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ABSTRACT

With the growth of social networks, recommender systems
have taken advantage of the social network graph structures
to provide better recommendation. In this paper, we pro-
pose a privacy preserving trusted social feedback (TSF) sys-
tem, in which users obtain feedback on questions or items
from their friends. It is different from and independent of
a typical recommender system because the responses from
friends are not automated but tailored to specific questions.
TSF can be used to complement the results from a recom-
mender system. Our experimental prototype runs on the
Google App Engine and utilises the Facebook social net-
work graph. In our experimental evaluation, we have looked
at users’ perceptions of privacy and their trust in the proto-
type as well as the performances on the client side and the
cloud side.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms

Human Factors, Security, Algorithms

Keywords

Privacy, Trust, Recommendation, Social Network

1. INTRODUCTION

Rating based collaborative filtering (CF) has become the
de-facto standard for generating personalised recommenda-
tions in order to help users cope with the problem of ever in-
creasing information overload. In general, CF schemes work
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with the similarities or differences between users, or items, or
from some kind of compact notations such as matrix factori-
sations. With the growth of online social networks, newer
CF schemes have been proposed to take advantage of the
social link graph structures and some sort of weight on each
relevant edge in the graph. Sometimes paths through the
graph (or friend-of-a-friend relations) are discovered to find
opinions that are used by the recommender systems. Pri-
vacy of rating data from participating users is an important
concern especially when such recommender systems are de-
ployed on public cloud platforms, and privacy preserving
recommendation is a well researched area.

We take a look at social aware recommendation from a
different angle. We postulate that the strength of a social
relation is often one’s asymmetric personal perception of an-
other in a particular context that changes over time. We
refer to this as trust in this paper'. The asymmetric nature
of personal perception means that a’s trust on b is likely
to be different from b’s trust on a. This should affect the
way one believes a recommendation from a friend. Recom-
mendations based on a community of opinions do not gen-
erally consider this interpersonal and contextual trust. In
tune with this understanding of trust and modelling after
the real society, we observe that a recommendation could
have two stages in its lifecycle. The first stage helps the
user obtain an automated targeted recommendation based
on the opinion of a community. This stage could also use
the user’s history amongst other information. In the sec-
ond stage, the user asks for the aggregate feedback from her
friends, in her social network, regarding the aforementioned
recommendation. She attaches a certain level of contextual
trust to each friend that she asks the question. This non-
automated second stage is what we call the trusted social
feedback (TSF). Assuming that such a recommender system
will be deployed on a cloud, the TSF proposal must be pri-
vacy preserving. Although limited to the scope of feedback
for item recommendation, we are looking into extending TSF
to a generalised question-answer service in the future.

We note that automated personal trust transitivity is de-
batable and subjective. It exists but modelling it is difficult.
Jpsang et al. in [16] go as far as saying “[...] all mathemati-

! Apart from this notion of trust, we refer to the concept of
foreground trust [6] in section 4.



cal operators for trust transitivity proposed in the literature
must be considered ad hoc; they represent attempts to model
a very complex human phenomenon as if it were lendable to
analysis by the laws of physics”. The authors propose a
radically different interpretation of trust transitivity based
on subjective logic. The authors observe that in order for
transitivity to function, the advisor must, in some way, com-
municate his/her trust on the trust target to the originator
relying party. Thus, we rule out automatic estimation of
propagated trust.

The rest of the paper is organised as follows. We de-
scribe our proposal of trusted social feedback in section 2
and its security analysis in section 3. This is followed by
the experimental evaluation of our system in section 4. The
state-of-the-art is described in section 5 before we conclude
in section 6.

2. TRUSTED SOCIAL FEEDBACK

Irrespective of the means by which the generalised recom-
mendation is obtained, the user can ask people in her social
network for trusted social feedback (TSF) on a query. For
our purposes, feedback is a numeric rating in response to
a query. A query is defined as a question for soliciting an
opinion on an item or topic of interest. For instance, a query
could be “What is your opinion on the Canon 5D Mark III
DSLR camera?”.

The feedback acts as a trust empowering information aid
to the user in making a choice. In the simplest case, the
feedback is an average of the feedback inputs from all friends
within one degree of separation, each weighted by the direc-
tional trust the user has on that friend. This is similar to
the model presented in the FilmTrust work by Jennifer Gol-
beck [9]. The feedback is obtained per query. Because of the
dynamic nature of queries as well as the trust levels specified
during queries, no feedback can be pre-defined or stored on
the cloud platform that hosts the social network.

In order to preserve privacy, TSF must ensure the non-
disclosure of: (a) the directional trust values in a query to
the friends and to the social network; and (b) the feedback
from a particular friend of the user to the social network and
the user.

The Paillier public-key cryptosystem [22] exhibits addi-
tively homomorphic properties, which we utilise in our pro-
posal. Denoting encryption and decryption functions by &£()
and D() respectively, the encryption of the sum of two plain-
text messages mi and mq is the modular product of their
individual ciphertexts:

5(77114—7712) :5(7711)5(7712) (2.1)

while, the encryption of the product of one plaintext mes-
sages m1 and a plaintext integer multiplicand 7 is the mod-
ular exponentiation of the ciphertext of mi; with 7 as the
exponent:

Elmy - 7) = E(my)". (2.2)

Let us denote the directional trust from user a to friend
b as Ta—s, the feedback from a friend ¢ on a query k as w;
and the total number of friends responding to the query as
n. The trust value and the individual feedback value are
discrete integers. The trusted feedback on query k for user

L social feedback

Obtain the feedback on a query from u's friends f1,
12,13 and 14, given u's encrypted directional trust
values on each. Not all friends will respond.
Social network on

acloud platform

User u decrypts the numerator and
denominator and divides to obtain
the plaintext feedback value.

Response to the query

Figure 2.1: Overview of the trusted social feedback mecha-
nism.

u is given as:
n
Z“i#u Wik Tu—si
n

This computation can be performed over the (additively ho-
momorphic) encrypted domain for user u as:

D(I1iiu €0, r)E(Tumi) **)

Tk = (T €Ts)) @4)

fu,k = (23)

The encryption of zero performed by the friend 4, (denoted as
£(0,7;)) ensures? that the encrypted partial feedback from
friend 4, i.e., £(0,7:)E(Tu—s)“"* does not reveal w; j despite
the cloud’s knowledge of £(T.—:), unless the user v and the
cloud collaborate. The formal proof is in section 3.2. The
trusted social feedback mechanism is illustrated in figure 2.1
and is described in algorithm 2.13. While sending the ques-
tion, the user attaches an encrypted trust value for each
friend to the question such that when a friend responds, the
response is homomorphically multiplied by the trust value.
The cloud aggregates those individual responses from the
friends and sends back the aggregate response to the user
after a threshold number of friends have responded.

As trust is personal and idiosyncratic [7], our proposed
feedback mechanism are only there for trust empowerment,
not to enforce a trust decision on the user. What the user
does with the feedback is solely her choice. Therefore, a
mathematical model for trust transitivity over multiple de-
grees of separation in the social network graph is often in-
adequate and meaningless because the model would tend to
suggest a particular trust level. Trust is also sensitive to
changes over time and context. In our proposal, the trust
values can be as short-lived as a single query, which caters
for temporal changes. The user can solicit the response to
her query from a selected group of friends, thereby enabling
context sensitive trust values for friends. Thus, the queries
in TSF are short-lived and context sensitive.

Untrust [18], which can be expressed in our proposed feed-
back mechanism, is also context sensitive. This means that

2The notations £(x,r,) and £(x) are synonymous, i.e., en-
cryption performed by the user u. The random number
notation is used only when the operation is performed by
some other user ¢ with u’s public key, i.e., E(x,r;).

3The - is used to denote multiplication for the sake of read-
ability.




Algorithm 2.1 Computing the trusted social feedback for
user u on item k.
Require: Additively homomorphic encrypted domain for
user u, i.e., £ and corresponding public key.
Require: Encrypted directional trust £(7u—;) from user u
to each friend 1.
1: for each encrypted directional trust £(7u—:) do
2:  if i wishes to respond then

3: ¢ computes encrypted partial feedback,
i = E(0,75) - E(Tumss)?H"
4: social network updates encrypted trusted feedback,
U U1y
5: social network updates encrypted response cardi-
nality,

N <10 E(Tu—i)

6 end if

7: end for

8: return encrypted trusted feedback, U.
9

: return encrypted response cardinality, 7.
D(¥)
D(n) *

10: user u obtains the trusted social feedback, F, r =

Alice could trust her friend Bob for an opinion on cloud
security but at the same time untrust him regarding any
opinion on quantum entanglement. Untrust can prove use-
ful to accept negative feedback or reject positive feedback
from untrusted friends for specific queries. In our current
prototype, we do not model untrust.

3. SECURITY ANALYSIS
3.1 Adversary model

In this discussion, the word cloud will be considered syn-
onymous with social network in terms of threats because a
social network is usually deployed on a cloud environment.
Thus, the internal privacy threats to the social network can
arise from the cloud infrastructure. We assume that the par-
ties involved in this process are honest but curious. There-
fore, attacks involving collaborations between the cloud and
the attacker are not considered as realistic threats although
we have described some such possible attacks. For a mali-
cious user, a specialised attack for partial response disclosure
is also described in section 3.3.

3.1.1 Curious user, multi-query and sybil attacks

The user can run multiple queries requesting the feedback
on the same question from the same set of friends. In do-
ing so, and by varying the user’s directional trust on each
friend, the user can acquire the information necessary to
reveal the feedback provided by each friend. However, the
feedback response is slow and some friends may choose not
to respond. Furthermore, the feedback from the same person
may vary over time. Therefore, using a multi-query attack is
not guaranteed to succeed. To further enhance the privacy
of the feedback, a friend can perturb his/her feedback input
in bounded integral ranges — an avenue we have left open
for future work.

However, in a sybil attack the user asks a question to one
real friend and a number of sybil identities. Upon receiving

the responses, the asker can find out the exact response from
the real friend given the knowledge of those from the sybil
identities. Our model is not resistant against sybil attacks,
which we aim to investigate in the future.

3.1.2  Curious cloud, man-in-the-middle attack

Despite the query itself being sent in clear text, the di-
rectional trust values from the user to the friends and the
partial feedback from each friend are both in the encrypted
domain of the user. Even though the cloud knows the en-
crypted directional trust value, it cannot decipher the ac-
tual feedback from any friend since encrypted zero, i.e.,
£(0,7;), is homomorphically added by each friend thus mak-
ing the encrypted trusted feedback component probabilistic.
The cloud, however, can tell which friends responded to the

query.
3.1.3 Curious friend

The friend cannot determine the directional trust value
because it is encrypted by the user’s public key.

3.1.4 Collaborative attacks

If the user and the cloud collaborate then all the partial
feedbacks can be deciphered since the cloud will be able to
decrypt partial feedback values with the help of the user. If
a friend and the cloud collaborate, the friend can learn how
many other friends responded to the query but it cannot
decipher the actual individual feedback values. If the user
and a friend collaborates, they can learn about each others’
secrets — the directional trust value and the feedback.

3.1.5 Out-of-the-range attacks

Both the friend and the cloud can encrypt arbitrary num-
bers and send them to the user in the response. Homomor-
phic range check protocols [23] may be applicable to pro-
tect those scenarios but this falls within the remits of future
work.

3.2 Proof of obfuscation by encryption of zero

Since the numeric feedback on item k from a friend, i, is
in a fixed discrete integral range, the cloud can attempt to
learn it by pre-computing all possible values? of E(Tu—i)®ik
using a trial-and-error method of dividing what the friend
sends by the pre-computed value to eliminate the obfuscat-
ing encryption of zero. Let us assume that the correct value
of w; x in question is w1 and a wrong value is wy. This is
what happens.

3.2.1 Case A: correct pre-computed value
If the cloud used the correct pre-computed value: E(Tu—:)“",
we have:

5(077'1)5(7;%2) ik 5(0,ri)€(ﬁ~)i)Wi’k7wl

5(7;_”-)011
= 5(0, 7‘1')
Now, the cloud computes:
S(O,ri)g(ﬂ—n)“”"“ Wik
5(07 ’I“»;) 5(7;_”)
= 5(7;_”)‘01

4Note that this homomorphic multiplication has determin-
istic values.



Thus, the cloud obtains the same value as the one it pre-
computed.

3.2.2 Case B: wrong pre-computed value

If the cloud used a wrong pre-computed value: &(7Ty—:)*?,
we have:

E(0,7:)E(Tu—s) "
5(72%)“’2
Now, the cloud computes:
E(0,1)E(Tu—i)?ik
E(0,7)E(Tui)Wisk—w2

= &(0,79)E(Tumi) k2

5(7;Hi)w@',k*qu,k+w

= 5(7:‘_”_)&12

Here again, the cloud obtains the same value as the one it
pre-computed.

Since the results from both the right and the wrong guesses
are indistinguishable, the cloud cannot guess which one is
the true value of £(7u—:)*** and hence w; k.

3.3 A specialised partial response disclosure
attack

Our construction is not inherently secure against a ma-
licious user wishing to know the responses of her friends
from the aggregate encrypted values. This attack consists
of creating a vector with several coordinates inside a single
encrypted value. These coordinates can be read indepen-
dently by the malicious user. Consider an z-bit number and
treat it as a vector of dimension y, where each coordinate
is represented using % bits. If operations are performed on

this vector with no individual coordinate exceeding 2V — 1;
then there is no loss of information for that coordinate. The
following example illustrates this idea.

1. Assume x = 16 and y = 4, then each coordinate can
represent values in the range [0 15].

2. The user asks four friends, i.e., f1 ...fs a question
using the following trust values (spaces introduced for
readability), represented as bit sequences.

Tu— s, = 00000000 0000 0001 [decimal : 1
Tu—f, = 00000000 0001 0000 [decimal : 32]
Tu—f, = 0000 0001 0000 0000 [decimal : 512]
Tu—r, = 0001 0000 0000 0000 [decimal : 8192]

3. Each friend provides his/her response in the range

[1 15] weighted by the ingress trust value, i.e., £(Tu—i)“""

The encryption of zero is left out for simplicity be-
cause it does not stop this attack, which happens in
the plaintext domain.

4. The cloud aggregates the resultant numerator as:

T &7

i|i#u

Since none of the coordinates in the numerator has a value
greater than 15, the malicious user can extract the answer
from each friend by reading the decrypted numerator, 4-
bits at a time. The technique also works for trust values
where the particular non-zero nibble is greater than 0001,
for example 0010 0000 0000 0000 [decimal : 16384]. In that

case, the malicious user simply needs to adapt the coordi-
nate length accordingly and once extracted, divide it by the
original trust value assigned to that particular friend.

To prevent this attack, a proof stating that the trust val-
ues are in a given range is necessary. Alternatively, if the
number of friends asked is large enough in comparison with
the bit space of the plaintext trust values then the bit ma-
nipulations will overlap, thus making it impossible for the
attacker to identify individual ratings.

4. EXPERIMENTAL EVALUATION

In this section we present the results from the user stud-
ies, the performance evaluation of the speed of cryptographic
primitives on the web front-end and the speed of the essen-
tial functions of the prototype at the back-end. Our experi-
mental prototype runs on the Google App Engine for Java.
The application uses Facebook to perform user login and to
determine social connections.

4.1 Measuring perception of privacy and fore-
ground trust

The user study evaluated how users perceived the applica-
tion’s ability to preserve privacy and to measure users’ trust
in the application, which relates to the concept of foreground
trust [6]. It is different from the trust between friends that
we have discussed so far. Dwyer et al. in [7], suggested that
a reduction of uncertainty is positively correlated with the
increase of trust. Thus, a measure of uncertainty is used to
infer trust. In our user study with 12 participating users,
we have employed pre-use and post-use questionnaires to
determine the changes in uncertainty. The users are highly
technically competent and were aware of this research work
before using the prototype. Table 4.1 shows that the uncer-
tainty in the users’ responses usually declined, thus suggest-
ing a likely increase in foreground trust.

Q1 Q2 Q3 Q4
U1l Reduced | No change | Reduced Reduced
U2 Reduced Reduced Reduced | No change
U3 | No change | Reduced Reduced Reduced
U4 Reduced Reduced Increased | No change
U5 Reduced Reduced Reduced Reduced
U6 | No change | Reduced | No change | Reduced
u7 Reduced | No change | Reduced Reduced
U8 | No change | Reduced Reduced | No change
U9 Reduced Reduced Reduced | No change
U10 | No change | Reduced Reduced Reduced
U1l | Reduced Reduced Reduced Reduced
U12 | Reduced Reduced | No change | Reduced

(a) Change in response uncertainties for each question per user.

Increased | No change | Reduced
Q1 0 (0%) 4 (33%) 8 (67%)
Q2 0 (0%) 2 (17%) 10 (83%)
Q3 1 (8%) 2 (17%) 9 (75%)
Q4 0 (0%) 4 (33%) 8 (67%)

(b) Change in response uncertainties per question.

Table 4.1: Change in uncertainties associated with 4 ques-
tions and 12 users. See the actual questions in section 4.1.1.



4.1.1 User questionnaire

Q1 How is your understanding about what you can do with
this application?

Q2 How well do (did) you feel that the application will pre-
serve (preserved) the privacy of the personal trust lev-
els that you have on your friends, and the privacy of
the responses from your friends?

Q3 How useful do you think is this application?

Q4 How likely are you to use such an application, if avail-
able publicly?

Each question was followed by a question to measure uncer-
tainty: How certain are you about your previous response?.
Responses to each question was recorded in a 7-point Likert
scale [17].

4.2 Performance

The speed at which a feedback can be obtained depends
almost entirely on the speed at which friends respond to the
question; and to some extent on the speed of cryptographic
operations and that too on the client-side because the speed
of the limited cryptographic operations on the cloud-side is
usually negligible compared to delays caused by network la-
tencies, cloud instance initialisations, and datastore access.
For every partial response submitted by a friend, the cloud
is responsible for exactly two homomorphic additions, see
line 4 in algorithm 2.1. We present a comparison of perfor-
mances of cryptographic primitives on the client side. We
have built a Google Web Toolkit wrapper for an optimised
Javascript implementation of the Paillier cryptosystem us-
ing the Stanford Javascript Biglnteger library. The result
of each test, in table 4.2, is a rounded-off average from 50
runs. The tests were carried out on Windows 8, running
on a 64-bit 3.4GHz Intel i7-3770 dual quad-core processor
with 16GB RAM. The versions of the browsers are: Chrome
28.0.150072m, Firefox 22.0, IE 10.0.9200.16599 and Safari
5.1.7. IE and Safari failed to finish the tests when the cryp-
tosystem was set to 1024 bits, so we used a 512 bits cryp-
tosystem for our tests.

Chrome | Firefox | IE | Safari
KG-512 69 57 441 1032
E-512 23 16 195 367
HA-512 2 2 9 27
HM-512 11 8 104 214
D-512 23 15 195 371

Table 4.2: Performances of Paillier in Javascript. Times
are in milliseconds. KG: key generation, E: encryption, HA:
homomorphic add; HM: homomorphic multiplication; D: de-
cryption. The number suffixed to these abbreviations indi-
cate cryptosystem bit size.

Using the F1 (600MHz) instance class and the high-replication

datastore of the Google App Engine, the averages of the
times taken for the different servlet calls are shown in ta-
ble 4.3. The time taken for a particular function call also
includes the time taken to execute any intermediate servlet
filters, for instance the filter that verifies the logged-in users.

Servlet:Action Call count | Time (ms)

profile:getProfile 121 3128
profile:getTopUsers 207 1816
profile:savePublicKey 36 2012
gaserv:answerQuestion 195 233
gaserv:askQuestion 81 1826
qaserv:myNotifications 552 783
gaserv:myQuestions 262 1779

Table 4.3: The average times taken for various servlet func-
tion calls. The profile servlet is responsible for user pro-
file specific functions while qaserv deals with questions and
their responses.

S. RELATED WORK

Herlocker et al.’s work [13] is one of the older works on au-
tomated collaborative filtering algorithms. Golbeck’s work [9]
on FilmTrust utilised trust in social networks for movie rec-
ommendations. Guo’s work [12] is the closest to ours in the
way they combined opinions of neighbours in a social net-
work, weighted by trust values. Unlike our proposal, the
paper used the concept of trust propagation and it does not
preserve privacy in the aggregation process. Trust propa-
gation is a hard-to-model subjective concept. Two recent
proposals: [16] and [20] describe interesting ways of look-
ing at trust propagation. Jamali and Ester [15] employed
matrix factorisation to deduce trust propagation, which was
then used in collaborative filtering. TidalTrust [10] and Mo-
leTrust [19] are similar with the latter considering ratings
from a maximum depth only, in a breadth first search over a
trust network to compute a prediction. In [21], authors sug-
gested that the traditional emphasis on user similarity in rec-
ommender systems was overstated, and proposed two trust
based recommender system solutions. TrustWalker [14] used
a random walk method to combine item-based collaborative
filtering with trust-based recommendation.

Privacy preserving collaborative filtering (PPCF) has been
studied by many [1-3,5, 11,25, 26]. Existing work can be
classified into using either cryptographic or perturbation
techniques to preserve privacy. Very few of these propos-
als have been tested on real world cloud platforms. Canny’s
work [4] utilised factor analysis and homomorphic encryp-
tion for PPCF; while in [11], the authors computed PPCF
from a combination of random perturbation and secure mul-
tiparty computation. Polat’s works [24,26] have used ran-
domisations to preserve privacy. Several question-answer
services exist, including commercial ones, such as Yahoo!
Answers, Aardvark. Fleming’s thesis [8] proposed a privacy
enhanced question-answer system based on stigmergic rout-
ing where privacy is provided by plausible deniability in a
decentralised network.

The field of social aware recommendation is relatively new
in comparison with traditional recommender systems. Our
proposal is about trust empowerment because we see trust as
an idiosyncratic, context sensitive, neither entirely rational
nor subjective feeling that changes over time [7]. Our pri-
vacy preserving solution also considers privacy from a user-
centric perspective. To the best of our knowledge, there is no
single social aware recommender system that is privacy pre-
serving and views trust from a trust empowerment instead
of an enforcement approach.



6.

CONCLUSIONS

In this paper, we have presented a novel working proto-
type for obtaining feedback on queries from one’s trusted

friends in a privacy preserving manner.

We have imple-

mented and tested the prototype on the Google App En-
gine with Facebook, and have run a user study to evaluate
foreground trust. In the future, we expect to run more ex-
haustive user tests and also extend this system further to
a generic question answer service where people answering
questions are domain experts instead of just friends.
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