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Consistencies and Contradictions of Performance
Metrics in Multiobjective Optimization
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Abstract—An important consideration of Multiobjective Op-
timization (MOO) is the quantitative metrics used for defining
the optimality of different solution sets, which is also the basic
principle for the design and evaluation of MOO algorithms.
Although a plethora of performance metrics have been proposed
in the MOO context, there has been a lack of insights on the
relationships between metrics. In this paper, we first group the
major MOO metrics proposed to date according to four core
performance criteria considered in the literature, namely Ca-
pacity, Convergence, Diversity, and Convergence–Diversity. Then,
a comprehensive study is conducted to investigate the relation-
ships among representative group metrics, including Generational
Distance (GD), ϵ-indicator (I1ϵ+), Spread (∆), Generalized Spread
(∆∗), Inverted Generational Distance (IGD) and Hypervolume
(HV). Experimental results indicated that these six metrics show
high consistencies when Pareto fronts (PFs) are convex, whereas
they show certain contradictions on concave PFs.

Index Terms—Multiobjective Optimization, Performance Met-
rics, Capacity, Convergence, Diversity, Hypervolume, jMetal

I. INTRODUCTION

Multiobjective Optimization Problems (MOPs) involve sev-
eral conflicting objectives to be optimized simultaneously [1–
5]. A plethora of approaches, such as Multiobjective Evolu-
tionary Algorithms (MOEAs), have been well established as
efficient methods to deal with MOPs that are now prevalent
in the fields of engineering, finance, logistic, etc [1–40].

To evaluate different approaches, it is critical to design ap-
propriate performance metrics in various context. For instance,
the goal of Single-objective Optimization Problems (SOPs) is
to find an optimal solution with regards to minimization or
maximization. It is relatively easy in SOPs to compare two
solutions and regard the one with a better fitness as superior. In
MOPs, however, evaluating solution superiority is much more
complex due to the presence of conflicting objectives. Various
approaches often obtain an optimal solution set comprising a
number of solutions that fair equivalently according to Pareto
dominance concept [1–19]. However, it is often non-trivial to
provide a quantitative comparison of different optimal solution
sets in Multiobjective Optimization (MOO) [1–5].

To date, a number of quantitative metrics have been pro-
posed in MOO for defining solution set optimality and the
assessment of MOEAs [4–6, 41–45]. Each metric is designed
with a standpoint that takes one or more performance cri-
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teria into considerations. The typical performance criteria1

include the capacity of the non-dominated solutions set, the
convergence of solutions to true Pareto fronts (PFs), the
diversity of solutions in the objective space, the dominated
volume of solutions with respect to the reference sets, etc. For
instance, Van Veldhuizen et al. [41] designed metrics to tally
the number of non-dominated solutions. The Generational
Distance (GD) metric [6, 42] is introduced to measure the
proximity of solutions to the true PFs. Zhou et al. [43] defined
the Generalized Spread (∆∗) metric to measure the diversity
of solutions on high dimensional MOPs. Zitzler et al. [44,
45], on the other hand, established the popular Hypervolume
(HV) metric to calculate the dominated volume of the optimal
solution sets, with respect to the reference sets.

With the plethora of performance metrics that have been
proposed in the last decade, research efforts devoted to surveys
on MOO metrics have also emerged alongside [46–51]. For
instance, Okabe et al. [46] in their survey categorized MOO
metrics in terms of cardinality, distance, volume, distribution
and spread. Zitzler et al. [47] classified the MOO metrics using
a mathematical framework. After analysing the classical MOO
metrics, Tan et al. [48] proposed the Uniform Distribution
(UD) as a parameter dependent metric. Wu et al. [51], on
the other hand, summarized six variants of metrics associated
with HV, and studied them on a bi-objective engineering MOP.

It is worth noting that several notable surveys, experimental
studies and analyses made on MOO metrics [46–51] have been
limited to a focus on individual metric. Little or no work on
establishing the relationships among MOO metrics have been
explicitly considered to date. This paper thus makes an attempt
to fill in this gap. In particular, we begin with a categorization
of existing MOO metrics into four groups according to the core
performance criteria typically used in the literature, namely
Capacity, Convergence, Diversity, and Convergence–Diversity.
With the categorization, we are then able to systematically
study the relationships among representative group metrics
on the symmetric and continuous PFs. More specifically, we
investigate six representative metrics, including Generational
Distance (GD), ϵ-indicator (I1ϵ+), Spread (∆), Generalized
Spread (∆∗), Inverted Generational Distance (IGD) and Hy-
pervolume (HV). Experimental studies indicated that all the
six metrics show high consistencies when the Pareto Fronts
(PFs) are convex. Surprisingly, contradictions among metrics
are found on concave PFs, even on metrics of the same group
that cater to a common performance criterion.

1Performance criteria in MOO: the particular standard of the true quality
of optimal solution sets, i.e., capacity, convergence, diversity.
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In summary, the contributions of this paper are listed:

1) A classification of MOO metrics according to the per-
formance criteria, including Capacity, Convergence, Di-
versity, and Convergence–Diversity, is presented.

2) The inadequacies of some MOO metrics in omitting par-
tial information on the true quality of optimal solution
sets are illustrated.

3) The relationships of six representative metrics are an-
alyzed based on experimental studies. Specifically, two
metrics, I1ϵ+ and IGD, are consistent with HV on convex
PFs, whereas, certain contradictions to HV are uncov-
ered on concave PFs.

4) Last but not least, the presented results will serve as a
guide on the appropriate use of MOO metrics.

The rest of the paper is organized as follows. Section II
gives a brief background on MOO. In Section III, we survey
various MOO metrics and categorize them into four groups.
Then, the inadequacies of some MOO metrics are highlighted
in Section IV. In Section V, experimental results on the re-
lationships among representative group metrics are presented.
The conclusions and future works are then given in Section VI.

II. BACKGROUND

Without loss of generality, Multiobjective Optimization
Problem (MOP) for minimization can be stated as [1–5]:

min F (x⃗) = (f1(x⃗), . . . , fm(x⃗))
s.t. G(x⃗) ≤ 0, H(x⃗) = 0, x⃗ ∈ Ω,

(1)

where x⃗ = (x1, . . . , xD), Ω is the variable space, Rm is the
objective space, and F : Ω → Rm consists of m real-valued
objective functions with constraints G(x⃗) ≤ 0 and H(x⃗) = 0,
the feasible solution space is Ω = ΠD

i=1[Li, Ui], and Li, Ui

are the lower and upper bound of xi, respectively.
Let u⃗ = (u1, · · · , um), v⃗ = (v1, · · · , vm) be two vectors.

Here, three Pareto dominance concepts are defined as follows:
1) u⃗ is said to weakly dominate v⃗, notated as u⃗ ≼ v⃗ iff ∀i :
ui ≤ vi; 2) u⃗ dominates v⃗, notated as u⃗ ≺ v⃗ iff ∀i : ui ≤ vi
and ∃i : ui < vi; and 3) u⃗ strongly dominates v⃗, notated as
u⃗ ≺≺ v⃗ iff ∀i : ui < vi.

Other important definitions of MOPs are outlined:
Pareto Set. All solution vectors in the variable space that

non-dominates each other form the Pareto Set (PS), and
notated as PS = {x⃗ ∈ Ω|@y⃗ ∈ Ω : F (y⃗) ≼ F (x⃗)}.

Pareto front. The Pareto front (PF) lies in the objective
space, and has relation to PS such that PF = {F (x⃗)|x⃗ ∈ PS}.
In general, it is impossible to find all solutions on the contin-
uous PFs. Hence, a finite number of non-dominated solutions
that approximates the true PFs is termed as P .

Optimal Solution Set. The optimal solution set obtained
by the optimizers (e.g., MOEAs) is termed as S.

Reference Set. The reference set is designed with prede-
fined solutions, and is defined as R.

Good (Utopian) Point and Bad Point. A Good Point is
termed as PG = (fG

1 , · · · , fG
m), where ∀x⃗ ∈ PS : PG ≺

F (x⃗). A Bad Point is defined as PB = (fB
1 , · · · , fB

m), ∀x⃗ ∈
PS : PB ≻ F (x⃗).

To evaluate the quality of set S, three major performance
criteria have been considered in MOO: 1) the number of non-
dominated solutions in S, 2) the convergence of S to the true
PFs, and 3) the diversity of S in the objective space [1–5, 52].
In particular, an optimal solution set with large number of non-
dominated solutions, approaching the true PFs and scattering
evenly are generally desirable.

III. PERFORMANCE METRICS IN MOO
In the design of MOO metrics, three major performance

criteria, namely capacity, convergence and diversity, have typ-
ically been taken into considerations. Based on these criteria,
we categorize the MOO metrics into four core groups:

• Capacity metrics: This group metrics tally the number or
ratio of non-dominated solutions in S that satisfies given
predefined requirements.

• Convergence metrics: These are metrics for measuring
the proximity of optimal solution set S to PF (P ).

• Diversity metrics: These metrics include two forms of
information: 1) Distribution measures how evenly scat-
tered are the solutions of S in the objective space, and 2)
Spread indicates how well do the solutions of S arrive at
the extrema of true PFs.

• Convergence–Diversity metrics: They indicate both the
convergence and diversity of S on a single scale.

A. Capacity Metrics
Capacity metrics quantify the number or ratio of non-

dominated solutions in S that conforms to the predefined
requirements. In general, a large number of non-dominated
solutions in S is preferred.

In [41], the Overall Non-dominated Vector Generation (ON-
VG) metric is introduced as:

ONVG(S) = |S|. (2)

This gives the number of the non-dominated solutions in the
optimal solution set (S). Hereafter | · | defines the cardinality
or number of elements in the set, unless explicitly indicated.

The Overall Non-dominated Vector Generation Ratio (ON-
VGR) [41], which gives the capacity ratio of the optimal
solution set (S) with respect to the PF (P ), is given as:

ONVGR(S, P ) =
|S|
|P |

. (3)

Several metrics have also been designed by considering
the search stages. For instance, [41] defined three metrics: 1)
Generational Non-dominated Vector Generation GNVG(S) =
|S(t)|, 2) Generational Non-dominated Vector Generation
Ratio GNVGR(S, P ) = |S(t)|

|P | , and 3) Non-dominated Vector
Additional NVA(S, t) = GNVG(S, t)−GNVG(S, t−1), where
t is the generation index. Thus, they measure the capacity of
S or the changes in capacity along the MOO search.

While the above five metrics are associated with the size
of set S, the Error Ratio (ER) in [53], on the other hand,
considered the solution intersections between S and PF (P ).
It takes the form of:

ER(S, P ) = 1− |S
∩
P |

|P |
, (4)
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Fig. 1. Two components (distribution and spread) in diversity metrics.

where S
∩
P denotes the solutions existing in both S and P .

By replacing P with reference set R, the Ratio of the Reference
Points Found in [54, 55] is proposed as C1R = |S

∩
R|

|R| .
As mentioned in Section II, set P consists of a finite

number of non-dominated solutions that approximate the true
PFs. Hence, it is often infeasible to arrive at the exact same
solutions (usually comprising of real values in the objective
space) in both S and P . For this reason, the metric Non-
dominated Points by Reference Set (C2R) [55], which adopts
the Pareto dominance concept, is introduced as follows:

C2R(S,R) =
|{s⃗ ∈ S|@r⃗ ∈ R : r⃗ ≺ s⃗}|

|S|
. (5)

In other words, Eq. 5 estimates how many solutions of S are
non-dominated by reference set R.

In contrast to the eight capacity metrics presented, which
only elicit information from one optimal solution set, the
Coverage of Two Sets (or Metric C) in [44, 45] concentrates
on the overlaps between two optimal solution sets.

C(S1, S2) =
|{s⃗2 ∈ S2|∃s⃗1 ∈ S1 : s⃗1 ≼ s⃗2}|

|S2|
. (6)

Note that this metric is independent of PF (P ) or reference
set (R). Based on pairwise comparisons between solutions, the
computational complexity of C1R and C2R is O(m|S| · |R|),
and that of C(S1, S2) is O(m|S1| · |S2|).

B. Convergence Metrics

Convergence metrics measure the degree of proximity based
on the distance between the solutions in S to those in PF (P ).

The Generational Distance (GD) metric [6, 42] is among
those commonly used in MOEAs, and has the formulation as:

GD(S, P ) =
(
∑|S|

i=1 d
q
i )

1/q

|S|
, (7)

where di = min
p⃗∈P

||F (s⃗i) − F (p⃗)||, s⃗i ∈ S and q = 2. Thus,

di is the smallest distance from s⃗ ∈ S to the closest solution
in P . Hereafter || · || denotes the Euclidean distance unless
explicitly indicated. Two similar metrics have been proposed
as γ index [52] and M∗

1 [56] with q = 1.
Among the convergence metrics, Zitzler et al. introduced

the commonly used metric ϵ-indicator [47] as follows:

I1ϵ+(S, P ) = inf
ϵ∈R

{∀p⃗ ∈ P |∃s⃗ ∈ S : s⃗ ≼ p⃗+ ϵ}, (8)

and s⃗ ≼ p⃗·ϵ is an alternative formulation of s⃗ ≼ p⃗+ϵ. In these
two metrics, ϵ thus defines the value required to translate/scale
the optimal solution set S such that S dominates P .

The metric Seven Points Average Distance (SPAD) in [57],
on the other hand, considers the solution distance between S
and reference set R. The formulation of SPAD is defined as:

SPAD(S,R) =

∑|R|
i=1 di
|R|

, (9)

where di = min
s⃗∈S

||F (r⃗i)−F (s⃗)||, r⃗i ∈ R. The seven points in

R are generated as: (0, 1
3f

max
2 ), (0, 2

3f
max
2 ), (0, fmax

2 ), (0, 0),
( 13f

max
1 , 0), ( 23f

max
1 , 0), (fmax

1 , 0), where fmax
1 and fmax

2

denote the maximum values of objective 1 and objective 2,
respectively. Thus, SPAD only applies to 2-dimensional PFs.
Another constraint of SPAD is that the solutions of R are
strictly linearly distributed, irregardless of the shapes of PFs.

Based on the analysis of the above metrics, the time com-
plexity of GD, γ index, M∗

1 and ϵ-indicator is O(m|S| · |P |),
and that of SPAD is O(m|S|).

C. Diversity Metrics
Diversity metrics indicate the distribution and spread of

solutions in the optimal solution set S. To illustrate the
difference between distribution and spread, Fig. 1 showcases
two representative examples. Particularly, the 5 non-dominated
solutions of S in Fig. 1(a) possess good distribution but
poor spread, since S does not contain the extreme points
(0, 1), (1, 0) of the 2-dimensional PF. On the other hand,
Fig. 1(b) illustrates the example of an optimal solution set
with good spread but unfavorable distribution.

1) Distribution in diversity metrics: Distribution is derived
from the discrepancy of pairwise solutions in set S.

In [52], Deb et al. proposed a metric ∆′ that compares all
the solutions’ consecutive distances with the average distance:

∆′(S) =

|S|−1∑
i=1

(di − d̄)

|S| − 1
, (10)

where di is the Euclidean distance between consecutive solu-
tions in S, and d̄ is the average of di. If all the pair of consec-
utive solutions share equal distance, then di = d̄, ∆′(S) = 0,
and S has a perfect distribution. To find consecutive solutions,
the prerequisite of this metric is to sort the solutions of S by
lexicography order.

Two similar metrics have also been introduced in [56, 57].
The M∗

3 metric [56] considers the maximum distance instead
of the average distance in ∆′. In [57], the Spacing (SP) metric

is designed as SP(S) =

√∑|S|
i=1(di − d̄)2/(|S| − 1), where

di = min
s⃗j∈S,s⃗j ̸=s⃗i

||F (s⃗i)− F (s⃗j)|| and si ∈ S. In contrast to

the consecutive distance in ∆′, metric SP calculates the closest
distance of pairwise solutions in S.

In addition to the parameter-free metrics ∆′, M∗
3 and SP,

the following two metrics are designed with user-specified
parameters. The M2∗ metric in [56] is equipped with a niche
radius σ and takes the form of:

M∗
2 (S) =

∑
s⃗1∈S |{s⃗2 ∈ S| ||s⃗1 − s⃗2|| < σ}|

|S| − 1
. (11)



IEEE TRANSACTIONS ON CYBERNETICS 4

For a solution s⃗1 ∈ S, M∗
2 (S) measures how many solutions

s⃗2 ∈ S are located in its local vicinity ||s⃗1 − s⃗2|| < σ.
In [48], Tan et al. proposed the parameter dependent metric

Uniform Distribution (UD) as follows:

UD(S) =
1

1 +Dnc
, (12)

where Dnc =
√∑

s⃗i∈S(nc(s⃗i)− nc(s⃗))2/(|S| − 1), nc(s⃗i) =
|{s⃗j ∈ S| ||s⃗i − s⃗j || < σ}| − 1, and ns(s⃗) is the average of
nc(s⃗i). The computational complexity of ∆′, M∗

3 , SP, M∗
2 and

UD is derived as O(m|S|2).
It is worth noting that the diversity metrics presented thus

far are important indicators on the distribution property of S.
They however do not capture the spread characteristics of S.
As shown in Fig. 1(a), a perfect distribution of solutions in
S is indicated on all 5 metrics ∆′, M∗

3 , SP, M∗
2 and UD.

However, the spread property of S is low as it does not cover
the PF completed (e.g., extreme points are left unexplored).

2) Spread in diversity metrics: Spread quantifies how much
of the extreme regions are covered by set S.

The Overall Pareto Spread (OS) in [51] is proposed as:

OS(S, PG, PB) =
m∏

k=1

|max
s⃗∈S

fk(s⃗)−min
s⃗∈S

fk(s⃗)|

|fk(PB)− fk(PG)|
, (13)

where max
s⃗∈S

fk(s⃗),min
s⃗∈S

fk(s⃗) are the maximum and minimum

values of the kth objective in S, respectively. The metric OS
has a computational complexity of O(m|S|). From metric OS,
there exists a contradiction between distribution and spread.
For instance, suppose PG = (0, 0), PB = (1, 1), the spread of
solutions in Fig. 1(b) is superior to that of Fig. 1(a) under the
OS metric, whereas solutions of Fig. 1(b) is inferior to those
of Fig. 1(a) in terms of distribution.

3) Distribution and Spread in diversity metrics: The fol-
lowing MOO metrics in this section consider the distribution
and spread of optimal solution set S simultaneously.

The metric ∆, as introduced by Deb et al. [6], is commonly
used in MOEAs. The formulation of ∆ is derived as follows:

∆(S, P ) =
df + dl +

∑|S|−1
i=1 |di − d̄|

df + dl + (|S| − 1)d̄
, (14)

where di is the Euclidean distance between consecutive so-
lutions and d̄ is the average of di. The terms df and dl are
the minimum Euclidean distances from solutions in S to the
extreme (bounding) solutions of the PF (P ).

The consecutive sorting in metric ∆ makes it applicable to
2-dimensional PFs only. To cope with high dimensional MOPs,
Zhou et al. [43] introduced the Generalized Spread (∆∗) as
an extension of ∆, which takes the form:

∆∗(S, P ) =

∑m
k=1 d(e⃗k, S) +

∑|S|
i=1 |di − d̄|∑m

k=1 d(e⃗k, S) + (|S|)d̄
, (15)

where d(e⃗k, S) = min
s⃗∈S

||F (e⃗k)− F (s⃗)|| and e⃗k ∈ P is the

extreme solutions on the kth objective. Another distance in
∆∗ is di = min

s⃗j∈S,s⃗j ̸=s⃗i
||F (s⃗i)− F (s⃗j)|| to identify the closest

pairwise solutions in S, and d̄ is the average of di.

Fig. 2. The performance metric Hypervolume (HV) in MOO.

From Eqs. 14-15, both ∆ and ∆∗ share a computational
complexity of O(m|S|2 +m|S| · |P |). In some special cases,
metric ∆∗ may bring misleading information due to the closest
distance calculations. In Fig. 1(b), the optimal solution set S
comprises five points: A(0, 1), B(0.02, 0.75), C(0.58, 0.06),
D(0.75, 0.02), E(1, 0). Under the closest distance concept
of metric ∆∗, the distance values of AB, CD would be
considered twice, whereas, BC is disregarded.

In addition to those presented, other notable diversity met-
rics have also been introduced in the MOO context [51, 58,
59]. Instead of describing all of them individually, we refer
the readers to the existing literature [51, 58, 59] for the details.
Nevertheless, the major ideas are summarized in what follows.

• The Entropy-based metric [58] measures the uniformity
and coverage. It employs influence functions to estimate
the solution densities. The metric value is then calculated
based on Shannon entropy in the discrete objective space.

• Metrics NDCµ and CLµ [51] divide the objective space
into ( 1µ )

m grids (µ ∈ [0, 1]). The metric value is evaulated
based on the number of grids containing solutions.

• Metrics σ and σ̄ [59] divide the objective space into equal
angles based on a set of reference lines that emanate from
the origin. The metric value is the number of reference
lines that are sufficiently close to the solutions of S at a
predefined Euclidean distance.

A potential constraint of the above five metrics (i.e.,
entropy-based metric, NDCµ, CLµ and σ, σ̄), nonetheless, is
the sensitivity to the number of grids, subregions or angles in
the objective space, which are defined by the user-specified
parameters |grids|, µ, σ, respectively.

D. Convergence–Diversity Metrics

Convergence–Diversity metrics measure the quality of the
optimal solution set S in terms of convergence and diversity
on a single scale.

In [44, 45], Zitzler et al. proposed the popular performance
metric Hypervolume (HV) as:

HV(S,R) = volume(

|S|∪
i=1

vi). (16)
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TABLE I
A CLASSIFICATION OF PERFORMANCE METRICS IN MULTIOBJECTIVE OPTIMIZATION (MOO).

Performance criteria Performance metrics Parameter requirements Comparison set Computational compleixity

Capacity

ONVG, GNVG, NVA None None Low
ONVGR, GNVGR, ER None Pareto front (P ) Low

C1R , C2R None Reference set (R) O(m|S| · |R|)
Metric C None Optimal solution set (S) O(m|S1| · |S2|)

Convergence GD, ϵ-indicator, γ index, M∗
1 None Pareto front (P ) O(m|S| · |P |)

SPAD None Pareto front (R) O(m|S|)

Diversity

Distribution ∆′, M∗
3 , SP None None O(m|S|2)

M∗
2 , UD Niche radius (σ) None O(m|S|2)

Spread OS None Good, Bad points (PG, PB ) O(m|S|)

Distribution–Spread ∆, ∆∗ None Pareto front (P ) O(m|S|2 + m|S| · |P |)
Entropy, NDCµ, CLµ, σ, σ̄ |grids|, µ, |lines| None High

Convergence–Diversity HV, HD, HR, Metric S, Metric D None Reference set (R) O(|S|m−1)
IGD, ∆q , MPFE None Pareto front (P ) O(m|S| · |P |)

This gives the volume (in the objective space) that is dom-
inated by the optimal solution set S. Using the example in
Fig. 2, where S = {A,B,C} is attained when minimizing a
bi-objective MOP. The HV(S,R) is thus the area ABCWA
enclosed by the discontinuous boundary, where reference set
R = {W}2. Mathematically, for each solution s⃗i ∈ S, a
hypercube vi is constructed with the reference set and the
solution s⃗i as the diagonal corners of the hypercube.

Hypervolume (HV) is a set quality measure that is strictly
monotonic with regards to the Pareto dominance concept [60,
61]. It quantifies and encapsulates both the convergence and
diversity information of S. In particular, the closer are the
solutions of S to the true PFs, the larger is the value of HV.
At the same time, a higher HV could also indicate solutions
of S are scattered more evenly in the objective space.

Other metrics adopting the similar concept have also been
introduced in the MOO context, such as Hypervolume Dif-
ference (HD) [51], Hypervolume Ratio (HR), Metric S [44],
Coverage Difference of Two Sets or Metric D [62].

The downside of HV lies in the high computational com-
plexity of O(|S|m−1), which can become intractable when the
number of objectives is large (e.g., m ≥ 4). Although some
research efforts have been devoted to reduce the computational
burden, such as Monte Carlo sampling [60, 63], the accuracy
of HV is however compromised. For the fast approaches on
calculating the exact HV, the reader is referred to [61, 64–69].

The metric Inverted Generational Distance (IGD) in [9, 42,
47], which has a similar formulation to GD, is introduced as:

IGD(P, S) =
(
∑|P |

i=1 d
q
i )

1/q

|P |
, (17)

where di = min
s⃗∈S

||F (p⃗i) − F (s⃗)||, p⃗i ∈ P , q = 2, and di is

the smallest distance of p⃗ ∈ P to the closest solutions in S.
The metric Averaged Hausdorff Distance (∆q) [70], which

combines the properties of GD and IGD, is defined as:

∆q(S, P ) = max(GD(S, P ), IGD(P, S)). (18)

The parameter q in ∆q is a positive integer. A larger q value
penalizes the outlier solutions in S more. Both IGD and ∆q

share a computational complexity of O(m|S| · |P |).

2Point W can be simply attained by constructing a vector of worst objective
function values. Meanwhile, the number of solutions in R is not limit to one.

Instead of measuring the average distance in IGD, the
Maximum Pareto Front Error (MPFE) [57] is defined as:

MPFE(P, S) = max
p⃗∈P

√√√√min
s⃗∈S

m∑
k=1

|fk(s⃗)− fk(p⃗)|2. (19)

This metric finds the maximum distance from solutions in
P to the closest solution in S. In contrast to HV and IGD,
MPFE focuses on the extreme solutions rather than the entire
solution set. In particular, when some outliers exist in S,
MPFE is inclined to show the worst value of S and ignores
the information of other high quality solutions.

To summarize, Table I classifies the major MOO metrics
proposed to date in terms of performance criteria, parameter
requirements, comparison set and computational complexity.
In what follows, we highlight and analyze the potential is-
sues of some of these metrics in Section IV. The empirical
investigation on the relationships among representative group
metrics, with special focus on the consistencies or contradic-
tions on PFs of diverse geometrical shapes, is then presented
in Section V.

IV. INSIGHTS ON EXTREME CASES OF MOO METRICS

In this section, we highlight and analyse the inadequacies
of MOO metrics. In particular, on extreme cases, some MOO
metrics are noted to omit partial information that describes the
true quality of the optimal solution set S.

The Capacity metrics focus on tallying the number of
solutions in the optimal solution set S. Hence, they are not
designed to provide the convergence and diversity information
of S. For instance, two optimal solution sets S1 and S2

of Fig. 3 are obtained by minimizing a bi-objective MOP.
Notably, S2 is better than S1 in terms of convergence, since the
solutions of S2 approach the origin (0, 0) closer than those of
S1. However, under Metric C, both of them share a common
value of C(S1, S2) = C(S2, S1) = 0.5. In MOO, capacity
metric is generally used as the basic criterion for assessing
the optimal solution sets [4, 5]. If two optimal solution sets
obtain the same number of solutions, we can then compare
the convergence and diversity information in a fair and detail
manner.

With regards to the convergence metrics, two critical issues
can be asserted. First of all, most of them (e.g., GD and I1ϵ+)
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Fig. 3. The inadequacy of Metric C, C(S1, S2) = C(S2, S1) = 0.5 [46].

require the PF (P ) to be predefined. In practice, however, it
is almost impossible to know the true PFs, especially when
no prior knowledge about the problem is available. On the
other hand, even if the geometrical characteristics of PFs
is known, constructing P for many objectives, discrete and
asymmetric PFs, is non-trivial. Secondly, convergence metrics
often omit the diversity property of S. Taking Fig. 1 as the
illustration example, which comprises two optimal solution
sets with perfect convergence (i.e., GD(S, P ) = 0), but both
display poor diversity.

Among the diversity metrics, only a few of them (i.e., ∆
and ∆∗) are designed with comparison sets, e.g., PF (P )
or reference set R. In addition, ∆ and ∆∗ only consider
the extreme solutions of PF (P ), e.g., df and dl in Eq. 14.
Hence, a large number of solutions in P are not used in
the comparison with solutions in S. In Fig. 4, the solutions
in S are scattered evenly along the linear dash line, and
∆(S, P ) = ∆∗(S, P ) = 0. This means that S has a perfect
diversity. However, they do not assert whether the solutions
had converged to the true PFs.

On the other hand, the convergence–diversity metrics mea-
sure two types of information on a single scale. As mentioned
in Section III-D, the high computational complexity makes it
cumbersome to apply HV in MOO. In addition, the potential
limitation of the other three metrics (i.e., IGD, ∆q and MPFE)
lies in the need to construct the comparison sets. In HV, the
comparison set is the reference set R. As shown in Fig. 2, R
can be constructed with ease using single point W . However,
the comparison set for IGD, ∆q and MPFE is P , which is the
set of representative solutions on PF. For instance, a popular
method [4, 5] is to divide the objectives evenly and sample
a large number of solutions on the true PF to form P . In
Fig. 4, set P of 10, 000 points can be obtained by dividing
f1 ∈ [0, 1] into 10, 000 segments equally. However, this results
in unevenly distributed solutions, where nearly 5,000 points
are crowded in (f1 ∈ [0.5, 1], f2 ∈ [0, 0.1]) when the PF is
convex. Thus, this method is insufficient to approximate the
true PFs. For these metrics, i.e., IGD, ∆q and MPFE, where
the reliance on set P is high, the ability to construct well
scattered solutions of P is crucial for assessing the true quality
of set S.
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Fig. 4. The inadequacy of ∆ and ∆∗, ∆(S, P ) = ∆∗(S, P ) = 0.

Convergence

Diversity

Hypervolume (HV),

Inverted Generational Distance (IGD)

Generational Distance (GD)

Epsilon ( )

Generalized Spread ( *)

Spread ( )

Fig. 5. Relationships of GD, I1ϵ+, ∆, ∆∗, IGD and HV as introduced in [4].

V. EMPIRICAL STUDIES AND ANALYSES

With the categorization of MOO metrics based on the
performance criteria, namely capacity, convergence, diversity,
convergence–diversity, in this section, a systematic investiga-
tion on the relationships among metrics is presented. After
constructing various Pareto fronts (PFs) and reference sets, six
representative metrics are investigated on two optimal solution
sets. In the experiments, we used hypervolume (HV) [4, 5, 16,
60], which is the most widely accepted metric in the MOO
community, as the baseline to study the relationships among
metrics on different geometrical shapes of PFs.

Two representative metrics from each of the following
categories are considered in the study3:

• Convergence metrics: GD, I1ϵ+;
• Diversity metrics: ∆, ∆∗;
• Convergence–Diversity metrics: IGD, HV.

In general, an optimal solution set with small GD, I1ϵ+, ∆,
∆∗, IGD and large HV is desirable. In the literature [4, 5],
the relationships of six metrics were intuitively and briefly
discussed (As shown in Fig. 5). In this paper, we not only
validate the relationships, but also provide the details on
the potential consistencies and contradictions among the six
metrics when the PFs are convex and concave.

3Since capacity metrics only provide cardinality information, it does not
serve as meaningful when used alone to assess the optimal solution set.
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Fig. 6. 10 intersection points along 2-dimensional PFs. (a) HV(S1, R) = 0.774252, 0.169539 by λ method [8, 9] on convex and concave PFs, respectively,
(b) HV(S2, R) = 0.793305 by paλ method [16] on convex PF f0.5

1 + f0.5
2 = 1, (c) HV(S2, R) = 0.178965 by paλ method on concave PF f2.0

1 + f2.0
2 = 1.
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Fig. 7. 153 points along 3-dimensional convex PF f0.5
1 + f0.5

2 + f0.5
3 = 1.

(a) HV(S1, R) = 0.980744 by λ method [8, 9], (b) HV(S2, R) = 0.984072
by paλ method [16].

A. PFs and Reference Sets Design

In general, the true PFs have many different shapes and
forms, which can be convex, concave, discrete, no-differential,
multi-modal, asymmetric, etc [1–5]. Instead of considering
all forms of PFs, our interest in the current paper is on the
symmetric and continuous PFs. Without loss of generality, we
consider the true PFs as

fp
1 + fp

2 + · · ·+ fp
m = 1, (20)

where the objectives are normalized in the range [0, 1] and
p ∈ (0,∞) is the parameter to control the geometrical shapes
of PFs. As shown in Fig. 6(b), when p = 0.5, the PF is convex
in the 2-dimensional objective space. On the other hand, the
PF is 2-dimensional concave when p = 2 in Fig. 6(c).

To obtain P , a number of non-dominated solutions need to
be selected to approximate the true PFs. A simple approach
for constructing P is to adopt the popular λ method [8, 9].
Let λ = (λ1, · · · , λm)T be a weight vector, where λi ≥ 0 and∑m

i=1 λi = 1. As shown in Fig. 6, each weight vector defines
a λ line of predefined gradient. All the weight vectors then
take values from the following set:

{ 0

H
,
1

H
, · · · , H

H
},

where H is a control parameter and the number of weight
vectors is Cm−1

H+m−1. Every λ line meets the PF and each
intersect point denotes a solution. In this case, the number
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Fig. 8. 153 points along 3-dimensional concave PF f2.0
1 +f2.0

2 +f2.0
3 = 1.

(a) HV(S1, R) = 0.428826 by λ method [8, 9], (b) HV(S2, R) = 0.435165
by paλ method [16].

of points in P is thus |P | = Cm−1
H+m−1. Taking Fig. 6 as an

illustration example, we set H = 9,m = 2, and the C1
10 = 10

weight vectors can be derived as {( 09 ,
9
9 ), (

1
9 ,

8
9 ) · · · , (

9
9 ,

0
9 )}.

The 10 solutions are then obtained by solving Eq. 20 based
on the 10 weight vectors.

In MOO, set P typically comprises many non-dominated so-
lutions to approximate the true PFs at reasonable accuracies [4,
5]. In the experimental studies, the parameters are set as
H = 10, 000 and |P | = 10, 001 on the bi-objective PFs. Their
values are H = 140 and |P | = 10, 011 on the tri-objective
PFs. They are H = 38, |P | = 10, 660 on the quad-objective
PFs. In comparison, the reference set R is easy to construct,
which is generated as R = {(1, 1)}, {(1, 1, 1)}, {(1, 1, 1, 1)}
on 2, 3, 4-dimensional PFs, respectively.

B. Optimal Solution Sets

The goal in MOO is to find the optimal solution set S
with both good convergence and diversity. The special case of
solutions in S that are not on PFs (Called poor convergence)
will not be considered in the present study. As shown in Fig. 4,
it may not make good sense to evaluate the diversity of S alone
if it does not satisfy the basic requirement of convergence.

In this paper, two optimal solution sets (S1 and S2) are
constructed on the true PFs (Called good convergence) with
different diversities. The set S1 is attained based on the
λ method [8, 9]. The Pareto-adaptive weight vectors (paλ
method [16]) is adopted to maximize HV and generate S2.
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Fig. 9. 2-dimensional PFs: Differences in the metrics of S1 and S2 for cases of 25, 50 or 100 points along fp
1 + fp

2 = 1, p ∈ [0.1, 3.0]. The optimal
solution sets S1 and S2 are obtained based on λ [8, 9] and paλ [16], respectively. A small GD, I1ϵ+, ∆, ∆∗ and IGD while large HV is desirable.
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Fig. 10. 3-dimensional PFs: Differences in the metrics of S1 and S2 for cases of 45, 91 or 153 points along fp
1 + fp

2 + fp
3 = 1, p ∈ [0.1, 3.0]. The optimal

solution sets S1 and S2 are obtained based on λ [8, 9] and paλ [16], respectively. A small GD, I1ϵ+, ∆, ∆∗ and IGD while large HV is desirable.
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Fig. 11. 4-dimensional PFs: Differences in the metrics of S1 and S2 for cases of 56, 120 or 220 points along fp
1 + fp

2 + fp
3 + fp

4 = 1, p ∈ [0.1, 3.0]. The
optimal solution sets S1 and S2 are obtained based on λ [8, 9] and paλ [16], respectively. A small GD, I1ϵ+, ∆, ∆∗ and IGD while large HV is desirable.

In Fig. 6(a), the optimal solution set S1 has HV(S1, R) =
0.774252 when the PF is f0.5

1 + f0.5
2 = 1, and HV(S1, R) =

0.169539 for f2
1 + f2

2 = 1. In Fig. 6(b), the hypervolume of
S2 is HV(S2, R) = 0.793305 on the convex PF. The solutions
of S2 are distributed at near the two extreme points of PF and
scattered more evenly than those of S1. On the other hand,
Fig. 6(c) depicts HV(S2, R) = 0.178965 on the concave PF.
The solutions of S2 are close to the median of PF and exhibit
a better distribution than those of S1 in the central PF.

Figs. 7-8 depict two optimal solution sets (S1 and S2) on
3-dimensional PFs, which are also constructed based on the λ
method [8, 9] and paλ method [16], respectively. The convex
PF (f0.5

1 + f0.5
2 + f0.5

3 = 1) of Fig. 7 has HV(S1, R) =
0.980774 and HV(S2, R) = 0.984072. The solutions of S2

in Fig. 7(b) are noted to be more evenly spread than those
of S1 in Fig. 7(a) on all three objectives. On the other hand,
for the concave PF (f2.0

1 + f2.0
2 + f2.0

3 = 1) of Fig. 8, the
hypervolumes are HV(S1, R) = 0.428826 and HV(S2, R) =
0.435165. Solutions of S1 in Fig. 8(a) are crowded near the
three extreme points {(1, 0, 0), (0, 1, 0), (1, 0, 0)}, while they
are sparse in the central region of PF. Furthermore, in contrast
to S1, the solutions of S2 in Fig. 8(b) are crowded near the
center of the PF (

√
1
3 ,
√

1
3 ,
√

1
3 ).

C. Performance Metric Studies on 2-dimensional PFs

Upon constructing the set P , which represents the true PFs
(Section V-A), we can then proceed to assess and compare
the two optimal solution sets S1 and S2 (Section V-B) using

the six representative metrics, first on 2-dimensional PFs. The
member size of the optimal solution set is configured as |S1| =
|S2| ∈ {25, 50, 100} and the formulation of PFs is fp

1 + fp
2 =

1, where p ∈ [0.1, 3.0].
In Fig. 9, the differences among the six MOO metrics for

S1 and S2 on 2-dimensional PFs are presented. The values
above the origin in Fig. 9 indicate that S2 is superior to S1.
Fig. 9(a) depicts the differences between S1 and S2 on metric
GD. Note that GD(S2, P )− GD(S1, P ) is near to zero when
p ∈ [0.3, 3.0]. This implies that GD could not uncover the
differences between the two optimal solution sets, which are
revealed by the I1ϵ+ metric of Fig. 9(b). The result of I1ϵ+ is
quite similar to HV in Fig. 9(f), where their curves exhibit
similar trends, despite at the different scales. As the solution
number of S increases from 25 to 50 and 100, |I1ϵ+(S2, P )−
I1ϵ+(S1, P )| becomes smaller. The reason is that a small ϵ is
need to make S1 and S2 dominate the PFs (P ) by Eq. 8 when
the solution number of S is large.

The two plots, Figs. 9(c)-(d), summarize the differences be-
tween S1 and S2 on the diversity metrics (∆ and ∆∗). Notably,
both metrics arrive at similar results. The optimal solution set
S2 exhibits superior diversity over S1 when p ∈ [0.1, 1.5)
(i.e., ∆(S2, P ) < ∆(S1, P ) and ∆∗(S2, P ) < ∆∗(S1, P )),
whereas, S2 is inferior to S1 when p ∈ [1.5, 3.0]. As shown in
Fig. 6, solutions in S2 are scattered on convex PFs, however,
they tend to congregate together when the PF is concave.
Overall, both ∆ and ∆∗ share similar results with HV on
convex PFs, but are in conflict with HV on concave PFs.

Taking focus on the convergence–diversity metrics (IGD and
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Fig. 12. The relationships of five metrics (GD, I1ϵ+, ∆, ∆∗ and IGD) to the baseline HV on 2-dimensional convex PFs (a-e) and concave PFs (f-j). The
I1ϵ+, ∆, ∆∗ and IGD are consistent with HV on 2-dimensional convex PFs, whereas, ∆ , ∆∗ and IGD contradict with HV on 2-dimensional concave PFs.

HV) in Figs. 9(e)-(f), both S1 and S2 share the same scattered
solutions and HV(S2, R) = HV(S1, R) when p = 1 (i.e., the
PF is a straight line). When p ̸= 1, S2 displays better HV than
S1, i.e., HV(S2, R) > HV(S1, R). In Fig. 9(e), the IGD value
of S2 is superior to S1 when p ∈ [0.1, 1.5), but S2 becomes
inferior to S1 under the same IGD metric when p ∈ [1.5, 3.0].
This indicates that IGD shares similar estimations with HV
on convex PFs, but displays conflicting information to HV on
concave PFs.

To summarize, from the studies of the MOO metrics on 2-
dimensional PFs, metric GD is found to be unable to provide
diversity information on S1 and S2. The results of metric I1ϵ+,
on the other hand, is similar to those of HV. Other three metrics
∆, ∆∗ and IGD share two characteristics: they display similar
trends with HV on 2-dimensional convex PFs, but in some
special cases (i.e., {fp

1 + fp
2 = 1|1.5 ≤ p ≤ 3}), they are in

conflict with HV on 2-dimensional concave PFs.

D. Performance Metric Studies on 3-dimensional PFs

In this section, we extend the MOO metric studies to 3-
dimensional PFs. The parameter H is set as H ∈ {8, 12, 16}
and the number of solutions in S1, S2 are thus C2

H+2 =
{45, 91, 153}, respectively. The 3-dimensional PFs are formu-
lated as fp

1 +fp
2 +fp

3 = 1, where p ∈ [0.1, 3.0]. Figs. 10(a)-(f)
present the assessments of the optimal solution sets S1 and S2

on the six representative metrics, i.e., GD, I1ϵ+, ∆, ∆∗, IGD
and HV, respectively.

Fig. 10(a) shows similar GD values on S1 and S2 when
p ∈ [0.3, 3.0], despite the two sets of solutions being unique
to one other. This indicates that metric GD cannot distinguish
between S1 and S2 on their diversities. With respect to metric
I1ϵ+ in Fig. 10(b), it displays similar shapes to HV in Fig. 10(f),
except for p ∈ [0.1, 0.5]. This means that an optimal solution
set with a better HV will likely also imply a better I1ϵ+. From
the results in Fig. 10(c), metric ∆ does not display a stable
trend, since its consecutive sorting procedure only works well
on 2-dimensional PFs (See Section III-C3). Figs. 10(d)-(e)

show that the two metrics, ∆∗ and IGD, exhibit similar trends,
although at different scales. In particular, both ∆∗ and IGD
share similar estimations with HV on the 3-dimensional con-
vex PFs. However, when the PFs are 3-dimensional concave,
i.e., {fp

1 + fp
2 + fp

3 = 1|1.5 ≤ p ≤ 3}, both ∆∗ and IGD are
observed to be in conflict with HV.

E. Performance Metric Studies on 4-dimensional PFs

In this section, we proceed further to the study of the
six MOO metrics on 4-dimensional PFs. The parameter H
is configured as H ∈ {5, 7, 9} and the number of solutions
in S1, S2 are C3

H+3 = {56, 120, 220}, respectively. The 4-
dimensional PFs are formulated as fp

1 + fp
2 + fp

3 + fp
4 = 1,

where p ∈ [0.1, 3.0]. Figs. 11(a)-(f) show the measurements of
the optimal solution sets S1 and S2 on the six representative
metrics, i.e., GD, I1ϵ+, ∆, ∆∗, IGD and HV, respectively.

The results in Figs. 11(a, c) do not display clear trends on
the two metrics GD and ∆, which is similar to the results
on 2, 3-dimensional PFs. Hence we are unable to draw any
concrete conclusions on metrics GD and ∆. On the other hand,
the results of metric I1ϵ+ in Fig. 11(b) shows similar trends
to HV in Fig. 11(f), except for p ∈ [0.1, 0.7]. This indicates
that an optimal solution set with a large HV will likely also
report a small I1ϵ+. From the results of Fig. 11(d), metric ∆∗

is in conflict with HV on the 4-dimensional convex PFs (p ∈
[0.1, 1.0)), whereas it shares a similar estimation with HV on
the 4-dimensional concave PFs (p ∈ [1.0, 3.0]). Last but not
least, metric IGD in Fig. 11(e) exhibits similar and conflicting
trends to HV on the 4-dimensional convex and concave PFs,
respectively.

F. Relationship of MOO Metrics

In this section, we analyse the relationships of the six repre-
sentative metrics statistically and systematically. In particular,
we discuss the case where |S1| = |S2| = 25, 45, 56 for 2, 3,
4-dimensional PFs, respectively.
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Fig. 13. The relationships of five metrics (GD, I1ϵ+, ∆, ∆∗ and IGD) to the baseline HV on 3-dimensional convex PFs (a-e) and concave PFs (f-j). The
I1ϵ+, ∆∗ and IGD are consistent with HV on 3-dimensional convex PFs, whereas, ∆∗ and IGD contradict with HV on 3-dimensional concave PFs.

Suppose two metrics M1 and M2 are considered for assess-
ing the two optimal solution sets S1 and S2 (See Section V-B),
the following concepts define the Consistency and Contradic-
tion relationships between M1 and M2.

• Consistency:
1) S1 ≺ S2 on the two metrics (M1,M2);
2) Corr(M1(S1)−M1(S2),M2(S1)−M2(S2)) > 0.

In the first condition4, S1 dominates S2, which means
that S1 reports better results than S2 on both metrics
(M1,M2). The second condition5 reveals a positive cor-
relation on the metric value differences.

• Contradiction:
1) S1 ⊀ S2 on the two metrics (M1,M2);
2) Corr(M1(S1)−M1(S2),M2(S1)−M2(S2)) < 0.

In the first condition6, S1 and S2 are non-dominated. This
implies that S1 is better than S2 on one metric, but worse
on the other metric. The second condition indicates a
negative correlation on the metric value differences.

Figs. 12-14 show the relationships of the five metrics (GD,
I1ϵ+, ∆, ∆∗ and IGD) with the HV as baseline, on 2, 3, 4-
dimensional PFs, respectively. Since a large HV and small
GD, I1ϵ+, ∆, ∆∗ and IGD are desirable, we set the x-axis as
HV(S2)−HV(S1) and the y-axis is set in a reverse order for
the other five metrics (e.g., GD(S1)− GD(S2)).

In Figs. 12(a-e), for the 2-dimensional convex PFs {fp
1 +

fp
2 = 1|0.1 ≤ p ≤ 1}, the five metrics show positive corre-

lations to the baseline HV, except for GD with p ∈ [0.3, 1.0]
and I1ϵ+ with p ∈ [0.3, 0.6]. For instance, when p ∈ [0.1, 0.3],
the correlation coefficients of GD, I1ϵ+, ∆, ∆∗ and IGD to
HV are 0.986, 0.889, 0.831, 0.985, 0.994, respectively. The
curve of GD in Fig. 12(a), which is below the origin, indicates
a conflict. This indicates that an optimal solution set with
better HV (e.g., HV(S2) > HV(S1)) will perform poorer on

4S1 ≺ S2 means S1 is better than S2 on both metrics (M1,M2).
5Corr(X,Y ) =

E[(X−µX )(Y −µY )]
σXσY

.
6S1 ⊀ S2 means S1 non-dominates S2 on the two metrics (M1,M2).

GD (e.g., GD(S2) > GD(S1)). In addition, I1ϵ+, ∆, ∆∗ and
IGD are consistent with HV on the 2-dimensional convex PFs,
since their curves are above the origin and they are positively
correlated to HV. A special case is that I1ϵ+ has a negative
correlation to HV when p ∈ [0.3, 0.6], i.e., I1ϵ+(S1)− I1ϵ+(S2)
decreases when HV(S2)− HV(S1) increases in Fig. 12(b).

Figs. 12(f-j) showcase the relationships of the five metrics
to the baseline HV on 2-dimensional concave PFs {fp

1 +fp
2 =

1|1 ≤ p ≤ 3}. Fig. 12(g) shows that I1ϵ+ is consistent
with HV, whereas, IGD contradicts with HV in Fig. 12(j). In
particular, the correlation coefficient of I1ϵ+ to HV is 0.996,
and that of IGD to HV is −0.934. In addition, GD does
not show clear trends in Fig. 12(f) due to the high p-value
(p = 0.0846 > 0.05) under Pearson statistical test7. The other
two metrics ∆ and ∆∗ show negative correlations to HV at
−0.955,−0.978, respectively. At the same time, the curves
of ∆ and ∆∗ are above the origin when p ∈ [1.0, 1.5] in
Figs. 12(h-i). This implies that an optimal solution set with
good HV (e.g., HV(S2) > HV(S1)) is likely to also show good
∆ and ∆∗ (e.g., ∆(S2) < ∆(S1) and ∆∗(S2) < ∆∗(S1)). On
the other hand, ∆ and ∆∗ contradict with HV on {fp

1 + fp
2 =

1|1.5 ≤ p ≤ 3}, since their curves are below the origin and
they also exhibit negative correlations to HV.

Fig. 13 shows the relationships of the five metrics to the
baseline HV on 3-dimensional PFs. From Figs. 13(a, f), GD
does not exhibit stable trends. In general, I1ϵ+ is consistent
with HV, because the curve of I1ϵ+ is above the origin and it is
positively correlated to HV in most cases, when p ∈ [0.8, 3.0].
In addition, the metric ∆ in Fig. 13(c) shows a negative
correlation to HV on the 3-dimensional convex PFs, whereas,
it is positively correlated to HV on the 3-dimensional concave
PFs (Fig. 13(h)). On the other hand, metrics ∆∗ and IGD share
similar trends. Both ∆∗ and IGD are consistent with HV on the
3-dimensional convex PFs, except for p ∈ [0.3, 0.5], whereas,
they contradict with HV on {fp

1 + fp
2 + fp

3 = 1|1.5 ≤ p ≤ 3}.

7If p < 0.05, the correlation of two metrics is significant with 95%
confidence level. Otherwise, the correlation of two metrics is insignificant.
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Fig. 14. The relationships of five metrics (GD, I1ϵ+, ∆, ∆∗ and IGD) to the baseline HV on 4-dimensional convex PFs (a-e) and concave PFs (f-j). The
I1ϵ+ and IGD are consistent with HV on 4-dimensional convex PFs, whereas, ∆∗ and IGD contradict with HV on 4-dimensional concave PFs.

Fig. 14 summarizes the relationships of the five metrics to
HV on 4-dimensional PFs. From Figs. 14(a, f), GD once again
does not exhibit clear relationships to HV. On the other hand,
in Figs. 14(b, g), I1ϵ+ is consistent with HV in most cases,
when p ∈ [0.7, 3.0]. Further, metric ∆ displays contradiction
with HV on the 4-dimensional convex PFs (Fig. 14(c)), where-
as, it is consistent with HV on the 4-dimensional concave PFs
(Fig. 14(h)). In Figs. 14(d, i), metric ∆∗ displays negative
correlations to HV. Last but not least, Figs. 14(e, j) indicate
that IGD is consistent with HV on the 4-dimensional convex
PFs, except for p ∈ [0.3, 0.6], whereas, it contradicts with HV
on {fp

1 + fp
2 + fp

3 + fp
4 = 1|1.0 ≤ p ≤ 3}.

From our studies on the optimal solution sets (S1 and S2)
on 2, 3, 4-dimensional PFs, we summarize the characteristics
and relationships of the six representative metrics (GD, I1ϵ+,
∆, ∆∗, IGD and HV) considered in what follows.

• HV, which gives the convergence and diversity perfor-
mance on a single scale, is identified as one of the most
important metric to consider in MOO. Meanwhile, HV
also requires little prior knowledge relative to the other
five metrics. In particular, the comparison set of HV
and other five metrics are reference set R and PF (P ),
respectively. It is easy to construct R but hard to generate
P . The reasons are that constructing P requires the
geometrical characteristics of the true PFs and |R| ≪ |P |
(e.g., |R| = 1, |P | = 10, 001 for 2-dimensional PFs in
Section V-A).

• The metric GD is solely designed for measuring solution
set convergence. Hence, it does not provide diversity
information.

• The metric I1ϵ+ is consistent with HV. Although I1ϵ+
belongs to the family of convergence metrics, it can
measure diversity when P approximates the true PFs
accurately.

• The metric ∆ works well for measuring diversity on bi-
objective PFs, but it is not suitable for high dimensional
PFs (m ≥ 3). The metric ∆∗ is an extension of ∆ to deal
with different forms of PFs.

• The metric IGD is consistent with HV on convex PFs. On
concave PFs, in some special case {fp

1 + fp
2 = 1, fp

1 +
fp
2 + fp

3 = 1, fp
1 + fp

2 + fp
3 + fp

4 = 1|1.5 ≤ p ≤ 3}, the
metric IGD contradicts with HV.

G. Discussion of MOO Metrics
In this section, we present a discussion which we hope

would serve as a guide on the appropriate use of MOO metrics.
In particular, we summarize the three key points as follows:

1) As an important performance criterion in MOO, capacity
is commonly used as the prerequisite ahead of the other
criteria, when one attempts to measure the quality of optimal
solution sets [4, 5]. The reasons being that all the other criteria
would become statistical insignificant if the capacity measure,
for example, the number of non-dominated solutions in any
two optimal sets for comparison, differs or is too small in
size. Hence, capacity metric serves as the paramount criterion
for assessing multiobjective search algorithms.

2) On the convex PFs, two metrics, I1ϵ+ and IGD, have
shown high consistencies to metric HV (Section V-F). This
indicates that these three metrics, i.e., I1ϵ+, IGD and HV, can
be jointly used to assess solution sets optimality on the convex
PFs [4, 5]. In particular, IGD or HV gives the convergence
and diversity information of solution sets on a single scale. In
general, IGD is less costly to compute than HV, especially for
the high dimensional PFs. However, as shown in Section V-A,
the comparison set P of IGD can be more difficult to construct
than the reference set R in HV. On the other hand, when
interests are solely on the convergence quality of the optimal
solution set, then, I1ϵ+ can be adopted independently.

3) On the concave PFs, it is worth noting that only one
metric I1ϵ+ is found to be consistent with HV. As shown in
Section V-F, IGD exhibit contradictions to HV. This indicates
that any attempts to report the IGD measures jointly with HV
on concave PFs may not make good sense. From here, the
present study thus highlights the important need for the design
of new diversity metrics that are consistent and appropriate for
use jointly with HV, when dealing with concave PFs.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have classified the performance metrics of
Multiobjective Optimization (MOO) into four groups, name-
ly Capacity, Convergence, Diversity, Convergence–Diversity.
With the presence of extreme cases, the inadequacies of some
MOO metrics are analysed. Then, the relationship among
representative metrics are investigated via empirical studies.
In particular, metrics I1ϵ+ and IGD are found to be consistent
with HV on convex Pareto fronts (PFs). When the PFs are
concave, however, IGD displayed contradictions to HV. As
such, there is thus room for the introduction of new MOO
metrics that are appropriate for use with HV on concave PFs.
Another future work is to investigate the relationship of MOO
metrics on PFs of different geometrical characteristics, such
as discrete, many-objective, asymmetric PFs, etc.

The Matlab source codes of Pareto-adaptive weight vectors
(paλ) [16], and the relationships among the six metrics (GD,
I1ϵ+, ∆, ∆∗, IGD and HV) are at http://www.ntu.edu.sg/home/
asysong/MOPmetrics-matlab.rar.
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