
The Reconstruction of User Sessions from a Server Log
Using Improved Time-oriented Heuristics

Jie Zhang and Ali. A. Ghorbani
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3, Canada

E-mail:{jie.zhang,ghorbani }@unb.ca

Abstract

Web usage mining plays an important role in the per-
sonalization of Web services, adaptation of Web sites, and
the improvement of Web server performance. It applies data
mining techniques to discover Web access patterns from
Web usage data. In order to discover access patterns, Web
usage data should be reconstructed into sessions with or
without user identification. However, not all Web server logs
contain complete information for constructing user ses-
sions. One approach for solving such a problem is to use
time-oriented heuristics to reconstruct user sessions.

This paper describes improved statistical-based time-
oriented heuristics for the reconstruction of user sessions
from a server log. Comparative analysis are carried out us-
ing two similarity measures. The performance results of the
proposed improved heuristics are promising and in some
cases show reasonable improvements.

keywords: Web Mining, Web Usage Mining, Session Re-
construction, Heuristics.

1. Introduction

Web usage mining applies data mining techniques to
mine Web access patterns [7, 8]. Mining Web access pat-
terns is useful when building user profiles which in turn are
used for the personalization and tuning of Web services, the
presentation of promotional contents, and other applications
for which user interests, preferences, requirements, and be-
havioral conventions must be assessed and served [6]. Min-
ing Web access patterns is also useful when improving Web
structure and Web server performance [9]. Users’ access
to pages of the Website should be separated into user ses-
sions. Each session is the group of activities performed by a

user from the moment she enters the site to the moment she
leaves it.

User sessions are extracted from the Web server log, the
primary source of data in which the activities of Web users
are captured. More reliable Web usage mining results need
more reliable reconstructed user session results. However,
it is difficult to tell when a user has left a Web site because
there is no record of users leaving. Aside from the lack of
information, some other problems also exist. For example,
an IP sharing problem exists because several users may ac-
cess a site through the same host or proxy and may employ
the same software agent. An empty referrer may appear in-
side a session due to the following reasons: a) the user has
typed the URL directly; b) requests are made by agents, and
agents do not necessarily follow the page links; and c) some
frames belong to the same page [10].

Several approaches are devised to address these prob-
lems. Two time-oriented heuristics for session identification
are described in [1, 10]: the session duration heuristic (h1)
and the page-stay time heuristic (h2). The heuristic h1 states
that the duration of a session must not exceed a threshold.
The heuristic h2 is based on the assumption that the dura-
tion of a visited page must not exceed a threshold. Due to
users’ irregular navigation behavior, the performance of the
time-oriented heuristics (h1 and h2) with fixed thresholds
in reconstructing the sessions have not been satisfactory. In
this paper we propose three extensions to h1 and h2 heuris-
tics in order to improve their performance.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the proposed heuristics. Sec-
tion 3 presents the framework of the system developed
in this work. Section 4 gives the detailed implementa-
tion of the proposed system including its four main phases.
Subsequently, experimental results are presented in Sec-
tion 5. The conclusion of the present study and future work
are given in Section 6.

2. Proposed Heuristics

Commonly used time thresholds for h1 and h2 are 30
and 10 minutes, respectively. A 30-minute cutoff time for
session duration is proposed by [3] and used commonly
in many applications. A 10-minute threshold for page-stay
time is mentioned by [10] as a very conservative maximum
cutoff. We believe that different Web site structures and dif-
ferent user groups should have different thresholds for h1
and h2. In this paper, a statistical-based approach is em-
ployed to determine appropriate thresholds for h1 and h2.
The main aim of the proposed approach is to improve the
performance of h1 and h2. In the implementation we have
used the following notations:

• Fh1: h1 heuristic with 30 minutes fixed threshold.

• Fh2: h2 heuristic with 10 minutes fixed threshold.

• Dh1: h1 heuristic with variable threshold.

• Dh2: h2 heuristic with variable threshold.

The heuristics Fh2 and Dh2 put a limit on the time spent
on a page. We in turn propose the heuristic Mh2 which is
based on the time difference between two visited pages. A
page in the middle of two pages will be assigned to the ses-
sion to which it is closer (i.e., has smaller time difference).
This heuristic is based on the assumption that closer pages
are more likely to belong to the same session.

Heuristics Fh1, Fh2, Dh1, Dh2 and Mh2 are all time-
oriented heuristics. [4] points out that Web topology can
help user session identification. In addition, clearly Web ac-
cess patterns result from reasons such as underlying struc-
ture of Web sites, users’ habits, users’ interests in topics,
and association of concepts. Many types of access pat-
terns can be extracted with different meanings and usages.
One typical type of access pattern is Maximal Frequent Se-
quence (MFS), which is defined by [12] as “frequently used
contiguous sequences of page references”. Based on the as-
sumption that MFSs extracted from one place of Web usage
data may likely exist in other places, we use MFSs to pre-
separate an access sequence. Then we apply other heuris-
tics on pre-separated access sequences. Moreover, applying
MFSs into session reconstruction may somewhat solve lack
of information problems.

3. The Reconstruction Framework

Figure 1 illustrates the framework of the system devel-
oped in this work. In this figure, ellipses represent entities
or databases, rectangles represent engines or components
in the system, and arrows represent data flow from/to en-
tities to/from system components. Real sessions are cap-
tured by cookies or other information such as IPs from the
Web server log. The Statistical Analyzer calculates two time
thresholds for Dh1 and Dh2 using real sessions. The MFS

Discoverer identifies MFSs from a generalized suffix tree
built from real sessions (training examples). The discovered
MFSs are used by the Session Reconstructor to separate the
given long sequence of users’ accesses (testing data) into
smaller sequences. Finally, the Session Reconstructor com-
bines smaller sequences into sessions by applying individ-
ual heuristic or a combination of different heuristics. A de-
tailed explanation of each system component is given in the
following subsections.

3.1. Dynamic Heuristics

The Statistical Analyzer calculates threshold valuesα1

andα2 for Dh1 and Dh2 as follows:

α1 = µ1 + λσ1 0 ≤ λ ≤ 5 (1)

α1 = µ2 + λσ2 0 ≤ λ ≤ 5 (2)

whereµ1 andµ2 represent the average duration of all ses-
sions and the average page-stay time, respectively.σ1 and
σ2 denote standard deviations of session duration and page-
stay time, respectively.

Let xi andyj represent duration ofith session and page-
stay time ofjth page. LetS andP represent the total num-
ber of sessions and pages in the data set, respectively. We
calculated the averages (µ1, µ2) after removing the small-
est and largest values from the set of session durations and
the set of page-stay times. Experiments are carried out us-
ing values 0 to 5 forλ. The results are presented in Subsec-
tion 5.2.

3.2. Maximal Frequent Sequences

A frequent sequence is defined as the frequently used
contiguous sequence of page references [12]. A frequent
sequence is maximal if it is not a subsequence of any other
frequent sequence. The technique of detecting MFS, on-
line adaptive traversal (OAT) pattern mining, is presented
in [12].

A large sequence can be represented by a suffix tree. In
the suffix tree the nodes that have only one child are ig-
nored. The subsequences represented in the suffix tree by
each edge are shown asx : y, wherex represents the po-
sition of the first character in a subsequence, andy is the
length of that subsequence. Each internal node represents
a sequence of characters that start from the root. The suf-
fix link at the internal node points to the node that repre-
sents the longest suffix of the subsequence. The suffix links
pointing to the root are ignored. Suffix links are used to help
construct a suffix tree.

Ukkonen’s method for constructing a suffix tree is a lin-
ear time algorithm [5, 11]. It uses suffix links to speed up
the implementation. However, the training examples that are
used to discover MFSs are multiple sequences of accessed

Figure 1. Simplified framework of the system

pages. Thus, the suffix tree for multiple sequences, called
generalized suffix tree [2], should be constructed. To con-
struct a generalized suffix tree, a unique symbol is appended
to each sequence, and the database is regarded as a large se-
quence. A suffix tree for the first sequence of characters is
built first. Then, starting at the root of this tree, the second
sequence is matched against a path in the tree until a mis-
match occurs. At that point, the remaining characters of the
suffix for the second sequence are added to the current suf-
fix tree. When the second sequence is fully processed, it en-
codes all the suffixes of the first sequence and all the suffixes
of the second sequence. Following this process, the gener-
alized suffix tree for the string set is built.

After constructing the generalized suffix tree, the MFSs
are extracted by the OAT algorithm. The OAT algorithm
was implemented in C++ and works properly with exper-
imental data. The experimental results are clearly described
in [12]. The implemented OAT algorithm outputs MFSs and
their suffixes instead of only MFSs since the latter needs
more memory. Fortunately, this fact makes implementation
of our system much easier. To separate a given long se-
quence based on those MFSs, it is more efficient to match
the long sequence with the suffix tree. Once we have MFSs
and their suffixes, it is not necessary to apply Ukkonen’s al-
gorithm again.

3.3. Session Reconstructor

Two processes, pre-separation of access sequence and
session reconstruction, are performed by the Session Re-
constructor.

3.3.1. Pre-separation of Access SequencesMFSs pro-
duced by the OAT algorithm are sequences that frequently
appear in the training examples. A given access sequence is
pre-separated into a number of smaller sequences by MFSs.
These smaller sequences are later used for session recon-
struction.

The output of the OAT algorithm is the MFSs and their
suffixes. A simple way to separate the long sequence is

matching the sequence to the MFSs by scanning all the
MFSs one by one. One difficulty found in this approach is
that the separation of the access sequence cannot be decided
until all the MFSs are scanned and compared. Furthermore,
MFSs are frequent, and all their subsequences are frequent
too. Thus, every subsequence should also be scanned and
compared. The time complexity of this approach, of course,
is extremely large. Using the suffix tree of MFSs is a more
efficient way and is implemented in our system.

Since the long sequence is separated by scanning one
character after another from left to right, only MFSs and
their suffixes should be compared in order to get maximal
length of shorter sequences. We first build the suffix tree for
the MFSs. All the suffixes of the MFSs are already found by
the OAT algorithm. It is unnecessary to apply Ukkonen’s al-
gorithm again to build a suffix tree for the MFSs.

The tree for all the MFSs and their suffixes is, of course,
the suffix tree of the MFSs. Once the tree is built, the long
sequence can be separated by walking down this tree from
root to the deepest node. The deepest node here means that
there is no further character that can be matched by the chil-
dren of the node. This node can be an internal node, a leaf,
or even the root. By repeating this process, we finally get a
set of shorter sequences, which will be used for session re-
construction.

3.3.2. Session ReconstructionHeuristics Fh1, Fh2, Dh1,
Dh2, Mh2 and their combinations are used to reconstruct
the sessions. They are applied after separating long access
sequences using the discovered MFSs. Note that there is no
difference between Fh1 and Dh1 as well as Fh2 and Dh2,
except Fh1 and Fh2 use fixed thresholds whereas Dh1 and
Dh2 use variable thresholds.

The pseudo code for the Session Reconstruction (SR)
algorithm is shown in Figure 2. The sequences resulting
from the pre-separation stage are stored in a stack. From
the stack, each time at most three sequences are removed
and possibly merged. A simple case happens when there
is only one sequence left in the stack, and this sequence
will directly become a single session. Two complex types

of merging sequences can happen.

• If there are two sequences left in the stack that satisfy
the constraints of the heuristics, they are merged and
become a single session. Otherwise, each becomes a
session.

• The most complex case is when there are three se-
quences to be merged (see Figure 2 for the details).
Note that there are only two cases that a new session
will be created: a) when the first two sequences cannot
be merged or the second sequence is closer to the third
sequence, the first sequence becomes a new session; b)
when only the first two sequences can be merged or
the second sequence is closer to the first sequence, the
first two sequences are merged and become a new ses-
sion.

Figure 2. Session reconstruction algorithm

4. Implementation

Implementation of the system consists of four phases:
data preparation, data preprocessing, real session genera-
tion, and evaluation.

4.1. Data Preparation

In the data preparation phase, data are collected and
cleaned, and real sessions are generated.

4.1.1. Data CollectionAll the experiments are carried out
using a large data set. The set consists of Web log data col-
lected from January 6, 2003 to January 9, 2003 at the Uni-
versity of New Brunswick. Part of the data set is reserved
for testing. The rest is used to calculate thresholds for Dh1
and Dh2 heuristics and find maximal frequent sequences.
The MFSs are used for pre-separation of the test data. The
training and test data are obtained after cleaning the Web
log data and generating real sessions.

4.1.2. Data CleaningThe cleaning process removes
graphic/multimedia entries as well as information such
as graphic-maps. Most related works also remove the en-
tries produced by executing CGI scripts and ‘POST’ com-
mands. Because these entries contain valuable information
for session reconstruction, we decided to keep them. How-
ever, we remove entries that are generated by CGI scripts
but do not have direct HTML references. Entries with sta-
tus code ‘4xx’, ‘5xx’, and ‘301’ are removed as well as
entries with the ‘HEAD’ method.

4.1.3. Real Session GenerationThe real sessions are
generated by simply counting the source IPs. In this
case, we assume that the IP sharing problem does not ex-
ist or is at its minimum effect. For a single user with
multiple sessions, we use the referrer information to as-
sign visited pages to the sessions properly.

4.2. Data Preprocessing

In this phase, we select useful information from the real
session data including visited pages and time stamps for
each page. Each page is assigned a unique ID. The time
stamp of a page is converted into an integer number which
represents the time difference in seconds between this page
and the earliest visited page. The result of this process is a
file containing real sessions with visited pages and corre-
sponding time stamps. Subsequently, we split the real ses-
sions into two parts: training data and test data (see Subsec-
tion 5.1 for details).

4.3. Session Reconstruction

The Session Reconstructor uses the log data to build ses-
sions. It consists of a number of components. One compo-
nent builds the suffix tree. It uses the discovered MFSs and
their suffixes as input and returns the suffix tree. Every node
in the suffix tree is a hashtable, which contains different vis-
ited pages.

Data Set for Test 1 Data Set for Test 2
Information N µ (s) σ M (s) N µ (s) σ M (s)
Page 153066 54 199.2526 3726 152373 54 199.2526 3726
Session 24127 269 558.7291 19608 24055 268 557.1731 19608

Table 1. Statistical Information for the Two Training Data Sets

Another component of the Session Reconstructor is a
procedure that separates the log data by matching the suf-
fix tree. Starting from the root of the suffix tree, nodes are
visited within a path until there are no further visited pages
that can be matched. The procedure repeats the process to
match the following visited pages. The smaller sequences
produced by this procedure will be stored in a stack.

The third component validates discovered MFSs and dis-
cards the ones which contain only one visited page or are
not sequential in time.

4.4. Evaluation

The degree of similarity between the real sessions
and the generated sessions is used to evaluate the per-
formance of the SR algorithm. Two measures are used
to calculate the degree of the similarity. In the first sim-
ilarity measure,S, the degree of similarity between a
real sessionR = {p1, p2, ..., pn} and a generated ses-
sion G = {g1, g2, ..., gn}, wherepi andgi denote visited
pages, is given as follows:

S =
|R

⋂
G|

|R
⋃

G|

Another similarity measure,S′, is calculated as follows:

S′ = 1− (d)n(d′)1−n

whered represents the percentage of extra pages generated
andd′ represents the percentage of pages missed.n andn−
1 represent the weights ofd andd′, respectively.d andd′

are calculated as follows:

d =
|{R

⋃
G} − R|
|G|

d′ =
|{R

⋃
G} − G|
|R|

5. Experimental Results

The experiments show the results of session reconstruc-
tion based on two sets of training and test data. the results of
different stages are presented in the following subsections.

5.1. Data for Training and Testing

Two sets of training and test data are created from real
sessions. The first set is created by selectingx number of
sessions starting from the first session in every 100 real ses-
sions. The second set is created by selectingx number of
sessions starting from the twentieth one in every 100 real
sessions. The value ofx is randomly selected from a set
of integer numbers less than 20. Information about the two
sets of training data is given in Table 1. In this table, N rep-
resents the total number of pages or sessions,µ is average
session duration or page-stay time in seconds,σ denotes
standard deviation, and M represents maximal session du-
ration or page-stay time.

5.2. Results of Statistical Analysis

The Statistical Analyzer produces different thresholds
for the Dh1 and Dh2 heuristics. These thresholds are sum-
marized in Table 2. In this table,λ represents the number of
standard deviations.

Data Set for Test 1 Data Set for Test 2
λ Dh1 Dh2 Dh1 Dh2
0 269 54 268 51
1 828 253 825 253
2 1386 453 1382 452
3 1945 652 1940 652
4 2504 851 2497 851
5 3063 1050 3054 1050

Table 2. Thresholds for Dh1 and Dh2 Using
Equations 1 and 2 (All numbers are in sec-
onds)

5.3. Selecting the Best Similarities

Tables 3 and 4 give the similarities between real ses-
sions and generated sessions according to different thresh-
olds summarized in Table 2. Note that in Tables 3-7, we
use the symbol ‘&’ to represent combinations of heuristics.
For example, Mh2&Dh1&Dh2 represents the combination
of Mh2, Dh1 and Dh2 heuristics. In Tables 3 and 4, Dh1

Similarity S
Heuristics 0 1 2 3 4 5
Dh1 0.7653 0.7858 0.7719 0.7636 0.7606 0.7593
Dh2 0.6992 0.7912 0.8045 0.7866 0.7779 0.7734
Dh1&Dh2 0.6976 0.7900 0.8044 0.7864 0.7779 0.7733
Mh2&Dh1 0.7650 0.7856 0.7721 0.7635 0.7608 0.7593
Mh2&Dh1&Dh2 0.6976 0.7900 0.8044 0.7864 0.7779 0.7733

Table 3. Similarity, S, for Test 1

Similarity S
Heuristics 0 1 2 3 4 5
Dh1 0.7777 0.7997 0.7832 0.7785 0.7758 0.7750
Dh2 0.6999 0.8058 0.8205 0.8064 0.7933 0.7877
Dh1&Dh2 0.6987 0.8041 0.8198 0.8065 0.7931 0.7876
Mh2&Dh1 0.7773 0.8001 0.7837 0.7786 0.7757 0.7749
Mh2&Dh1&Dh2 0.6987 0.8041 0.8198 0.8065 0.7931 0.7876

Table 4. Similarity, S, for Test 2

and the combination of Mh2 and Dh1 show the best results
when their thresholds are set toµ + 1σ. Dh2, the combi-
nation of Dh1 and Dh2, and the combination of Mh2, Dh1
and Dh2 produce the best results when their thresholds are
set toµ+2σ. These results will be used for comparison be-
tween different ways of session reconstruction in the fol-
lowing subsections.

Data Set for Test 1 Data Set for Test 2
Heuristics S S’ S S’ n
Fh1 0.7649 0.7735 0.7794 0.7879 1.0
Fh2 0.7925 0.8084 0.8118 0.8257 1.0
Fh1&Fh2 0.7926 0.8090 0.8114 0.8257 1.0

Table 5. Closest Similarity S’ to Similarity S

5.4. Comparison of Two Measures

Different weights ofd andd′ produce different values of
S′. Experiments are carried out to find ann that produces
the closestS′ to S. The results are presented in Table 5 for
Fh1, Fh2, and their combination. The results show that for
n = 1, theS′ is the closest toS, which indicates that the
factor of missing pages,d′, in our data may be ignored. This
is further illustrated in details in Table 6. Table 6 shows the
values of the two distance measuresd andd′ for different
heuristics. The distanced′ is very small compared tod; thus
S′ is mainly affected by the distanced (i.e., extra pages in
the reconstructed sessions).

Test 1 Test 2
Heuristics d d’ d d’
Fh1 0.2265 0.0107 0.2121 0.0087
MFS&Fh1 0.2378 0.0102 0.2238 0.0082
Fh2 0.1916 0.0176 0.1743 0.0145
MFS&Fh2 0.2053 0.0113 0.1901 0.0086
Fh1&Fh2 0.1910 0.0181 0.1743 0.0150
MFS&Fh1&Fh2 0.2034 0.0137 0.1882 0.0116
Dh1 0.1880 0.0266 0.1736 0.0265
Dh2 0.1681 0.0289 0.1529 0.0268
Dh1&Dh2 0.1677 0.0293 0.1525 0.0278
Mh2&Dh1 0.1882 0.0267 0.1732 0.0264
Mh2&Dh1&Dh2 0.1677 0.0293 0.1525 0.0278

Table 6. Test Results for d and d’

5.5. Comparison of Different Heuristics

The results for different heuristics are presented in Table
7 and Figure 3. From the results, it is seen that Dh2 provides
the best performance, Dh1 performs better than Fh1, and the
combination of Dh1 and Dh2 produces better results than
the combination of Fh1 and Fh2. In other words, the sim-
ulation results indicate that overall heuristics with dynamic
thresholds perform better than heuristics with fixed thresh-
olds. The heuristics Dh1 and the combination of Mh2 and
Dh2 produce similar results. Also, the combination of Dh1
and Dh2 and the combination of Mh2, Dh1 and Dh2 pro-
duce similar results. Therefore, we can state that in our sim-
ulation MF2 did not improve the performance of session re-
construction. Also, we have observed that MFS slightly de-

Figure 3. Comparison of different heuristics (Similarity Versus the Type of Heuristic)

creases the accuracy of session reconstruction (see the re-
sults of Fh1 and MFS&Fh1 in Table 7 and Figure 3).

Similarity S
Heuristics Test 1 Test 2 Average
Fh1 0.7649 0.7794 0.7722
MFS&Fh1 0.7541 0.7683 0.7612
Fh2 0.7925 0.8118 0.8022
MFS&Fh2 0.7852 0.8020 0.7936
Fh1&Fh2 0.7926 0.8114 0.8020
MFS&Fh1&Fh2 0.7847 0.8009 0.7928
Dh1 0.7858 0.7997 0.7928
Dh2 0.8045 0.8205 0.8125
Dh1&Dh2 0.8044 0.8198 0.8121
Mh2&Dh1 0.7856 0.8001 0.7929
Mh2&Dh1&Dh2 0.8044 0.8198 0.8121

Table 7. Similarity S for Different Heuristics

6. Conclusion and Future Work

Session reconstruction reconstructs Web usage data into
user sessions. Two time-oriented heuristics, Fh1 and Fh2,
are commonly used for session reconstruction. We used sta-
tistical analysis and usage mining techniques to improve
Fh1 and Fh2. The new improved heuristics are called Dh1,
Dh2 and Mh2. Experimental results show that statistical
analysis is useful and improves the performance of Fh1 and
Fh2 heuristics. Even though the application of usage min-
ing (i.e., finding maximal frequent sequences) was not ad-
vantageous in our experiments, we believe that with proper

combination of time-oriented heuristics and MFS better per-
formance might be possible. We will further explore this in
our future work. Other future works will include: explor-
ing ways of improving the performance of Mh2, extract-
ing Web access patterns other than MFSs from sufficient
historic data to improve the session reconstruction perfor-
mance, and using other measurements to evaluate the per-
formance of the proposed session reconstruction heuristics.

7. Acknowledgments

This work was funded by the Atlantic Canada Oppor-
tunity Agency (ACOA) through the Atlantic Innovation
Fund (AIF) and through grant RGPIN 227441-00 from
the National Science and Engineering Research Council of
Canada (NSERC) to Dr. Ali A. Ghorbani.

References

[1] B. Berendt, B. Mobasher, M. Nakagawa, and
M. Spiliopoulou. The impact of site structure and user
environment on session reconstruction in web usage anal-
ysis. In Proceedings of the 4th WebKDD 2002 Workshop,
at the ACM-SIGKDD Conference on Knowledge Dis-
covery in Databases, Edmonton, Alberta, Canada, July
2002.

[2] P. Bieganski, J. Riedl, and J. Carlis. Generalized suffix trees
for biological sequence data: Applications and implementa-
tion. InProceedings of the 27th Annual Hawaii International
Conference on System Sciences, pages 35–44. IEEE, IEEE
Computer Society Press, 1994.

[3] L. Catledge and J. Pitkow. Characterizing browsing behav-
iors on the World-Wide Web.Computer Networks and ISDN
Systems, 27(6):1065–1073, 1995.

[4] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation
for mining World Wide Web browsing patterns.Knowledge
and Information Systems, 1(1):5–32, 1999.

[5] D. Gusfield.Linear-Time Construction of Suffix Trees. Cam-
bridge University Press, New York, NY, USA, 1997.

[6] M. Kilfoil, D. A. Ghorbani, W. Xing, Z. Lei, J. Lu, J. Zhang,
and X. Xu. Toward an adaptive web: The state of the art
and science. InProceedings of Communication Network and
Services Research (CNSR) 2003 Conference, pages 108–119,
Moncton, NB, Canada, May 15–16 2003.

[7] R. Kosla and H. Blockeel. Web mining research: A survey.
SIG KDD Explorations, 2(15):1–15, July 2000.

[8] S. K. Pal, V. Talwar, and P. Mitra. Web mining in soft com-
puting framework : Relevance, state of the art and future di-
rections. IEEE Trans. Neural Networks, 13(5):1163–1177,
2002.

[9] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining ac-
cess patterns efficiently from web logs. InProceedings of the
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 396–407, 2000.

[10] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Naka-
gawa. A framework for the evaluation of session reconstruc-
tion heuristics in web usage analysis.INFORMS Journal of
Computing, Special Issue on Mining Web-Based Data for E-
Business Applications, 15(2):171–190, 2003.

[11] E. Ukkonen. On-line construction of suffix trees.Algorith-
mica, 14(3):249–260, 1995.

[12] Y. Xiao and M. H. Dunham. Efficient mining of traversal
patterns.Data and Knowledge Engineering, 39(2):191–214,
November 2001.

