
GUMSAWS: A Generic User Modeling Server for

Adaptive Web Systems

by

Jie Zhang

BCS, University of New Brunswick, 2003

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Computer Science

in the Graduate Academic Unit of

Faculty of Computer Science

Supervisor: Ali A. Ghorbani, Ph.D., Computer Science

Examining Board: Dawn MacIsaac, Ph.D., Computer Science & Electrical
and Computer Engineering, Chair
Stephen Marsh, Ph.D., Computer Science, UNB & Na-
tional Research Council-IIT
Greg Fleet, Ph.D., Faculty of Business, UNB Saint John

This thesis is accepted by the

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

April 2005

c© Jie Zhang, 2005

Abstract

This thesis focuses on the architecture, design and implementation of GUMSAWS, a

generic user modeling server for adaptive Web systems. GUMSAWS is proposed based

on the user modeling tasks performed by the adaptive Web systems implemented

from an adaptive Web site construction framework. This framework describes the

interplay between the content of a Web site, the usage of that content, the users who

consume the information, and the packaging and navigation structure of that content.

To describe the information of an individual user or group of users, the adaptive

Web framework requires the support of user modeling technology. In early work,

user modeling tasks were performed without the aim of modifiability and reusability.

These user modeling tasks are unable to fulfil the needs of the adaptive Web site

construction framework.

GUMSAWS is designed and implemented to reach the goals of generality, extend-

ability, and replaceability. GUMSAWS acts as a centralized user modeling server

to assist several adaptive Web systems concurrently. It offers the user modeling

functions of building up a user/group profile, and storing, retrieving, updating and

deleting entries. It provides the user modeling tasks of inferring user property values

and providing adaptive systems with recommendations according to users’ interests.

GUMSAWS also provides a facility to allow users to see and modify their profiles.

GUMSAWS is examined within the two application domains, E-tailer and E-news.

The accuracy of inferring user property values from different information sources (di-

rect, groups information, association rules and general facts) is evaluated in E-tailer

domain. The example application in E-news domain, PENS (Personalized Electronic

News System), also illustrates the basic user modeling functions provided by GUM-

SAWS, and its user modeling task of providing recommendations according to users’

interests.

ii

Contents

Abstract ii

List of Tables vii

List of Figures viii

Acknowledgements x

1 Introduction 1

1.1 Motivation . 3

1.2 Current Work . 4

1.3 Thesis Organization . 5

2 User Modeling Overview 7

2.1 User Profile . 7

2.2 User Model . 8

2.3 User Modeling . 9

2.3.1 Methods of Collecting User Data 10

2.3.2 Techniques Used to Build User Model 10

2.3.3 User Modeling in Practice . 11

2.4 User Modeling Components and Systems 13

2.5 Examples of Generic User Modeling Systems 14

iii

2.5.1 BGP-MS . 15

2.5.2 GUMS . 16

2.5.3 UMT . 19

2.5.4 um . 22

2.5.5 LMS . 22

2.5.6 Personis . 23

2.6 Concluding Remarks . 24

3 A Generic User Modeling Server 26

3.1 Requirements and Goals . 26

3.1.1 Design Requirements . 27

3.1.2 General Goals . 27

3.2 Interaction Architecture . 28

3.3 Framework . 29

4 System Implementation 33

4.1 User and Group Model Description 34

4.1.1 Resource Description Framework 34

4.1.2 User Model Description . 35

4.1.3 Group Model Description . 38

4.2 Authoring Tool . 39

4.3 Modeling Interface . 41

4.3.1 Registration . 41

4.3.2 Message Relaying . 42

4.4 User Profile Manager . 43

4.4.1 Class Diagram . 44

4.5 Usage Group Handler . 45

4.5.1 Clustering Algorithms . 46

4.5.2 Class Diagram . 48

iv

4.6 Association Miner . 48

4.6.1 Apriori Algorithm . 49

4.6.2 Class Diagram . 50

4.7 Inference Engine . 51

4.7.1 Information Sources . 52

4.7.2 Inference Process . 53

4.8 Recommender . 53

4.8.1 Class Diagram . 54

4.9 Profile Editor . 55

4.10 Concluding Remarks . 56

5 Experiments and Results 58

5.1 Data Set . 59

5.1.1 General Facts . 60

5.1.2 Preprocessed Dataset . 60

5.2 Training Data . 61

5.2.1 Groups . 62

5.2.2 Association Rules . 64

5.3 Experimental Results . 65

5.3.1 Inference Accuracy . 66

5.3.2 Comparison of K-means and K-means+ 67

5.3.3 Comparison of Different Combinations of Information Sources 69

5.4 Concluding Remarks . 70

6 Example of GUMSAWS in Use 71

6.1 PENS . 71

6.2 Web Pages . 72

6.3 Adaptation . 74

6.4 Concluding Remarks . 76

v

7 Conclusions and Future Work 77

7.1 Literature Review . 77

7.2 Design and Implementation of GUMSAWS 78

7.3 Evaluation and Demonstration . 80

7.4 Future Work . 80

Bibliography 82

A Implementation Code 88

A.1 User Profile Manager . 88

A.1.1 CTupm Class . 88

A.1.2 UPManager Class . 90

A.1.3 Reply Class . 91

A.2 Usage Group Handler . 94

A.2.1 UGHandler Class . 94

A.2.2 DBManager Class . 98

A.3 Association Miner . 104

A.3.1 AssociationMiner Class . 104

A.4 Recommender . 105

A.4.1 CTrecommender Class . 105

A.4.2 Recommender Class . 107

A.4.3 Reply Class . 107

VITA

vi

List of Tables

4.1 Format of Registration Packet . 42

4.2 Format of Request Packet from MI to System Component 42

4.3 Format of Response Packet from System Component to MI 43

4.4 Format of Request Packet from Client to MI 43

4.5 List of Services Provided by the UPM 44

4.6 The Service Provided by the Recommender 54

5.1 Information about Selected Properties 60

5.2 User Groups Generated by Using the K-means Algorithm 63

5.3 User Groups Generated by Using the K-means+ Algorithm 63

5.4 Number of Discovered Association Rules 64

5.5 Accuracy of Inferring User Property Values 66

5.6 Comparison of K-means and K-means+ 67

5.7 Comparison of Different Combinations of Information Sources 69

A.1 Implemented Components and Released Code 89

vii

List of Figures

3.1 Interaction Architecture . 28

3.2 GUMSAWS Framework . 29

4.1 User Model Vocabulary for E-news Domain 36

4.2 Interested Topics Class in User Model Vocabulary 37

4.3 Description of User Model . 38

4.4 Group Model Vocabulary for E-news Domain 39

4.5 Description of Group Model . 39

4.6 The Authoring Tool . 40

4.7 UML Class Diagram for the UPM . 45

4.8 K-means+ Algorithm . 47

4.9 UML Class Diagram for the UGH . 48

4.10 UML Class Diagram for the AM . 51

4.11 UML Class Diagram for the Recommender 54

4.12 Example of the Profile Editor . 55

5.1 One User Session in the Original Dataset 59

5.2 Information about the Processed Dataset 61

5.3 Missing Property Values . 62

5.4 Inferred Property Values . 65

5.5 Comparison of K-means and K-means+ 67

5.6 Clusters before Splitting . 68

5.7 Clusters after Splitting . 68

viii

5.8 Comparison of Different Combinations of Information Sources 69

6.1 The NEWS@UNB Website . 72

6.2 The Front Page . 73

6.3 The Category Based Page . 74

6.4 The Full News Page . 75

ix

Acknowledgements

I would first like to acknowledge Dr. Ali A. Ghorbani, my supervisor, for the op-

portunity to work on his project, Adaptive Websites, and for his constant guidance,

support and patience. Many thanks go to Mark Kilfoil for providing KDDCUP2000

data for the evaluation of the system. Thanks to my group members Mehran Na-

jarbashi and Hossein Sadat for cooperation of implementation of PENS. I am also

grateful for the technical discussions from Wenpu Xin and Zhong Lei.

Finally, I would like to extend my heartfelt thanks to my family in China: my

mother Aihua, my father Guoping, my older sister Hui, and my younger brother Fan,

for their lifelong love, encouragement and motivation in all that I do.

x

Chapter 1

Introduction

Web sites are becoming more and more popular and convenient for providing infor-

mation over a broad number of topics. They are used in diverse systems, such as

educational systems, on-line information systems, on-line help systems, information

retrieval systems, and e-commerce systems. Problems occur as the use of Web sites

increases, their size gets larger, and their structure becomes more complex. The rich

link structure of a hypermedia application can cause users to get easily overwhelmed

by the sheer number of navigation choices, and they may become unable to navigate

effectively. This is referred to as the “lost-in-hyperspace” problem of navigating the

Web. Web sites provide (from the point of view of a user) relatively static content,

though they are viewed by diverse users. This may cause difficulties for those who

have less background, may be redundant for those who are familiar with the informa-

tion, and may present more uninteresting than interesting material for others. This

is a “one-size-fits-all” problem common to non-adaptive Web sites.

To address these problems, there is a demand for Web sites to be automatically

adapted to reach the goals of personalization, recommendation, selection, and usage

analysis [23]. These Web sites are called adaptive Web sites. They are able to trans-

form a page request into a final page response by considering information about the

page requested, about the user, about the way the system has been used, about the

1

environment of the site, and about the environment of the user. They may provide

three different types of adaptation: content adaptation, navigation adaptation, and

presentation adaptation. While there is some overlap between these types of adapta-

tion, they are different in what they target. Content adaptation adds and/or removes

information fragments to/from the page based on the current context. Navigation

(structure) adaptation adds, removes, hides, sorts links, and/or changes the colour of

the links in a page, in order to provide the best navigation structure in the current

context for the user. Adding a recommended item at the end of a page, also falls in

this class of adaptation. Finally, presentation adaptation reformats the information

fragments to achieve the appropriate final presentation for the current context.

We, the Intelligent and Adaptive Systems (IAS) group at the Faculty of Computer

Science, University of New Brunswick, developed an adaptive Web site construction

framework [14]. This framework provides an architecture based on which an adaptive

Web system for different domains, can be built. It describes the interplay between

the content of a Web site, the usage of that content, the users who consume the infor-

mation, and the packaging and navigation structure of that content. The framework

requires usage mining to extract usage information after the reconstruction of user

sessions from server logs. The reconstruction of user sessions is performed based on

our previous work using improved time-oriented heuristics [46], referrer-based heuris-

tics [37], and a Markov chain model combined with a competitive algorithm [31]. The

adaptive Web framework also requires the support of user modeling technology to de-

scribe the information of an individual user or group of users from the mined usage

information. User modeling in this context should be able to offer the function of

incrementally building up a user model, the function of storing, updating and deleting

entries, and the function of maintaining the consistency of the model [29]. It may also

contain the tasks of inferring user property values and providing recommendations

based on users’ interests.

2

1.1 Motivation

The Adaptive Web Site Construction framework requires user modeling technology.

The framework has the goals of versatility, flexibility, extendability and scalability.

As a result, user modeling should be modifiable, reusable, and general and applicable

to as many application domains as possible.

User modeling has been performed by user modeling components, shell systems,

and servers. Traditionally, user modeling components are embedded into application

systems. Embedded user modeling components lack reusability and are only applica-

ble to the adaptive system to which they belong. User modeling shell systems aim at

the development of integrated representation, reasoning, and revision tools that form

an “empty” user modeling mechanism to meet the requirements of generality, expres-

siveness, and strong inferential capabilities. When filled with application-dependent

user modeling knowledge, these shell systems would fulfil essential functions of a

user modeling component in an application system. User modeling shell systems will

become part of the application after being filled with application-dependent user mod-

eling knowledge. They receive information about the user from the application only

and supply the application with assumptions about the user. User modeling servers

are centralized user modeling components for more than one application. They have

been developed using a client-server based architecture. User modeling servers are

not integrated into an application, but communicate with the application through a

network.

To support the adaptive Web site construction framework and assist diverse adap-

tive Web systems developed from this framework, we propose a generic user modeling

server for adaptive Web systems (GUMSAWS) [47]. It is able to reach the goals of

generality, extendability, and replaceability, and to satisfy the needs of the adaptive

Web site construction framework. As a user modeling server, GUMSAWS communi-

cates with adaptive systems through a network, and is a centralized user modeling

3

component for the adaptive systems developed from the adaptive Web construction

framework.

1.2 Current Work

The architecture of GUMSAWS has been designed based on the previous work in

the user modeling [47], and the implementation of adaptive systems based on the

Adaptive Web Site construction framework. Some major components have been im-

plemented, such as the User Model Description, the Group Model Description, the

Authoring Tool, the Modeling Interface, the User Profile Manager, the Usage Group

Handler, the Association Miner, the Inference Engine, the Recommender, and the

Profile Editor. Machine learning and data mining techniques have been implemented

and integrated into some of these components to learn and extract rules from users

and user navigation history.

Currently, GUMSAWS contains the functions of building up a user/group profile,

and storing, retrieving, updating and deleting entries. These functions are performed

by system component (the User Profile Manager). GUMSAWS infers user property

values through the Inference Engine by using diverse information sources, including

direct information, groups information, association rules, and general facts. Direct

information is the information directly provided by users and gathered through the

User Profile Manager. Groups information is generated by the Usage Group Handler

according to user navigation history. Association rules are extracted by the Associa-

tion Miner from all users’ property values. Through the Recommender, GUMSAWS

provides its clients with recommendations according to user interests and association

rules extracted by the Association Miner from the navigation history of users in the

same group. GUMSAWS also provides the Profile Editor to allow users to see and

modify their profiles.

4

GUMSAWS is implemented and examined within two application domains: E-

tailer and E-news. The performance of inferring user property values from different

information sources is evaluated by KDDCUP2000 data in the E-tailer domain. The

example application in the E-news domain, PENS (Personalized Electronic News

System), illustrates the basic user modeling functions provided by GUMSAWS and

its user modeling task of providing recommendations based on user navigation history.

PENS has been developed based on the adaptive Web site construction framework.

It makes use of GUMSAWS to adapt to user navigation history, and to provide

recommendations of news items strongly related to the news stories that users are

currently reading.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 summarizes the results of exploring the user modeling area. The defini-

tions of terms (user profile, user model, and user modeling) are given. Different types

of user models and processes of user modeling are described. This chapter also briefly

introduces user modeling history from user modeling components to user modeling

shell systems and servers. Some examples of user modeling shell systems and servers

are described as well.

Chapter 3 first gives the requirements and goals of system design for GUMSAWS.

It then presents the GUMSAWS framework. This chapter also describes the five

major subsystems of GUMSAWS, the Model Maintainer, the Information Source

Generator, the Recommendation Provider, the System Repository, and the Model

Description, and the interdependence of them. The way that GUMSAWS assists its

clients (adaptive Web systems) is described as well.

Chapter 4 provides a detailed description of system components and the imple-

mentation of them. The implemented system components include the User/Group

5

Model Description, the Authoring Tool, the Modeling Interface, the User Profile

Manager, the Usage Group Handler, the Association Miner, the Inference Engine,

the Recommender, and the Profile Editor. The structure of implemented classes in

some of these system components is presented. The implemented machine learning

and data mining techniques, and other algorithms are also provided in this chapter.

Chapter 5 examines GUMSAWS in E-tailer domain to illustrate its user model-

ing task of inferring user property values. Experiments are carried out to evaluate

the performance of inferring user property values from information sources, to com-

pare the performance of inference by using the K-means algorithm and K-means+

algorithm to generate groups information, and to compare the performance of infer-

ence from different combinations of information sources. Experimental results are

presented and discussed as well.

Chapter 6 describes how GUMSAWS can be made use of. It presents an exam-

ple application that illustrates another user modeling task of GUMSAWS, providing

recommendations based on user navigation history, and its basic user modeling func-

tions.

Chapter 7 concludes the current work and proposes future work.

6

Chapter 2

User Modeling Overview

During the literature review, we explored the user modeling area by looking into

different lines of research. The terms, user profile, user model, and user modeling, are

defined and clarified. This chapter also introduces user modeling history from user

modeling components to user modeling shell systems and servers, and describes some

examples of user modeling systems and servers, including BGP-MS (Belief, Goal,

Plan Management System) [29], GUMS (General User Modeling Shell) [12], UMT

(User Modeling Tool) [7], um [21], LMS (Learner Modeling Server) [32], and Personis

[22].

2.1 User Profile

A user profile is defined as a collection of information about a user, combining de-

mographic information (name, age, location, to name a few), usage information (for

example, pages visited, frequency of visit), and interests or goals (either explicitly

stated by the user or implicitly derived by the system) [23]. The user profile is an

instance of a user model for a particular user.

User profile data may be gathered from the client side, server side or from a proxy,

either through direct interview or through observed behaviour such as purchases or

7

dialogue acts. The data may be categorized as demographic, behavioral, attitudinal

or click stream data. There are really two types of user data: those that describe

individuals and those that describe groups of users. Each individual user profile is

based on contextual relevance observed during the user information access. The infor-

mation may include demographics, goals and interests, browsing behaviour patterns,

browsing capabilities, shopping behaviours, connection speed and type, and human

relationships.

One of the key problems with user information is the difficulty in obtaining it.

Another problem is the difficulty of verifying the veracity of the data. It has been

suggested that users are neither interested in providing this information, nor are they

necessarily even willing to provide it because of privacy concerns.

2.2 User Model

Most adaptive Web systems represent users via a user model. As defined by Alfred

Kobsa [26], “user models are collection of information and assumptions about indi-

vidual users (as well as user groups), which are needed in the adaptation process”.

To distinguish it from user profile, we define it as an abstract representation which

contains explicit assumptions on all aspects of the user that may be relevant for the

behaviour of the system. It represents both individual users and groups into which

users are classified. A user model combines user preferences with the stated goals

or interests and the behaviours performed by that user, and uses this information to

deduce the perceived current goals and interests of the user. Systems build a user

model for describing individual or group users and distinguishing them in order to

provide different services for different users.

There are two main types of user models that may exist in adaptive Web systems

[8]: the overlay model and the stereotype user model. An overlay model represents

an individual user’s information of each attribute defined for a user. For example,

8

AHA! 2.0 [10] keeps every concept and associated attribute in the domain model of

the application into the overlay user model. However, an overlay model has the prob-

lem of initialization because of the difficulty of collecting detailed user information.

Stereotype user model distinguishes several typical or “stereotype” users. It is sim-

pler than the overlay mode and is generalized from overlay attributes. For example,

MetaDoc [6] uses stereotypes (novice, begin, intermediate, and expert) to represent

a user’s knowledge. The problem with the stereotype model is that many efficient

adaptation techniques require a more fine-grained overlay model. One way to solve

this problem is to provide a mapping from a stereotype to an overlay model. Because

of the problems of two types of models, it may be better to combine them in the

following way: stereotype modeling is used at the beginning of work to classify a new

user and to set initial values for the overlay model, then a regular overlay model is

used. Many systems, for instance Web based adaptive education systems [43], use

the combination of both two types of models.

Some other types of user models, for example, a Bayesian user models [17] and

an episodic learner models [44], have been mentioned in some other works. They are

developed based on either a special case or a specific technique.

2.3 User Modeling

User modeling is the whole process of constructing a user models and creating, up-

dating or deleting user profiles. User modeling contains the functions which are to

incrementally build up a user model, to store, update and delete entries in it, to

maintain the consistency of the model, and to supply other components of the system

with assumptions about user. There are three processes of user modeling [8]: col-

lecting data about the user, processing the data to build or update the user model,

and applying the user model to provide the adaptation. The last process is always

performed by the adaptive applications because they are defined as the applications

9

which can provide automatic adaptation on the basis of the user model.

2.3.1 Methods of Collecting User Data

There are various ways to collect data from the user. The traditional way is to let

the user provide information (for example, age, location, gender, occupation, income)

directly by filling in a form. However, the user may provide untrue information

or withhold information because of privacy issues. The data collected may not be

reliable, and errors may be made when deducing a user’s interests (for example) or

to which group a user belongs.

Usage information is the information that can be tracked for observing users’ be-

havior. It is perhaps the most important user data, and is extracted from a Web

server log, which is the primary source of data in which the activities of Web users

are captured. Usage information may be described in terms of simple page views,

transactions (which are “significant” events, and may combine multiple page views),

and sessions (which are combinations of page views or transactions that together rep-

resent users’ behaviour). In addition to the simple sequence of events, information

about time of access and frequency of access can also be captured as usage informa-

tion. However, usage information is not reliable either. The page clicked by a user

does not guarantee that the user attentively read its content.

To make user modeling simpler and more reliable, it is necessary to involve the

user in the process of user modeling to get additional information from the user. For

example, Barnes and Noble’s E-tail site has a “add to wish list” link for each product

to record the user’s current or future goals or interests.

2.3.2 Techniques Used to Build User Model

Machine learning techniques are used to build a user model. Techniques used include

linear models, TFIDF-based models, Markov models, neural networks, classification

10

and clustering techniques, rule induction techniques, and Bayesian theory-based tech-

niques. Data mining techniques such as association rule mining and maximal frequent

sequence mining [45], are also used when building user models.

The machine learning technique of the Self-Organized Map (SOM) is used by

Murtaza et. al. to cluster users into groups [35]. Learning decision tree and asso-

ciation rule mining are usually used for rule induction (for example, [13] and [38]).

Billsus and Pazzani [5] use the nearest neighbor algorithm to model user’s short-

term interest, and use a naive Bayesian classifier to model user’s long-term interests.

Bayesian theory-based techniques are also used by Lam and Mostafa [30] to model

user interest shift. Zukerman and Albrecht introduced two new approaches, centent-

based approach and collaborative approach, to build up a predictive statistical model

[48]. They presented seven different machine learning techniques in achieving those

approaches. Each of the techniques has unique features. The results from the compar-

ison of these techniques indicate that the advantage of one over the other is domain

dependent. Davison and Hirsh’s study [9] shows that Markov model performs at least

as well as the decision tree learned by C4.5 [39]. While in some other areas a decision

tree learnt by C4.5 is a better choice over rules learnt by FFOIL [40].

2.3.3 User Modeling in Practice

In practice, many systems use various approaches and techniques to build up a user

models. Techniques and approaches should be chosen according to specific cases.

Some particular example systems are briefly introduced here.

The Lumiere project [17] focuses on providing assistance to computer software

users by building a Bayesian user model, which is used to infer user’s needs and

goals based on user’s background, action, and queries. The Lumiere project first

classifies a user’s actions and defines appropriate variables for those actions. It then

uses Bayesian networks and influence diagrams to present the relationships between

the actions and user’s goals and to present probability distributions over these goals.

11

After that, user’s goals are inferred based on the relationships and the probability

distributions.

Syskill & Webert system [4] builds a set of profiles of user’s interest in system-

described topics. According to those profiles, the system then recommends pages

which the user may be interested in. User’s profile data is captured from the user’s

ranking a visited page with either “interesting” or “not interesting”.

Web-EasyMath, a Web based algebra tutor system, uses a combination of stereo-

types and the distance weighted k -nearest neighbor algorithm to initialize a student

model. A student is interviewed the first time using the system. The system presents

to the student a preliminary test to assess his/her knowledge level. The knowledge

level is initialized by the stereotypes of novice, beginner, intermediate, and advanced.

The system also calculates the distances between this student and other students

in the same stereotype based on the student’s performance in the preliminary test.

Considering the calculated distances as weights, Web-EasyMath assesses the student’s

knowledge level of each particular concept of the domain and their proneness to make

mistakes by using the distance weighted k-nearest neighbor algorithm.

SeAN, a server for adaptive news, is an adaptive system for the personalized access

to news [3]. It personalizes both the selection of topics that are of interest to the user

and the detail level of the presentation of each news item. Stereotype approach and

Baye’s theorem are used in this system for user modeling.

The COGITO project [1] is developed to improve the relationships between con-

sumers and suppliers in e-commerce by employing “intelligent personalized agents”.

The main part of the system, user profile, is composed by two main frames: the frame

of user data, which records the interaction data; and the frame of the user interests,

which records the interests inferred by the system automatically.

Several approaches to create a user interest profile in the presence of positive

evidence only are introduced in [41; 42]. Two machine learning techniques are used:

a probabibilistic approach using a Bayes classifier and an instance-based approach

12

using a k -nearest neighbor algorithm.

2.4 User Modeling Components and Systems

Besides techniques used to build up a user model, there is another line of user modeling

research, which focuses on generality of user modeling. It is getting more attention

with the increased need of reusability. This section briefly introduces the history from

user modeling components to user modeling shells, systems and servers.

In the early work, user modeling components were embedded into application

systems, and were not distinct from the components that performed other tasks.

These systems used various machine learning techniques to construct different types

of user models. Example systems include SeAN [3] using Bayes theorem to build a

stereotype model, the Syskill & Webert system [4] using a Bayesian technique called

conjugate priors to build an overlay model, and a Web based adaptive education

system [43] combining stereotype user model with overlay user model. The embedded

user modeling components lack reusability and are only applicable to the adaptive

systems that they belong to.

With the reusability of user modeling components gaining more and more attrac-

tion, “General User Modeling Systems” were named by Tim Finin in 1986. Later on,

the term “user modeling shell systems” was used by Kobsa in 1990 [27]. User model-

ing shell systems aim at the development of integrated representation, reasoning, and

revision tools that form an “empty” user modeling mechanism to meet the require-

ments of generality, expressiveness, and strong inferential capabilities. When filled

with application-dependent user modeling knowledge, these shell systems would fulfil

essential functions of a user modeling component in an application system. Some ma-

jor user modeling shell systems for academic purpose have been developed including

GUMS, UM, UMT, TAGUS, and BGP-MS [27]. Some of them will be described later

in this chapter.

13

User Modeling shell systems become part of the application after being filled with

application-dependent user modeling knowledge. They receive information about the

user from the application only and supply the application with assumptions about

the user. Many commercial user modeling shell systems have been developed using

a client-server based architecture. They are not integrated into the application, but

communicate with the application through a network. User modeling servers are

centralized user modeling components for more than one application (possibly for

all applications with which the user interacts) and seem to have the capabilities of

domain-independent user modeling [24]. These commercial user modeling servers ab-

stract user models from application systems, and build them as a user model server

such that more than one application with a similar domain can access the informa-

tion from it. A typical example of user modeling server is the Personalization Server.

Other commercial user modeling servers include Group Lens, LikeMinds, Frontmind

and Learn Sesame [27]. The current commercial user modeling servers are classi-

fied into four categories according to the methods they use [11]. One typical server

from each category is selected, including 1) Group Lens, uses collaborative filtering

approach; 2) Personalization server, uses simple production rules and stereotypes ap-

proaches; 3) Front Mind, uses simple production rules and Bayesian networks; and,

4) Learn Sesame, uses hierarchical clustering method.

2.5 Examples of Generic User Modeling Systems

This section introduces some generic user modeling systems and servers, including

BGP-MS, GUMS, UMT, um, LMS, and Personis. A few issues, such as representation

of user model, maintenance of user model, acquisition of user model, and so on,

are mainly discussed to show the generality, expressiveness, and strong inferential

capability of these systems and servers.

14

2.5.1 BGP-MS

BGP-MS (Belief, Goal, Plan Management System) is a user modeling shell (an inde-

pendent software system) composed by many customizable application components

[29]. It provides customized tools to clients for the purpose of adaptation based on

assumptions about users’ knowledge, beliefs and goals. One example client of BGP-

MS is the KN-AHS [28], which is a hypertext system with the capability of dealing

with the comprehension problems.

Briefly, BGP-MS offers a functional interface for updating the model of a user

as well as some basic domain-independent inference mechanisms. More specifically,

BGP-MS provides services including accepting observed user beliefs and goals from

the client, sending the client interview questions that should be presented to the

user, accepting user’s answers to these questions, accepting observed user actions

from the client, providing its current assumptions about the user to the client, and

signaling important events in the user model to the client. Furthermore, a powerful

representation language is defined in BGP-MS, which is the belief and goal description

language (BGDL) for representing the observed user beliefs and goals.

BGP-MS represents user’s beliefs and goals by using the partition mechanism

KN-PART, including the representation of the domain knowledge, the individual

user model, and stereotypes. However, within the partition, assumptions can be rep-

resented in the conceptual knowledge representation language SB-ONE (an example

can be found in [25]) and first-order predicate calculus (FOPC). Domain knowledge is

stored in a separate partition called SB, which stands for System Believes. Assump-

tions and information about the user are collected in other separate partition, such

as assumptions of the system about the user’s beliefs about the application domain,

and so on. BGP-MS stores each stereotype in a separate partition. The partition

will be linked to an appropriate partition of the individual user model if it applies

to him/her. If the contents of two or more stereotypes overlap, partition hierarchies

may optionally be used for constructing stereotype hierarchies. A simple example of

15

stereotype hierarchy can be seen in [28].

BGP-MS offers a set of pre-defined condition schemes which the application devel-

oper can appropriately instantiate to define the activation and retraction conditions

of the stereotypes in her application domain. Frequently used schemes include IF-

KNOWN list, IFUNKOWN list, IFKNOWN% n, and IFKNOWN%OF n list. Instan-

tiated schemes can be logically combined by the connectives AND, OR, and NOT, and

also with any LISP code that returns a Boolean value. Each stereotype in BGP-MS

provides a set of default beliefs represented in the underlying representation language.

The user model in BGP-MS consists of observations of the user’s behaviour, of

inferred data, and of stereotypical beliefs derived from active stereotypes. Through

appropriate rules (which may, or may not, depend on the application domain), BGP-

MS infers new beliefs from the concepts mentioned by the user. For example, if the

user believes that concept C specializes concept B and that B specializes A, then BGP-

MS infers that the user believes also that C specializes A. Periodically, after a certain

(programmable) number of new beliefs have entered the user model, a reclassification

process takes place, determining the stereotypes that should be activated and those

that should be deactivated.

The main limitation of BGP-MS concerns the problem of resolving possible con-

flicts among predictions of different stereotypes or predictions that contradict infor-

mation directly acquired from the user. The possible solution to this problem is some

belief revision procedure possibly based on an assumption-based truth maintenance

system that guarantees the consistency of the model.

2.5.2 GUMS

GUMS, a generic user modeling system, is implemented based on Prolog [12]. It is

aimed at providing a set of services for the maintenance of assumptions about users’

beliefs. GUMS does not draw assumptions itself. Instead, it accepts and stores new

16

facts about the user which are provided by the application system, verifies the con-

sistency of a new fact with the currently held assumptions by trying to deduce the

negated fact from the current assumptions, informs the application system about rec-

ognized inconsistencies, and answers queries of the application concerning its current

assumptions about the user.

For each application, GUMS keeps a knowledge base of user models relevant to

that application. Applications are responsible for acquiring information about the

user and supplying it to GUMS to update the user model. The application must

select the initial stereotypes for the user and add new facts about the user as it learns

them.

The generality of a user model is formally defined in [20] with respect to three

dimensions: the range of users, the forms of interaction, and the underlying system

domain. A user model has interaction generality if it can be used with a variety

of interaction modes, such as structured interactions or mixed initiative dialogue,

and can be used with various modes of communication, such as natural language,

menus, speech, and graphics. A domain general user modeling facility can be used

with applications having a range of knowledge bases, such as diagnostic systems for

medicine, mechanical devices, and electronic components. A general user modeling

system must provide three essential facilities: representation and maintenance facili-

ties for the contents of the model, access facilities for other components of the system

or interface, and acquisition facilities for building the model.

Two of those main issues are discussed in detail in GUMS, including representation

and maintenance of user model, and implicit user model acquisition. Representation

and maintenance of information about the user is central to any user modeling ac-

tivity. Representation of the user model focuses on how to represent user model by

stereotypes, default rules, and failure as negation. Maintenance of the user model

focuses on how to resolve conflicts between facts and rules.

17

For the representation of a user model, GUMS uses three default reasoning tech-

niques to represent its beliefs about user knowledge: stereotypes, explicit default

rules, and failure as negation. More specifically, a collection of stereotypes are orga-

nized into a taxonomy in GUMS. The individual models are installed in the stereotype

hierarchy as leaves. GUMS uses a tree structure for stereotypes. Individual models

are leaves in the tree. The root is a most general stereotype for users. Each stereo-

type can have a single subsuming stereotype, and a set (possibly empty) of subsumed

stereotypes and a set (again, possibly empty) of individuals currently believed to be

modeled by the stereotype. However, the stereotype system should form a general

lattice, which means that an individual can have a set of subsuming stereotypes. The

real contents of the stereotype however, consists of two databases of facts and rules,

one definite and the other default. Therefore, GUMS has the shortage that an in-

dividual can only have a single stereotype. It means that there is only one choice

left for the user model. Each stereotype is a collection of facts and rules that are

applicable for any person who is seen as belonging to that stereotype. The GUMS

system uses a very simple domain independent strategy for finding a new stereotype

when the known facts about an individual contradict some facts associated with the

user’s current stereotype. The ancestors of the current stereotype are searched in

order of specificity until one is found in which there is no contradiction.

The task of the maintenance facility is to update the individual user model, and

restore consistency if necessary. Conflicts will be resolved. Several maintenance rules

are defined in [12].

The acquisition problem in GUMS, as in most user modeling systems, is the need

to explicitly encode large amounts of information about the potential system users.

To model a user’s beliefs about the system’s domain, the task of building stereotypes

may be more time consuming than building the domain knowledge base itself, because

of the large number of stereotypes necessary. Furthermore, explicit model acquisition

is error-prone due to the difficulty of classifying users and their likely beliefs. An

18

alternative to explicit user model acquisition is to build the model implicitly, as

the user interacts with the system. Implicit acquisition avoids the explicit encoding

bottleneck, and can reduce the burden on the application as well. GUMS uses implicit

user model acquisition. User model acquisition rules are defined and described in [19].

The implicit acquisition rules rely on basic assumptions about the user and his/her

behavior. The rules can be loosely partitioned into three categories: communicative

rules, model-based rules, and human behavior rules.

Several problems, though, exist in the current GUMS system. One problem is that

the stereotype system should form a general lattice, which means that an individual

can have a set of subsuming stereotypes. Another problem is that GUMS does not

extract all the available information from a new fact learned about the user because of

the incompleteness of the truth maintenance system. Inefficiency is the third problem

of the current GUMS system. GUMS does not record the results of inferences, but

repeats the same inferences when the same query is posed again.

2.5.3 UMT

UMT [7], the user modeling tool, allows the user model developer to define user

stereotypes that contain the characteristics of user subgroups in the form of attribute-

value pairs. Stereotypes can be ordered in arbitrary hierarchies which support the

inheritance of stereotype contents. Each stereotype possesses an activation condition

which specifies when the stereotype can be applied to the current user. UMT also

puts a rule interpreter at the disposal of the user model developer which allows for the

definition of user modeling inference rules. Possible contradictions between assumed

user characteristics also have to be explicitly defined using rules.

Stereotypes in the UMT system are organized in a multiple inheritance network

through an IS-A relation defined by the inclusion relation holding between correspond-

ing classes of users. Each stereotype is divided into two parts: a trigger, representing

a sufficient membership condition of a special user with respect to the class denoted

19

by the stereotype, and the defaults, a list of attribute/values pairs representing typ-

ical traits of users belonging to the class. Each stereotype can be either active or

non-active. Those active stereotypes that do not create contradiction will become

the possible user models. Not all defaults of an active stereotype need to be included

in the possible user models. In fact, defaults leading to an inconsistent user model

are excluded.

Like GUMS, UMT does not draw assumptions itself, but accepts and stores new

assertions about the user which are provided by the application system. Depending

on the reliability of these assertions, they can be regarded as invariable premises

or as (later still retractable) assumptions. Stereotypes that become activated due

to new assertions about the user add still more assumptions, namely the attribute-

value pairs describing the characteristics of the respective user subgroups. Some of the

assumptions may possibly be contradictory. After stereotype activation, UMT applies

all inference rules (including the contradiction detection rules) to the set of premises

and assumptions, and records the inferential dependencies. A reason maintenance

component in the system then determines all possible user models, which are all

consistent sets of assertions containing the premises, a subset of the assumptions,

and all assumptions derived from these premises and assumptions. The current user

model will be selected from the set of possible user models using preference criteria

(e.g. assumptions which were reported to the system by the application have a higher

weight than assumptions from stereotypes). If inconsistencies with new information

from the application are later detected or if the application disconfirms advice from

UMT concerning the user, the assumptions on which the offending assertion was

based can be detected (since inferential dependencies became recorded), and the set

of possible user models will be revised and re-evaluated to find the new current user

model.

The strengths of UMT lie in its mechanism for recording the inferential dependen-

cies between assertions and for determining the most preferable maximally consistent

20

set of assumptions that can be maintained about the user at a given time. This

mechanism is very time-consuming, however. Another possible obstacle to practical

applicability are the limited representational and inferential abilities of UMT, which

are based on attribute-value pairs and rules, respectively.

A problem which UMT shares with the current version of BGP-MS is the fact that

stereotype retraction is not integrated into truth maintenance. The truth maintenance

component can never decide to change the stereotypes that apply to the current user

since stereotype activation and retraction is carried out by a completely independent

component. An interesting aspect in the comparison between UMT and BGP-MS

is the fact that inference is exclusively carried out in a forward-chaining fashion in

UMT, while it is bidirectional in BGP-MS. If forward chaining is employed, process-

ing occurs when observations about the user are communicated by the application,

but not when queries of the application have to be answered. If backward chaining is

employed, processing is deferred to the time when queries have to be answered. If the

application and the user modeling component are one single process, both strategies

are problematic since the operation of the application may be retarded by the infer-

ences in the user modeling component, either at entry time or at query time. If the

user modeling component operates concurrently with the application (as is the case

in BGP-MS, but not in UMT), then forward-chaining seems advantageous since it

can be performed while the application is idle. Unfortunately, though, the number of

inferred data also has to be taken into account: it may well be that forward chaining

generates numerous inferences that will not be needed, but which nevertheless have

to be managed by the truth maintenance component. BGP-MS therefore allows the

application developer to restrict the depth of forward chaining, so that a compromise

between space complexity and time complexity can be found that is appropriate for

the specific application domain.

21

2.5.4 um

um [21] is a toolkit for user modeling to represent assumptions about the user’s

knowledge, beliefs, preferences, and other user characteristics in attribute-value pairs

from evidence, and to provide support for a variety of cooperative agents. The source

of each piece of evidence, its type (observation, stereotype activation, rule invocation,

user input, told to the user) and a time stamp is also recorded. The tools provided

by um interpret representation of user models (either minimalist, basic or extended

form); interpret and manipulate components (the basic element of a um model); and

allow users to access and modify (if they wish) their user models.

Other systems, including BGP-MS, UMT and TAGUS, had interfaces for the use

of the developer to scrutinise the models as they built and debugged them. However,

the representation and reasoning mechanisms were not designed for the user to scru-

tinise them. The fundamental representation of a user model in and the viewer tools

provided by the um toolkit give accessibility to user models. Two examples of um

tools in use, the coaching system and the movie advisor, are described in [21] to show

how um has been used. The generalized um architecture is provided as well.

Built upon the underlying representation of the user model provided by the um,

the Personis [22] user model server provides generic scrutiny tools to enable the user

to see and control their own user model. The views are the conceptual, high level ele-

ments shared between the server and each application. The views have an interaction

with the design of the access control for the server.

2.5.5 LMS

A generic multi-agent architecture, the Pedagogical Agents Communication Frame-

work (PACF), has been established for developing intelligent learning environments

(ILE). As one of the main general agents, a Learner Modeling Server (LMS) [32]

models learners and provides user models to several applications. It is configured by

22

the application developer, performs the acquisition and maintenance of the models,

and keeps the models of learners in a database. The PACF is composed of several

agents including interface agents, the LMS, the Server, and a tutoring agent. The

LMS is a modeling agent in a multi-agent platform. The LMS consists of two tiers

(the application tier and the database tier). Several modules exist in the application

tie, including the database module, learner modeling module and communication

module. The communications within the application tie are based upon Java Remote

Method Invocation (RMI) protocol. The communication between the LMS and the

applications is through a subset of the KQML language. A generic domain model is

established to be used by the various applications. The parameterization of the LMS

is through an authoring tool. Actions, weight values associated with actions, topics,

application specific learning parameters and the classification and updating rules will

be defined through the authoring interface as well. Basically, the LMS is able to serve

applications which are all based on the same learning strategy and ontology.

2.5.6 Personis

The Personis user model server [22] focuses more on making adaptive systems scrutable:

enabling users to see the details of the information held about them, the processes

used to gather it and the way that it is used to personalize an adaptive hypertext.

The systems to be moved out of the laboratory have to meet legal requirements such

as the European Community Directive on Data Protection. It is in the spirit of such

legislation that users be able to access and control their own data. Other problems

addressed in Personis include reuse of user model information across applications, the

need for ensuring the user’s privacy, control and ability to scrutinise their user model

and the processes for personalization.

The Personis user model server provides generic scrutiny tools to enable the user

to see and control their own user model. The views are the conceptual, high level

23

elements shared between the server and each application. The views have an inter-

action with the design of the access control for the server. Personis allows the user

to define just which applications are allowed to see each part of the user model. The

user can also control the information sources that should be made available to each

application.

2.6 Concluding Remarks

The terms user profile, user model, and user modeling, are defined and clarified in this

chapter. A user profile is defined as a collection of information about a user, and is an

instance of user model for a particular user. User model is an abstract representation

which contains explicit assumptions on all aspects of the user that may be relevant

for the behaviour of the system. User modeling is the whole process of constructing

a user model and creating, updating or deleting user profiles. It consists of two

processes, collecting data about a user and processing the data to build or update

the user model. Methods of collecting data about a user and problems of them are

described. Machine learning and data mining techniques that are used to build a user

model, and some example systems are introduced as well.

User modeling history from user modeling components to user modeling shell

systems and servers is introduced. User modeling components are embedded in ap-

plication systems, and lack reusability. User modeling shell systems form an “empty”

user modeling mechanism. They become part of the application after being filled with

application-dependent user modeling knowledge. They receive information about the

user from the application only and supply the application with assumptions about the

user. User modeling servers are centralized user modeling components for more than

one application. They assist more than one applications concurrently in a similar

domain.

Some examples of generic user modeling shell systems and servers are described.

24

A few issues, such as representation of user model, maintenance of user model, ac-

quisition of a user model, are mainly discussed to show generality, expressiveness,

and strong inferential capability of these systems and servers. The advantages and

disadvantages of these systems are described as well.

25

Chapter 3

A Generic User Modeling Server

GUMSAWS is designed according to the requirements and goals presented later in

this chapter. The framework of GUMSAWS consists of five major subsystems: the

Model Maintainer, the Information Source Generator, the Recommendation Provider,

the System Repository, and the Model Description. This chapter presents the GUM-

SAWS framework, and briefly describes its major subsystems and components, and

their interdependence. It also describes the interactions between GUMSAWS and

its clients, between users and adaptive Web systems, between users and a generic

interface, and between authors and GUMSAWS.

3.1 Requirements and Goals

The GUMSAWS framework design is based on the requirements of offering basic

user modeling functions, and of being a user modeling server. There are also several

general goals which describe performance measures about the framework, including

generality, extendability, and replaceability.

26

3.1.1 Design Requirements

As a generic user modeling server, GUMSAWS has to be designed to provide basic user

modeling functions, to have the capabilities of domain-independent user modeling,

and to communicate with adaptive Web systems through a network. Functions of

user modeling include incrementally building up a user model, storing, updating

and deleting entries, maintaining the consistency of the model, and supplying other

systems with information about users. GUMSAWS should be applicable to adaptive

Web systems in the same domain, and be configurable across different domains. As

a server, the communication between GUMSAWS and adaptive Web systems should

be through a network. A new protocol for communication may be necessary.

As pointed out, it is difficult to obtain user information because users are neither

interested in providing their information, nor are they necessarily even willing to pro-

vide it for privacy concerns. Therefore, GUMSAWS should be able to infer users’

missing property values from the existing user information and other observed infor-

mation sources. GUMSAWS should also be able to provide assumptions about users’

goals and plans from observed users’ behavior, provide a well-structured database for

storing user profiles, and accept queries from its clients and provide them with users’

information for the purpose of adaptation.

3.1.2 General Goals

There are several general goals which describe performance measures about the frame-

work.

• Generality: The framework should be applicable to multiple application do-

mains. It should act as a centralized user modeling component for more than

one application (possibly for all applications with which a user interacts) and

has the capabilities of domain-independent user modeling.

27

• Extendability: The framework definitions should allow extension, so that new

definitions can be developed from other fundamental definitions. For example,

new information sources can be generated for the purpose of inference by adding

a new type of miner. It should be able to define new fundamental objects within

the system, although this is likely infeasible.

• Replaceability: Diverse machine learning and data mining techniques should be

implemented in the system, and they should be replaceable by other techniques.

For example, for the purpose of generating groups of users, the K-means+ clus-

tering algorithm is implemented to group users with common interests. Other

clustering algorithms, such as K-means, should be able to replace K-means+

and to be integrated into the system. Other replacement opportunities should

also exist, for example, the Apriori algorithm implemented to mine association

rules could be replaced by the AprioriTID algorithm.

3.2 Interaction Architecture

GUMSAWS

AWS 1 AWS 2 AWS n

End
User

Profile Editor...

Author

Figure 3.1: Interaction Architecture

Like other user modeling servers, GUMSAWS acts as a centralized user modeling

component and interacts with more than one adaptive Web systems (AWS 1, AWS

28

2, ..., and AWS n in Figure 3.1) at the same time. It captures user information from

its clients, and builds user models. It can support reuse of the user models over all

these clients.

User information may be provided through the adaptive Web systems during users’

interactions with these adaptive Web systems. It may also be provided through a

generic interface called the Profile Editor. This interface makes adaptive Web systems

transparent. It enables users to see information held about them, and to modify their

profiles. Requests sent through the interface will be handled directly by the server.

In the proposed architecture, the author is responsible for defining a user model

and group model for the adaptive Web systems. The author has to be familiar with

the current domain that these adaptive Web systems belong to. The author defines

concepts and relationships between users existing in the adaptive Web systems.

3.3 Framework

Modeling
Interface

User Profile
Manager

Usage Group
Handler

Interpreter

Authoring
Tool

Usage Data,
User Profiles,
Group Profiles

...

User Model
Description

Group Model
Description

 Model
Description

System Repository

Association
Miner

Model Maintainer

Infor Source
Generator

Inference
Engine

Recommender

Recommendation
Provider

Figure 3.2: GUMSAWS Framework

29

Figure 3.2 illustrates the GUMSAWS framework. In this figure, files are rep-

resented as rounded rectangles, databases are represented as columns, engines or

components in the system are represented as rectangles, and arrows represent data

flow between system components or between system components and data reposito-

ries. System components are grouped into five sub-systems, which are represented as

dashed rectangles. These five sub-systems are:

1. The Model Description (MD): Consists of two components, the User Model

Description and the Group Model Description. These are data repositories

that store domain-dependent Intermediate Format Vocabularies (IFVs) and

application-dependent description for user and group models. The IFV is the

schema in intermediate format for describing concepts and relationships related

to an individual user or group of users existing in adaptive Web systems.

2. The Model Maintainer (MM): Offers a variety of user modeling functions, in-

cluding the function of building up a user/group profile, the function of storing,

retrieving, updating and deleting entries, and the function of inferring user

property values. Two components, the User Profile Manager and the Inference

Engine, are grouped into this sub-system.

3. The Recommendation Provider (RP): Is used to provide recommendations ac-

cording to information sources about user’s interests and of discovered asso-

ciation rules from visiting history. Although only one system component, the

Recommender, is included in this sub-system, many other recommendation com-

ponents can also be implemented and integrated into this sub-system.

4. The Information Source Generator (ISG): Generates the information sources of

groups information and association rules for the MM to update user’s property

values and the RP to provide recommendation to users. Two components, the

Usage Group Handler and the Association Miner, are included into this sub-

system. User groups are generated by the Usage Group Handler according to

30

users’ visiting history. Two types of association rules are discovered by the

Association Miner. One type of association rules is amongst all properties of

all existing users, which indicates that given a particular user property value,

which other user property values also existed. Another type of association rules

is mined from visiting histories of the users in the same group, which indicates

that given a particular page read by users in a group, which other pages the

users have also read.

5. The System Repository (SR): Is used to store usage data, user profile data,

and group profile data. It also stores information sources of direct information,

groups information, association rules, and general facts. The SR also connects

some system components together. It is constructed in the initialization stage by

some system components, such as the User Profile Manager, the Usage Group

Handler, and so on. It will be updated by them as well during the system

activity.

The Modeling Interface (MI) is an interface between adaptive Web systems and

GUMSAWS. The main function of the MI is to forward adaptive systems’ requests

to components of GUMSAWS. The communication between the MI and the sub-

systems is through a network. The communication between the sub-systems within

GUMSAWS may be either through a database or other system components. For

example, the MM and the ISG access the MD through the Interpreter; and both of

these two sub-systems do not communicate with each other directly, but only through

the SR.

Besides the MI, two other system components are not grouped into any sub-

systems. They are the Interpreter and the Authoring Tool (AT). However, they pro-

vide connection between sub-systems or provide the interface for interactions between

the author and the system. The Interpreter provides the functions of interpreting the

model description and creates database tables to store user/group profile data and the

31

default user/group profile. The Interpreter is also responsible for providing the MM

with the user model structure to operate on user profiles, and the ISG with the group

model structure to operate on group profiles. The AT accesses model description and

provides interface for authors to specify the application-dependent user/group model

description. Through the AT, the author may define user and group models, and

default user and group profiles.

32

Chapter 4

System Implementation

System components (except the System Repository, and the Model Description) are

implemented by using Java. Java provides sufficient APIs for database connection,

network programming, and GUI programming. We also choose Eclipse as the in-

tegrated development environment of Java because it is free and user friendly, and

offers some useful plug-ins, like XMLBuddy.

The System Repository is developed using a MySQL database server, which is

the most popular open source database [36]. MySQL database server is also chosen

because it is free, extremely fast, and easy to customize. In order to access a MySQL

database through Java code, we use the JDBC connector (Java DataBase Connector).

JDBC technology is an API that provides cross-DBMS connectivity to a wide range

of SQL databases.

Both the User Model Description (UMD) and the Group Model Description (GMD)

are implemented using the Resource Description Framework (RDF). Interpretation

of them is implemented using Jena, which is a Java framework for building Semantic

Web applications. Jena provides a programmatic environment for RDF.

The proposed system has been implemented. The major classes of some imple-

mented system components are presented in the Appendix.

This chapter will provide detailed description of the system components and their

33

implementation. Although not all functions of each Java class in the system compo-

nents will be described in detail, the classes of system components and the relation-

ships among them will be introduced. The implementation of machine learning and

data mining techniques (K-means, K-means+, and the Apriori algorithm) will also

be described.

4.1 User and Group Model Description

The UMD and GMD provide intermediate format vocabularies (IFVs) for different

domains to describe a user model and a group model, and specify default user and

group profiles. The IFV is the schema in intermediate format for describing concepts

and relationships existing in adaptive Web systems (in our case, mainly between users

or within user’s properties). Two IFVs are developed in our system, including the

user model vocabulary and group model vocabulary for the E-news domain. The user

model vocabulary (UMV) is used for describing application-dependent user model,

and the group model vocabulary (GMV) is used for describing application-dependent

group model.

Both IFVs and user/group model are described using the RDF serialized in XML.

This section will provide brief introduction to RDF, the detailed explanation of IFVs

and application-dependent user and group models, and the UMD and the GMD for

the E-news domain.

4.1.1 Resource Description Framework

The Resource Description Framework (RDF) is developed by the W3C for Web-

based metadata using XML as an interchange syntax. It can be used to represent

information about things (including human beings), even when the things cannot

be directly retrieved on the Web. It provides inter-operability between applications

that exchange machine-understandable information on the Web. RDF emphasizes

34

facilities to enable automated processing of Web resources. A document provided

by W3C to describe RDF specifications and provide examples of using RDF can be

found in [34]. Here, we provide brief introduction to the core of RDF and its basic

principle.

RDF identifies resources using Web identifiers called Uniform Resource Identifiers

(URIs). It is a Web standard, and uses property values to describe web resources.

It also uses the the terms subject, predicates and objects. At the core of RDF we

have the RDF Data Model for representing named properties and their values. These

properties serve both to represent attributes of resources (and in this sense correspond

to usual attribute-value pairs) and to represent relationships between resources. The

RDF data model is a syntax-independent way of representing RDF expressions. The

RDF Syntax is for expressing and transporting this metadata in a manner that max-

imizes the inter-operability of independently developed web servers and clients. The

syntax uses the eXtensible Markup Language (XML). RDF schemas are a collection

of information about classes of RDF nodes, including properties and relations. RDF

schemas are specified using a declarative representation language influenced by ideas

from knowledge representation, e.g., semantic nets, frames, predicate logic, as well as

database schema representation models such as binary relational models, and graph

data models. RDF in itself does not contain any predefined vocabularies for authoring

metadata. It is however expected that standard vocabularies will emerge. After all

this is a core requirement for large-scale inter-operability. Anyone can design a new

vocabulary, the only requirement for using it is that a designating URI is included in

the metadata instances using this vocabulary.

4.1.2 User Model Description

The UMD is part of the MD, including the UMV and the description of application-

specific user model with the default user profile. The UMV is domain dependent

but application independent. Various UMVs for their corresponding domains will be

35

specified in the system and will later be used to define the application-specific user

model with its default user profile.

<rdfs:Description rdf:ID="UserModel">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class" />
 <rdfs:comment>User Model is a collection of properties about user</rdfs:comment>
</rdfs:Description>
...
<rdf:Property rdf:ID="dgmodel">
 <rdfs:domain rdf:resource="#UserModel" />
 <rdfs:range rdf:resource="#DGModel" />
 <rdfs:comment>demographic information about the user</rdfs:comment>
</rdf:Property>
...
<rdfs:Class rdf:ID="DGModel">
 <rdfs:comment>Model that represents demographic information about user</rdfs:comment>
</rdfs:Class>
...
<rdf:Property rdf:ID="age">
 <rdfs:domain rdf:resource="#DGModel" />
 <rdfs:comment>User’s age is represented by a interger number</rdfs:comment>
 <rdfs:range rdf:resource="&xsi;integer" />
</rdf:Property>

<rdf:Property rdf:ID="gender">
 <rdfs:domain rdf:resource="#DGModel" />
 <rdfs:comment>User’s gender is represented by either "male" or "female".</rdfs:comment>
 <rdfs:range>
 <rdf:Alt>
 <rdf:li>male</rdf:li>
 <rdf:li>female</rdf:li>
 </rdf:Alt>
 </rdfs:range>
 </rdf:Property>
...

Figure 4.1: User Model Vocabulary for E-news Domain

4.1.2.1 User Model Vocabulary

The UMV contains description of concepts and relationships for all (as complete

as possible) user properties in a specific domain. User properties are described in

different classes, to which they belong. A property name and its value range are

specified as well. As presented in Figure 4.1, ‘DGModel’ is defined as a class to

represent demographic information about users. It consists of, for example, properties

of age and gender. User’s age is represented by an integer number. The value of

36

<rdfs:Class rdf:ID="InterestedTopics">
 <rdfs:comment>indicates how users are interested in predefined topics</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:ID="NATIONAL">
 <rdfs:domain rdf:resource="#InterestedTopics" />
 <rdfs:comment>User’s interests in national news.</rdfs:comment>
 <rdfs:range rdf:parseType="Literal" />
</rdf:Property>

<rdf:Property rdf:ID="WORLD">
 <rdfs:domain rdf:resource="#InterestedTopics" />
 <rdfs:comment>User’s interests in world news.</rdfs:comment>
 <rdfs:range rdf:parseType="Literal" />
</rdf:Property>
...

Figure 4.2: Interested Topics Class in User Model Vocabulary

user’s gender may be either ‘male’ or ‘female’. Another class called ‘InterestedTopics’

(shown in Figure 4.2) is defined as the class to represent users’ interests in different

news categories in the E-news domain, such as national news category and world news

category.

The UMV will be used for defining the application-specific user model and default

user profile. The concepts and relationships defined in UMV are also accessible by

other parts in the Model Description.

4.1.2.2 User Model

For adaptive systems with the same mechanism in the same domain, an application-

specific user model will be defined based on the UMV predefined for this domain. A set

of appropriate user properties will be selected to describe the user model according to

the needs of the application. As presented in Figure 4.3, user’s age, gender, education

level, education field are used to describe the user’s demographic information. Users’

interests in different news categories are also presented in the figure. The default user

profile will be specified as well. For instance, default value for gender is chosen as

‘male’. The selected user properties and their relationships will be interpreted by the

Interpreter and used for constructing a database structure to store user profiles and

37

<umdv:UserModel rdf:ID = "defaultUserProfile">
<umdv:dgInfor rdf:resource = "#dgInfor"/>
<umdv:interestedTopics rdf:resource = "#interestedTopics"/>

...
</umdv:UserModel>
...
<umdv:DGModel rdf:ID = "dgInfor">

<umdv:age>28</umdv:age>
<umdv:gender>male</umdv:gender>
<umdv:educationLevel>bechalor</umdv:educationLevel>
<umdv:educationField>Computer Science</umdv:educationField>

...
</umdv:DGModel>
<umdv:InterestedTopics rdf:ID = "interestedTopics">

<umdv:FINANCIAL>0</umdv:FINANCIAL>
<umdv:ACADEMIC>0</umdv:ACADEMIC>

...
</umdv:InterestedTopics>
...

Figure 4.3: Description of User Model

the predefined default user profile. The default user profile will be assigned to a new

user without any observed information and action. The user profile will be updated

when more user information is observed by the system.

4.1.3 Group Model Description

Groups represent clusters of users who have properties in common. They are repre-

sented by their centers (results from clustering process). Centers are essentially the

set of average values for some features within groups. Users will be classified into a

group according to how close they are to the centers of the groups. Each group is

identified by a unique name (group ID).

Similar to the UMV, the group model vocabulary (GMV) contains a description

of concepts and relationships for all (as complete as possible) group properties in

a specific domain. As shown in Figure 4.4, properties may include the ‘groupID’

indicating a group, and the ‘academic’ property representing a feature for clustering.

The description of group model, shown in Figure 4.5, represents the group model

for the adaptive systems with same clustering mechanism in the E-news domain, and

38

<rdfs:Description rdf:ID="GroupModel">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class" />
 <rdfs:comment>Group Model is a collection of properties about a group of users</rdfs:comment>
</rdfs:Description>

<rdf:Property rdf:ID="groupID">
 <rdfs:domain rdf:resource="#GroupModel" />
 <rdfs:comment>GroupID uniquely identifies each group by a number.</rdfs:comment>
 <rdfs:range rdf:resource="&xsi;integer" />
</rdf:Property>

<rdf:Property rdf:ID="academic">
 <rdfs:domain rdf:resource="#GroupModel" />
 <rdfs:comment>Interest value of academic category is a float number</rdfs:comment>
 <rdfs:range rdf:parseType="Literal" />
 </rdf:Property>
...

Figure 4.4: Group Model Vocabulary for E-news Domain

<gmdv:GroupModel rdf:ID = "defaultGroupProfile">
<gmdv:groupID>-1</gmdv:groupID>
<gmdv:groupPopu>0</gmdv:groupPopu>
<gmdv:newPopu>0.0</gmdv:newPopu>
<gmdv:financial>0.0</gmdv:financial>
<gmdv:academic>0.0</gmdv:academic>
<gmdv:social>0.0</gmdv:social>
<gmdv:people>0.0</gmdv:people>
<gmdv:misc>0.0</gmdv:misc>

</gmdv:GroupModel>

Figure 4.5: Description of Group Model

the default group profile.

4.2 Authoring Tool

In the initialization stage, the author needs to define the user models and group mod-

els and specify default user and group profiles according to the IFVs, the user model

vocabulary and the group model vocabulary. The Authoring Tool (AT) component

provides the author with the Graphical User Interface (GUI) to interact with the

system. The GUI is created using Java Swing components.

A screen shot of the AT is shown in the Figure 4.6. Through the GUI, the author

39

Figure 4.6: The Authoring Tool

can select one IFV (for example, the IFV for E-news domain in the screen shot) from

one of the predefined IFVs for different domains. Each class defined in the IFV can

be chosen by the author to specify user properties within this class. At the same

time, the default value for a property can be specified through the ‘default’ text field.

Specified user models for applications can be viewed and changed before being written

into data repositories.

40

4.3 Modeling Interface

The Modeling Interface (MI) is an interface between adaptive Web systems and GUM-

SAWS. The main function of the MI is to forward the adaptive systems’ requests to

appropriate instructions (identified by a unique ID called request ID) provided by

components of GUMSAWS (the User Profile Manager and the Recommender). The

MI receives a request from a client and forwards it to one of the components, then

awaits a reply to forward it to the client. The interface can handle concurrent re-

quests. It means that clients can send multiple requests to the MI in a row and

collect the results afterwards. All communications between clients and the interface

and also between the interface and system components would be done through the

User Datagram Protocol (UDP). UDP offers non-guaranteed datagram delivery and

gives applications direct access to the datagram service.

The MI is implemented as a set of concurrent threads. Beside the shell class that

contains the main function, there are two permanent threads: the registration thread

and the message relay thread. For each incoming request from the adaptive systems,

the message relay thread spawns a new thread in order to take care of the request and

the corresponding reply. This thread will be discarded if the response is forwarded

to those clients or a timeout occurs. The interface maintains a table containing all

pairs of [scID, PointOfService]. This table is used for mapping between a system

component ID and its point of service.

4.3.1 Registration

The MI locates every registered system component so that the requests from clients

can be delivered to the proper system component and the responses can be returned to

the clients correctly. For this purpose, each system component is supposed to declare

its point of service (IP address + UDP server port) to the MI upon startup. System

components are recognized by their scID. For registration, a system component sends

41

a packet to the MI at UDP port 4444 in the format presented in Table 4.1.

Table 4.1: Format of Registration Packet
2 bytes 4 bytes 2 bytes
scID SC IP Address SC Port Address

In the registration packet, the IP address comes from high byte to low byte. For

example, if system components are located on a machine with IP 192.168.1.100, then

the first byte after scID would be 192. For two other fields, the high byte comes first

as well. If there is no reply from the MI, this indicates a successful registration. A

system component can register one or more times, at any time.

4.3.2 Message Relaying

The MI forwards all incoming requests from a client to the respective system compo-

nent and sends the received response back to the client. Each system component is

supposed to reply to a request no later than a time limit (currently set to 10 seconds).

If the timeout happens, the MI will no longer accept the response from this system

component. It is possible that a system component receives a few requests in a row.

Therefore, each system component is supposed to be ready immediately to receive

the next request even if the previous request is not yet replied to. The format of a

request packet from the MI to a system component is presented in Table 4.2.

Table 4.2: Format of Request Packet from MI to System Component
2 bytes 1 byte Variable length

Sequence Number Request ID String of parameters

The sequence number is a serial number that each client’s process uses to keep

track of the requests already dispatched. The request ID specifies the service that

the client has asked the system component to accomplish. If the accomplishment

of service requires some parameters from the client, they come serially at the end

of message. The format of the list of parameters is predefined. The phases in the

42

list of parameters are separated by the symbol ‘#’. The property name and its

value (optional) are separated by the symbol ‘&’. The given example can be ‘de-

fault#password&default’, which means the user name of ‘default’ and the password

of ‘default’. Another example can be ‘default#language’, which means the user name

of ‘default’ and this user’s property of ‘language’. The format of response from the

system component, back to the same port of the MI that the request came from, is

presented in Table 4.3.

Table 4.3: Format of Response Packet from System Component to MI
2 bytes Variable length

Sequence Number Response

The system component should repeat the sequence number of corresponding re-

quest packet at the header of reply. The MI forwards the response to the client

intact, to the same port that the original request came from. The client uses the

format presented in Table 4.4 to send a request to the MI, at port 5555.

Table 4.4: Format of Request Packet from Client to MI
2 bytes 2 bytes 1 byte Variable length
scID Sequence Number Request ID String of parameters

The scID indicates that this packet goes to which system component. This is the

only field that the MI actually interprets. The high-byte of scID comes first. If the

client sends a packet to the MI with an unknown scID (a scID that has not yet been

registered with the MI), it simply drops the incoming packet and no error message

will be returned.

4.4 User Profile Manager

The User Profile Manager (UPM) is responsible for providing adaptive Web systems

with information about users and their navigation patterns. The UPM is also in

43

charge of instantiating users’ profiles from the user model and the default values, and

later on, updating the profile according to directly provided information from users.

In the initialization stage, through the Interpreter, the UPM reads the user model

description, creates database tables for the user model, and inserts default values into

the database. It also provides a list of services, such as checking the existence of a user,

creating and deleting a user profile, and updating and retrieving a property. Detailed

information about the services provided by the UPM is summarized in Table 4.5.

When the UPM receives a request from the MI, it will execute one of the instructions

according to the request ID (reqID in the table) and the list of parameters attached

in the received message.

Table 4.5: List of Services Provided by the UPM
Instructions reqID Parameters Description
exist 1 userID check existence of a user
check 2 userID, password check user’s login
create 3 userID create a new user
delete 4 userID delete a user
update 5 list of properties update property value

and values
retrieve 6 list of properties retrieve property value
reset 7 list of properties reset property value as default
addValue 8 list of properties insert a set of property values

and values
checkValue 9 list of properties check validity of properties

and values and their values

4.4.1 Class Diagram

The UML class diagram for the UPM is shown in Figure 4.7. The CTupm class (See

Appendix A.1.1) registers the UPM to the MI first, and then launches a UPManager

thread for accepting requests from the MI. This class also defines the global variables

for the database connection, and the IP address and port number of the computer

that runs the MI, and specifies the service port for the UPM (6666). The UPManager

44

Figure 4.7: UML Class Diagram for the UPM

class (See Appendix A.1.2) calls functions provided by the Interpreter class to create

a vector storing user model structure in memory, to create database tables for user

model, and to insert the default profile into the database. This class also accepts

requests from the MI and launches a new Reply thread to handle each request. The

Reply class (See Appendix A.1.3) interprets the request passed from the UPManager

and reads the request ID attached in the request. The request ID will determine

which service should be used for handling the request. The generated response from

the service will be sent back to the MI. The DBManager class contains functions of

querying the database. Those functions are called by the Reply class to handle each

request.

4.5 Usage Group Handler

The Usage Group Handler (UGH) is responsible for generating user groups. Like the

user model, the group model and the default values are described in RDF format

based on the predefined Group Model Vocabulary. The UGH reads the description

45

of group model and creates database tables for storing user group information. The

UGH then groups existing users together according to their interests, and assigns a

user into an existing group based on the evaluation of the user’s distance from the

groups’ centers. Users’ interests are extracted from their visiting history and are

represented by the number of pages that users have read in each category. Moreover,

the earlier the page has been read, the less weight it will have in the category that the

page belongs to because users’ interests might change over time. Therefore, a user’s

interest is represented by a vector of which each element is the number of pages that

the user has read in each category. The UGH determines how close the user is to each

group center by calculating the Euclidean distance between the vector of the user’s

interest and the vector of each group center, which is the mean of all users’ interest

vectors in the group. Finally, the user will be assigned to the group whose center is

the closest to the user.

4.5.1 Clustering Algorithms

Two clustering algorithms, K-means and K-means+, are used in the implementation

of the UGH for the purpose of grouping.

Algorithm 1 K-means Algorithm

1. Randomly select k different user vectors to represent the initial
centers of user groups;

2. Assign each user to the group that has the closest center to the user.
3. When all users have been assigned, recalculate the k group centers.
4. Repeat Steps 2 and 3 until the group centers no longer move.

The standard K-means algorithm [33] clusters users into k groups, where k is

the predefined number of cluster centers. As presented in Algorithm 1, the clustering

procedure follows a simple and easy way to assign a given user to one of the k clusters.

Another clustering algorithm is the K-means+ algorithm (Shown in Figure 4.8).

46

Start

Normalize
Training Data

Run
K-means

Is There
Degeneracy?

Remove Empty
Clusters Split Clusters

Is There
Degeneracy?Link ClustersEnd

Remove Empty
Clusters

False

True

False

True

Figure 4.8: K-means+ Algorithm

The K-means+ algorithm is developed based on the standard K-means algorithm [15;

16]. The K-means+ algorithm determines a semi-optimal number of clusters auto-

matically, and the number of initial centroid seeds not critical to the cluster result.

The most distinguished feature of the K-means+ algorithm is that the number of clus-

ters can be self-defined according to the statistical nature of data. In the K-means+

algorithm, three additional processes are introduced, the process of eliminating de-

generacy, the process of splitting clusters with outliers, and the process of linking close

clusters. As a result, the number of clusters can be automatically adjusted according

to the distribution and density of the data. More specifically, different from the K-

means algorithm, of which the number of clusters (k) remains fixed, the K-means+

algorithm adjusts the value of k autonomously by exploiting the statistical nature of

the data. Additionally, the K-means+ algorithm also overcomes the shortcoming of

degeneracy by deleting empty clusters. Compared with the K-means algorithm, the

K-means+ algorithm uses the multi-centered clusters to obtain better performances.

47

4.5.2 Class Diagram

Figure 4.9: UML Class Diagram for the UGH

The UML class diagram for the UGH is shown in Figure 4.9. The UGHandler class

(See Appendix A.2.1) calls functions of the Interpreter class to initialize the UGH,

including creating a vector to store group model structure in memory and creating

database tables for the group model. This class also launches a thread to retrieve

users’ interests from the database, and to call the functions from the Clustering class

to group the existing users together and update their group information after a period

of time. The two clustering algorithms are implemented in the Clustering class to

offer the grouping functions. The DBManager class (See Appendix A.2.2) contains

functions for querying the database. Those functions are called by the UGHandler

class to retrieve and update user and group information.

4.6 Association Miner

The Association Miner (AM) is responsible for providing information sources of associ-

ation rules. It mines association rules from either the users’ demographic information

or navigation history. Hence, two types of association rules can be discovered.

48

One type of association rule is amongst all properties of all users, which indicates

that given a particular user property value, which other user property values also

existed. These association rules will be used to infer the user’s property values ac-

cording to their current property values. Another type of association rule is mined

from visiting histories of the users in the same group, which indicates that given a

particular page item read by users in a group, which other pages the users have also

read. These rules will be used to provide users with recommendations according to

their current reading page. The support and confidence values of the association rules

must be above a threshold to be considered. The extracted rules are ranked based on

a measure that is calculated from the support and confidence values.

4.6.1 Apriori Algorithm

Given a finite set of items called itemset, an association rule is written as x → y,

where x and y both are the subsets of the itemset. The term of x → y should be read

as x means or implies y. It tells us about the association between two or more items.

The association rule has support s, which means s% of itemsets contains x and y.

The support is the frequency of itemsets that contains both x and y. The rule holds

confidence c, which means c of itemsets containing x also contain y. Confidence c can

be calculated as the support of itemsets containing x and y divided by the support

of y. Based on an example of buying products in a supermarket, we assume that the

itemset is the set of all the products that a customer bought. We suppose that one

of the association rules is apple → orange. This association rule has the support s,

which means s% of product set bought by the customer contain apples and oranges.

It holds the confidence c, which means c% of products set bought by the customer

contain apples also contain oranges.

Association rules are generated by applying the Apriori algorithm [18; 2]. The

Apriori algorithm first finds out all the frequent itemsets. It will throw away many

49

candidate itemsets by the idea that every subset of a frequent itemset is also fre-

quent. Thus, all larger candidate itemsets must be built on the itemsets that have

frequency over minimum support. The process of finding out all the frequent itemsets

is presented in Algorithm 2.

Algorithm 2 Algorithm of Finding Support of Itemsets

a) Find all single items whose frequency is above minimum support;
b) For all supported single items, find all pairs whose frequency is

above minimum support;
c) For all supported pairs, find all triples whose frequency is above

minimum support;
d) Continue, till no itemset can be found.

After the itemsets whose supports are larger than the minimum support have been

found, association rules need to be generated from all those frequent itemsets. For

each itemset l that contains more than one item, all non-empty subsets x of it should

be found first. For every x, a rule of x → (l − x) can be generated if the ratio of l’s

support to x’s support is over minimum confidence. This idea can be improved in a

depth-first fashion based on the property of frequent itemsets. Because the support

of any subset x′ of x must be as great as the support of x, the confidence of the rule

x′ → (l − x′) cannot be more than the confidence of x → (l − x). Therefore, if a

rule (l − x) → x holds, all rules of the form (l − x′) → x′ must also hold. By using

this idea, a fast algorithm first generates all rules with frequent single item. Then,

all pairs in a rule are generated by using the consequence of those single item rules,

and so on, till all rules are found.

4.6.2 Class Diagram

Figure 4.10 shows the UML class diagram for the implementation of the AM. The

AssociationMiner (See Appendix A.3.1) class launches a thread to collect visiting

50

Figure 4.10: UML Class Diagram for the AM

history of and demographic information about users in each group after a period of

time. It then calls functions in the Mining class to mine association rules from the

history and user property values. The Mining class implements Apriori algorithm to

provide the association rule mining function. It also finds out the most popularly vis-

ited pages for each user group. The DBManager class contains functions of querying

the database. Those functions are called by the AssociationMiner class to retrieve

users’ visiting history and property values, to retrieve user group information, and to

update association rules and information about popularly visited pages.

4.7 Inference Engine

The Inference Engine (IE) is in charge of inferring user’s property values according to

the information sources and their reliability. The information sources include direct

information collected from users through the UPM, user groups information generated

by the UGH, association rules discovered by the AM, and general facts specified by

the author through the AT.

51

4.7.1 Information Sources

Users interact with the Profile Editor and may directly provide demographic informa-

tion about themselves through a registration processes. Such information is defined

as direct information.

The UGH generates user groups based on users’ visiting history. Users with similar

interests are grouped together. We assume that users who have similar interests may

have properties in common. The most common property values are found for each

group. If some properties of users in a group are missing, they can be decided by the

most common property values for this group. Such an information source is so called

groups information.

One type of association rule indicates that given a particular user property value,

which other user property values also exist. Such an information source can also be

used for inferring users’ missing property values. Users’ missing property values will

be inferred according to these association rules and users’ current property values

which are either directly provided or inferred from groups information.

In the initialization stage, authors define user model description through the AT.

They may specify default values for user properties as well. Each pair of property

and its default value is called a ‘general fact’. This is the traditional way to assign

default users’ property values.

Reliability of the information sources is defined as follows:

Direct > Groups > Association Rule > General Facts

Direct information has the highest reliability because it is directly provided by users.

We assume users would provide reliable information about themselves for the pur-

pose of obtaining relevant response information from adaptive Web systems. Groups

information is more reliable than the information of association rules because groups

information is generated within the scope of groups, whereas association rules are

52

discovered within the scope of all existing users who communicate with the adaptive

Web systems. The information of general facts has the lowest reliability because they

are based on the statistics over property values of users who communicate with not

only the clients of GUMSAWS, but also other adaptive Web systems. Inference re-

sults from less reliable information sources can be overridden by the ones from more

reliable information sources.

4.7.2 Inference Process

For a new user, property values are initialized as default. Property values would be

updated if this user provides direct information through the Profile Editor. To infer

this user’s property values, the IE first checks whether there are user properties whose

values are not from direct information source. If the IE finds that there are such user

properties, it would infer those user properties from the groups information according

to which group this user belongs to, which property values are the most common, and

whether support values of the property values are above a threshold. Before inferring

user property values from association rules, the IE needs to check again whether there

are user properties whose values are determined by the general facts. The property

values that are the most relative to the user’s current property values (except default

ones) will be assigned to the user.

4.8 Recommender

The Recommender is used to recommend pages strongly related to the pages that

users are currently reading. Recommendations are provided based on association

rules discovered by the AM. The association rules are mined from visiting histories of

the users in the same group. The user’s visiting history is made up of visited pages in

all previous sessions. The association rule here indicates that given a particular page

read by users in a group, which other pages the users have also read. The extracted

53

association rules are ranked based their support and confidence values. Moreover,

some popular pages might also be recommended if the number of qualified pages

for recommendation is not enough. The service provided by the Recommender is

presented in the Table 4.6.

Table 4.6: The Service Provided by the Recommender
Instruction reqID Parameters Description
recommend 10 userID and recommend pages strongly related

visitingPage to the current reading page

4.8.1 Class Diagram

Figure 4.11: UML Class Diagram for the Recommender

The UML class diagram for the implementation of the Recommender is shown

in Figure 4.11. The CTrecommender class (See Appendix A.4.1) registers the Rec-

ommender to the MI first, and then launches a Recommender thread for accepting

requests from the MI. The CTrecommender class also defines the global variables

for the database connection, and the IP address and port number of the computer

that runs the MI, and specifies the service port for the Recommender (7777). The

Recommender class (See Appendix A.4.2) accepts requests from the MI and launches

a new Reply thread to handle each request. The Reply class (See Appendix A.4.3)

54

interprets the request passed from the Recommender class and reads the request ID

attached in the request. The request ID will determine which service should be used

for handling the request. The DBManager class contains functions of querying the

database. These functions are called by the Reply class to handle each request.

4.9 Profile Editor

Figure 4.12: Example of the Profile Editor

The Profile Editor (PE) is implemented as an interface to allow users to see

information held about them, and to modify their information. Requests from users

received through the PE will be handled directly by the UPM as direct information

about users. The PE makes adaptive Web systems transparent in that users have

55

full control on their information. An example of the PE for adaptive Web systems in

E-news domain is shown in Figure 4.12. Users can view their information by loading

their profiles, and modify their demographic information, such as age, gender, and so

on.

The PE is implemented using J2EE technology. A servlet page provides the form

to allow users to load their profiles, and modify profile fields. Modifications made on

user profiles will be stored into the database.

4.10 Concluding Remarks

GUMSAWS is implemented by using the java programming language, MySQL database

server, and RDF. The implemented system components include the UMD, the GMD,

the AT, the MI, the UPM, the UGH, the AM, the IE, the Recommender, and the

PE. The structure of implemented classes in some of these system components are

presented. The implemented machine learning and data mining techniques, and other

algorithms are also described.

The UMD consists of the domain-dependent UMV and the description of application-

dependent user model with the default user profile. The GMD consists of the domain-

dependent GMV and the description of application-dependent group model with the

default group profile. The AT provides the author with the GUI to define user and

group models and specify default user and group profiles. The MI forwards adaptive

systems’ requests to appropriate instructions provided by the components of GUM-

SAWS, and forwards responses back to adaptive systems. The UPM is responsible

for providing adaptive Web systems with information about users and their naviga-

tion patterns. The UGH is responsible for grouping users with common interests.

The AM is responsible for mining association rules from either users’ demographic

information or navigation history. The IE is in charge of inferring user’s property

values according to the information sources (direct information, groups information,

56

association rules, and general facts) and the reliability of them. The Recommender

is used to recommend pages strongly related to the pages that users are currently

reading. The PE is implemented as an interface to allow users to see information

held about them, and to modify their information.

57

Chapter 5

Experiments and Results

GUMSAWS has been examined in the E-tailer domain to evaluate the performance of

its user modeling task of inferring user property values. The dataset for training and

testing is extracted from KDDCUP2000 data. Information sources about the dataset,

including direct information, general facts, groups information, and association rules,

are presented. The results of different experiments are also described in this chapter.

We carried out different experiments for different purposes. Experiments are car-

ried out to evaluate the accuracy of inferring user property values from different

information resources. The average accuracy from the experiments was found to be

67.7%. Experiments are also carried out to compare the performance of inference

by using two different clustering algorithms, K-means and K-means+, to generate

groups information. The results indicate that the K-means+ algorithm performs

slightly better than the K-means algorithm. The performance of inference from dif-

ferent combinations of information sources is compared as well. The results show

that the combination of direct information, groups information, association rules,

and general facts provides the best accuracy. The inference performance produced by

the combination of direct information, groups information and general facts is better

than the combination of only the direct information and the general facts.

58

5.1 Data Set

Figure 5.1: One User Session in the Original Dataset

The dataset used for diverse experimentation is the aggregated KDDCUP2000

dataset with the size of 296.9 Megabytes. This dataset contains clickstream and

purchase data from Gazelle.com, a legwear and legcare web retailer that closed their

online store on 8/18/2000. Information about 234954 user sessions and values of

296 properties for each user and each session is described in the dataset. Figure 5.1

shows information about one of the user sessions and the user who performed this

session. Records are separated by the ‘,’ sign. Each record represents the value of

the corresponding property. For example, the first record in the figure represents

the value of the property of ‘Which Do You Wear Most Frequently’. The property

values represented by the ‘?’ mark or ‘NULL’ indicate that no information has been

collected about these properties. It happens because not all users have registered at

59

Gazelle.com. Even for these registered users, they might provide information for only

selected properties because of privacy concerns. For example, 3527 users provided

information about whether they are working women, but only 294 users provided

information about the year of birth.

Table 5.1: Information about Selected Properties
Property Possible Values # of Users Most Common Value
purchase once a year, each week, 2459 every 6 months

every 6 months
marital Inferred Married, Single, 2974 Married

Inferred Single, Married
working True, False 3527 False
gender Female, Male 2423 Female

5.1.1 General Facts

We select those properties which have values provided by the large number of users.

The selected four properties are ‘purchase frequency’ (‘purchase’ in Tables 5.1, 5.5,

and 5.6), ‘marital status’ (‘marital’ in Tables 5.1, 5.5, and 5.6), ‘working women or

not’ (‘working’ in Tables 5.1, 5.5, and 5.6) , and ‘gender’ information. Table 5.1

presents information about the possible values of these properties, total number of

users who provided information about each property, and the most common value for

each property. The most common values and their corresponding properties represent

general facts. For example, one of the general facts indicated in the table is that

‘Female’ is the most common value of the property ‘gender’. General facts are mined

from the whole dataset.

5.1.2 Preprocessed Dataset

The original dataset is preprocessed by extracting users who have registered and

provided information about the four properties. After preprocessing, 1246 users are

60

Figure 5.2: Information about the Processed Dataset

chosen to be involved in the evaluation. The values of those four properties and the

information about users’ navigation history are also extracted. The snapshot of the

preprocessed dataset is shown in Figure 5.2. It contains values of these four user

properties followed by the number of visited pages in each product category. Values

are separated by the ‘,’.

5.2 Training Data

1246 users and four user properties are selected and used in the evaluation. For the

purpose of testing the accuracy of inferring user property values, we randomly set

aside 10% of property values for each property. We repeat this process 10 times to

acquire 10 data sets listed in the table 5.5. As shown in Figure 5.3, some of the users’

property values (for example, the value of the property ‘purchase’ for the user ‘1’)

61

are missing. The rest is for training. From the training data, groups were generated

by the UGH, and association rules were discovered by the AM. The IE will infer the

missing property values from groups information, association rules, and general facts

mined earlier. Information about user groups and discovered association rules are

described in this section.

Figure 5.3: Missing Property Values

5.2.1 Groups

The Usage Group Handler (UGH) generates user groups by using clustering algo-

rithms. Two clustering algorithms, K-means and K-means+, are implemented and

integrated into the UGH. The UGH groups users together according to their inter-

ests. The user’s interest is represented by the number of pages read by this user in

the fifteen product categories, such as TH (thigh-highs) category, WDCS (women’s

dress/casual socks) category, PH (pantyhose) category, and so on. Examples of groups

are represented in Tables 5.2 and 5.3. Five groups (indicated by their IDs) are gener-

ated by both of the K-means and K-means+ algorithms. However, generated groups

62

by using those two algorithms are different in terms of the distribution of users and

the group centers. The distribution of users is represented by the population of mem-

bers in each group (P in Tables 5.2 and 5.3). Group center is a normalized vector

of average interest value of all group members.

Table 5.2: User Groups Generated by Using the K-means Algorithm
ID P PH WDCS TH WAS FO LG TT
1 124 0.002 0.003 0.000 0.000 0.000 0.090 0.014
2 370 0.001 0.018 0.000 0.004 0.000 0.001 0.002
3 241 0.005 0.001 0.001 0.000 0.001 0.019 0.998
4 442 0.000 0.000 0.000 0.001 0.000 0.005 0.012
5 69 0.001 0.003 0.000 0.000 0.001 0.079 0.009

ID MDS MAS BKS LEO GDCS KP BDCS MCS
1 0.014 0.005 0.000 0.000 0.002 0.996 0.000 0.004
2 0.990 0.126 0.000 0.000 0.000 0.017 0.000 0.064
3 0.013 0.010 0.000 0.041 0.000 0.034 0.000 0.003
4 0.029 0.998 0.000 0.004 0.000 0.020 0.000 0.051
5 0.011 0.000 0.052 0.798 0.078 0.000 0.078 0.585

Table 5.3: User Groups Generated by Using the K-means+ Algorithm
ID P PH WDCS TH WAS FO LG TT
1 139 0.921 0.052 0.017 0.010 0.010 0.013 0.052
2 607 0.008 0.008 0.045 0.004 0.039 0.014 0.003
3 82 0.0207 0.051 0.017 0.017 0.000 0.002 0.926
4 95 0.022 0.194 0.007 0.875 0.002 0.000 0.020
5 323 0.020 0.948 0.010 0.029 0.006 0.008 0.006

ID MDS MAS BKS LEO GDCS KP BDCS MCS
1 0.008 0.005 0.000 0.004 0.096 0.064 0.000 0.005
2 0.060 0.117 0.003 0.049 0.005 0.106 0.005 0.041
3 0.014 0.019 0.000 0.044 0.000 0.031 0.000 0.003
4 0.017 0.135 0.000 0.000 0.000 0.016 0.000 0.003
5 0.018 0.021 0.000 0.003 0.000 0.049 0.000 0.012

63

5.2.2 Association Rules

The information source of association rules is generated by the Association Miner

from all user property values. The support and confidence values of the association

rules must be above a threshold to be considered. Therefore, the number of discovered

association rules would be different if the setting for the thresholds (minimal support

and minimal confidence) was different. Table 5.4 presents the results of the number

of discovered association rules with the corresponding setting for the minimal support

and minimal confidence (M S and M C in Table 5.4).

Table 5.4: Number of Discovered Association Rules
of Rules M S M C

0 0.8 0.8
5 0.6 0.6
13 0.5 0.5
21 0.4 0.4
31 0.3 0.3
47 0.2 0.2
55 0.1 0.1

Some examples of association rules with confidence and support values are pre-

sented as follows:

[working:False] → [purchase:every 6 months] (0.823, 0.51)

[gender:Female] → [working:False] (0.598, 0.55)

...

[working:False, purchase:every 6 months] → [gender:Female] (0.898, 0.458)

[purchase:every 6 months, gender:Female] → [working:False] (0.608, 0.458)

...

[working:False, marital:Married, purchase:every 6 months]

→ [gender:Female] (0.939, 0.337)

[working:False, purchase:every 6 months, gender:Female]

→ [marital:Married] (0.736, 0.337)

64

The first association rule presented in the examples is that ‘working’ property value

of ‘False’ implies ‘purchase’ property value of ‘every 6 months’ with confidence value

of 0.823 and support value of 0.51. This association rule indicates that users who are

not working women normally purchase once every six months.

5.3 Experimental Results

Based on the training and testing data, experiments are carried out to evaluate the

performance of inferring user property values from information sources, to compare

the performance of inference by using the K-means and K-means+ algorithms to

generate groups information, and to compare the performance of inference from dif-

ferent combinations of information sources. This section presents results from those

experiments.

Figure 5.4: Inferred Property Values

65

Table 5.5: Accuracy of Inferring User Property Values
Test # purchase marital working gender Accuracy

1 0.736 0.616 0.544 0.840 0.684
2 0.760 0.600 0.536 0.824 0.680
3 0.688 0.592 0.576 0.864 0.680
4 0.704 0.592 0.584 0.784 0.666
5 0.664 0.600 0.560 0.792 0.654
6 0.760 0.576 0.512 0.856 0.676
7 0.728 0.584 0.600 0.864 0.694
8 0.760 0.648 0.480 0.800 0.672
9 0.696 0.616 0.592 0.864 0.692
10 0.664 0.600 0.512 0.824 0.650

Average 0.676

5.3.1 Inference Accuracy

As shown in Figure 5.3, some of the users’ property values are missing. After the

inference process, these users’ missing property values are inferred based on the in-

formation sources of direct information, groups information, association rules, and

general facts. Inferred property values are shown in Figure 5.4. For example, the

value of property ‘purchase’ of the user whose ‘userID’ is ‘1’ is inferred as ‘every 6

months’. According to Figure 5.3, there are other users whose values of property

‘purchase’ are inferred. Their ‘userID’ values are ‘3’, ’4’, ‘6’, ‘7’ and ‘8’. The values

of property ‘marital’ for the users whose ‘userID’ values are ‘0’, ‘1’, ‘3’, ‘8’, ‘9’, ‘10’

and ‘11’ are inferred. The values of property ‘working’ for the users whose ‘userID’

values are ‘3’, ‘5’, ‘6’, ‘11’ and ‘12’ are inferred. The values of property ‘gender’ for

the users whose ‘userID’ values are ‘5’, ‘6’ and ‘7’ are inferred.

Inference accuracy is calculated as the average ratio of the number of correctly

inferred values for each of the four properties to the number of missing values of this

property. Results of accuracy are presented in Table 5.5. The average accuracy is

67.6%, which is calculated after setting aside the highest and lowest values.

66

Table 5.6: Comparison of K-means and K-means+
Test # Algorithm purchase marital working gender Average

1 K-means 0.800 0.584 0.448 0.896 0.682
K-means+ 0.800 0.608 0.448 0.896 0.688

2 K-means 0.776 0.608 0.560 0.896 0.71
K-means+ 0.776 0.704 0.560 0.896 0.734

3 K-means 0.728 0.544 0.52 0.88 0.668
K-means+ 0.76 0.624 0.52 0.88 0.696

4 K-means 0.752 0.552 0.448 0.92 0.668
K-means+ 0.752 0.632 0.448 0.92 0.688

5 K-means 0.752 0.632 0.512 0.872 0.692
K-means+ 0.752 0.688 0.512 0.872 0.706

Figure 5.5: Comparison of K-means and K-means+

5.3.2 Comparison of K-means and K-means+

Both the K-means and K-means+ algorithms are used to generate groups informa-

tion. Experiments are carried out to compare the inference performance from the

information source of groups information generated by using the two algorithms. Re-

sults presented in Table 5.6 and the Figure 5.5 show that accuracy of property value

prediction performed by the K-means+ algorithm is slight better than that of the

K-means algorithm.

The improvement is due to the fact that the K-means+ algorithm splits clusters

67

with outliers and uses the multi-centered clusters to obtain better performances. The

K-means+ algorithm has a splitting procedure that removes outliers from existing

clusters to form new clusters. An outlier is an object that is far from the majority

of the objects in a cluster. As shown in Figure 5.6, the center of the cluster X is

represented by the object c. The distance d between c and one of the members of

the cluster, p, is greater than a threshold. The object p is deemed an outlier. The

outliers of the cluster X are formed as a news cluster Y , as shown in Figure 5.7. The

K-means+ algorithm also has a linking procedure. Some adjacent clusters may be

linked to form a larger cluster if they are close enough. The centers of linked clusters

are intact after linking; therefore, the newly formed clusters are multi-centered, and

they can be in arbitrary shapes, such as a spatial chain.

p

c

d

X

Figure 5.6: Clusters before Splitting

X

Y

Figure 5.7: Clusters after Splitting

68

Table 5.7: Comparison of Different Combinations of Information Sources
Test DI&GF DI&GI&GF DI&GI&AR&GF

1 0.622 0.658 0.680
2 0.570 0.632 0.666
3 0.594 0.622 0.654
4 0.616 0.662 0.676
5 0.618 0.664 0.694

Average 0.604 0.648 0.674

Figure 5.8: Comparison of Different Combinations of Information Sources

5.3.3 Comparison of Different Combinations of Information

Sources

Users’ missing property values are inferred from the information sources of direct

information, groups information, association rules, and general facts. We carried out

experiments to compare the inference performance from different combinations of

information sources. For the later user, three notions are defined as follows:

• DI&GF: the combination of the information sources, direct information and

general facts;

• DI&GI&GF: the combination of the information sources, direct information,

groups information and general facts;

69

• DI&GI&AR&GF: the combination of the information sources, direct infor-

mation, groups information, association rules, and general facts.

The experimental results are presented in Table 5.7 and Figure 5.8. The results

indicate that the combination of direct information, groups information, association

rules, and general facts provides the best performance. The inference performance

produced by the combination of direct information, groups information and general

facts is better than by the combination of only the direct information and the general

facts.

5.4 Concluding Remarks

KDDCUP2000 data is used to evaluate the performance of inferring user property

values. The dataset is preprocessed. 1246 users and four user properties are selected

and used in evaluation. Information sources of general facts, groups information,

and association rules are generated from the dataset. Experiments are carried out to

evaluate the performance of inferring user property values from information sources,

to compare the performance of inference by using the K-means algorithm and K-

means+ algorithm to generate groups information, and to compare the performance

of inference from different combinations of information sources.

Conclusions are drawn from the experiments. The average accuracy accuracy of

inferring user property values from information resources is 67.7%. This result can be

improved by introducing more information sources, such as the information source of

subgroups. Subgroups can be generated by re-clustering of users in the same group.

The K-means+ algorithm performs slightly better than the K-means algorithm. The

combination of direct information, groups information, association rules, and general

facts provides the best accuracy of inference. The inference performance produced by

the combination of direct information, groups information and general facts is better

than the combination of only the direct information and the general facts.

70

Chapter 6

Example of GUMSAWS in Use

The previous chapter examined GUMSAWS in the E-tailer domain by evaluating

its performance of inferring user property values from diverse information sources

collected or mined by the system. This chapter describes an example of adaptive

Web system that illustrates basic user modeling functions offered by GUMSAWS and

its user modeling task of providing recommendations based on user navigation history.

6.1 PENS

Personalized Electronic News System (PENS) is an adaptive Web news system. PENS

is implemented based on the adaptive Web construction framework. It is developed by

the Intelligent and Adaptive Systems (IAS) group at the Faculty of Computer Science,

University of New Brunswick. PENS presents news to the users taking advantage of

context information such as location and behavior. It also adapts the presentation of

the news based on device characteristics, such as screen size and color capabilities.

PENS is implemented as the proof of concept, to show adaptation based on users’

behavior and client-side characteristics, and to demonstrate the use of GUMSAWS.

The use of GUMSAWS here is to provide data sources that shape the dynamic aspect

of PENS. The data provided by GUMSAWS about users is used to make decisions

71

for adaptation and for populating the under-construction page.

Figure 6.1: The NEWS@UNB Website

PENS partially imitates the NEWS@UNB website (shown in Figure 6.1), which

news items are gathered from. News items are acquired from the news feed in the

Rich Site Summary (RSS) format provided by the NEWS@UNB website. The news

feed is written in XML, and the news items in it are retrieved through the JDOM

API. Although the original NEWS@UNB website is static and does not provide any

adaptation to users, PENS provides three types of adaptation, content adaptation,

navigation adaptation, and presentation adaptation.

6.2 Web Pages

Three different types of Web pages, the front page, the category based news page

and the full news page, are generated by PENS. As shown in Figure 6.2, the front

page has two parts. The left part lists news categories in the “NEWS SECTIONS”

72

Figure 6.2: The Front Page

section. Clicking one of the category names in this section will lead the user to the

category based news page (shown in Figure 6.3) which shows the recent news items

in this category. The right part lists three most recent news items with their titles

and first few statements in the “TOP NEWS” section and four other news items with

only titles in the “MORE TOPICS” section. Clicking the title of the news will lead

the user to the full news page. The Figure 6.3 shows the category based news page

for the academic category. Three recent news items in this category are listed in this

page. There is a link of the bottom of the page that allows the user to return to the

front page. As shown in Figure 6.4, the full news page presents full information of a

73

Figure 6.3: The Category Based Page

news item, including its topic, publication date, correspondent, and news body. The

news banner is located at top of all pages, the front page, the category based page,

and the full news page.

6.3 Adaptation

Users may see different pages because of the adaptation provided by PENS. GUM-

SAWS keeps track of user navigation history which is composed of news items that

74

Figure 6.4: The Full News Page

the user has read. User navigation history also indicates how much the user is inter-

ested in each news category. PENS provides three types of adaptation based on user

navigation history.

In the “NEWS SECTIONS” section on the front page, news categories are sorted

and listed based on user interests in different categories. As shown in Figure 6.2, the

category “ACADEMIC” is on the top of the link list, which indicates that the user

is more interested in the academic category than other categories. User’s interest in

each category is determined by the number of news items in this category that have

been read by the user. Moreover, the earlier the news item has been read, the less

weight it will have in the category that the news item belongs to because the user’s

interest might change over time.

In the “TOP NEWS” section on the front page, the first few statements of the

75

news item that the user has read will not be shown any more. This adaptation is

based on the assumption that users would not be interested in reading the first few

statements again if they have already read the full body of the news. The examples

are the second news item in the “LATEST NEWS” section as shown in Figure 6.2,

and the first news item in the category based page for the academic category shown

in Figure 6.3.

Another adaptation is news recommendation, which is an example of navigation

adaptation. On the bottom of the full news page shown in Figure 6.4, there is a link to

a related news item. This news item is the recommendation provided by the Recom-

mender of GUMSAWS. The Recommender is used to recommend news items strongly

related to the news stories that users are currently reading. Recommendations are

provided based on association rules discovered by the AM. The association rules are

mined from visiting histories of the users in the same group. The extracted rules are

ranked based on their support and confidence values. Moreover, some popular news

items or the latest news items might also be recommended if the number of qualified

news items for recommendation is not enough.

6.4 Concluding Remarks

PENS is implemented to demonstrate the user of GUMSAWS. The use of GUMSAWS

here is to provide data sources that shape the dynamic aspect of PENS. PENS par-

tially imitates the NEWS@UNB website. It generates three different types of Web

pages, the front page, the category based news page, and the full news page. Three

types of adaptation are provided by PENS based on user navigation history kept track

of by GUMSAWS. User navigation history indicates how much the user is interested

in each news category. News catgories are sorted and listed based on user interests

in different categories. The first few statements of the news item that the user has

read will not be shown any more. The third adaptation is news recommendation.

76

Chapter 7

Conclusions and Future Work

7.1 Literature Review

The user modeling area has been explored to clarify the terms of user profile, user

model, and user modeling. A user profile is defined as a collection of information

about a user, and is an instance of user model for a particular user. A user model

is an abstract representation which contains explicit assumptions on all aspects of

the user that may be relevant for the behaviour of the system. User modeling is the

whole process of constructing user models and creating, updating or deleting user

profiles. It consists of two processes, collecting data about users and processing the

data to build or update the user model. We summarized the methods of collecting

data about users and their problems. We also introduced machine learning and data

mining techniques that are used to build user models, and some example systems,

such as the Lumiere project, Syskill & Webert system, Web-EasyMath, and SeAN.

The user modeling history from user modeling components to user modeling shell

systems and servers has been introduced. User modeling components are embedded

in application systems, and lack of reusability. User modeling shell systems form an

“empty” user modeling mechanism. They become part of the application after being

filled with application-dependent user modeling knowledge. They receive information

77

about the user from the application only and supply the application with assumptions

about the user. User modeling servers are centralized user modeling components

for more than one applications in a similar domain. They assist these applications

concurrently.

Some examples of generic user modeling shell systems and servers have been de-

scribed. A few issues, such as the representation of user model, the maintenance of

user model, and the acquisition of user model, have been mainly discussed to show

generality, expressiveness, and strong inferential capability of these shell systems and

servers. We also discussed the advantages and disadvantages of them.

7.2 Design and Implementation of GUMSAWS

GUMSAWS has been designed and implemented to provide basic user modeling func-

tions, to have the capabilities of domain-independent user modeling, and to commu-

nicate with the adaptive Web systems through a network. The design of GUMSAWS

reaches the goal of generality, extendability, and replaceability. Five major subsys-

tems, the Model Maintainer, the Information Source Generator, the Recommendation

Provider, the System Repository, and the Model Description, have been designed as

the groups of system components.

GUMSAWS has been implemented by using Java, MySQL database server, and

the RDF. The implemented system components include the User Model Description

(UMD), the Group Model Description (GMD), the Authoring Tool (AT), the Mod-

eling Interface (MI), the User Profile Manager (UPM), the Usage Group Handler

(UGH), the Association Miner (AM), the Inference Engine (IE), the Recommender,

and the Profile Editor (PE). The structure of implemented classes in some of these

system components has been presented. The implemented machine learning and data

mining techniques, and other algorithms have been also described.

78

The UMD consists of the domain-dependent UMV and the description of application-

dependent user model with the default user profile. The GMD consists of the domain-

dependent GMV and the description of application-dependent group model with the

default group profile. The AT provides the author with a GUI to define user and group

models and specify the default user and group profiles. The MI forwards adaptive sys-

tems’ requests to appropriate instructions provided by the GUMSAWS components,

and forwards responses back to the adaptive systems. The UPM is responsible for

providing adaptive Web systems with information about users and their navigation

patterns. The UGH is responsible for grouping users with common interests. The

AM is responsible for mining association rules from either users’ demographic infor-

mation or user navigation history. The IE is in charge of inferring users’ property

values according to the information sources (direct information, groups information,

association rules, and general facts) and the reliability of them. The Recommender

is used for recommending pages strongly related to the pages that users are currently

reading. The PE is implemented as an interface to allow users to see information held

about them, and to modify their information.

The implemented GUMSAWS acts as a centralized user modeling component and

is able to assist many adaptive Web systems concurrently. It supplies the adaptive

systems with information about users. The data provided by GUMSAWS is used

by these adaptive systems to make decisions for different types of adaptation. User

models built by GUMSAWS can be shared among all these adaptive systems. In

addition, two main user modeling tasks were highlighted in GUMSAWS, inferring

user property values and providing recommendation based on user navigation history.

79

7.3 Evaluation and Demonstration

KDDCUP2000 data has been used to evaluate the performance of inferring user prop-

erty values. The dataset has been preprocessed. 1246 users and the four user proper-

ties have been selected and used in evaluation. Information sources of general facts,

groups information, and association rules have been generated from the dataset. Ex-

periments have been carried out to evaluate the performance of inferring user property

values from information sources, to compare the performance of inference by using

the K-means algorithm and K-means+ algorithm to generate groups information, and

to compare the performance of inference from different combinations of information

sources.

Conclusions have been drawn from the experiments. The average accuracy of

inferring user property values from different information resources is 67.7%. The K-

means+ algorithm performs slightly better than the K-means algorithm. The combi-

nation of direct information, groups information, association rules, and general facts

provides the best accuracy of inference. The inference performance produced by the

combination of direct information, groups information and general facts is better than

the combination of only the direct information and the general facts.

An example application, PENS, has been implemented to illustrate how the data

sources provided by GUMSAWS can be used for adaptation. Three different types of

Web pages, the front page, the category based news page and the full news page, are

generated by PENS. PENS also provides three types of adaptation, content adapta-

tion, navigation adaptation, and presentation adaptation.

7.4 Future Work

There are many opportunities that the research and implementation can be extended

in the near future to improve GUMSAWS for real applications.

80

• Authors define application-dependent user and group models and specify the

default user and group profiles based on the predefined user and group model

vocabularies. However, the user and group model vocabularies might not be

complete enough to cover all user and group concepts and relationships in the

specific domain. Authors should be allowed to define user and group concepts

and relationships that have not existed in the predefined vocabularies.

• Current user modeling systems build user models without or only partially

considering the domain models of adaptive systems. However, the user model

definition can not be totally separated from the domain model. For example, the

overlay user model keeps every concept and associated attribute in the domain

model of the adaptive system. It would be helpful if user modeling systems can

import the domain models of the adaptive systems and allow authors define user

models from the concepts and associated attributes in their domain models.

• The PE, a generic tool, is implemented to make adaptive Web systems trans-

parent. However, the current PE can only allow users view and modify their

profiles. It should be able to allow users to define which applications are al-

lowed to see each part of the user model, to control the information sources that

should be made available to each application, to view inference explanation for

each inferred property values, and to define which part of the user model can

be used for inference processes.

• Currently, the communication between GUMSAWS and its clients is through

UPD protocol, which is not secure. Other possible secure protocols can be

implemented in the system, such as SSL.

81

Bibliography

[1] F. Abbattista, M. Degemmis, O. Licchilli, P. Lops, G. Semeraro, and F. Zam-

betta, Improving the usability of an e-commerce web site through personaliza-

tion, Proceedings of the Workshop on Recommendation and Personalization in

eCommerce of the 2nd International Conference on Adaptive Hypermedia and

Adaptive Web Based Systems (F. Ricci and B. Smyth, eds.), May 2002, pp. 20–

29.

[2] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining asso-

ciation rules, Proceedings of the 20th International Conference of Very Large

Databases (VLDB) (Santiago, Chile), September 1994, pp. 487–499.

[3] Liliana Ardissono, Luca Console, and Ilaria Torre, An adaptive system for the

personalized access to news, AI Communications 14 (2001), no. 3, 129–147.

[4] D. Billsus and M. Pazzani, Revising user profiles: The search for interesting

web sites, Proceedings of the Third International Workshop on Multistrategy

Learning, AAAI Press, 1996.

[5] D. Billsus and M. J. Pazzani, A hybrid user model for news story classifcation,

User Modeling: Proceedings of the Seventh International Conference, UM‘99

(J. Kay, ed.), Springer, 1999, pp. 99–108.

[6] C. Boyle and A. O. Encarnacion, Metadoc: An adaptive hypertext reading system,

User Modeling and User-adapted Interaction 4 (1994).

82

[7] Giorgio Brajnik and Carlo Tasso, A shell for developing nonmonotonic user mod-

eling systems, International Journal of Human-Computer Studies 40 (1994), 31–

62.

[8] Peter Brusilovsky, Methods and techniques of adaptive hypermedia, User Mod-

elling and User-Adapted Interaction 6 (1996), no. 2-3, 87–129.

[9] Brian D. Davison and Haym Hirsh, Predicting sequences of user actions, Notes

of the AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to

Time-Series Analysis (Madison, Wisconsin), 1998.

[10] Paul De Bra, A. Aerts, D. Smits, and N. Stash, AHA! version 2.0, more adap-

tation flexibility for authors, Proceedings of the AACE ELearn’2002 conference,

October 2002.

[11] Josef Fink and Alfred Kobsa, A review and analysis of commercial user modeling

servers for personalization on the World Wide Web, User Modeling and User-

Adapted Interaction 10 (2000), no. 3-4, 209–249, Special Issue on Deployed User

Modeling.

[12] Josef Fink, Alfred Kobsa, and Andreas Nill, GUMS: A general user modeling

shell, pp. 411–430, Springer, Berlin, Heidelberg, 1989.

[13] R. Ghani, R. Jones, D. Mladenic, K. Nigam, and S. Slattery, Data mining on

symbolic knowledge extracted from the web, Proceedings of the Six International

Conference on Knowledge Discovery and Data Mining (KDD-2000) Workshop

on Text Mining (Boston, MA), July 2000, pp. 29–36.

[14] I A S group, Adaptive web sites (AWS) framework high-level design document,

Tech. Report TR03-102, Intelligent and Adaptive Systems Research Group,

Faculty of Computer Science, University of New Brunswick, Fredericton, NB,

Canada, December 2003.

83

[15] Yu Guan, Ali A. Ghorbani, and Nabil Belacel, Y-means: a clustering method for

intrusion detection, Proceedings of the Canadian Conference on Electrical and

Computer Engineering (CCECE-2003), May 4-7 2003.

[16] , K-means+: An autonomous clustering algorithm, Submitted to Pattern

Recognition (2004).

[17] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse,

The lumiere project: Bayesian user modeling for inferring the goals and needs

of software users, Proceedings of the Fourteenth Conderence on Uncertainly in

Artificial intelligentce (Madison, WI), Morgan Kaufmann Publishers, July 1998,

pp. 256–265.

[18] Mahesh Joshi and Vipin Kumar, Tutorial on high performance data mining,

Taught at Fifth International Conference on High Performance Computing

(HiPC’98), Chennai, India; and at Joint International Parallel Processing Sym-

posium/Symposium on Parallel and Distributed Processing (IPPS/SPDP)’99,

San Juan, Puerto Rico, 1999.

[19] Robert Kass and Tim Finin, Rules for the implicit acquisition of knowledge about

the user, Proceedings of the AAAI-87 conference, 1987.

[20] , A general user modelling facility, Proceedings of the SIGCHI conference

on Human factors in computing systems, 1988.

[21] Judy Kay, The um toolkit for cooperative user modelling, User Modelling and

User-Adapted Interaction, Kluwer 4 (1995), no. 3, 149–196.

[22] Judy Kay, Bob Kummerfeld, and Piers Lauder, Personis: A server for user

models, Proceedings of Adaptive Hypertext 2002, Springer-Verlag, 2002, pp. 203–

212.

84

[23] Mark Kilfoil, Dr. Ali Ghorbani, Wenpu Xing, Zhong Lei, Jing Lu, Jie Zhang,

and Xiaowen Xu, Toward an adaptive web: The state of the art and science,

Proceedings of Communication Network and Services Research (CNSR) 2003

Conference (Moncton, NB, Canada), May 15–16 2003, pp. 108–119.

[24] A. Kobsa, User modeling: Recent work, prospects and hazards, M. SchneiderHuf-

schmidt, T. Khme and U. Malinowski (eds.): Adaptive user interfaces: Principles

and practice. Amsterdam: North-Holland, 1993.

[25] Alfred Kobsa, Modeling the user’s conceptual knowledge in bgp-ms, a user mod-

eling shell system, Computational Intelligence 6 (1990), 193–208.

[26] , Supporting user interfaces for all through user modeling, Proceedings

of the Sixth International Conference on Human-Computer Interaction, vol. 1,

1995, pp. 155–157.

[27] , Generic user modeling systems, User Modeling and User-Adapted In-

teraction 11 (2001), no. 1-2, 49–63.

[28] Alfred Kobsa, dietmar Muller, and Andreas Nill, KN-AHS: An adaptive hypertext

client of the user modeling system bgp-ms, Proceedings of the Fourth Interna-

tional Conference on User Modeling, 1994, pp. 99–105.

[29] Alfred Kobsa and Wolfgang Pohln, The user modeling shell system bgp-ms, User

Modeling and User-Adapted Interaction 4 (1995), no. 2, 59–106.

[30] W. Lam and J. Mostafa, Modeling user interest shift using a bayesian approach,

Journal of the American Society for Information Science and Technology 52

(2001), no. 5, 416–429.

[31] John Lei and Ali Ghorbani, The reconstruction of the interleaved sessions from

a server log, Proceedings of the Seventeenth Conference of the Canadian Society

for Computational Studies of the Intelligence (Canada), 2004, pp. 133–145.

85

[32] Isabel Machado, Alexandre Martins, and Ana Paiva, One for all and all in one

- a learner modelling server in a multi-agent platform, the Seventh International

Conference on User Modelling, Judy Kay (ed.), Springer Verlag, 1999, pp. 211–

221.

[33] J. B. MacQueen, Some methods for classification and analysis of multivariate

observations, Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability (Berkeley, Califonia), University of California Press,

May 4-7 1967, pp. 281–297.

[34] Frank Manola and Eric Miller, Rdf primer, http://www.w3.org/TR/rdf-primer/

(2004).

[35] Mirza B. Murtaza, Jaymeen R. Shah, and Vipul K. Gupta, A model for designing

adaptive e-commerce sites.

[36] MySQL, http://www.mysql.com, Mysql database server.

[37] Mehran Nadjarbashi-Noghani and Ali Ghorbani, Improving the referrer-based

web log session reconstruction, Proceedings of Communication Network and Ser-

vices Research (CNSR) 2004 Conference (Fredericton, NB, Canada), May 19–21

2004, pp. 286–292.

[38] Un Yong Nahm and Raymond J. Mooney, Using information extraction to aid

the discovery of prediction rules from text, Proceedings of the Sixth International

Conference on Knowledge Discovery and Data Mining (KDD-2000) Workshop on

Text Mining (Boston, MA), July 2000, pp. 51–58.

[39] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann Pub-

lishers, San Mateo, California, 1993.

[40] J. Ross Quinlan, Learning first-order definitions of functions, Journal of Artificial

Intelligence Research 5 (1996), 139–161.

86

[41] I. Schwab, A. Kobsa, and I. Koychev, Learning about users from observation,

Adaptive User Interfaces: Papers from the 2000 AAAI Spring Symposium (Menlo

Park, CA, USA), AAAI Press, 2000.

[42] I. Schwab, W. Pohl, and I. Koychev, Learning to recommend from positive ev-

idence, Proceedings of the 2000 International Conference on Intelligent User

Interfaces (New Orleans, LA, USA), 2000, pp. 241–248.

[43] Maria Virvou, Victoria Tsiriga, and M. Moundridou, Adaptive navigation support

in a web-based software engineering course, Proceedings of the 2nd International

Conference on Technology in Teaching and Learning in Higher Education, 2001,

pp. 333–338.

[44] Gerhard Weber and Marcus Specht, User modeling and adaptive navigation sup-

port in WWW-based tutoring systems, Proceedings of the Sixth International

Conference of User Modeling, UM‘97 (A. Jameson, C. Paris, and C. Tasso, eds.),

Springer-Verlag, 1997, pp. 289–300.

[45] Yongqiao Xiao and Margaret H. Dunham, Efficient mining of traversal patterns,

Data and Knowledge Engineering 39 (2001), no. 2, 191–214.

[46] Jie Zhang and Ali Ghorbani, The reconstruction of user sessions from a server log

using improved time-oriented heuristics, Proceedings of Communication Network

and Services Research (CNSR) 2004 Conference (Fredericton, NB, Canada), May

19–21 2004, pp. 315–322.

[47] Jie Zhang and Ali A. Ghorbani, A generic user modeling server for adaptive web

systems, MITACS 5th Annual Conference (poster) (Halifax, Canada), June 9–12

2004.

[48] I. Zukerman and D. Albrecht, Predictive statistical models for user modeling,

User Modeling and User-Adapted Interaction 11 (2001), 5–18.

87

Appendix A

Implementation Code

Table A.1 presents the components that have been implemented and the classes whose

source code is released. The classes whose source code is released are marked by X.

A.1 User Profile Manager

A.1.1 CTupm Class
import java.net.*;

import java.util.*;

public class CTupm {

//Global variables for the network connection;

public static byte[] regIP = {(byte)127,(byte)0,(byte)0,(byte)1};

public static int regPort = 4444;

public static void main(String[] args)throws Exception{

//initialize all the parameters which have been defined as global variables

if(args.length == 1){

System.out.println("Command line: CTupm [regIP port] [dburl username password]");

System.out.println("Example: CTupm 131.202.240.228 4444 ias.cs.unb.ca/adwert **** ****");

System.out.println("[regIP] is the IP address of the machine that CTs will register to");

System.out.println("[port] is the port number of the machine that CTs will register to");

System.exit(1);

}else if(args.length >= 2){

StringTokenizer token = new StringTokenizer(args[0], ".");

for(int i=0; i<regIP.length && token.hasMoreTokens(); i++){

regIP[i] = (byte)(Integer.parseInt(token.nextToken()));

}

regPort = Integer.parseInt(args[1]);

}

CTupm ct = new CTupm();

ct.startCT();

}

public void startCT() throws Exception{

//get Modeling Interface address for registration

InetAddress regAddr = null;

try {

regAddr = InetAddress.getByAddress(regIP);

} catch (UnknownHostException e) {

e.printStackTrace();

}

//get local machine address for running all the conceptual tasks

InetAddress ctServiceAddr = null;

try {

88

Table A.1: Implemented Components and Released Code
System Components Class Name Whether Released

Authoring
Authoring Tool UMPanel

GMPanel
Modeling Interface ModelingInterface

CTupm X
UPManager X

User Profile Manager Reply X
DBManager
UGHandler X

Usage Group Handler Clustering
DBManager X

AssociationMiner X
DBManager

Association Miner Mining
Rule

Inference Engine Inference
CTrecommender X

DBManager
Recommender Recommender X

Reply X
Viewer

Profile Editor Modifier

ctServiceAddr = InetAddress.getLocalHost();

} catch (UnknownHostException e) {

e.printStackTrace();

}

int upmTaskID = 6666; // ID for the user profile manager

int upmServicePort = 6666; //server port for the user profile manager

register(upmTaskID, regAddr, regPort, ctServiceAddr, upmServicePort);//register user profile manager

UPManager upManager = new UPManager(upmServicePort);//start user profile manager thread

upManager.start();

}

//method for registration of the User Profile Manager

public void register(int seqID, InetAddress regAddr, int regPort, InetAddress ctServiceAddr, int ctServicePort){

byte[] buffer = new byte[8];

try{

//connect to the Modeling Interface

InetSocketAddress regPos = new InetSocketAddress(regAddr, regPort);

DatagramPacket packet = new DatagramPacket(buffer, buffer.length, regPos);

DatagramSocket socket = new DatagramSocket();

socket.connect(regPos);

//data of registration information

buffer[0] = (byte)(seqID/256);

buffer[1] = (byte)(seqID % 256);

byte[] lad = ctServiceAddr.getAddress();

System.arraycopy(lad, 0, buffer, 2, 4);

buffer[6] = (byte)(ctServicePort / 256);

buffer[7] = (byte)(ctServicePort % 256);

//send registration request

89

socket.send(packet);

System.out.println("Registration of the UPM: (" + (InetSocketAddress)socket.getLocalSocketAddress() + " -> " + regPos + ")");

socket.close();

}catch (Exception e){

System.out.println("Registration Error: " + e.getMessage());

}

}

}

A.1.2 UPManager Class
import interpreter.Interpreter;

import java.net.*;

public class UPManager extends Thread {

private final int maxPacketLength = 1024;

private final String vocabFile = "c:\\jay\\awwg\\data\\gums\\description\\umdescvocab.xml";

private final String vocabURI = "http://ias.cs.unb.ca/~jay/UMDescVocab";

private final String defaultFile = "c:\\jay\\awwg\\data\\gums\\description\\updefault.xml";

private final String defaultURI = "http://ias.cs.unb.ca/~jay/UPDefault";

private final String defaultResource = "http://ias.cs.unb.ca/~jay/UPDefault#defaultUserProfile";

private final String key = "userID";

private Vector umTables;

private int serverPort;

private DatagramSocket sck;

private static int count = 0;

public UPManager(int serverPort) throws Exception{

super("Start User Profile Manager...");

this.serverPort = serverPort;

init();

}

public void init() throws Exception{

/** initializatin for the user profile manager **/

//create tables object in memory and used for all user profiles;

Interpreter interpreter = new Interpreter(vocabFile, vocabURI, defaultFile,

defaultURI, defaultResource, key);

interpreter.readRDF();

//create tables for user model in the database

umTables = interpreter.convert();

interpreter.insertResource(umTables);

//interpreter.printTable(umTables);

interpreter.createTables(umTables);

//insert a default user profile

interpreter.insertDefault(umTables);

}

public void stopThread() {

sck.close();

}

public void run() {

System.out.println("User Profile Manager is spawned.");

try {

sck = new DatagramSocket(serverPort);

while (true) {

count++;

//get the accepted packet

byte[] buffer = new byte[maxPacketLength];

DatagramPacket packet = new DatagramPacket(buffer, maxPacketLength);

sck.receive(packet);

byte[] data = packet.getData();

//launch a new reply thread to handle the request and generate reponse

Reply r = new Reply(count, (InetSocketAddress) (packet.getSocketAddress()),

data, packet.getLength(), umTables);

r.start();

}

} catch (Exception e) {

System.out.println("Warning (user profile manager): " + e.getMessage());

}

if (!sck.isClosed()) {

sck.close();

}

}

}

90

A.1.3 Reply Class
import java.util.*;

import java.net.*;

public class Reply extends Thread {

//the value of e

private final double e = 2.718;

//the value of alpha to calculate the weight of previous visits

private final double alpha = 1.0/((double)(1000*60*60*24*7));

private final int timeOut = 10 * 1000; //set time out

private InetSocketAddress interPos;

private byte[] data;

private DatagramSocket sck;

private int dataLen;

private Vector tables;

private UPManager manager;

private int count;

public Reply(int rcount, InetSocketAddress interPos, byte[] rdata, int rdataLen, Vector rtables) {

super("Reply");

this.count = rcount;

this.interPos = interPos;

this.data = rdata;

this.dataLen = rdataLen;

this.tables = rtables;

manager = new UPManager(rtables);

}

public void stopReply() {

sck.close();

}

public void run() {

try {

System.out.print("user profile manager request #" + count + " ");

System.out.print ("length: " + dataLen +" ");

System.out.print("Package received: ");

for(int i = 0; i < dataLen; i++)

System.out.print(data[i] + " ");

sck = new DatagramSocket();

sck.connect(interPos);

byte[] rdata = replyHandler(data, dataLen);

DatagramPacket packet = new DatagramPacket(rdata, rdata.length, interPos);

sck.setSoTimeout(timeOut);

sck.send(packet);

sck.disconnect();

if (!sck.isClosed())

sck.close();

} catch (Exception e) {

System.out.println("Warning (user profile manager Reply): " + e.getMessage());

}

System.out.println("Reply operator " + count + " terminated.\n");

}

//a method to handle the errors

public byte[] errorHandler(byte[] rdata, int rdataLen, String error)

throws Exception {

byte[] response = response = new byte[2 + error.length()];

response[0] = rdata[0];

response[1] = rdata[1];

for (int i = 0; i < error.length(); i++) {

response[i + 2] = (byte) (error.charAt(i));

}

System.out.println(error);

return response;

}

//a method to handle the request and generate reponse

public byte[] replyHandler(byte[] rdata, int rdataLen) throws Exception {

byte[] response = null;

if (rdataLen < 4) {

String error = "message length should be longer 3";

response = errorHandler(rdata, rdataLen, error);

} else {

int reqID = (int) rdata[2];

String parameters = "";

for (int i = 3; i < rdataLen; i++) {

parameters = parameters + (char) rdata[i];

}

System.out.println("seq ID for user profile manager request #"

+ count + " " + ((int)(rdata[0]) + (rdata[1] >= 0 ? rdata[1] : rdata[1] + 256)));

91

System.out.println(reqID + " " + parameters);

if (reqID == 1) {

//check if the user is a existing user

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.exist(parameters)+"").charAt(0));

} else if (reqID == 2) {

//check if the login username and password are correct.

StringTokenizer token1 = new StringTokenizer(parameters, "#");

String userName = token1.nextToken();

String paraName = token1.nextToken();

String paraValue = token1.nextToken();

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.check(userName, paraValue)+"").charAt(0));

} else if (reqID == 3) {

//create a new user profile for the user

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.create(parameters)+"").charAt(0));

} else if (reqID == 4) {

//delete the user’s profile

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.delete(parameters)+"").charAt(0));

} else if (reqID == 5) {

//update value for a property

Vector knownPair = new Vector();

StringTokenizer token1 = new StringTokenizer(parameters, "#");

String userName = token1.nextToken();

knownPair.add("userID#" + userName);

while (token1.hasMoreTokens()) {

knownPair.add(token1.nextToken() + "#" + token1.nextToken());

}

String lastPair =

(String) (knownPair.elementAt(knownPair.size() - 1));

StringTokenizer token2 = new StringTokenizer(lastPair, "#");

String pairName = token2.nextToken();

String pairValue = token2.nextToken();

knownPair.removeElementAt(knownPair.size() - 1);

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] =

(byte) ((manager.update(knownPair, pairName, pairValue)+"").charAt(0));

} else if (reqID == 6) {

//retrieve value for a property

Vector knownPair = new Vector();

StringTokenizer token1 = new StringTokenizer(parameters, "#");

String userName = token1.nextToken();

knownPair.add("userID#" + userName);

while (token1.hasMoreTokens()) {

String prop = token1.nextToken();

if(!token1.hasMoreTokens()){

knownPair.add(prop);

}else{

knownPair.add(prop + "#" + token1.nextToken());

}

}

String propName =

(String) (knownPair.elementAt(knownPair.size() - 1));

knownPair.removeElementAt(knownPair.size() - 1);

String value = manager.retrieve(knownPair, propName);

response = new byte[2 + value.length()];

response[0] = rdata[0];

response[1] = rdata[1];

for (int i = 0; i < value.length(); i++) {

response[i + 2] = (byte) (value.charAt(i));

}

} else if (reqID == 7) {

//reset property value

Vector knownPair = new Vector();

StringTokenizer token1 = new StringTokenizer(parameters, "#");

String userName = token1.nextToken();

knownPair.add("userID#" + userName);

while (token1.hasMoreTokens()) {

String prop = token1.nextToken();

if(!token1.hasMoreTokens()){

knownPair.add(prop);

}else{

92

knownPair.add(prop + "#" + token1.nextToken());

}

}

String propName =

(String) (knownPair.elementAt(knownPair.size() - 1));

knownPair.removeElementAt(knownPair.size() - 1);

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.reset(knownPair, propName)+"").charAt(0));

} else if(reqID == 8) {

//add value for the user;

Vector knownPair = new Vector();

StringTokenizer token = new StringTokenizer(parameters, "#");

String userName = token.nextToken();

knownPair.add("userID#" + userName);

while (token.hasMoreTokens()) {

knownPair.add(token.nextToken() + "#" + token.nextToken());

}

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.addValue(knownPair)+"").charAt(0));

}else if(reqID == 9){

//check if the value exists

Vector knownPair = new Vector();

StringTokenizer token = new StringTokenizer(parameters, "#");

String userName = token.nextToken();

knownPair.add("userID#" + userName);

while (token.hasMoreTokens()) {

knownPair.add(token.nextToken() + "#" + token.nextToken());

}

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.checkValue(knownPair)+"").charAt(0));

}else if (reqID == 10) {

//get content of the user model

String value = manager.retrieveAll(parameters);

response = new byte[2 + value.length()];

response[0] = rdata[0];

response[1] = rdata[1];

for (int i = 0; i < value.length(); i++) {

response[i + 2] = (byte) (value.charAt(i));

}

}else if(reqID == 11) {

//add value for the user;

Vector knownPair = new Vector();

long newDate = (new Date()).getTime();

System.out.println("new Date: " + newDate);

parameters = parameters + "#date#" + newDate;

StringTokenizer token = new StringTokenizer(parameters, "#");

String userName = token.nextToken();

knownPair.add("userID#" + userName);

while (token.hasMoreTokens()) {

knownPair.add(token.nextToken() + "#" + token.nextToken());

}

response = new byte[3];

response[0] = rdata[0];

response[1] = rdata[1];

response[2] = (byte) ((manager.addValue(knownPair)+"").charAt(0));

/**update the interested topics table**/

//get the value of newsID from the received message

String newsID = manager.getValue(knownPair, "newsID");

//get the category information of the news

String category = manager.getCategory(newsID);

//retrieve the value of interests value for the category

Vector known = new Vector();

known.add("userID#" + userName);

String interestValue = manager.retrieve(known, category);

//retrieve the value of date for the category

long oldDate = Long.parseLong(manager.retrieve(known, "interestDate"));

System.out.println("old Date: " + oldDate);

//calculate the time difference between the old date and current time

double timeDiff = ((double)(newDate-oldDate));

System.out.println("time:" + timeDiff);

//calculate the new value from the current added value and the weighted old value

String newValue = (1.0 + (Double.parseDouble(interestValue))*(Math.pow(e, -(alpha*timeDiff))))+"";

93

//update value of the interests value and the date of updating

int successful = manager.update(known, category, newValue);

successful = manager.update(known, "interestDate", newDate+"");

}else {

String error = "invalid reqID for the user profile manager";

response = errorHandler(rdata, rdataLen, error);

}

String result = "reply for the user profile manager request #" + count + " is: ";

for (int i = 2; i < response.length; i++) {

result = result + (char) response[i];

}

System.out.println(result);

}

return response;

}

}

A.2 Usage Group Handler

A.2.1 UGHandler Class
import java.util.*;

import interpreter.*;

import ughandler.clustering.Clustering;

import ughandler.kmeans.*;

public class UGHandler extends Thread{

private Vector groupModel;

final private int initialClusterNum = 5;

final private double simThreshold = 0.1;

//the percent threshold of a group population

final private double percent = 0.5;

private String interestsFile = "";

private String centerFile = "";

final private boolean kMeansPlus = true;

//final private boolean kMeansPlus = false;

final private double support = 0.4;

private DBManagement dbmanager;

//group model structure

private Vector gmTables;

//the array to store the categories of concepts

private String[] categories;

private FileManagement filemanager;

private Clustering clustering;

private kMeans kmeans;

private int[] popuList;

public UGHandler(Vector tables) {

if(kMeansPlus){

interestsFile = "c:\\jay\\awwg\\data\\gums\\ughandler\\clustering\\data\\train_input.data";

centerFile = "c:\\jay\\awwg\\data\\gums\\ughandler\\clustering\\data\\centerFile.data";

}else{

interestsFile = "c:\\jay\\awwg\\data\\gums\\ughandler\\kmeans\\data\\train_input.data";

centerFile = "c:\\jay\\awwg\\data\\gums\\ughandler\\kmeans\\data\\centerFile.data";

}

gmTables = tables;

categories = getCategories();

dbmanager = new DBManagement(categories);

filemanager = new FileManagement(interestsFile, centerFile);

clustering = new Clustering(interestsFile, centerFile);

kmeans = new kMeans(initialClusterNum, interestsFile, centerFile);

}

//group users once after one week

public void run(){

long previousTime = new Date().getTime();

try {

while (true) {

long currentTime = new Date().getTime();

if(currentTime - 3600000*24*7 >= previousTime){

//grouping after a period of time

grouping();

findPop();

94

}else if(dbmanager.exceed(percent)){

//if the new population exceeds a threshold, do grouping

grouping();

findPop();

}

previousTime = new Date().getTime();

//check after a period of time

sleep(60000);

}

} catch (Exception e) {

System.out.println("Retrieve news thread error: " + e.getMessage());

}

}

//do the clustering

public void grouping() throws Exception {

Vector interests = dbmanager.retrieveData();

Vector normInte = new Vector();

//normalize the interests values

for(int i=0; i<interests.size(); i++){

Interests userInterest = (Interests)(interests.elementAt(i));

normInte.add(new Interests(userInterest.getName(),normalize(userInterest.getInterests())));

}

//write into the interests file

filemanager.writeFile(normInte);

if(kMeansPlus){

//clustering the users based on their interests value

clustering.run(initialClusterNum);

//get population of each group

popuList = clustering.getPopu();

}else{

//clustering the users based on their interests value

kmeans.readData();

kmeans.runKMeans();

kmeans.writeCenters();

popuList = kmeans.getPopu();

for(int i=0; i<popuList.length; i++){

System.out.println(popuList[i]);

}

}

//read group’s center information from the center file

Vector groups = filemanager.readFile();

//insert groups into the database

Vector newGroups = new Vector();

Vector popu = new Vector();

for(int i=0; i<groups.size(); i++){

if(popuList[i] > 0){

newGroups.add((String[])(groups.elementAt(i)));

popu.add(popuList[i]+"");

}

}

dbmanager.insertGroup(newGroups, popu);

//update the user’s group information

updateUPs(interests, newGroups);

System.out.println("grouping is done successfully!");

}

//get categories from the table structure for the rdf description of group model

private String[] getCategories(){

Vector properties = null;

Vector categories = new Vector();

boolean found = false;

for(int i=0; i<gmTables.size() && !found; i++){

Table t = (Table)(gmTables.elementAt(i));

if(t.getName().equals("GroupModel")){

found = true;

properties = t.getProperties();

}

}

for(int i=0; i<properties.size(); i++){

interpreter.Properties property = (interpreter.Properties)(properties.elementAt(i));

if(!property.getName().equals("groupID") && !property.getName().equals("groupPopu")

&& !property.getName().equals("newPopu")){

categories.add(property.getName());

}

}

String[] cateArray = new String[categories.size()];

for(int i=0; i<categories.size(); i++){

cateArray[i] = (String)(categories.elementAt(i));

95

//System.out.println("category: " + cateArray[i]);

}

return cateArray;

}

//get population of a group

public int getPopu(){

int popu = 0;

for(int i=0; i<popuList.length; i++){

popu = popu + popuList[i];

}

return popu;

}

//normalize the interests value

private double[] normalize(double[] interests){

int length = interests.length;

double[] normalizedInterests = new double[length];

double sum = 0;

for(int i=0; i<length; i++){

sum = sum + interests[i]*interests[i];

}

double vecLen = Math.sqrt(sum);

for(int i=0; i<length; i++){

if(vecLen == 0){

normalizedInterests[i] = 0;

}else{

normalizedInterests[i] = interests[i]/vecLen;

}

}

return normalizedInterests;

}

//update user groups information

private void updateUPs(Vector interests, Vector groups)throws Exception{

dbmanager.updateUPs(interests, groups);

}

//assign a user to a group

private int assignGroup(double[] userInterests, Vector centers){

double similarity = -1.0;

int group = -1;

for (int i = 0; i < centers.size(); i++) {

String[] center = (String[])(centers.elementAt(i));

double sim = similarity(userInterests, center);

if (similarity <= sim) {

group = i;

similarity = sim;

}

}

return group;

}

//assign a user into a existing group

private int assignExistGroup(double[] userInterests, Vector centers)throws Exception{

double similarity = -1.0;

int group = -1;

boolean below = true;

for (int i = 0; i < centers.size(); i++) {

String[] center = (String[])(centers.elementAt(i));

double sim = similarity(userInterests, center);

//System.out.println(sim);

if(sim >= simThreshold){

below = false;

}

if (similarity <= sim) {

group = i;

similarity = sim;

}

}

if(below == true){

group = centers.size();

centers.add(userInterests);

dbmanager.insertCenter(group, userInterests, 1);

}else{

dbmanager.updateGroup(userInterests, (String[])(centers.elementAt(group)), group);

}

return group;

}

//assign user into a group

public int groupMatch(String userID) throws Exception {

double[] userInterests = dbmanager.retrieveUserData(userID);

userInterests = normalize(userInterests);

Vector centers = dbmanager.retrieveCenters();

96

int group = assignExistGroup(userInterests, centers);

dbmanager.updateNewPopu(group);

dbmanager.updateUP(group, userID);

return 1;

}

//a way to calculate similarity

private double similarity(double[] user, String[] center) {

double similarity = 0.0;

double norm = 0.0;

for (int i = 0; i < user.length; i++) {

similarity = similarity + user[i] * (Double.parseDouble(center[i]));

}

return similarity;

}

//another way to calculate similarity

/**

private double similarity(double[] user, String[] center){

double similarity = 0.0;

for(int i=0; i<user.length; i++){

similarity = similarity + Math.abs(user[i]-Double.parseDouble(center[i]));

}

similarity = 1 - similarity/center.length;

return similarity;

}

**/

public void findPop() throws Exception {

int numOfGroups = dbmanager.getNumOfGroups();

Vector[] groups = new Vector[numOfGroups];

for (int i = 0; i < numOfGroups; i++) {

groups[i] = dbmanager.getUsers(i);

groups[i] = dbmanager.getUserProps(groups[i]);

}

for(int i=0; i<groups.length; i++){

System.out.println("group#" + i);

try{

Writer fw = new Writer("c:\\jay\\evaluation\\dataset2\\test" + i + ".txt");

for(int j=0; j<groups[i].size(); j++){

Vector values = (Vector)(groups[i].elementAt(j));

String vs = "";

for(int k=0; k<values.size(); k++){

vs = vs + (String)(values.elementAt(k)) + "#";

}

fw.write(vs);

}

}catch (Exception e){

}

}

for(int i=0; i<numOfGroups; i++){

Vector values = (Vector)(groups[i].elementAt(0));

int propNum = values.size();

System.out.println(propNum);

Vector popvalues = new Vector();

for(int j=0; j<propNum; j++){

Hashtable vhash = new Hashtable();

for(int k=0; k<groups[i].size(); k++){

Vector vs = (Vector)(groups[i].elementAt(k));

String v = (String)(vs.elementAt(j));

if(vhash.containsKey(v)&&!v.equals(" ")){

int n = Integer.parseInt((String)(vhash.get(v)));

n++;

vhash.remove(v);

vhash.put(v,n+"");

}else if(!v.equals(" ")){

vhash.put(v,"1");

}

}

int total = 0;

int max = 0;

String maxProp = "";

Object[] keys = vhash.keySet().toArray();

for(int k=0; k<keys.length; k++){

int n = Integer.parseInt((String)(vhash.get(keys[k])));

total = total + n;

System.out.println("group" + i);

System.out.println(keys[k] + " " + n);

if(n>=max){

maxProp = (String)(keys[k]);

97

max = n;

}

}

if(max >= total*support)

popvalues.add(maxProp);

}

if(popvalues.size()>0){

Hashtable allPop = new Hashtable();

for(int j=0; j<popvalues.size(); j++){

StringTokenizer token = new StringTokenizer((String)(popvalues.elementAt(j)), "=");

allPop.put(token.nextToken(), token.nextToken());

}

dbmanager.insertPop(i, allPop);

}

}

}

}

A.2.2 DBManager Class
import java.sql.*;

import java.util.*;

public class DBManager {

//database management for the group handler an array to store the sections’ name

private String[] sections;

private DBConnection connection;

public DBManager(String[] sections){

connection = new DBConnection();

this.sections = sections;

}

//insert center infor into the databse

public void insertCenter(int groupID, double[] userInterests, int groupPopu) throws Exception{

//construct a query

String query = "insert into GroupModel (GroupID, groupPopu, newPopu,";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + ",";

else

query = query + sections[i] + ") values (";

}

int rs = -1;

String values = groupID + "," + groupPopu + ",0,";

for (int j = 0; j < userInterests.length; j++) {

if (j != userInterests.length - 1)

values = values + "’" + userInterests[j] + "’,";

else

values = values + "’" + userInterests[j] + "’)";

}

//open database connection and execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = null;

pstmt = conn.prepareStatement(query + values);

rs = pstmt.executeUpdate();

//close connection

pstmt.close();

connection.closeConnection(conn);

}

//update the groups with new population and new centers

public void updateGroup(double[] userInterests, String[] center, int group)throws Exception{

//get the old population of the group

String query = "select groupPopu from GroupModel where groupID = " + group;

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

int popu = -1;

if (rs.next()) {

popu = rs.getInt(1);

}

rs.close();

String[] newCenter = new String[center.length];

for(int i=0; i<newCenter.length; i++){

newCenter[i] = ((Double.parseDouble(center[i])*popu+userInterests[i])/(popu+1))+"";

}

//update groups with new centers and new population

98

query = "update GroupModel set groupPopu = " + (popu+1) + ", ";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + "= ’" + newCenter[i] + "’, ";

else

query = query + sections[i] + "= ’" + newCenter[i] + "’";;

}

query = query + " where groupID = " + group + ";";

pstmt = conn.prepareStatement(query);

int rs2 = pstmt.executeUpdate();

//close connection

pstmt.close();

connection.closeConnection(conn);

}

//insert groups into the group model database

public void insertGroup(Vector groups, Vector popuList) throws Exception {

//delete the old groups stored in the database

String query = "delete from GroupModel where groupID <> -1;";

PreparedStatement pstmt = null;

Connection conn = connection.openConnection();

pstmt = conn.prepareStatement(query);

int rs = -1;

rs = pstmt.executeUpdate();

//insert new groups into the database

query = "insert into GroupModel (groupID, groupPopu, newPopu,";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + ",";

else

query = query + sections[i] + ") values (";

}

for (int i = 0; i < groups.size(); i++) {

String[] center = (String[]) (groups.elementAt(i));

String values = i + "," + Integer.parseInt((String)(popuList.elementAt(i))) + ",0,";

for(int j=0; j<center.length; j++){

System.out.println(j + ": " + center[j]);

}

for (int j = 0; j < center.length; j++) {

if (j != center.length - 1)

values = values + "’" + center[j] + "’,";

else

values = values + "’" + center[j] + "’)";

}

System.out.println(query+values);

pstmt = conn.prepareStatement(query + values);

rs = pstmt.executeUpdate();

}

//close connection

pstmt.close();

connection.closeConnection(conn);

}

public void updateUPs(Vector interests, Vector groups)throws Exception{

Connection conn = connection.openConnection();

for(int i=0; i<interests.size(); i++){

Interests interest = (Interests)(interests.elementAt(i));

double[] userInterests = interest.getInterests();

double[] normUserInterests = normalize(userInterests);

int group = assignGroup(normUserInterests, groups);

updateUP(group, interest.getName(), conn);

}

conn.close();

}

//normalize the interests value

private double[] normalize(double[] interests){

int length = interests.length;

double[] normalizedInterests = new double[length];

double sum = 0;

for(int i=0; i<length; i++){

sum = sum + interests[i]*interests[i];

}

double vecLen = Math.sqrt(sum);

for(int i=0; i<length; i++){

if(vecLen == 0){

normalizedInterests[i] = 0;

}else{

normalizedInterests[i] = interests[i]/vecLen;

}

}

99

return normalizedInterests;

}

//a way to calculate similarity

private double similarity(double[] user, String[] center) {

double similarity = 0.0;

double norm = 0.0;

for (int i = 0; i < user.length; i++) {

similarity = similarity + user[i] * (Double.parseDouble(center[i]));

}

return similarity;

}

//assign a user to a group

private int assignGroup(double[] userInterests, Vector centers){

double similarity = -1.0;

int group = -1;

for (int i = 0; i < centers.size(); i++) {

String[] center = (String[])(centers.elementAt(i));

double sim = similarity(userInterests, center);

if (similarity <= sim) {

group = i;

similarity = sim;

}

}

return group;

}

//get information from the groups

public Vector retrieveData() throws Exception {

Vector interests = new Vector();

//construct query

String query = "select userID, ";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + ", ";

else

query = query + sections[i] + " ";

}

query = query + "from InterestedProducts;";

//open connection and execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

double[] intrerest = new double[sections.length];

for (int i = 0; i < sections.length; i++) {

intrerest[i] = rs.getDouble(i + 2);

}

if (!rs.getString(1).equals("default"))

interests.add(new Interests(rs.getString(1), intrerest));

}

//close connection

pstmt.close();

rs.close();

connection.closeConnection(conn);

return interests;

}

//retrieve user date from database

public double[] retrieveUserData(String userID)throws Exception{

//construct query

double[] userInterests = new double[sections.length];

String query = "select ";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + ", ";

else

query = query + sections[i] + " ";

}

query = query + "from InterestedProducts where userID = ’" + userID + "’;";

//open connection to execute the query

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

if (rs.next()) {

for (int i = 0; i < sections.length; i++) {

userInterests[i] = (double)(rs.getInt(i + 1));

}

}

100

//close connection

rs.close();

pstmt.close();

connection.closeConnection(conn);

return userInterests;

}

//get center information

public Vector retrieveCenters()throws Exception{

Vector centers = new Vector();

//construct query

String query = "select groupID, ";

for (int i = 0; i < sections.length; i++) {

if (i != sections.length - 1)

query = query + sections[i] + ", ";

else

query = query + sections[i] + " ";

}

query = query + "from GroupModel where groupID <> -1;";

//open connection to execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

String[] center = new String[sections.length];

for (int i = 0; i < sections.length; i++) {

center[i] = rs.getString(i + 2);

}

centers.add(rs.getInt(1), center);

}

//close connection

pstmt.close();

rs.close();

connection.closeConnection(conn);

return centers;

}

//update user’s group information

public void updateUP(int group, String userName, Connection conn)throws Exception{

//construct query

String query =

"update GroupInfor set groupID = "

+ group

+ " where userID = ’"

+ userName

+ "’;";

//open connection to execute query

PreparedStatement pstmt = conn.prepareStatement(query);

int rs = pstmt.executeUpdate();

//close connection

pstmt.close();

}

//update user’s group information

public void updateUP(int group, String userName)throws Exception{

//construct query

String query =

"update GroupInfor set groupID = "

+ group

+ " where userID = ’"

+ userName

+ "’;";

//open connection to execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

int rs = pstmt.executeUpdate();

//close connection

pstmt.close();

conn.close();

}

//update new population

public void updateNewPopu(int group) throws Exception{

String query = "update GroupModel set newPopu = newPopu + 1 where groupID =" + group + ";";

//open connection to execute query

Connection conn = connection.openConnection();

101

PreparedStatement pstmt = null;

pstmt = conn.prepareStatement(query);

int rs = pstmt.executeUpdate();

//close connection

pstmt.close();

connection.closeConnection(conn);

}

//check if the new population exceeds certain percentation of old one or not

public boolean exceed(double percent) throws Exception{

boolean exceed = false;

String query = "select groupPopu, newPopu from GroupModel where groupID <> -1";

//open connection to execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

while (rs.next() && !exceed) {

int groupPopu = rs.getInt(1);

int newPopu = rs.getInt(2);

if(newPopu >= groupPopu*percent){

exceed = true;

}

}

//close connection

pstmt.close();

rs.close();

connection.closeConnection(conn);

return exceed;

}

//get total number of groups that the system has

public int getNumOfGroups() throws Exception{

String query = "select count(*) from GroupModel;";

//open connection with database

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet numRS = pstmt.executeQuery();

int num = 0;

if(numRS.next()){

num = numRS.getInt(1);

}

//close connection

pstmt.close();

numRS.close();

connection.closeConnection(conn);

return num-1;

}

//get all the users in the group with the groupID

public Vector getUsers(int groupID) throws Exception{

Vector users = new Vector();

String query = "select userID from GroupInfor where groupID = " + groupID + ";";

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet numRS = pstmt.executeQuery();

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

String userID = rs.getString(1);

if(!userID.equals("default")){

users.add(userID);

}

}

pstmt.close();

numRS.close();

connection.closeConnection(conn);

return users;

}

public Vector getUserProps(Vector groups)throws Exception{

String query = "show columns from DGModel;";

Vector propName = new Vector();

//open connection with database

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

102

while(rs.next()){

propName.add(rs.getString(1));

}

Vector groupProps = new Vector();

for (int j = 0; j < groups.size(); j++) {

String userID = (String) (groups.elementAt(j));

Vector propValue = new Vector();

query = "select ";

for(int i=0; i<propName.size(); i++){

if(i != propName.size()-1)

query = query + (String)(propName.elementAt(i)) + ", ";

else

query = query + (String)(propName.elementAt(i)) + " ";

}

query = query + " from DGModel where userID = ’" + userID + "’;";

pstmt = conn.prepareStatement(query);

rs = pstmt.executeQuery();

if(rs.next()){

for(int i=0; i<propName.size(); i++){

String pname = (String)(propName.elementAt(i));

if(!pname.equals("userID")){

String value = rs.getString(pname);

query = "select " + pname + " from Resource where userID = ’" + userID + "’;";

String resource = "";

PreparedStatement pstmt2 = conn.prepareStatement(query);

ResultSet rs2 = pstmt2.executeQuery();

if(rs2.next()){

resource = rs2.getString(1);

}

pstmt2.close();

rs2.close();

if(getIndex(resource) < getIndex(group)){

propValue.add(pname+ "=" + value);

}else{

propValue.add(" ");

}

}

}

}

if(propValue.size() > 0)

groupProps.add(propValue);

}

//close connection

pstmt.close();

rs.close();

connection.closeConnection(conn);

return groupProps;

}

private String getResource(String userID, String pname) throws Exception{

String query = "select " + pname + " from Resource where userID = ’" + userID + "’;";

String resource = "";

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

if(rs.next()){

resource = rs.getString(1);

}

rs.close();

pstmt.close();

conn.close();

return resource;

}

private int getIndex(String resource){

int index = -1;

for(int i=0; i<resources.length && index==-1; i++){

if(resource.equals(resources[i])){

index = i;

}

}

return index;

}

public Vector getPopProps()throws Exception{

Vector popProps = new Vector();

String query = "show columns from GroupPopValues";

DBConnection connection = new DBConnection();

103

Connection conn = connection.openConnection();

PreparedStatement pstmt = conn.prepareStatement(query);

ResultSet rs = pstmt.executeQuery();

while(rs.next()){

String prop = rs.getString(1);

if(!prop.equals("groupID"))

popProps.add(prop);

}

rs.close();

pstmt.close();

conn.close();

return popProps;

}

public void insertPop(int groupID, Hashtable popPropValues) throws Exception{

Vector columns = getPopProps();

String query = "insert into GroupPopValues (groupID, ";

String values = ") values (" + groupID + ", ";

for(int i=0; i<columns.size(); i++){

String prop = (String)(columns.elementAt(i));

String value = "";

if(popPropValues.containsKey(prop)){

value = (String)(popPropValues.get(prop));

}

if(i != columns.size()-1){

query = query + prop + ", ";

values = values + "’" + value + "’, ";

}else{

query = query + prop;

values = values + "’" + value + "’";

}

}

query = query + values + ");";

System.out.println(query);

//open database connection and execute query

Connection conn = connection.openConnection();

PreparedStatement pstmt = null;

pstmt = conn.prepareStatement(query);

int rs = pstmt.executeUpdate();

//close connection

pstmt.close();

connection.closeConnection(conn);

}

}

A.3 Association Miner

A.3.1 AssociationMiner Class
import java.util.*;

import interpreter.*;

public class AssociationMiner extends Thread {

//minimal support and minimal confidence

final private double mini_support = 0.1;

final private double mini_confidence = 0.1;

//the weight of confidence of support to calculate priority

final private double weight_conf = 0.5;

final private double weight_supp = 0.5;

//hashtable to store the mapping

final private String mapFile = "c:\\jay\\awwg\\data\\gums\\description\\map.dat";

private Hashtable mapping;

private Hashtable mapIDProp;

private DBManagement dbmanager;

//association rule model structure

private Vector arTables;

private Mining mining;

public AssociationMiner(Vector arTables) throws Exception{

this.arTables = arTables;

dbmanager = new DBManagement();

104

mining = new Mining(mini_support, mini_confidence);

mapping = new Hashtable();

mapIDProp = new Hashtable();

}

public AssociationMiner(){

mapping = new Hashtable();

mapIDProp = new Hashtable();

}

public Hashtable getMap(){

return mapping;

}

public Hashtable getMapIDProp(){

return mapIDProp;

}

public void read(){

Reader reader = new Reader(mapFile);

String line = "";

while((line = reader.readLine())!=null && line != ""){

StringTokenizer token = new StringTokenizer(line, "#");

String id = token.nextToken();

String prop = token.nextToken();

String value = token.nextToken();

mapping.put(prop+"#"+value, id);

mapIDProp.put(id, prop+"#"+value);

}

}

//do mining once in a period of time

public void run() {

try {

while (true) {

sleep(3600000 * 24 * 2);

mining();

}

} catch (Exception e) {

System.out.println("Mining thread error: " + e.getMessage());

}

}

//mining process

public void mining() {

try {

//retrieve user’s properties

Vector props = dbmanager.getProps(mapping);

//delete all the old association rules;

dbmanager.deleteRules();

//mine association rules and insert the mined rules into the database

Vector freSets = mining.apriori(props);

Vector rules = mining.generateRules(freSets);

System.out.println(rules.size());

for(int j=0; j<rules.size(); j++){

Rule rule = (Rule)(rules.elementAt(j));

String output = " Rule#" + j + ": " + rule.getFirst() + " -> " + rule.getSec() + " (" + rule.getConf()

+ ", " + rule.getSup() + ")";

System.out.println(output);

}

if(rules.size() >0){

dbmanager.insertRules(rules, weight_conf, weight_supp);

}

} catch (Exception e) {

System.out.println("Mining error: " + e.getMessage());

}

}

}

A.4 Recommender

A.4.1 CTrecommender Class
import java.net.*; import java.util.*;

public class CTrecommender{

//Global variables for the network connection;

public static byte[] regIP = {(byte)127,(byte)0,(byte)0,(byte)1};

105

public static int regPort = 4444;

public static void main(String[] args)throws Exception{

//initialize all the parameters which have been defined as global variables

if(args.length == 1){

System.out.println("Command line: CTrecommender [regIP port] [dburl username password]");

System.out.println("Example: CTrecommender 131.202.240.228 4444");

System.out.println("[regIP] is the IP address of the machine that CTs will register to");

System.out.println("[port] is the port number of the machine that CTs will register to");

System.exit(1);

}else if(args.length >= 2){

StringTokenizer token = new StringTokenizer(args[0], ".");

for(int i=0; i<regIP.length && token.hasMoreTokens(); i++){

regIP[i] = (byte)(Integer.parseInt(token.nextToken()));

}

regPort = Integer.parseInt(args[1]);

}

//launch a recommender thread

CTrecommender ct = new CTrecommender();

ct.startCT();

}

public void startCT() throws Exception{

//get modeling interface address for registration

InetAddress regAddr = null;

try {

regAddr = InetAddress.getByAddress(regIP);

} catch (UnknownHostException e) {

e.printStackTrace();

}

//get local machine address for running all the components

InetAddress ctServiceAddr = null;

try {

ctServiceAddr = InetAddress.getLocalHost();

} catch (UnknownHostException e) {

e.printStackTrace();

}

//task ID for the Recommender

int amTaskID = 8888;

//service port number

int amServicePort = 8888;

//register the association miner

register(amTaskID, regAddr, regPort, ctServiceAddr, amServicePort);

//start association miner thread

CTassocMiner miner = new CTassocMiner(amServicePort);

miner.start();

}

//method for registration of the Recommender

public void register(int seqID, InetAddress regAddr, int regPort, InetAddress ctServiceAddr, int ctServicePort){

byte[] buffer = new byte[8];

try{

//connect to SE2CT

InetSocketAddress regPos = new InetSocketAddress(regAddr, regPort);

DatagramPacket packet = new DatagramPacket(buffer, buffer.length, regPos);

DatagramSocket socket = new DatagramSocket();

socket.connect(regPos);

//data of registration information

buffer[0] = (byte)(seqID/256);

buffer[1] = (byte)(seqID % 256);

byte[] lad = ctServiceAddr.getAddress();

System.arraycopy(lad, 0, buffer, 2, 4);

buffer[6] = (byte)(ctServicePort / 256); buffer[7] = (byte)(ctServicePort % 256);

//send registration request

socket.send(packet);

System.out.println("Registration of the Recommender: (" + (InetSocketAddress)socket.getLocalSocketAddress()

+ " -> " + regPos + ")");

socket.close();

}catch (Exception e){

System.out.println("Registration Error: " + e.getMessage());

}

}

}

106

A.4.2 Recommender Class
import java.util.*;

import java.net.*;

public class Recommender extends Thread {

private final String vocabFile = "c:\\jay\\awwg\\data\\gums\\description\\ardescvocab.xml";

private final String vocabURI = "http://ias.cs.unb.ca/~jay/ARDescVocab";

private final String defaultFile = "c:\\jay\\awwg\\data\\gums\\description\\ardefault.xml";

private final String defaultURI = "http://ias.cs.unb.ca/~jay/ARDefault";

private final String defaultResource = "http://ias.cs.unb.ca/~jay/ARDefault#defaultAssociationRule";

private final String key = "properties";

//maximal length of the packet, protect from attack

private final int maxPacketLength = 1024;

//table structure for association rule

private Vector arTables;

//service port for handle the request

private int servicePort;

//a socket for receiving and sending packet

private DatagramSocket sck;

public Recommender(int servicePort) throws Exception{

super("Start Recommender...");

this.servicePort = servicePort;

init();

}

public void init() throws Exception{

/** initializatin for the association miner **/

Interpreter interpreter = new Interpreter(vocabFile, vocabURI, defaultFile,

defaultURI, defaultResource, key);

interpreter.readRDF();

//create tables for user model in the database

arTables = interpreter.convert();

interpreter.printTable(arTables);

interpreter.createTables(arTables);

//insert a default user profile

interpreter.insertDefault(arTables);

}

//close socket

public void stopThread() {

sck.close();

}

public void run() {

System.out.println("Recommender is spawned.");

try {

sck = new DatagramSocket(servicePort);

while (true) {

//get the accepted packet

byte[] buffer = new byte[maxPacketLength];

//create a datagrampacket object to receive requests

DatagramPacket packet = new DatagramPacket(buffer, maxPacketLength);

sck.receive(packet);

//get attached message from the packet

byte[] data = packet.getData();

//launch a new reply thread to handle the request and generate reponse

Reply r = new Reply((InetSocketAddress) (packet.getSocketAddress()),

data, packet.getLength(), miner);

r.start();

}

} catch (Exception e) {

System.out.println("Warning (Recommender): " + e.getMessage());

}

if (!sck.isClosed()) {

sck.close();

}

}

}

A.4.3 Reply Class
import java.util.*;

import java.net.*;

public class Reply extends Thread {

107

//set time out

private final int timeOut = 10*1000;

//IP socket address to send back the response packet

private InetSocketAddress interPos;

private byte[] data;

//a socket for sending the response packet

private DatagramSocket sck;

private int id, dataLen;

private AssociationMiner miner;

//a constructor to create a reply object

public Reply(InetSocketAddress interPos, byte[] rdata, int rdataLen, AssociationMiner miner) {

super("Reply");

this.interPos = interPos;

this.data = rdata;

this.dataLen = rdataLen;

this.miner = miner;

}

//stop replying

public void stopReply() {

sck.close();

}

public void run() {

try {

//get the current system time

//to keep track of the processing time for each request

long time = (new Date()).getTime();

System.out.print ("length: " + dataLen + " ");

System.out.print("Package received: ");

for(int i = 0; i < dataLen; i++)

System.out.print(data[i] + " ");

//connect to the remote socket address

sck = new DatagramSocket();

sck.connect(interPos);

//set time out

sck.setSoTimeout(timeOut);

//get the reply content

byte[] rdata = replyHandler(data, dataLen);

//create a datagram packet for sending packet

DatagramPacket packet = new DatagramPacket(rdata, rdata.length, interPos);

sck.send(packet);

sck.disconnect();

System.out.println("time for: " + ((new Date()).getTime()-time));

if (!sck.isClosed())

sck.close();

} catch (Exception e) {

System.out.println("Warning(Recommender Reply): " + e.getMessage());

}

System.out.println("Reply operator " + id + " terminated.");

}

//a method handles errors.

public byte[] errorHandler(byte[] data, int dataLen, String error)

throws Exception {

byte[] response = response = new byte[2 + error.length()];

response[0] = data[0];

response[1] = data[1];

for (int i = 0; i < error.length(); i++) {

response[i + 2] = (byte) (error.charAt(i));

}

System.out.println(error);

return response;

}

//a method of handling all the request and generate responses

public byte[] replyHandler(byte[] rdata, int rdataLen) throws Exception {

byte[] response = null;

if (rdataLen < 4) {

//print the error message if the length of the received packet data is less than 4

String error = "message length should be longer 3";

response = errorHandler(rdata, rdataLen, error);

} else {

int reqID = (int) rdata[2];

//convert the data to a string

String parameters = "";

for (int i = 3; i < rdataLen; i++) {

108

parameters = parameters + (char) rdata[i];

}

//print out the received message

System.out.println(reqID + " " + parameters);

if (reqID == 20) {

//recommend associated news to the user

Vector knownPair = new Vector();

StringTokenizer token = new StringTokenizer(parameters, "#");

String userID = "";

int visitingNews = -1;

int num = 0;

String value = "";

String tokenValue = "";

if(token.hasMoreTokens()){

tokenValue = token.nextToken();

if(!tokenValue.equals("")){

userID = tokenValue;

if(token.hasMoreTokens()){

tokenValue = token.nextToken();

if(!tokenValue.equals("")){

visitingNews = Integer.parseInt(tokenValue);

if(token.hasMoreTokens()){

tokenValue = token.nextToken();

if(!tokenValue.equals("")){

num = Integer.parseInt(tokenValue);

}else{

value = "num is invalid!";

}

}else{

value = "no number received!";

}

}else{

value = "current reading news ID is invalid!";

}

}else{

value = "no ID of current reading news received!";

}

}else{

value = "User ID is invalid!";

}

}else{

value = "no user ID received!";

}

System.out.println(userID);

System.out.println(visitingNews);

System.out.println(num);

value = miner.recommend(userID, visitingNews, num);

//first two fields are exact same as received

response = new byte[2 + value.length()];

response[0] = rdata[0];

response[1] = rdata[1];

for (int i = 0; i < value.length(); i++) {

response[i + 2] = (byte) (value.charAt(i));

}

} else {

String error = "invalid reqID for the association miner";

response = errorHandler(rdata, rdataLen, error);

}

String result = "reply is: ";

for (int i = 2; i < response.length; i++) {

result = result + (char) response[i];

}

System.out.println(result);

}

return response;

}

}

109

VITA
Candidate’s Full Name:

Jie Zhang

Universities Attended:

Nanjing University of Aeronautics and Astronautics, 1996-2000.

University of New Brunswick, 2001-2003, Bachelor of Computer Sci-
ence First Class Honours, Major of Software Systems.

University of New Brunswick, 2003-2005, Masters of Computer Sci-
ence

Publications:

Jie Zhang and Ali A. Ghorbani, “Value-Centric Trust Model with Im-
proved Familiarity Measurement”, the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI’05), 2005.

Mehran Nadjarbashi-Noghani, Jie Zhang, Hossein Sadat and Ali A.
Ghorbani, “PENS: A Personalized Electronic News System”, the Con-
ference on Communication Networks & Services Research(CNSR 2005),
2005 Halifax, Canada.

M. Kilfoil, A. Ghorbani, W. Xing, Z. Lei, J. Lu, J. Zhang and X.
Xu , “Toward an Adaptive Web: The State of the Art and Science”,
Proc. of the Conference on Communication Networks & Services Re-
search (CNSR 2003), pp. 119-130, May 15-16, 2003 Moncton, Canada.

Conference Presentations:

Jie Zhang and Ali A. Ghorbani, “Familiarity and Trust: Measuring
Familiarity with a Web Site”, Proceedings of the Conference on Pri-
vacy, Security and Trust (PST’04), October 13-15, 2004 Fredericton,
Canada.

Jie Zhang and Ali A. Ghorbani, “The Reconstruction of User Sessions
from a Server Log Using Improved Time-oriented Heuristics”, Proc.
of the Conference on Communication Networks & Services Research
(CNSR 2004), May 19-21, 2004 Fredericton, Canada.

Jie Zhang and Ali A. Ghorbani,“A Generic User Modeling Server for
Adaptive Web Systems”, MITACS 5th Annual Conference (poster),
June 9-12, 2004, Halifax, Canada.

