median|Upper time cost (seconds)

Training phase Inference phase

100 10.81|12.61|13.93 0.010|0.011|0.016

200 22.71|24.49|27.13 0.012|0.015|0.021

300 32.12|33.04|33.54 0.014|0.019|0.025

400 44.38|45.56|46.00 0.016|0.020|0.025

500 58.43|60.01|63.42 0.019|0.024|0.030

600 73.40|74.45|75.67 0.020|0.028|0.037

700 91.72|93.68|94.86 0.024|0.033|0.039

800 110.88|112.32|114.46 0.025|0.034|0.043

900 132.74|134.22|136.99 0.032|0.040|0.048

1000 153.80|156.65|160.23 0.033|0.045|0.068
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Figure 6: Boxplots for performance overheads (in terms of
time cost) induced by CAST.

6. Conclusion and Future Work

In this paper, we have proposed CAST, a novel context-
aware stereotypical trust model, to address the the chal-
lenging a priori trust inference problem in the literature.
CAST has successfully extended the malicious pattern de-
tection from a trustee’s profiles to a trust context perspec-
tive, hence being able to capture context-correlated at-
tacks. This kind of attacks could cause seriously negative
effects to a priori trust inference but cannot be well ad-
dressed by previous solutions. Moreover, CAST has been
designed with a new stereotypical deep model. The use of
deep model to solve trust problems is promising, because

the deep model can well approximate how a human is rea-
soning and making decisions with trust. To the best of
our knowledge, our work is the first attempt that model-
s trust using deep representations. At the end, we have
conducted a rich set of experiments to evaluate the effec-
tiveness and performance of CAST in practical settings.
Our design and the experimental results have successfully
confirmed that, (1) CAST is the first trust inference so-
lution that can be resist context-correlated attacks, and
(2) CAST can make a more accurate and robust trust in-
ference with a moderate performance overhead than the
state-of-the-art.

In the future, we will attempt to remove the assump-
tions we have made in our current work. For example, we
will design new methods to extend CAST to suit the con-
ditions where trustworthy advisors are not presented. We
will also design some stereotype (i.e., feature) authentica-
tion mechanism to avoid noise and unreliable profile fea-
tures. Moreover, we will investigate how to apply CAST to
some real multi-agent applications, especially these whose
posteriori trust is too expensive to obtain, such as the wire-
less sensor networks [38] and the Internet of things [39].
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[10] Murat Şensoy, Burcu Yilmaz, and Timothy J Norman. Stage:
Stereotypical trust assessment through graph extraction. Com-
putational Intelligence, 2014.

[11] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and
reputation models for open multi-agent systems: a review. Ar-
tificial Intelligence Review, 40(1):1–25, 2013.

[12] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast
learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[13] Guy Wallis and Heinrich Bülthoff. Learning to recognize ob-
jects. Trends in cognitive sciences, 3(1):22–31, 1999.

[14] Yoshua Bengio. Learning deep architectures for AI. Foundations
and trends R© in Machine Learning, 2(1):1–127, 2009.

[15] C Neil Macrae and Galen V Bodenhausen. Social cognition:
Categorical person perception. British Journal of Psychology,
92(1):239–255, 2001.

[16] Peng Zhou, Xiapu Luo, Ang Chen, and Rocky KC Chang. S-
gor: Trust graph based onion routing. Computer Networks,
57(17):3522–3544, 2013.

[17] Peng Zhou, Xiapu Luo, and Rocky KC Chang. Inference attacks
against trust-based onion routing: Trust degree to the rescue.
computers & security, 39:431–446, 2013.

[18] Xiaojing Gu and Xingsheng Gu. On the detection of fake cer-
tificates via attribute correlation. Entropy, 17(6):3806–3837,
2015.

[19] Bin Yu and Munindar P. Singh. An evidential model of dis-
tributed reputation management. In Proceedings of Internation-
al Autonomous Agents and Multi Agent Systems (AAMAS),
pages 294–301, 2002.

[20] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and
Michael Luck. Coping with inaccurate reputation sources: Ex-
perimental analysis of a probabilistic trust model. In Proceed-
ings of Fourth International Autonomous Agents and Multia-
gent Systems (AAMAS), 2005.

[21] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-
Molina. The eigentrust algorithm for reputation management
in p2p networks. In Proceedings of the 12th international con-
ference on World Wide Web, pages 640–651, 2003.

[22] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based
trust for peer-to-peer electronic communities. IEEE Trans-
actions on Knowledge and Data Engineering, 16(7):843–857,
2004.

[23] Siwei Jiang, Jie Zhang, and Yew-Soon Ong. An evolutionary
model for constructing robust trust networks. In Proceedings of
the 2013 international conference on Autonomous agents and
multi-agent systems (AAMAS), pages 813–820, 2013.

[24] Chris Burnett, T Norman, and Katia Sycara. Sources of stereo-
typical trust in multi-agent systems. In Proceedings of the 14th
International Workshop on Trust in Agent Societies, page 25,
2011.

[25] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image super-
resolution. In Proceedings of European Conference on Computer
Vision (ECCV), pages 184–199. 2014.

[26] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neu-
ral networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[27] Ronan Collobert and Jason Weston. A unified architecture for
natural language processing: Deep neural networks with multi-
task learning. In Proceedings of the 25th international confer-
ence on Machine learning, pages 160–167, 2008.

[28] Elaine Rich. User modeling via stereotypes. Cognitive science,

3(4):329–354, 1979.
[29] Walter R Gilks and Pascal Wild. Adaptive rejection sampling

for gibbs sampling. Applied Statistics, pages 337–348, 1992.
[30] Yan Liu, Sheng-hua Zhong, and Wenjie Li. Query-oriented

multi-document summarization via unsupervised deep learning.
In Proceedings of the 27th national conference on Artificial in-
telligence (AAAI), 2012.

[31] Kenneth Rosen. Discrete Mathematics and Its Applications 7th
edition. McGraw-Hill Science, 2011.

[32] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo
Larochelle. Greedy layer-wise training of deep networks. Ad-
vances in neural information processing systems, 19:153, 2007.

[33] Walter R Gilks. Markov chain monte carlo. Wiley Online Li-
brary, 2005.

[34] Geoffrey E Hinton. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771–1800,
2002.

[35] Rainer Dahlhaus. On the kullback-leibler information diver-
gence of locally stationary processes. Stochastic Processes and
their Applications, 62(1):139–168, 1996.

[36] John E Shore and Rodney W Johnson. Axiomatic derivation
of the principle of maximum entropy and the principle of mini-
mum cross-entropy. IEEE Transactions on Information Theory,
26(1):26–37, 1980.

[37] J Scott Armstrong and Fred Collopy. Error measures for gen-
eralizing about forecasting methods: Empirical comparisons.
International journal of forecasting, 8(1):69–80, 1992.

[38] Peng Zhou, Siwei Jiang, Athirai Irissappane, Jie Zhang, Jiany-
ing Zhou, and Joseph Chee Ming Teo. Toward energy-
efficient trust system through watchdog optimization for wsns.
IEEE Transactions on Information Forensics and Security,
10(3):613–625, 2015.

[39] Yosra Ben Saied, Alexis Olivereau, Djamal Zeghlache, and
Maryline Laurent. Trust management system design for the
internet of things: a context-aware and multi-service approach.
Computers & Security, 39:351–365, 2013.

12


	Introduction
	Problem statement
	The contributions
	Paper structure

	Background and related work
	Context-aware stereotyping
	Trust Model
	Context-Aware Stereotypes
	A Priori Trust Inference Algorithm

	The stereotypical deep model
	Stereotypical Deep Model Overview
	Layer-Wise Reconstruction via RBM
	Supervised Global Fine-Tuning

	Evaluation
	Experiment Setup
	Parameter Selection
	Reasons for Context-Aware Stereotypes
	Reasons for Applying Deep Model
	Performance overheads

	Conclusion and Future Work

