
PROJECT SCHEDULING IN DISTRIBUTED
AND DYNAMIC ENVIRONMENTS

WEN SONG

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

2018

Project Scheduling in Distributed and

Dynamic Environments

Wen Song

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

2018

Abstract

Project scheduling is an important task of modern business management. Classic

project scheduling approaches assume a centralized and deterministic environment.

However, today’s manufacturing and management have entered into a more open

and dynamic environment, which jeopardizes the effectiveness of traditional ap-

proaches. Two important practical factors that cause this issue are: 1) distributed

management, where multiple decision makers with conflicting individual objectives

are involved in the scheduling process, and 2) execution uncertainty, where projects

are executed in dynamic environments containing various uncertainty sources. It is

non-trivial to incorporate these practical factors since they make the project schedul-

ing problems, which are already computationally intractable, even harder to solve.

In this thesis, we provide effective approaches to address the two above-mentioned

practical factors.

We first study the scheduling problem in a distributed multi-project setting,

where each project is controlled by an autonomous project agent. Classic central-

ized approaches cannot be applied in such a distributed multi-agent environment.

However, existing distributed approaches encounter difficulties in dealing with large

problems while preserving information privacy of project agents. We design a novel

distributed approach based on multi-unit combinatorial auction, which does not re-

quire sensitive project information. To handle the hard valuation problem of the

participators, we introduce the capacity query to efficiently elicit useful informa-

tion from the project agents. We then design two allocation strategies that work

with the capacity query to find good schedules, including a greedy strategy and a

branch-and-bound heuristic. Empirical results indicate that the two strategies can

find good solutions with higher quality than state-of-the-art distributed approaches,

and scale well to large problem instances.

We next study the risk-neutral proactive scheduling problem with uncertain ac-

tivity durations. More specifically, we aim at finding an optimal project execution

strategy that minimizes the expected makespan. Traditional approaches assume

that the uncertain duration of an activity can be modeled as a random variable

that does not depend on its start time. However, this can be violated in many real-

world scenarios. In this work, we generalize the traditional time-independent model

to support the time-dependent workability uncertainty, which has not been stud-

i

ied before and does make the activity duration time-dependent. Since the resultant

discrete stochastic optimization problem is hard to solve, we propose a principled ap-

proximate approach based on Sample Average Approximation (SAA). By exploiting

interesting problem properties, we design two efficient branch-and-bound algorithms

to optimally solve the SAA problem. The effectiveness of our approach is verified by

the experiments on multiple uncertainty models, including a real-world workability

uncertainty distribution.

Finally, we study the risk-aware proactive scheduling problem, which tries to

optimize the robust makespan instead of expected makespan. Robust makespan

is considered to be more practical in real-world applications, since it constraints

the actual makespan within certain (probabilistic) risk level. State-of-the-art ap-

proaches for this problem are based on probabilistic constrained optimization, which

leads to complex Mixed Integer Linear Programs that must be heuristically approx-

imated. Instead, we propose a principled approximate approach by optimizing the

robust makespan via Conditional Value-at-Risk (CVaR). However, existing CVaR

optimization methods assume linear solution spaces, and hence are not applicable

to our problem due to the combinatorial nature of resource-constrained scheduling.

Hence, we design a general branch-and-bound framework for CVaR optimization in

combinatorial spaces. We then instantiate this framework by adapting the branch-

and-bound algorithms designed in our previous work to solve the risk-aware proac-

tive problem. Results confirm that our approach scales well to a large number of

samples, and can produce much better solutions than state-of-the-art approaches.

To sum up, we have proposed a series of approaches to cope with challenging

project scheduling problems with practical factors including distributed management

and execution uncertainty. These contributions can also shed light on solving more

complex and practical scheduling problems.

ii

Acknowledgment

First of all, I would like to thank my advisor, Prof. Jie Zhang, who has been

continuously kind, patient and supportive to me. I thank him for introducing me

to the exciting field of Artificial Intelligence, motivating me to perfect my research

ideas, and teaching me how to become a qualified researcher. I cannot succeed

in pursuing my doctoral degree without his guidance. I also want to thank my

collaborators, Dr. Donghun Kang and Dr. Hui Xi, for all their valuable efforts in

discussing research, sharing experience, and revising papers.

During the last four years, I have been fortunate to work in a wonderful research

lab. I would like to thank my colleagues and friends in Rolls-Royce@NTU Corp Lab

and School of Computer Science and Engineering. They include Zehong Hu, Pengfei

Wei, Sa Gao, Yukun Ma, Guanghao Zhang, Zhiguang Cao, Zhu Sun, Dongxia Wang,

Zhenchao Bing, Quanchi Weng, and Shuo Chen.

Outside the academic world, I sincerely thank my friends Xiaodong Song, Hao

Cong, Mao Mao, and Lu Ren. They are always available, whenever I need their

help or want to share my joy. Without their support, I cannot survive in the long

journey of Ph.D. study.

Finally, I give the deepest gratitude to my parents. Their endless love and

unconditional support to me is simply beyond words.

iii

iv

Contents

Abstract i

Acknowledgment iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Distributed Multi-Project Scheduling 3

1.2 Risk-neutral Proactive Scheduling . 6

1.3 Risk-aware Proactive Scheduling . 8

1.4 Thesis Organization . 10

2 Literature Review 11

2.1 Traditional Methods for RCPSP . 11

2.2 Distributed Approaches for DRCMPSP 12

2.2.1 Combinatorial Auction based Approaches 13

2.2.2 Other Approaches . 14

2.2.3 Preference Elicitation . 15

2.3 Techniques for Proactive Scheduling 16

2.4 Summary . 19

3 Distributed Multi-Project Scheduling based on Multi-Unit Combi-

natorial Auction 21

3.1 Problem Statement . 22

3.2 Multi-Unit Combinatorial Auction Formulation of DRCMPSP 25

3.3 Solving the DRCMPSP Auction using Capacity Queries 31

v

3.3.1 Capacity Query . 32

3.3.2 Greedy Allocation . 34

3.3.3 Improving the Greedy Allocation Using Branch-and-Bound . . 39

3.4 Empirical Evaluation . 43

3.4.1 Results of the Greedy Allocation Strategy 43

3.4.1.1 Experiments on the First Problem Set 45

3.4.1.2 Experiments on the Second Problem Set 49

3.4.2 Results of the Branch-and-bound Strategy 51

3.5 Conclusions . 53

4 Risk-Neutral Proactive Scheduling with Time-dependent Worka-

bility Uncertainty 55

4.1 Preliminaries: POS and AON-Flow Network 56

4.2 Problem Formulation . 60

4.2.1 The Model of Uncertainty . 60

4.2.2 The Proactive Problem . 62

4.3 Sample Average Approximation . 63

4.4 The Flow-based Algorithm . 67

4.4.1 Relations between POS and AON-flow Network 67

4.4.2 Branching Scheme . 69

4.4.3 Finding and Choosing Feasible Links 72

4.4.4 Lower Bounds . 74

4.4.5 Branching Heuristics . 76

4.5 The MCS-based Algorithm . 76

4.5.1 Detecting and Resolving Minimal Critical Sets 77

4.5.2 Branching Scheme . 78

4.5.3 Constraint Propagation . 81

4.5.4 Heuristics for CS Reduction and Resolver Selection 82

4.5.5 Lower Bound . 83

4.6 Experimental Results . 83

4.6.1 Experiment Setting . 84

4.6.2 Results on Models with Both Components 86

4.6.2.1 Impact of Sample Size 87

4.6.2.2 Impact of Algorithm Configurations 88

vi

4.6.2.3 Impact of Problem Parameters 91

4.6.2.4 Comparison with other Approaches 92

4.6.3 Results on Models with Component X 94

4.6.4 Results on Models with Component Y 94

4.7 Conclusions . 96

5 Risk-Aware Proactive Scheduling via Conditional Value-at-Risk 99

5.1 Preliminaries: Minimizing VaR and CVaR 100

5.2 CVaR based Proactive Scheduling . 101

5.3 A Branch-and-bound Framework for Combinatorial CVaR Minimization103

5.4 The Risk-Aware Proactive Algorithms 104

5.5 Experimental Results . 105

5.5.1 Analysis of Our Algorithm . 106

5.5.1.1 Impact of sample size 106

5.5.1.2 Impact of risk parameter 108

5.5.2 Comparison with other Approaches 109

5.5.3 Results on Time-dependent Workability Uncertainty 111

5.6 Conclusions . 113

6 Conclusions and Future Work 115

6.1 Conclusion . 115

6.2 Future Work . 118

6.2.1 Distributed Resource Allocation and Scheduling under Uncer-

tainty . 118

6.2.2 Designing Stronger Sample Bounding Functions 118

6.2.3 Incorporating General Temporal Relations 119

Bibliography 121

Publications 131

Appendix A Fast Bid Generation Algorithm 133

vii

viii

List of Tables

3.1 Comparison of Average APD Values with Other Approaches 44

3.2 Average Utilization Factor of Each Problem Subset 46

3.3 Comparison with DMAS/EM . 47

3.4 Average APD Values of Greedy Allocation with Different Deliberation

Time . 49

3.5 Number of Cases Solved by Confessore’s Approach for Each Subset

of the Second Problem Set . 50

3.6 Comparison of Average APD Values on the Second Problem Set . . . 51

3.7 Average APD Values of the Branch-and-bound Strategy with Differ-

ent Qnv . 52

4.1 Monthly POW Data . 85

4.2 Comparison of Branching Heuristics 89

4.3 Effectiveness of Constraint Propagation in BnB-MCS 90

4.4 Comparison of the First Feasible Solutions 91

4.5 Quality of Solutions on Models with Both Components - Set1 93

4.6 Quality of Solutions on Models with Both Components - Set2 94

4.7 Quality of Solutions on Models with Component X - Set1 95

4.8 Quality of Solutions on Models with Component X - Set2 95

4.9 Quality of Solutions on Models with Component Y - Set1 97

4.10 Quality of Solutions on Models with Component Y - Set2 97

5.1 Results of BnB-Flow for Different Risk Levels 107

5.2 Results of BnB-MCS for Different Risk Levels 107

5.3 Number of Violations for Different ε Values 109

5.4 Summary of Results . 109

ix

5.5 Comparison of α-RM values for Exp on different instance groups . . . 111

5.6 Comparison of Expected and Robust Makespan for Time-dependent

Workability Uncertainty . 112

x

List of Figures

3.1 An Example of Complementarity and Substitutability 28

3.2 Comparison of Average APD . 46

3.3 Execution Time on MPSPLIB Cases: (left) fix N∗, and (right) fix M 47

3.4 Scalability Comparison on the Second Problem Set 50

3.5 Improvement and Execution Time of the Branch-and-bound Strategy 53

4.1 An Example of the AON Network . 56

4.2 A Feasible Schedule . 57

4.3 An Example of Schedule Disruption 57

4.4 An Example of POS . 58

4.5 The Schedule Obtained by Executing the POS 58

4.6 An Example of AON-flow Network 59

4.7 An Example of Network Transformation (left: original DAG GV ;

right: transformed network G′V , where integers beside edges repre-

sent capacities) . 68

4.8 The Trend of Monthly POW . 85

4.9 Impact of Sample Size . 88

4.10 Impact of Problem Parameters on Algorithm Performance 92

5.1 Results for Sample Size Test . 107

5.2 PoF Distributions of BnB-MCS for Different Risk Levels 108

5.3 PoF Distributions for Exp . 111

5.4 Percentage of Time-out Instances . 112

5.5 PoF Distribution for Time-dependent Workability Uncertainty 113

xi

xii

Chapter 1

Introduction

Most modern business corporations need to deal with various scheduling problems

on a daily basis, to arrange, control and optimize their business processes (Schwindt

et al., 2015). On one hand, the quality of schedules has direct impact on the com-

petitiveness of the business organizations on the market (Kang et al., 2017). On

the other hand, however, scheduling problems (e.g. job shop scheduling, project

scheduling) are generally hard combinatorial optimization problems that are com-

putationally intractable. Motivated by the scientific and business values, scheduling

problems have been widely studied by researchers from the communities of both Op-

erations Research and Artificial Intelligence in the past few decades, and a variety

of techniques (e.g. mathematical programming, constraint optimization, heuristic

methods) have been successfully developed.

In this thesis, we focus on the Resource-Constrained Project Scheduling Problem

(RCPSP), which is a very general model that can be applied to many business appli-

cations, such as manufacturing process, software development, workflow scheduling

for cloud computing (Brucker and Knust, 2012). This problem concerns with de-

termining the start times of a set of resource-requiring activities to optimize certain

performance criterion (e.g. makespan), such that the resource capacities and tem-

poral constraints between activities are respected. RCPSP is known to be NP-hard

(Blazewicz et al., 1983).

Traditionally, RCPSP is often assumed to be a centralized and deterministic

problem, where only one decision maker exists and all information is known in

advance. However, with the rapid growth of the scale and complexity, business

processes in today’s organizations have become more open and dynamic which in-

1

validate classic approaches developed under those idealized assumptions. Two major

practical factors that need to be considered in real-world applications are:

• Distributed management. It is quite common for business firms to conduct

intra- and inter-firm collaborations, for the purpose of improving efficiency

and reducing cost (Walsh and Wellman, 2003). This trend inevitably brings

the traditional centralized scheduling into a distributed environment, involv-

ing multiple decision makers with different individual objectives. In addition,

these decision makers may not be willing to share all their private information,

since they may be competitors in the same marketplace. Traditional central-

ized approaches are not capable of dealing with these new features. Hence,

distributed approaches that consider both distributed decision making and

information privacy are needed.

• Execution uncertainty. The execution of activities in real-world projects

is often sensitive to various sources of uncertainty (e.g. transportation time,

manpower availability, weather changes). Schedules obtained by solving deter-

ministic problems are much less useful under execution uncertainty, mainly for

two reasons. Firstly, optimal solutions obtained by optimizing the determinis-

tic performance criterion (e.g. makespan) can hardly be optimal in the actual

execution. Secondly, feasible deterministic schedules could quickly become in-

feasible during actual execution. Hence, it is very important to consider the

possible uncertainties in modeling and solving the scheduling problems.

Since RCPSP itself is already difficult to solve, incorporation of the above men-

tioned practical factors is very challenging, both in modeling the problems (e.g.

how to represent decision makers’ preferences, how to model different uncertainty

sources) and designing efficient algorithms (e.g. how to address the complexity in

preference computation, how to tackle the stochasticity). In this thesis, we ad-

dress these practical problems by contributing novel algorithms that are carefully

designed by exploiting important and interesting properties of the scheduling prob-

lems. Specifically, for distributed management, we study the problem of distributed

multi-project scheduling. For execution uncertainty, we study two problems in-

cluding risk-neutral and risk-aware proactive scheduling under uncertain activity

2

durations. In the following sections, we give detail introduction on these problems

and our contributions.

1.1 Distributed Multi-Project Scheduling

Multi-project scheduling is common in project management (Xi et al., 2015). When

all projects are centrally controlled by one decision maker, the (resource-constrained)

multi-project scheduling problem can be readily reduced to RCPSP by leveling the

multi-project structure to create a “super” project with all activities being incor-

porated (Hartmann and Briskorn, 2010). Then, algorithms for RCPSP can be ap-

plied on the super project to solve the multi-project scheduling problem. However,

when the assumption of centralized decision making does not hold, the reduction to

RCPSP is not an ideal solution since it requires full control and complete informa-

tion of all projects. In practice, distributed management in multi-project scheduling

is not rare. This problem, formally termed as the Distributed Resource-Constrained

Multi-Project Scheduling Problem (DRCMPSP) (Confessore et al., 2007), has re-

ceived much attention recently. In DRCMPSP, projects are controlled by different

autonomous decision makers. To achieve individual objectives, these decision makers

usually need to compete for some shared global resources with limited capacities.

Many real-world problems in manufacturing and service operations with complex

product/supply structures have been considered as DRCMPSP. In (Kutanoglu and

Wu, 1999), an intra-firm scenario is given where different product managers in an

electronics manufacturing company must share and compete for shared production

resources (e.g. automated production lines) on a regular basis. To satisfy their own

customers’ requirements, these managers need to deal with uniquely different sets

of activities and constraints (e.g. lead time constraint, customer-specific processing

requirements). Regarding inter-firm scenarios, a typical example can be found in the

Aero Repair and Overhaul industry (Stranjak et al., 2008). In this example, different

fleet managers dedicated to managing the aero engines of an airline, compete with

other fleet managers for several overhaul bases that have limited repair capacities.

These managers need to schedule the overhaul base visit time for each controlled

engine, to maximize the operating revenue of each fleet. Similar inter-firm cases can

also be found in the airport ground handling service scheduling (Mao et al., 2009)

3

and supply chain scheduling (Lau et al., 2006). In a distributed environment, the

approach that respects the privacy of self-interested decision makers is preferable as

stated in (Lau et al., 2006; Stranjak et al., 2008; Vytelingum et al., 2009), because

decision makers may be potential competitors in the same marketplace.

Due to its distributed nature, DRCMPSP is usually modeled as a mediated multi-

agent system, where each project is represented by a Project Agent (PA) and all PAs

are coordinated by a Mediator Agent (MA). The core problem in DRCMPSP is how

to allocate the shared global resources to each PA without private project informa-

tion. (Multi-unit) Combinatorial auction is an ideal choice for modeling this kind of

distributed resource allocation problems. Naturally, when modeling DRCMPSP as

an auction, the PAs are the bidders which compete for scarce resources controlled

by the MA, which is an auctioneer. In such an auction model of DRCMPSP, the

auctioneer requires only high-level valuation from the bidders on the scarce shared

resources to make allocation decisions, which can satisfy the privacy requirement

of the decision makers (Wellman et al., 2001). Also, it allows the bidders to ex-

press complex preferences on combinations of items, which are called bundles in

single-unit scenarios and multisets in multi-unit scenarios.

To date, however, existing combinatorial auction based approaches for DR-

CMPSP suffer from several drawbacks (will be detailed in Section 2.2). Firstly,

the DRCMPSP models studied are rather simple (e.g. single-unit resources, small

activity sets). Secondly, though the PAs are allowed to bid for bundles of items, there

is no formal formulation of the DRCMPSP as a combinatorial auction (except (Well-

man et al., 2001) which studies a much simpler problem than ours). Thirdly, these

approaches underperform both in solution quality and computational efficiency, and

cannot scale to large practical problem cases with thousands of activities from tens

of projects.

Against this background, in (Song et al., 2017a), we design a novel combinatorial

auction based approach for solving complex DRCMPSP with multi-unit resources

and complex activity precedence constraints (preliminary conference version is (Song

et al., 2016)). Following previous research on this topic, we assume the bidders are

willing to reveal their true valuations on different resource allocation decisions, i.e.

currently we do not handle the incentive compatibility issue.1 We first formulate

1Note that privacy and truthfulness are two separate issues. Even though an agent is willing

4

DRCMPSP as a multi-unit combinatorial auction problem, and formally show that

the social welfare maximizing allocation of the resulting auction minimizes the total

delay cost of the DRCMPSP, when the revenue of each project is sufficiently high.

Then, to resolve the hard problem for the bidders in generating preferences (i.e.

evaluation), we introduce the capacity query, which elicits the (approximate) valua-

tion of a bidder by asking it to solve a bidding problem with certain item capacity

profile. We show that the bidding problem can be solved by solving a RCPSP with

time-varying resource capacities. Finally, we adopt two strategies introduced in (Go-

nen and Lehmann, 2000) that work with capacity queries to find good allocations

for the DRCMPSP auctions.

The first strategy maintains a series of query asking and greedy resource alloca-

tion processes, where one bidder will be granted the required resources after each

round of query asking and will not be asked again. The granted bidder is chosen

according to the average price criterion (Gonen and Lehmann, 2000). We show that

when the fixed unit pricing scheme is used with the greedy allocation strategy, a

bidder will only bid for a special type of multisets which represents compact re-

source utilization profiles of its project. We further show that when the bidding

problems can be solved optimally, the worst-case approximation guarantee for the

winner determination problem proved in (Gonen and Lehmann, 2000) still holds

in the DRCMPSP auctions (under reasonable assumption that the total required

resource units by each bidder is sufficiently large).

The greedy allocation strategy can rapidly find a feasible allocation for the DR-

CMPSP auction, where all bidders are allocated in a specific sequence decided by

the average price. However, some other sequences that can result in better social

welfare may be ignored. The second strategy employs a branch-and-bound pro-

cess which aims at finding a better sequence of allocating the bidders (Gonen and

Lehmann, 2000). This strategy can effectively improve the results of the greedy al-

location, though it requires higher computational effort for the bidders. In addition,

we employ the VCG-based payment scheme proposed in (Nisan and Ronen, 2007)

to guarantee that backtracking will not decrease bidders’ utilities.

to convey its valuations truthfully, it may still not be willing to disclose sensitive information (e.g.

activity durations and resource requirements, local resource capacities) (Fink and Homberger,

2015).

5

We conduct extensive experiments to evaluate the performance of our approach

on benchmarking DRCMPSP instances with multi-unit resources (obtained from the

public benchmark MPSPLIB) and single-unit resource (generated from MPSPLIB).

Results show that the two strategies can generate solutions with higher quality

than state-of-the-art distributed approaches, and can scale to large problems with

reasonable computational time.

1.2 Risk-neutral Proactive Scheduling

Many of the real-world applications of RCPSP involve considerable amounts of un-

certainty sources. For example, activities may take more or less time to finish than

expected, material transportation may be delayed, resource availability may vary

over time, new activities may have to be inserted, etc. In such kind of dynamic

situation, the schedules obtained by solving the deterministic RCPSP instances

without considering the uncertainty information is not suitable for executing the

projects. Firstly, uncertain durations could disrupt the deterministic schedules quite

frequently, which requires intensive efforts to restore the schedule feasibility. Sec-

ondly, the actual project schedules can deviate much from the original deterministic

ones, leading to significant degradation in the quality of the original schedules.

Hence, scheduling models and approaches incorporating uncertainties are of great

practical values (Herroelen and Leus, 2005).

In Song et al. (2017b), we address the problem of RCPSP with uncertain ac-

tivity durations. According to the taxonomy in (Bidot et al., 2009), approaches

for scheduling in stochastic environment can be classified into three groups, includ-

ing (a) proactive approaches which generate baseline solutions that make complete

decisions (e.g. start-time schedules) or partial decisions (e.g. flexible policies) be-

fore execution, (b) revision approaches which modify the baseline solutions during

execution, and (c) progressive approaches which make all decisions in an online

fashion and generate no baseline solutions. Compared with the other two alter-

natives, proactive approaches tend to produce solutions with higher quality and

robustness (Bidot et al., 2009). Moreover, decisions made in the baseline solutions

(e.g. start times, resource allocation commitments) can provide important support

and visibility for better preparing and coordinating the actual execution (Lamas

6

and Demeulemeester, 2016).

Till now, a number of proactive approaches for RCPSP with stochastic durations

have been successfully developed in the literature. Most of these approaches are

designed for the model of stochastic RCPSP (Creemers, 2015), where the activity

duration is assumed to be a random variable having no relation to its scheduled

start time. In reality, however, this assumption could be violated quite often since

it cannot reflect all the sources of uncertainty (Bruni et al., 2015). In fact, time-

dependent uncertainties exist widely in real-world situations, for instance the daily

traffic patterns of the transportation networks, and the seasonality of the weather

conditions. For the scheduling problem, we give an motivating example as follows.

Consider a quality assurance project with a series of product testing activities, each

of which can be executed (i.e. workable) only when certain weather conditions

(e.g. temperature, humidity, wind speed, and so on) are satisfied. Furthermore, an

activity needs to secure enough workable days to finish successfully. In this case,

the activity duration uncertainty comes from the uncertain workability of each time

slot (day). Taking seasonality into account, the duration uncertainty of an activity

should depend on its start time (e.g. July or December), which contradicts the

assumption of time-independence in previous research.

To resolve this issue, in (Song et al., 2017b), we relax the time-independent

assumption by generalizing the traditional stochastic RCPSP model to incorporate

the time-dependent workability uncertainty (Song et al., 2017c), which indeed causes

the random durations to be time-dependent. We adopt Partial-order Schedules

(POS) (Policella et al., 2004) as proactive solutions, which is a type of flexible

executing policy for RCPSP. Compared to start-time schedules, POS is more flexible

in handling unforeseen events in the execution time (Fu et al., 2012). Based on the

generalized uncertainty model, we first study a risk-neutral problem, i.e. finding an

optimal POS that minimizes the expected makespan. We formulate the proactive

scheduling problem as a discrete stochastic optimization problem. However, it is

not trivial to find the optimal POS, not only due to the intractability of RCPSP.

Accounting for stochastic duration is more challenging, since even evaluating a given

solution is intractable. It has been shown that for the basic stochastic RCPSP model

without resource constraints and time-dependent workability uncertainty, it is #P-

complete to compute the expected makespan (Hagstrom, 1988).

7

In (Song et al., 2017b), we propose to approximate the proactive scheduling

problem based on Sample Average Approximation (SAA) (Kleywegt et al., 2002),

which is a principled approximation scheme for solving hard discrete stochastic opti-

mization problems, with the proven ability to converge to the optimal solution. Our

approach first generates a set of samples from the probability distributions that de-

scribing the uncertain durations, then optimally solves the resulting SAA problem.

As we will show later, the SAA problem is NP-hard due to the combinatorial nature

of RCPSP. Therefore, we design two branch-and-bound algorithms that search for

the optimal solution of the SAA problem from two aspects. The first algorithm

uses a constructive approach to link the activities one by one to a partial solution

using feasible resource flows. The second algorithm iteratively detects and resolves

resource conflicts between activities by adding precedence constraints. We empiri-

cally compare the solutions produced by our approaches and state-of-the-art POS

generation approaches on uncertainty distributions from existing works and real-

world dataset, and the results confirm that our approach can generate high-quality

solutions.

1.3 Risk-aware Proactive Scheduling

For proactive scheduling problems, though expected makespan is the most intuitive

and commonly adopted criterion for evaluating different proactive solutions, it can-

not reflect the risk of the outcome obtained from executing a proactive solution.

This is a serious limitation when risk is of great importance to the decision maker

(e.g. managing projects for capital-intensive industries), since there could be a high

chance that the actual makespan is much larger than the expected value (Beck and

Wilson, 2007). In the literature, several works (Beck and Wilson, 2007; Fu et al.,

2012; Varakantham et al., 2016; Fu et al., 2016) propose to conduct risk-aware proac-

tive scheduling by minimizing the robust makespan. Essentially, robust makespan

focuses on controlling the probability that the actual makespan exceeds a threshold

value within a predefined risk parameter α ∈ (0, 1), therefore this objective is also

referred to as α-robust makespan.

Similar to the risk-neutral problem, existing risk-aware approaches often resort

to sampling-based techniques to mitigate the complexity brought by the stochastic

8

activity durations. For example, approaches in (Beck and Wilson, 2007) and (Fu

et al., 2012) use sampling and simulation to evaluate solutions. State-of-the-art ap-

proaches in (Varakantham et al., 2016; Fu et al., 2016) consider α-robust makespan

minimization as a probabilistic constrained problem, which can be approximated by

SAA with the guarantee of converging to the optimal solution (Luedtke and Ahmed,

2008). However, these approaches result in complex Mixed Integer Linear Programs

(MILP) that are computationally prohibitive even with sophisticated commercial

solvers. To scale up the MILPs, (Varakantham et al., 2016; Fu et al., 2016) propose

a summarization heuristic to aggregate multiple samples into a representative one,

and then solve a deterministic RCPSP built on the representative sample to obtain

the proactive solution. However, this heuristic compromises the convergence guar-

antee, and decreases solution quality. In addition, the MILP formulations and the

summarization heuristic is not applicable to the generalized duration model with

the time-dependent workability uncertainty.

In (Song et al., 2018), we propose to optimize the α-robust makespan via CVaR, a

popular measure in risk-sensitive decision making problems (Rockafellar and Urya-

sev, 2002). Our approach scales up to hundreds of samples without the need of

sample summarization, hence can provide better robust makespan and more precise

control of the risk parameter α. Based on the expectation form of CVaR minimiza-

tion, we approximate the proactive scheduling problem using SAA, which results in

an NP-hard combinatorial problem similar to the risk-neutral setting. This also ex-

cludes the traditional CVaR minimization approaches that assume the decision space

is linear (Hong et al., 2014). Thus, we design a general branch-and-bound frame-

work for CVaR minimization in combinatorial space. Based on this framework, we

modify the two algorithms designed for minimizing the expected makespan to solve

the risk-neutral problem. These algorithms also support the generalized uncertain

duration model, which cannot be solved by current risk-aware proactive schedul-

ing approaches. Our numerical results show that our algorithms scale well to large

sample sizes, and can produce solutions with significantly lower α-robust makespan

than state-of-the-art approaches.

9

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we review existing works that are related to the topics studied in

the thesis, including approaches for basic RCPSP, DRCMPSP, and proactive

scheduling problems.

• In Chapter 3, we present our approach to solve the distributed multi-project

scheduling problem. We describe our combinatorial auction formulation of the

distributed scheduling problem in great detail, and provide theoretical analysis

on the correctness of the formulation. We then present our approaches to

solve the combinatorial auction problem, along with experimental results on

benchmarks instances.

• In Chapter 4, we describe our work on solving risk-neutral proactive schedul-

ing problems. We first generalize the traditional uncertain duration model

to incorporate the time-dependent workability uncertainty, and formulate our

proactive problem on this generalized model. We then show how to approxi-

mate the proactive problem using SAA, and design two efficient branch-and-

bound algorithms to solve the SAA problem optimally. Experimental results

on multiple uncertainty models are provided to validate the effectiveness of

our algorithms.

• In Chapter 5, we study the proactive scheduling problem in the risk-aware

setting. We briefly describe some important concepts regarding risk-aware

decision making, and then formulate our CVaR based proactive problem. Next,

we present our general framework for combinatorial CVaR optimization, and

explain how to instantiate this framework to solve the proactive scheduling

problem. Empirical analysis and comparison with benchmarking algorithms

are provided to confirm the advantages of our algorithms.

• In Chapter 6, we conclude the thesis by summarizing our contributions, and

pointing out promising directions for future studies.

10

Chapter 2

Literature Review

In this chapter, we review existing works that are related to our research topics. We

first give a brief description on approaches for solving the basic RCPSP in Section

2.1. Then in Sections 2.2 and 2.3, we provide detailed reviews of approaches for

DRCMPSP and proactive scheduling, respectively.

2.1 Traditional Methods for RCPSP

In the literature, a large volume of works have been done in solving basic RCPSP,

which is a centralized and deterministic problem. In this section, we give a brief

overview of these approaches. Instead of providing a comprehensive survey, our

aim here is to outline typical methodologies for tackling this hard combinatorial

optimization problem, which can serve as the basic foundation for solving more

sophisticated and practical problems.

In general, all approaches for solving RCPSP can be classified into two groups,

i.e. exact approaches that have proven ability to find the optimal solution, and

heuristic approaches that trade off the solution optimality with computational ef-

forts. Among the exact approaches, a large number of them focus on developing

different Mixed Integer Linear Programming (MILP) models of RCPSP, which can

then be solved by standard solvers (e.g. CPLEX and Gurobi). Several types of MILP

formulations are available, such as discrete-time formulations (Pritsker et al., 1969),

continuous-time formulations (Artigues et al., 2003), and event-based formulations

(Koné et al., 2011). However, these MILP models are not scalable and only work

on small instances (Brucker and Knust, 2012). On the other hand, another type of

11

exact approaches are designed based on constraint programming (Rossi et al., 2006),

which combines backtracking search and constraint propagation techniques to find

the optimal schedule. Datails about typical constraint propagation techniques for

RCPSP such as timetabling, edge-finding, energetic reasoning, and lazy clause gen-

eration can be found in (Baptiste et al., 2012; Laborie, 2003; Schutt et al., 2013).

Compared with MILP based approaches, constraint programming based approaches

often exhibit significantly better computation efficiency, due to the active explo-

ration of constraints for reducing search spaces. Though exact approaches require

exponential time in the worst case to find the optimal solution, most of them are

anytime algorithms which can be terminated early with high-quality solutions.

Considerable amounts of heuristic approaches for RCPSP are also available in the

literature. Two most commonly used approaches are schedule generation schemes

(SGS) with priority rules, and metaheuristic approaches. The basic idea of SGS is

to schedule all activities based on a sequence determined by certain priority rules.

Due to the simplicity and reasonable solution quality, SGS has been widely used

in designing heuristic algorithms for solving RCPSP (Kolisch, 1996; Browning and

Yassine, 2010; de Nijs and Klos, 2014). Metaheuristic is another class of heuris-

tic RCPSP approaches, which employ certain random components in designing the

searching algorithms. Typical metaheuristics include Tabu Search, Simulated An-

nealing, Genetic Algorithm, etc. The detailed review and empirical comparison of

different metaheuristics can be found in (Kolisch and Hartmann, 2006; Liao et al.,

2011; Van Peteghem and Vanhoucke, 2014). Though heuristic algorithms normally

require less computation time than exact algorithms, the absence of any theoretical

guarantee on solution optimality is a major drawback.

2.2 Distributed Approaches for DRCMPSP

In this section, we review existing research on DRCMPSP. Since our approach for

solving this problem is based on combinatorial auction, we review existing ap-

proaches by putting them into two categories, the combinatorial auction based

approaches in Section 2.2.1 that are built on the similar basis as ours and other

approaches in Section 2.2.2. Our approach also shares the spirit of preference elici-

tation, which aims at reducing the computational burden for an agent in evaluating

12

different allocations. Therefore we give a brief review of preference elicitation meth-

ods in Section 2.2.3.

2.2.1 Combinatorial Auction based Approaches

In the literature, combinatorial auction has been applied to solve simple distributed

scheduling problems (Kutanoglu and Wu, 1999; Wellman et al., 2001; Confessore

et al., 2007). In (Kutanoglu and Wu, 1999), the authors introduce a combinato-

rial auction based distributed scheduling framework to solve the distributed job

shop scheduling problem, a special case of DRCMPSP. This approach simulates the

Lagrangian decomposition approach of the centralized problem in a distributed man-

ner, by allowing project agents to iteratively bid for some combinations of machine

time slots. Nevertheless, this approach cannot guarantee finding feasible schedules

for all the projects through the bidding process, hence a centralized algorithm which

requires all information is needed as a post-processing step to clear the market and

generate a feasible solution.

In (Wellman et al., 2001), the authors study a simple factory scheduling model,

where a group of agents compete for the limited time slots in a common factory. Each

agent has a single activity needed to be processed, which is associated with a profit

value and a hard deadline. A combinatorial auction based protocol is studied, and

the authors give concrete theoretical results on the price equilibrium and allocation

efficiency. However, their analysis is limited to scenarios where each agent only

owns one activity, which is much simpler than the problem we studied. One major

simplification is that, the bidding agents in (Wellman et al., 2001) have no difficulty

in valuation computation, while in our case it could be intractable for a bidder to

compute the exact value on a given multiset, as will be shown in Section 3.2.

In (Confessore et al., 2007), an approach based on an iterative combinatorial

auction named iBundle (Parkes and Ungar, 2000) is proposed. iBundle has been

applied to solve problems such as multi-agent pathfinding (Amir et al., 2015) and

train scheduling (Parkes and Ungar, 2001). The desirable properties of iBundle,

including the optimality guarantee and (myopic) strategy-proofness, are based on

the assumption that all bidders can give Myopic Best-Response (MBR) to the bun-

dle prices given in each round of auction. However, when applied to DRCMPSP,

it is difficult to satisfy MBR due to the intractability of local bidding problems.

13

When approximate algorithms without optimality guarantee are used for bidding,

as in (Confessore et al., 2007), both the optimality of final solutions and strategy-

proofness are compromised. In addition, when MBR cannot be satisfied, iBundle

cannot guarantee that all bidders will be granted a bid upon termination. Finally,

iBundle could take a large number of iterations to terminate, which requires intense

computation for bidders and the auctioneer, resulting in inefficiency on large-scale

cases.

Except in (Wellman et al., 2001) which studies a much simpler problem than the

DRCMPSP model in this chapter, the relations between the solutions of DRCMPSP

and combinatorial auction have not been analyzed in the current literature. We fill

this gap in Section 3.2 by providing a combinatorial auction formulation of DR-

CMPSP, along with theoretical analysis on the relations between the allocations of

the auction and solutions of DRCMPSP. In addition, all approaches in (Kutanoglu

and Wu, 1999; Wellman et al., 2001; Confessore et al., 2007) can only be used to

schedule single-unit global resources. And, test cases are rather small with tens of

activities in total from several projects. In contrast, our approach can efficiently

handle multi-unit resources and large problem cases.

2.2.2 Other Approaches

More recently, several approaches have been proposed to solve much larger DR-

CMPSP cases with hundreds to thousands of activities from tens of projects sharing

several multi-unit global resources (Mao et al., 2009; Homberger, 2012; Adhau et al.,

2012; Zheng et al., 2014). In (Mao et al., 2009), the authors propose a market-based

approach to schedule the airport ground handling services, but the resource capac-

ities are assumed to be infinite which is hardly found in practice. In (Homberger,

2012), an evolutionary computation based negotiation approach is presented, but it

is outperformed in solution quality by a centralized approach SASP (Kurtulus and

Davis, 1982), one of the best priority-rule based multi-project scheduling algorithms.

In general, priority-rule based approaches solve multi-project scheduling problems in

a centralized fashion, hence cannot satisfy the requirement of DRCMPSP. Neverthe-

less, they are often used as benchmarks for evaluating the performance of DRCMPSP

approaches, since some evaluation criteria studied in DRCMPSP, such as average

project delay (see Section 3.1), also exist in centralized multi-project scheduling.

14

In (Adhau et al., 2012), the authors introduce an approach named DMAS/ABN,

which conducts an auction-based negotiation on each time slot for each activity. In

(Zheng et al., 2014), an approach named DMAS/EM is proposed, which employs an

activity elimination algorithm to fix an infeasible solution. Both DMAS/ABN and

DMAS/EM can generate better solutions than SASP.

One common feature of the approaches in (Mao et al., 2009; Homberger, 2012;

Adhau et al., 2012; Zheng et al., 2014) is that, they are based on activity-level

negotiation to generate or fix a solution, which has two major drawbacks. Firstly,

activity information (e.g. start time, duration, resource requirements) is inevitably

required by the mediator. Note that in a competitive environment, the project

agent may still be unwilling to reveal its valuable sensitive information, even if the

mediator is an automated agent (Vytelingum et al., 2009). Secondly, when the

individual objective of each PA cannot be decomposed precisely to each activity

(e.g. project, delay cost), the decisions on global resource allocation to each activity

can only rely on the estimated objective value, which could result in unsatisfactory

solution quality. On the contrary, global resource allocation in our approach is

purely on the project level, which can satisfy the private information requirement

and provide more precise information for allocating global resources.

2.2.3 Preference Elicitation

In general, preference elicitation is a type of frameworks and methods that try to

make optimal or near-optimal decisions without the need of fully knowing the com-

plete preference profile of each agent. Combinatorial auction is a typical application

of preference elicitation. It is well known that the number of bundles grows exponen-

tially with the number of items (2k−1 bundles for k items) in combinatorial auction.

In the worst case, a bidder needs to compute its value on all these bundles, which

is unacceptable in practice. Preference elicitation for combinatorial auction tries to

address this issue by reducing the number of bundles that need to be evaluated by

a bidder (Conen and Sandholm, 2001).

A general elicitation framework for combinatorial auction is introduced in (Hud-

son and Sandholm, 2004). This framework maintains a set of candidate allocations,

and iteratively asks certain type of queries to the bidders to prune the candidate set

until it is provably optimal. Conen and Sandholm propose another elicitation frame-

15

work in (Conen and Sandholm, 2001) based on the rank lattice, which exploits the

topological structure of combinatorial auctions and the rank information of bidders’

valuation. Typical query types used in these frameworks are value queries which

directly ask a bidder its value on a bundle, order queries which ask a bidder to rank

two bundles, and bound-approximation queries which ask a bidder to compute an

upper/lower bound on a bundle.

Another type of preference elicitation approach is the ascending combinatorial

auctions (Gul and Stacchetti, 2000; Demange et al., 1986; Kelso Jr and Crawford,

1982; Ausubel and Milgrom, 2002; Parkes and Ungar, 2000). These approaches elicit

bidders’ preferences by associating prices on each item or bundle. The prices are

continuously updated during the elicitation process, and can only increase. The

bidders are required to answer the demand queries (Blumrosen and Nisan, 2009),

by submitting bids that maximize its utility under certain prices.

Preference elicitation approaches can effectively reduce the evaluation burden of

bidders. However, normally researchers do not consider the hardness for a bidder in

answering the queries. When applied to real problems, such as DRCMPSP, a bidder

may find that it still cannot answer some queries even after incurring significant

computation costs. Several works in costly preference elicitation (Baarslag and

Gerding, 2015; Parkes, 2005; Larson and Sandholm, 2001) explicitly consider the

cost model of a bidder in answering queries, but real bidders usually do not own these

cost models. In contrast, our approach accepts approximate answers to the capacity

queries, which can be generated very efficiently using approximation algorithms (e.g.

the one we developed in Appendix A). To summarize, compared with the typical

preference elicitation approaches, our approach focuses on how to rapidly find a

good allocation of the DRCMPSP auction, a real-world application of combinatorial

auction. On the other hand, our approach does not exclude the possibilities of

integrating with existing preference elicitation methods, including the frameworks

and query types, to further improve the results.

2.3 Techniques for Proactive Scheduling

Considerable amounts of works have been done for planning and scheduling under

uncertainty. Several surveys (Bruni et al., 2015; Bidot et al., 2009; Herroelen and

16

Leus, 2005) are available for a complete review of the methodologies in this field. In

this section, we focus on reviewing existing works on proactive scheduling, which are

closely related to our research. Specifically, we classify existing approaches according

to their solution types, following the taxonomy in (Bidot et al., 2009).

The first category of proactive scheduling approaches adopts start-time sched-

ules as solutions. The optimization objective is often risk-aware, which is to find a

schedule with the minimal makespan and has a high chance of being feasible during

actual execution. State-of-the-art approaches in this category (Lamas and Demeule-

meester, 2016; Varakantham et al., 2016) achieve the risk-aware optimization by

adding a probabilistic constraint to the Mixed Integer Linear Program (MILP) for

the deterministic RCPSP. The additional constraint can guarantee that the prob-

ability of schedule violation is restricted to a certain risk level, but the resulting

probabilistic-constrained MILP models are hard to solve and need to be tackled

by sampling based methods. These approaches are not applicable when the dura-

tion uncertainty is time-dependent, since the duration samples cannot be obtained

without knowing the activity start times.

Another type of solutions for proactive scheduling is flexible solutions. Different

from start-time schedules, flexible solutions make part of decisions before execu-

tion, and complete solutions (i.e. start time schedules) can be obtained according

to the actual execution situations. The dynamically controllable Simple Temporal

Network with Uncertainty (STNU) (Cui et al., 2015; Morris et al., 2001; Morris and

Muscettola, 2005) is a typical example of flexible solution. However, STNU-based

approaches are not directly applicable to resource-constrained scheduling problems,

since they often focus on temporal reasoning only. Redundancy-based techniques

(Davenport et al., 2001; Lambrechts et al., 2011) for machine breakdowns are an-

other type of approach that generate flexible solutions by protecting activities using

extra temporal slacks. The uncertainty model of machine breakdown is similar to

our problem, since the breakdown probability is often time-related. However, these

approaches are heuristic solutions, and are limited to specific probability distribu-

tions of machine breakdowns (e.g. normal (Davenport et al., 2001) and exponential

(Lambrechts et al., 2011)). In contrast, our approach is built on principled approx-

imation scheme, and does not require the stochastic knowledge to follow certain

distributions.

17

For RCPSP, perhaps the most commonly used type of flexible solution is Partial-

Order Schedule (POS). In (Policella et al., 2004), two approaches that directly gen-

erate POS from a deterministic RCPSP instance are proposed, including (a) Envelop

Based Algorithm (EBA) and (b) Earliest Start Time Algorithm (ESTA). We will

present more details about these two approaches in Section 4.6.1. A desirable prop-

erty of these approaches is that they can be applied to handle any type of duration

uncertainty, since they do not require any stochastic knowledge. However, when

the stochastic knowledge is available, it is of great advantage to exploit it to gen-

erate significantly better solutions. More recently, several approaches are proposed

to generate POS based on known stochastic knowledge (Beck and Wilson, 2007; Fu

et al., 2012, 2015, 2016), for optimizing the robust makespan. However, a major

assumption in these works is that the probability models of activity durations are

independent of their start times. Therefore, they cannot be applied to solve our

proactive scheduling problem.

The last type of flexible solution mentioned in (Bidot et al., 2009) is conditional

schedule, referring to solutions with alternative branches of decisions. Selection of

branches will be made contingently based on the actual execution. For the tra-

ditional stochastic RCPSP, which is a risk-neutral proactive scheduling problem

with time-independent duration uncertainties, a number of approaches have been

proposed to optimize the so-called elementary policies, which are essentially con-

ditional schedules (Igelmund and Radermacher, 1983; Möhring, 2000; Stork, 2001;

Ballest́ın, 2007; Ashtiani et al., 2011; Creemers, 2015). The current best approach

for stochastic RCPSP is the dynamic programming procedure in (Creemers, 2015).

Our proactive approaches different from this work in several aspects. Firstly, elemen-

tary policy generalizes POS. Essentially, an elementary policy starts the activities

at the completion time of some other activity (equivalent to adding a precedence

constraint), based on the actual execution of the project. But the resulting temporal

network of an elementary policy is not necessarily a POS, since the resource conflicts

can only be resolved for the actual execution scenario, instead of for all the possi-

ble scenarios. Therefore, POS can be considered as a special case of elementary

policy, hence an optimal elementary policy could have better expected makespan

than an optimal POS. However, the solution space of elementary policy is much

larger than that of POS. In addition, the memory requirements for computing and

18

storing the conditional schedules are very high (Bidot et al., 2009). Secondly, the

dynamic programming procedure in (Creemers, 2015) can only terminate when the

optimal policy is found, while our algorithms are anytime and can be terminated

early with high-quality feasible solutions. Finally, our approach is applicable to the

time-dependent workability uncertainty, while the approach in (Creemers, 2015) can

only solve the stochastic RCPSP with time-independent uncertainties.

2.4 Summary

In this chapter, we first give a brief introduction on the typical approaches for

traditional centralized and deterministic project scheduling problems. Further, we

review existing methodologies for the research problems we studied in this thesis.

For DRCMPSP, though combinatorial auction is an ideal paradigm for designing

distributed approaches, existing works only apply to simple problems with single-

unit resources and small numbers of projects and activities. In contrast, the auction

based approach we designed in Chapter 3 scales well to much larger problems with

multi-unit resources, with superior solution quality compared with state-of-the-art

approaches. For proactive scheduling, current methodologies can only handle prob-

lems with random activity durations that have no relation with activity start times.

In Chapters 4 and 5, we study the risk-neutral and risk-aware proactive scheduling

problems with time-dependent workability uncertainty, which cannot be solved by

previous approaches. We formulate the corresponding stochastic optimization prob-

lems that generalize the traditional time-independent versions, and design several

efficient algorithms by exploiting interesting problem structures.

19

20

Chapter 3

Distributed Multi-Project

Scheduling based on Multi-Unit

Combinatorial Auction

In this chapter, we focus on how to solve DRCMPSP using combinatorial auc-

tion. Though this is not a new paradigm, previous combinatorial auction based ap-

proaches only apply to simple problems with single-unit resources and small problem

instances. In this chapter, we design an effective approach that works well on com-

plex scheduling problems with multi-unit resources and large numbers of projects

and activities. We first formulate the scheduling problem as a multi-unit combina-

torial auction, where the shared global resources are auctioned to the autonomous

project agents. We then formally analyze the connections between the schedul-

ing problem and auction problem and prove the correctness of our formulation, i.e.

an optimal schedule can be found by finding an optimal resource allocation under

reasonable assumption. Nevertheless, the combinatorial auction formulation brings

challenge to the project agents since the valuation problem is computationally in-

tractable. We resolve this issue by introducing capacity query, which can efficiently

elicit useful information from the project agents. Based on capacity query, we pro-

pose two strategies that can efficiently find high-quality allocations, which also lead

to high-quality schedules. Our empirical results show that the two strategies scale

well to large problem instances with tens of projects and thousands of activities,

and can give better schedules than state-of-the-art DRCMPSP approaches.

21

The following content in this chapter is organized as follows. In Section 3.1, we

give the formal statement of DRCMPSP. In Section 3.2, we present the combinatorial

auction formulation for DRCMPSP, and theoretically analyze the relation between

the scheduling and auction problems. In Section 3.3, we describe our methods

for efficiently solving the DRCMPSP auction. Empirical evaluation is provided in

Section 3.4, and the chapter is concluded in Section 3.5.

3.1 Problem Statement

We first give a formal statement of RCPSP. An instance of deterministic RCPSP

involves a set of activities A = {a1, ..., aN} that needs to be scheduled in a horizon

of T consecutive time slots, and a set of renewable resources R = {r1, ..., rK} where

each rk ∈ R has a finite capacity of Ck ∈ N units in each time slot. Each activity

ai ∈ A has a fixed duration of di ∈ N time slots, and requires bki ∈ N units of resource

rk in each time slot of its processing duration. Throughout this thesis, we follow the

common assumption in RCPSP that the activities are non-preemptive, meaning that

once started they cannot be stopped until completion. For deterministic RCPSP,

this means if activity ai starts at time si, then its completion time is ci = si + di.

A project may have an earliest start time ed, which constraints the start times of

all activities to be no earlier than ed. For single project problems, ed is often set to

0. For convenience, usually two dummy activities a0 and aN+1 with zero durations

and resource requirements are added to represent the start and completion of the

project. A pair of activities ai and aj in Ap = A∪{a0, aN+1} could have a precedence

relation ai ≺ aj, which is a temporal constraint indicating that aj must start after the

completion of ai. Let Ep = {(ai, aj)|ai ≺ aj,∀ai, aj ∈ Ap} be the set of all precedence

constraints, and Pre(ai) = {aj ∈ Ap|aj ≺ ai} be the immediate predecessors of an

activity ai.

A solution to a deterministic RCPSP instance is a (start-time) schedule, which

is a vector S = (s0, ..., sN+1), where si is the start time of ai. The completion time

of the project specified by S is ct(S) = max{ci|ai ∈ Ap}, then the makespan of

S is MS(S) = ct(S) − ed. A feasible schedule must satisfy all the resource and

temporal constraints. Let S be the set of all feasible schedules. Then to solve the

deterministic RCPSP, we need to find an optimal solution S∗ ∈ S such that certain

22

criterion is optimized. The most commonly used criterion for evaluating a schedule

S is the minimization of makespan. When all the resource constraints are relaxed,

i.e. resource capacities are unlimited, the makespan minimization problem can be

solved very efficiently in polynomial time using the well-known Critical Path Method

(Kelley Jr, 1961). This makespan, denoted as CPL, is also the minimum possible

makespan regardless of resource capacities. However, when the resource capacities

are limited, this problem is proved to be strongly NP-hard (Blazewicz et al., 1983).

In some applications, the project has an (expected) due date dd that repre-

sents a soft constraint can be violated with some cost. In this case, the opti-

mization objective could be the minimization of project delay, defined as dl(S) =

max{0, ct(S)− dd}. Specifically, when the due date is set to ed+CPL, minimizing

project delay is equivalent to minimizing makespan since MS(S) − CPL ≥ 0 for

any S ∈ S.

Next, we state DRCMPSP. An instance of this problem involves M projects to be

scheduled in a horizon of T consecutive time slots. Each project Pi, i ∈ {1, ...,M},
has its own activity set Ai = {aij|1 ≤ j ≤ Ni}.1 Two activities in the same project

Pi could have a precedence relation. Each project Pi has its own earliest start time

edi and an expected due date ddi. For each Pi, a Project Agent PAi is assigned

to control Pi. Each PAi can receive a revenue rvi upon the completion of Pi. Let

P = {P1, ..., PM} be the set of all projects.

A DRCMPSP instance also involves K types of renewable global resources. A

global resource is denoted as rk, k ∈ {1, ..., K}, with a limited capacity Ckt in each

time slot t ∈ {1, .., T}. Then, the requirement of aij for rk is denoted as bkij. All

global resources are managed by a Mediator Agent MA. Meanwhile, aij may also

require certain amounts of local resources that are owned and fully controlled by

PAi. A local resource is denoted as rli , li ∈ {1, ..., Li}, with a limited capacity Clit

in time slot t. Then, the requirement of aij for rli is denoted as bliij.

A solution of a DRCMPSP case is a multi-project schedule S = (S1, ..., SM)

with Si being the schedule of project Pi, and Si = (si1, ..., siNi
) with sij being the

start time of activity aij. A solution S is feasible, if all the hard constraints are

satisfied (i.e. the earliest start times, precedence relations and resource constraints

are respected). Denote the set of feasible solutions as S. The soft constraints (i.e.

1For DRCMPSP, we will use i and j to index projects and activities, respectively.

23

expected due dates), on the other hand, are used in evaluating the quality of a

feasible solution S ∈ S. For project Pi, its delay specified by the schedule Si in S
is written as dli(Si) = max{0, ct(Si)− ddi}, similar to the definition of RCPSP.

In previous research, the most commonly used criterion for evaluating a solution

S is the minimization of Average Project Delay (APD):

APD(S) =
1

M

M∑
i=1

dli(Si). (3.1)

However, APD cannot reflect the heterogeneity of projects. It is quite common in

practice that different projects exhibit different degrees of importance. In this case,

the minimization of Weighted Project Delay (WPD) is more reasonable:

WPD(S) =
1

M

M∑
i=1

wi · dli(Si), (3.2)

where wi is the weight of project i. When the weights of all projects are the same,

WPD is equivalent to APD. Usually wi is considered as the (monetary) unit penalty

for any delay of project i. Hence, when the delay cost functions dci(Si) for all

projects are linear, i.e. dci(Si) = wi ·dli(Si), the minimization of WPD is equivalent

to the minimization of Total Delay Cost (TDC):

TDC(S) =
M∑
i=1

dci(Si) = M ·WPD(S). (3.3)

It should be noted that when the delay cost is not linear, TDC is not equivalent to

WPD. However, we argue that TDC is more practical than WPD and APD, since

it is a general monetary measurement on the solution quality. In Section 3.2 we will

show that our combinatorial auction formulation corresponds to the minimization of

TDC, under the condition that revenues of the projects are sufficiently high. Since

TDC does not rely on the form of dci(Si), our approach can also adopt nonlinear

delay cost functions, as long as they satisfy the property of monotonicity which fits

the common sense of delay, i.e. for two schedules S1
i and S2

i of Pi, if ct(S1
i) > ct(S2

i)

holds for Pi, then dci(S
1
i) > dci(S

2
i).

Below we give a formal definition of the optimization problem that needs to be

solved for a DRCMPSP case:

Definition 3.1 (The optimization problem of DRCMPSP) Given a DRCMPSP case

where the project set P and global resource set R are specified, find a solution S∗ ∈ S
such that a chosen criterion (e.g. APD, WPD, TDC) is optimized.

24

Regarding information privacy, variables and parameters of activities (e.g. start

times sij, durations dij, resource requirements bkij and bliij, and precedence relations)

and local resources (e.g. each local resource rli and capacity profiles Clit) are con-

sidered as private to each project agent.

3.2 Multi-Unit Combinatorial Auction Formula-

tion of DRCMPSP

In this section, we describe how to transform DRCMPSP to a multi-unit combinato-

rial auction problem. We first give a description of multi-unit combinatorial auction.

Suppose that in the auction, there are m items to be sold to n bidders. Each item

Ie, e ∈ {1, ...,m} has a limited capacity of Ce units (copies). We call the vector

C = (C1, ..., Cm) as the item capacity profile. Each bidder can express its preference

on any multiset (Krysta et al., 2013) of items, defined as a vector Λ = (λ1, ..., λm),

where λe is the required units of item Ie. Here we use λ(Λ, e) to denote the eth ele-

ment of a specific multiset Λ. Then, given an item capacity profile C, the set of all

the possible multisets is denoted as Λ(C) =
{

Λ
∣∣0 ≤ λ(Λ, e) ≤ Ce,∀e ∈ {1, ...,m}

}
.

An allocation of the items is a vector O = (O1, ..., On), where Of ∈ Λ(C) is a mul-

tiset allocated to bidder f , f ∈ {1, ..., n}. An allocation is said to be feasible if it

respects the item capacity profile, i.e.
∑n

f=1 λ(Of , e) ≤ Ce, ∀e ∈ {1, ...,m}. Denote

the set of all feasible allocations as O(C).

For each Λ ∈ Λ(C), a bidder f has a value denoted as vf (Λ), which indicates

the maximum monetary amount that f is willing to pay for Λ. Thus we can define

a valuation function vf : Λ(C) 7→ R+ for a bidder f . Knowing all the valuation

functions v = (v1, ..., vn), the auctioneer computes an allocation O∗ ∈ O(C) to

maximize the social welfare, defined as SW (O) =
∑n

f=1 vf (Of) for a given allocation

O. It also computes a vector p(O∗) = (p1(O∗1), ..., pn(O∗n)), where pf (O
∗
f) is the

payment for f for obtaining O∗f . Based on the computation results of the auctioneer,

a bidder f can gain a utility uf (O
∗
f) = vf (O

∗
f) − pf (O∗f). Below we give a formal

definition of multi-unit combinatorial auction based on the above notations:

Definition 3.2 (Multi-unit combinatorial auction) Given the item capacity profile

C and valuation function set v, compute an allocation O∗ ∈ O(C) and payments

25

p(O∗), such that SW (O∗) is the maximal social welfare. In other words,

O∗ = argmax
O∈O(C)

SW (O). (3.4)

Note that the problem of finding the optimal allocation O∗ is NP-complete (Sand-

holm, 2002).

Next, we formulate DRCMPSP as a multi-unit combinatorial auction. We focus

on the allocation problem in this section, i.e. the problem of finding O∗, while the

payment schemes will be discussed in Section 3.3. Following the previous combi-

natorial auction based approaches, here PAs act as bidders, the MA acts as the

auctioneer, and the goods to sell are the global resources at each time slot. Hence,

given a DRCMPSP case consists of M PAs, K types of global resources with horizon

T , there will be M bidders to compete for K×T items in the corresponding auction.

For convenience, here we denote an item and its capacity as Ikt and Ckt, respectively.

Then, the item capacity profile and multiset are matrices instead of vectors, denoted

as C = [Ckt]K×T and Λ = [λkt]K×T , respectively, and the requirement of resource rk

on time t specified in a multiset Λ is denoted as λ(Λ, k, t). Next, we discuss how

a bidder evaluates a multiset Λ, i.e. computes vi(Λ). We begin with the following

definition:

Definition 3.3 (Feasible multiset) A schedule Si is feasible to project Pi if all

hard constraints of Pi (including earliest start time, precedence constraints, and lo-

cal/global resource constraints) are satisfied. A multiset Λ is feasible to PAi if there

exists a feasible schedule Si of Pi when PAi obtains the amount of global resources

specified in Λ.

Now we can define the valuation function of PAi as follows:

vi(Λ) =

max{rvi −DCi(Λ), 0}, if Λ is feasible

0, otherwise,
(3.5)

where DCi(Λ) is the delay cost by obtaining Λ. Note that when the revenue rvi is

lower than the delay cost of a feasible multiset Λ, PAi will not use it to complete its

project since it will cause him a negative utility, though a feasible schedule exists.

Therefore, in this case, PAi gives a value of 0 to Λ. The following definition is used

to show how to determine DCi(Λ):

26

Definition 3.4 (Solution set and primal schedule) Given a feasible multiset Λ of

PAi, the set Si(Λ) which contains all feasible schedules of Pi given the amounts of

global resources specified in Λ, is called a solution set. A solution S∗i (Λ) ∈ Si(Λ)

that has the minimum completion time ct(S∗i (Λ)) is called a primal schedule of Λ to

PAi.

Note that there could be more than one primal schedule in a solution set, but

these primal schedules result in the same delay cost, according to Definition 3.4. We

define the delay cost DCi(Λ) as the delay cost of the primal schedule, i.e.

DCi(Λ) = min {dci(Si)|Si ∈ Si(Λ)} = dci(S
∗
i (Λ)). (3.6)

According to Equation (3.5) and (3.6), PAi can evaluate a given multiset Λ

using the following steps: 1) check if it is feasible and 2) if feasible, find a primal

schedule. Then, the complete valuation function vi(Λ) can be built by computing the

value of each possible multiset Λ ∈ Λ(C). After collecting the complete valuation

functions from all PAs, the MA can find the optimal allocation O∗ which maximizes

the social welfare, as stated in Definition 3.2. We call the auctions formulated this

way as DRCMPSP auctions. It should be noted that the valuation functions of

a PA could exhibit both complementarity and substitutability (Sandholm, 2002).

A simple example is shown in Figure 3.1, where a project P1 containing only one

activity a11 needs to be scheduled onto a single global resource with capacity 3 in

each time slot of the horizon T = 5. P1 has a revenue of 10, and a11 has a duration

of 2 and requires 1 unit of the global resource. The right part of Figure 3.1(a) shows

a feasible schedule S1 where a11 is scheduled to start at t = 1. In Figure 3.1(b), it is

easy to see that the two multisets Λ1 and Λ2 are infeasible thus v1(Λ1) = v1(Λ2) = 0,

but the multiset Λ3 = Λ1 + Λ2 is feasible and has a value of v1(Λ3) = 8. Therefore,

Λ1 and Λ2 in Figure 3.1(b) have complementarity since v(Λ1) + v(Λ2) ≤ v(Λ1 + Λ2).

On the contrary, the multisets Λ1, Λ1 and Λ3 = Λ1 + Λ2 in Figure 3.1(c) are feasible

and v1(Λ1) = v1(Λ2) = v1(Λ3) = 8, therefore Λ1 and Λ2 in Figure 3.1(c) have

substitutability since v(Λ1) + v(Λ2) ≥ v(Λ1 + Λ2).

Next, we analyze the relation between the optimal allocation O∗ of the auction

and the optimal solution S∗ of the corresponding DRCMPSP case with the objective

of minimizing TDC as defined in Equation (3.3). We first introduce the revenue

condition in the following definition:

27

In subfigure (b):

v1(Λ1)=0, v1(Λ2)=0, v1(Λ3)=8

In subfigure (c):

v1(Λ1)=8, v1(Λ2)=8, v1(Λ3)=8

(c)

r Λ3

0

3

5
tt

Λ1

Λ2

0

3

5

r

(b)

r

Λ3

0

3

5
tt

Λ1 Λ2

0

3

5

r

(a)

P1

a11

rv1=10

d11=2

r11=1
a11

0

3

5
t

r

S1=(1), dc1(S1)=2

Figure 3.1: An Example of Complementarity and Substitutability

Definition 3.5 (Revenue condition) Given a feasible solution S ∈ S of a DR-

CMPSP case, let dc∗(S) = max {dci(Si)|i ∈ {1, ...,M}} be the highest delay cost

of a PA in S. Let S ′ ⊆ S be a set of feasible solutions. Denote dc†(S ′) =

min {dc∗(S)|S ∈ S ′}. If ∀i ∈ {1, ...,M}, rvi > dc†(S ′) ·M , then the DRCMPSP

case satisfies the revenue condition of S ′.

Intuitively, the revenue condition states that for a subset S ′ of solutions, the

revenue rvi of each PA i is larger than M times the minimum dc∗(S) value, which is

the largest project delay cost specified by a solution S ∈ S ′. Based on the revenue

condition, the following theorem can be proved:

Theorem 3.1 If a DRCMPSP case satisfies the revenue condition of S, then any

optimal allocation O∗ that maximizes the social welfare of the corresponding DR-

CMPSP auction produces an optimal solution S∗ for the DRCMPSP case with the

objective of minimizing TDC.

Proof. Since the revenue condition is satisfied, there must exist a solution S ∈ S
with dc∗(S) = dc†(S). Let O(S) be an allocation that can incorporate S, i.e. ∀i,
Si = S∗i (Oi(S)). When the revenue condition is satisfied, each PA has a positive

value for the multiset allocated to it in O(S), since for all PAi, we have rvi −
DCi(Oi(S)) = rvi−dci(Si) > dc∗(S) ·M−dc∗(S) ≥ dc∗(S) ·(M−1) ≥ 0. Therefore,

SW (O(S)) =
∑M

i=1(rvi − dci(Si)). We prove the theorem by the following steps.

Firstly, we show that allocating any PA a multiset with zero value can only

produce a lower social welfare than SW (O(S)). Assume there exists an allocation

28

O′ which produces an equal or higher social welfare than O(S) and allocates PAj a

multiset with zero value, i.e. SW (O′) ≥ SW (O(S)) and vj(O
′
j) = 0. The maximum

possible social welfare of SW (O′) is SWm =
∑M

i=1,i 6=j rvi. If SWm ≥ SW (O(S)),

then
∑M

i=1,i 6=j rvi ≥
∑M

i=1(rvi−dci(Si)), which leads to rvj ≤
∑M

i=1 dci(Si). However,

from the revenue condition, we know that rvj > dc∗(S) ·M ≥
∑M

i=1 dci(Si), which

is a contradiction. Therefore, it is not possible to achieve an equal or higher social

welfare than SW (O(S)) by allocating a multiset with zero value to any PA.

Secondly, we show that an optimal solution S∗ to the DRCMPSP case lead

to an optimal allocation of the corresponding auction. Let O(S∗) be an alloca-

tion that can incorporate S∗, i.e. ∀i, S∗i = S∗i (Oi(S∗)). From the first step we

know that in O(S∗), each bidder should be allocated a multiset with positive value,

since otherwise it produces a lower value than SW (O(S)) hence cannot be op-

timal. Therefore, SW (O(S∗)) =
∑M

i=1(rvi − dci(S
∗
i)). Assume there is another

allocation O′′ which grants all PAs feasible multisets with positive values, and pro-

duces a higher social welfare than SW (O(S∗)). Denote the solution results from

O′′ as S ′′ = (S ′′1 , ..., S
′′
N), where S ′′i = S∗i (O

′′
i). Since SW (O′′) > SW (O(S∗)),∑M

i=1(rvi − dci(S ′′i)) >
∑M

i=1(rvi − dci(S∗i)), indicating that TDC(S ′′) < TDC(S∗)
which contradicts the fact that S∗ minimizes TDC. Hence, O(S∗) maximizes the

social welfare of the DRCMPSP auction.

Finally, we show that any optimal allocation O∗ of the DRCMPSP auction

produces a solution of DRCMPSP with the same TDC value as S∗. According

to the first step, O∗ should allocate each PA a feasible multiset O∗i with posi-

tive value. Denote the solution results from O∗ as SO = {SO1 , ..., SOM}, where

SOi = S∗i (O
∗
i), therefore SW (O∗) =

∑M
i=1(rvi − dci(S

O
i)). According to the sec-

ond step, SW (O∗) = SW (O(S∗)), therefore TDC(SO) = TDC(S∗).

Theorem 3.1 shows that when the revenue of each PA is sufficiently high (such

that the revenue condition of S is satisfied), solving DRCMPSP auction optimally

will lead to an optimal solution of the DRCMPSP case. Note that when the revenue

condition is not satisfied, the DRCMPSP auction can still work, but some projects

may not be scheduled in the optimal allocation; in this case, the APD, WPD and

TDC objectives are only effective for the projects that are scheduled. This makes

sense because it is possible that when the resource capacities are very limited, a

better choice is to serve a subset of the demands with a higher total (monetary)

29

value, instead of serving all demands but resulting in a lower total value.

In practice, suboptimal algorithms, instead of complete algorithms, are often

used since the problem of finding O∗ in Equation (3.4) is NP-complete. Regarding

the relation between suboptimal allocations and solutions, we can have another

conclusion following a similar proof as Theorem 3.1:

Corollary 3.1 For a DRCMPSP case with the objective of minimizing TDC, let

Oδ be a suboptimal allocation of the DRCMPSP auction with optimal allocation O∗,

where SW (O∗)−SW (Oδ) = δ. Let Sδ = {S ∈ S|TDC(S)−TDC(S∗) ≥ δ}, where

S∗ is the optimal solution of the DRCMPSP case. If the revenue condition of Sδ

is satisfied, then any allocation O with SW (O) = SW (Oδ) produces a suboptimal

solution Sδ of the DRCMPSP case, where TDC(Sδ)− TDC(S∗) = δ.

Proof. As in the proof of Theorem 3.1, there must exist a solution S ∈ Sδ where

dc∗(S) = dc†(Sδ). Therefore, according to the same reason in the first step in proving

Theorem 3.1, allocating any PA a multiset with zero value can only produce a lower

social welfare than SW (O(S)), where ∀i, Si = S∗i (Oi(S)). Next, for a solution

Sδ ∈ Sδ with TDC(Sδ) − TDC(S∗) = δ, we construct an allocation O(Sδ) that

can incorporate Sδ, i.e. ∀i, Sδi = S∗i (Oi(Sδ)). Follow the second step in proving

Theorem 3.1, we can see that SW (O(Sδ)) = SW (Sδ) is the maximum social welfare

that can be achieved by solutions in Sδ. This is because if there is any allocation

O′′ with SW (O′′) > SW (Oδ), we have TDC(S ′′) < TDC(Sδ), where S ′′i = S∗i (O
′′
i),

hence S ′′ /∈ Sδ. Finally, we can show that any allocation O that has the same social

welfare as O(Sδ) produces a solution with the same TDC value as Sδ, following

similar procedure in the third step in proving Theorem 3.1.

Note that the revenue conditions in Theorem 3.1 and Corollary 3.1 are both

sufficient conditions. Also noted that the revenue condition of Corollary 3.1 is

stronger than that of Theorem 3.1, since Sδ ⊆ S. Therefore, when suboptimal

algorithms are used in the DRCMPSP auction, the revenue requirement for each

bidder should be higher than when complete algorithms are used, such that the

suboptimality can be tolerated to produce solutions where all bidders are scheduled.

In the following part of this chapter, we assume that the PAs’ revenues are high

enough for our (approximate) approaches to find a suboptimal solution where all

projects are scheduled.

30

Till now, we have shown how to formulate DRCMPSP as a multi-unit combina-

torial auction. In a DRCMPSP auction, all information required from the PAs is

the valuation function vi. Therefore, the PAs do not have to reveal any information

about the activities and local resources. Moreover, it could be very hard to compute

the private variables and parameters, even with the full knowledge of the valuation

function. However, there exist several issues regarding the computational complex-

ity. Firstly, as we mentioned, the allocation problem of combinatorial auction is

NP-complete. In addition, in the worst case, to compute the optimal allocation,

the bidders are required to convey their full valuations on every possible multiset to

the auctioneer, which results in exponential growth of communication requirements.

This is even worse in the DRCMPSP auction, since it could be intractable for a

bidder to evaluate a given multiset. The main reason for the hardness on valuation

is that the bidders need to deal with RCPSP, which is NP-hard. To be specific,

firstly in Equation (3.5) it is hard to determine if a schedule is feasible (equivalent

to solving a feasibility problem of RCPSP which is NP-hard (Neumann et al., 2012)),

and secondly in Equation (3.6) it is hard to find the primal solution (equivalent to

solving a RCPSP which is NP-hard (Blazewicz et al., 1983)). Due to the above

reasons, it is impractical to require bidders to have full knowledge of their valuation

functions. Instead, a viable way is to guide the bidders to focus on evaluating some

multisets that are more useful for determining a good allocation. In this work, we

introduce the capacity query to efficiently elicit valuations from bidders.

3.3 Solving the DRCMPSP Auction using Capac-

ity Queries

This section details our approach. We first introduce the capacity query in Section

3.3.1. Then, in Section 3.3.2 and 3.3.3, we describe two strategies, the greedy

allocation and the branch-and-bound heuristic, which are designed based on the

ones introduced in (Gonen and Lehmann, 2000) and can be used with capacity

query to solve the DRCMPSP auctions.

31

3.3.1 Capacity Query

Capacity queries try to use different item capacity profiles to elicit bidders’ valuation

on some multisets. The semantics of a capacity query is: “suppose the capacity

profile is Ψ = [ψkt]K×T , which multiset you value the most, and what is your value

on that multiset?”. Mathematically, to answer a capacity query, a bidder needs to

solve a bidding problem:

Λ∗i = argmax
Λ∈Λ(Ψ)

vi(Λ), (3.7)

where Λ(Ψ) = {Λ|0 ≤ λ(Λ, k, t) ≤ ψkt}. An answer to a capacity query is a tuple

B = 〈Λ, vi(Λ)〉, which is called a bid.

Before we show how a bidder can answer the capacity query in a DRCMPSP

auction, we first define a special type of multisets that can be (approximately)

evaluated easily. As we have mentioned in Section 3.2, it could be computationally

intractable to determine the feasibility of a given multiset. On the other hand,

generating a feasible multiset from a feasible schedule is quite easy, as stated in the

following definition:

Definition 3.6 Given a schedule Si = (si1, ..., siNi
) of Pi, the multiset Λ̂i = Λ̂i(Si)

calculated as:

λ(Λ̂i, k, t) =
∑

aij∈Ai(t)

bkij, (3.8)

where Ai(t) =
{
aij, j ∈ {1, ..., Ni}

∣∣sij ≤ t, (sij + dij) > t
}

, is called a core2 of PAi.

The following lemma shows two important properties of cores:

Lemma 3.1 The following two statements hold for PAi in a DRCMPSP auction: 1)

for all cores, the numbers of total required item units are the same; 2) any multisets

with lower total required item units than a core is infeasible.

Proof. It is straightforward to see that these two statements hold. Firstly, it is

easy to see that the number of total required item units RQ(Λ̂i) of a core Λ̂i is

RQ(Λ̂i) =
∑K

k=1

∑Ni

j=1 b
k
ijdij. Since bkij and dij are all fixed values, the first statement

holds. We denote the number of total required item units of PAi’s cores as RQi.

Secondly, it is also easy to see that for any multiset Λ̃ with lower total required

item units than Λ̂i, there must be at least one activity which cannot receive enough

global resource. Therefore, the second statement holds.

2Note that this definition is different from the commonly used definition of core in game theory.

32

Lemma 3.1 indicates that a core of PAi is a compact resource utilization profile

of its project Pi. Next we show how to evaluate a core by proving the following

lemma:

Lemma 3.2 For PAi, the value vi(Λ̂i) of a core Λ̂i = Λ̂i(Si) generated from a

feasible schedule Si = (si1, ..., siNi
) can be approximated by ṽi(Λ̂i) with an error

err(Si) = vi(Λ̂i)− ṽi(Λ̂i), where 0 ≤ err(Si) ≤ dci(Si)−DCi(Λ̂i) and

ṽi(Λ̂i) = max {rvi − dci(Si), 0}. (3.9)

Specifically, when no activity of project Pi requires only local resources, the approxi-

mation is exact, i.e. vi(Λ̂i) = ṽi(Λ̂i).

Proof. By definition, vi(Λ̂i) ≥ ṽi(Λ̂i), since Si ∈ Si(Λ̂i) which leads to DC(Λ̂i) ≤
dci(Si), therefore err(Si) ≥ 0. Further, when DC(Λ̂i) ≤ dci(Si) ≤ rvi, err(Si) =

dci(Si)−DC(Λ̂i); when DC(Λ̂i) ≤ rvi ≤ dci(Si), err(Si) = rvi−DC(Λ̂i) ≤ dci(Si)−
DC(Λ̂i); when rvi ≤ DC(Λ̂i) ≤ dci(Si), err(Si) = 0. To sum up, 0 ≤ err(Si) ≤
dci(Si)−DC(Λ̂i).

Next, we show that the approximation is exact when no activity of Pi requires

only local resources. We only need to prove that Si is the primal schedule of Λ̂i.

Assume there is another schedule S ′i ∈ Si(Λ̂i) that results in a smaller delay cost

than Si, i.e. dci(S
′
i) < dci(Si), therefore ct(S ′i) < ct(Si). Denote the core generated

from S ′i as Λ̂′i = Λ̂i(S
′
i), then we have λ(Λ̂′i, k, t) = 0 for any ct(S ′i) < t ≤ ct(Si),

which indicates that λ(Λ̂′i, k, t) < λ(Λ̂i, k, t). According to Lemma 3.1, to maintain

feasibility, there must exist some t ≤ ct(S ′i) such that λ(Λ̂′i, k, t) > λ(Λ̂i, k, t). Hence,

S ′i cannot belong to the solution set of Λ̂i, which is a contradiction.

According to Lemma 3.2, the value of a core can be (approximately) evaluated

very easily. Now we are ready to show how to solve the bidding problem.

Proposition 3.1 For PAi, given a capacity profile Ψ = [ψ]K×T , if the solution set

Si(Ψ) is not empty, 3 then the core Λ̂i(S
∗
i) generated from the schedule S∗i that has

the minimum delay cost solves the bidding problem optimally.

Proof. Consider Ψ as a multiset, then the solution set Si(Ψ) includes all the possible

schedules under Ψ, and S∗i is the primal schedule of Ψ. For any feasible multiset

3When Si(Ψ) = ∅, all multisets in Λ(Ψ) are infeasible. In that case, PAi can simply bid for

any Λ ∈ Λ(Ψ) with Bi = 〈Λ, 0〉.

33

Λ′ under Ψ, its delay cost must be equal to that of a schedule S ′i ∈ Si(Ψ), hence

vi(Λ
′) = max {rvi − DCi(Λ′), 0} ≤ max {rvi − DCi(Λ̂i(S

∗
i)), 0} = vi(Λ̂i(S

∗
i)). For

any infeasible multiset Λ′′ under Ψ, vi(Λ̂i(S
∗
i)) ≥ 0 = vi(Λ

′′). Therefore, vi(Λ̂i(S
∗
i))

is an optimal solution of the bidding problem.

According to Proposition 3.1, on one hand, Λ̂i(S
∗
i) is one of the optimal solutions

to the bidding problem. Therefore, given a capacity query with profile Ψ, a bidder

can find the answer by solving a RCPSP with time-varying global resource capacities

as specified in Ψ. Note that for the optimal schedule S∗i , the value of Λ̂i(S
∗
i) given by

Equation (3.9) is exact, since dc(S∗i) is the minimum delay cost for any S ∈ Si(Ψ).

We call the bid B∗i (Ψ) = 〈Λ̂i(S
∗
i), vi(Λ̂i(S

∗
i))〉 as the exact answer to the capacity

query with capacity profile Ψ. On the other hand, however, Λ̂i(S
∗
i) is not the only

candidate for answering the query, since Equation (3.6) indicates that there could

be some multisets, which are not cores, that result in the same delay cost hence the

same value as Λ̂i(S
∗
i) but request larger amounts of some items.4 In Section 3.3.2

and 3.3.3, we will show that under certain payment schemes, it is sufficient for a

bidder PAi to answer the capacity queries with cores, which require the minimum

amount of items RQi.

3.3.2 Greedy Allocation

In (Gonen and Lehmann, 2000), a greedy allocation strategy is developed for solving

the basic winner determination problem (WDP) of multi-unit combinatorial auction.

This problem aims at finding the winning bids from a set of collected bids, such

that the sum of the winning bids’ values is maximized. A heuristic Average Price

is introduced in (Gonen and Lehmann, 2000), which estimates the “contribution”

that a bid can make to the allocation. A bid is said to have a higher average price,

if its value is higher and the number of its total required item units is lower. Any

function that satisfies the above intuition can be used as average price. The most

widely used one is the ratio of bid value to the square root of the total item units,

i.e. for a bid B = 〈Λ, vi(Λ)〉, the average price γ(B) is calculated as

γ(B) = vi(Λ)

/√√√√ K∑
k=1

T∑
t=1

λ(Λ, k, t) . (3.10)

4An example is the multiset Ψ, since S∗
i is the primal schedule of Ψ.

34

In (Gonen and Lehmann, 2000), Gonen and Lehmann show that when working with

a greedy strategy, the average price function in Equation (3.10) produces a solution

to the multi-unit WDP with a worst-case approximation ratio of
√
H, where H

is the total available item units. This is the tightest theoretical bound on the

approximation ratio that a (polynomial-time) greedy algorithm can achieve for a

multi-unit WDP. The greedy allocation strategy in (Gonen and Lehmann, 2000)

iteratively grants the bid that 1) does not conflict with the partial allocation and

2) has the maximum average price value in the remaining bids, until no bid can be

granted.

In this section we describe how to use the greedy allocation strategy in (Gonen

and Lehmann, 2000) to work with capacity queries to efficiently obtain a good al-

location to the DRCMPSP auction. It should be noted that DRCMPSP auction is

different from the basic WDP in (Gonen and Lehmann, 2000) even when the valua-

tion functions are fully known by the PAs (which is not realistic due to the hardness

of evaluation), because of the existence of substitutability (Sandholm, 2002). Es-

sentially, the reason is that the basic WDP in (Gonen and Lehmann, 2000) does not

distinguish bids from different bidders, which could result in an allocation where a

bidder be granted multiple bids from it. Take the PA with the project shown in

Figure 3.1(a) as an example, if it submits two bids for the two multisets Λ1 and Λ2

in Figure 3.1(c), then the auctioneer could allocate both Λ1 and Λ2 (i.e. Λ3) to it

with a value of 16, but in fact the PA only gets a value of 8. We make the greedy

allocation strategy workable for the DRCMPSP auction, by granting only one bid

from the same bidder. Later we will show that under a reasonable assumption, the

guarantee of
√
H for the basic WDP still holds for the DRCMPSP auction (in our

case H =
∑K

k=1

∑T
t=1 Ckt), if the capacity queries can be answered exactly, i.e. the

bidding problems can be solved optimally.

The details of the greedy allocation strategy are shown in Algorithm 1. In

general, the auctioneer maintains a set US of unallocated bidders, and iteratively

asks each bidder in US a capacity query. After collecting the answers, i.e. bids,

the auctioneer grants the bid with the maximum average price, and updates the

capacity of each item. The allocated bidder will be removed from US. This process

continues until US is empty. Apparently, each bidder will only be allocated once for

one of its bids. For payment calculation in Algorithm 1, here we adopt the fixed unit

35

Algorithm 1: Greedy allocation algorithm

Input: Bidder set PA = {PA1, ..., PAM}, global resource capacity profile

[Ckt]K×T

Output: An allocation OG = {OG
1 , ..., O

G
M}

1 Initialization: US ← PA, Ψ← [Ckt]K×T ;

2 while US 6= ∅ do

3 ξ ← 0, γmax ← 0;

4 foreach PAi ∈ US do

5 Ask PAi a capacity query with profile Ψ ;

6 Collect answer Bi = 〈Λi, vi(Λi)〉;
7 Calculate the average price value γ(Bi);

8 if γ(Bi) > γmax then

9 ξ ← i, γmax ← γ(Bi);

10 end

11 end

12 Grant Bξ to PAξ, calculate payment pξ, and update item capacity profile

Ψ← Ψ− Λξ;

13 OG
ξ ← Λξ, US ← US\{PAξ};

14 end

pricing scheme. In the project scheduling literature, usually the cost for utilizing

resource r is calculated based on a fixed unit price, e.g. (Beşikci et al., 2015; Naber

and Kolisch, 2014; Mao et al., 2009). Under this scheme, the total payment can be

determined according to the total utilizing amount of each resource. Here, in the

DRCMPSP auction, we denote the unit price of utilizing global resource rk as gk.

Then the payment pi for PAi of obtaining a multiset Λ is:

pi(Λ) =
K∑
k=1

gk

T∑
t=1

λ(Λ, k, t). (3.11)

Next, we show a conclusion regarding the fixed unit pricing scheme:

Lemma 3.3 Under fixed unit pricing scheme, a bidder PAi in Algorithm 1 only

needs to consider submitting bids for cores when answering capacity queries.

Proof. Given a capacity query with profile Ψ, for any feasible multiset Λ ∈ Λ(Ψ),

we can always find a core Λ̂ = Λ̂i(S
∗
i (Λ)) with vi(Λ) = vi(Λ̂). It is easy to see

36

that λ(Λ̂, k, t) ≤ λ(Λ, k, t),∀k, t, hence we have pi(Λ̂) ≤ pi(Λ) according to Equation

(3.11). Therefore, we have ui(Λ̂) ≥ ui(Λ). In addition, for the two corresponding

bids B1
i =< Λ̂, vi(Λ̂) > and B2

i =< Λ, vi(Λ) >, we have γ(B1
i) ≥ γ(B2

i). Therefore,

whenever Λ is granted, Λ̂ can also be granted with an equal or higher utility.

Lemma 3.3 shows that it is sufficient for PAs to bid for cores, which requires the

minimum amount of global resource. In addition, from the first statement of Lemma

3.1 we can conclude that the total number of required units in a bid from PAi is RQi.

We can show that under reasonable assumption, the worst-case approximation ratio

of the social welfare in (Gonen and Lehmann, 2000) still holds, when the capacity

queries can be answered optimally. To be specific, the assumption is that RQi ≥M

holds for all PAi, meaning that the number of total requested item units by each

bidder should be larger than or equal to the number of bidders. This is a justifiable

assumption in DRCMPSP auctions, because the number of demanded resource units

for each bidder is usually much larger than the number of bidders in a DRCMPSP

case. Below we prove this conclusion based on the proof in (Gonen and Lehmann,

2000).

Theorem 3.2 Denote the allocation found by Algorithm 1 as OG. When all capac-

ity queries can be answered optimally, if ∀i, RQi ≥ M , then OG approximates the

optimal allocation O∗ within a factor of
√
H.

Proof. According to Lemma 3.3, a bidder will only submit bids for cores, hence each

element OG
i of OG should be a core of PAi, and

∑K
k=1

∑T
t=1 λ(OG

i , k, t) = RQi. Then

the condition becomes ∀i,M ≤
∑K

k=1

∑T
t=1 λ(OG

i , k, t). According to (Gonen and

Lehmann, 2000), we can assume that OG and O∗ have no element in common, i.e.

∀i, OG
i 6= O∗i . This is reasonable because if there is any common element, we can

remove it from both OG and O∗ along with the items required by it and work on

the remaining problem, which can still make the theorem hold. Let α = SW (O∗) =∑M
i=1 vi(O

∗
i) and β = SW (OG) =

∑M
i=1 vi(O

G
i). We need to show that

α ≤ β
√
K. (3.12)

According to (Gonen and Lehmann, 2000), to prove the above inequality, we only

need to show that
M∑
i=1

γ(B∗i)
2 ≤

M∑
i=1

γ(BG
i)2

K∑
k=1

T∑
t=1

λ(OG
i , k, t), (3.13)

37

where B∗i = 〈O∗i , vi(O∗i)〉 and BG
i = 〈OG

i , vi(O
G
i)〉. Let B∗ = {B∗1 , ..., B∗M} and

BG = {BG
1 , ..., B

G
M}. Since O∗ and OG have no element in common, all multisets

O∗i are excluded from OG, because one of the following two scenarios happens.

• Shading: in OG, bidder i itself is granted a bid with equal or higher average

price, i.e. γ(B∗i) ≤ γ(BG
i).

• Conflicting (Gonen and Lehmann, 2000): B∗i conflicts with some bids in BG

that have already been granted. In other words, in OG, there are some other

bidders being granted bids with equal or higher average prices, and this makes

some items Ikt requested by B∗i not enough to be granted.

It should be noted that the above two scenarios cannot happen at the same time

for a bid B∗i . This is because a bidder will be granted only one bid, hence it cannot

have conflicts between two bids made by itself. Then, for each bid BG
j ∈ BG, there

could be a set of bids B∗i ∈ B∗ for O∗i , i 6= j that conflict with BG
j (denote the set

as OPj), and at most one bid B∗i for O∗j shaded by BG
j . Hence ∀j, we have∑

i∈OPj

γ(B∗i)
2 + γ(B∗j)

2 ≤ (M − 1)γ(BG
j)2 + γ(BG

j)2

= M · γ(BG
j)2 ≤ γ(BG

j)2

K∑
k=1

T∑
t=1

λ(OG
i , k, t).

(3.14)

Therefore, the inequality (3.13) holds, and the proof is complete.

As stated before, it is NP-hard for a bidder to solve the bidding problems op-

timally. When approximate answers for capacity queries are used, i.e. the bids

Bi = 〈Λi, ṽi(Λi)〉 collected in Line 6 of Algorithm 1 are approximate ones, the

theoretical guarantee in Theorem 3.2 does not hold. Note that here we assume

that for PAi, the value of a multiset Λ can only be obtained by finding a feasi-

ble schedule Si ∈ Si(Λ). This is reasonable because the revenue can only be ob-

tained by completing the whole project, which inevitably requires a feasible sched-

ule. Then, when a capacity query is answered approximately by PAi with a bid

Bi = 〈Λ, ṽi(Λ)〉 where Λ = Λ̂i(Si) is a core generated from a feasible schedule Si

and ṽi(Λ) is computed using Equation (3.9), PAi will obtain a value of ṽi(Λ) from

Λ, instead of its exact value vi(Λ). Therefore, suppose an allocation O is found,

then the social welfare S̃W (O) is an approximate one of the actual value SW (O),

38

and SW (O)− S̃W (O) =
∑M

i=1 (vi(Oi)− ṽi(Oi)). In general, optimal answers to the

capacity queries can help to improve the solution quality, and make the theoretical

bound in Theorem 3.2 hold. However, for large-size projects, approximate solutions

will be more realistic regarding the computational efficiency. When this approach is

deployed in reality, a practical way to handle this contradiction is that the auction-

eer specifies a time limit Tans for all bidders to compute an answer for a capacity

query. Then, a bidder can make use of this time period to conduct deliberation,

i.e. to keep improving their answers. One way of deliberating is to run anytime

algorithms until the time limit is reached.

3.3.3 Improving the Greedy Allocation Using Branch-and-

Bound

Algorithm 1 allocates resources to the bidders one by one, which forms a sequence of

PAs determined according to the average price function. However, due to the greedy

nature of Algorithm 1, some other sequences that could produce allocations with

higher social welfare may be ignored. Based on the branch-and-bound algorithm in

(Gonen and Lehmann, 2000) designed to optimally solve the multi-unit WDP, here

we introduce another strategy, which is a branch-and-bound heuristic that works

with capacity queries to find better sequences of PAs, so as to improve the results

of Algorithm 1. Similar to Algorithm 1, a bidder in the branch-and-bound heuristic

will be granted only one of its bids, such that the substitutability of the valuation

functions can be handled.

The branch-and-bound heuristic tries to perform depth-first search on a search

tree, which will be constructed during searching. The root node represents an empty

sequence, while the interior and leaf nodes represent partial and full sequences, re-

spectively. The searching process starts at the root node. At the root node and each

interior node, a function BnB illustrated in Algorithm 2 is called, which requires sev-

eral parameters: the best allocation value Obj∗ found so far and the corresponding

sequence Seq∗; the current partial sequence on this node crtSeq and the corre-

sponding value crtObj, the set of unallocated bidders US, and the current resource

capacity profile Ψ0. At each interior node, each bidder in US will be asked a capacity

query. The bounding operation is conducted by computing h =
∑

Bi∈B vi(Λi), which

39

Algorithm 2: BnB(Obj∗, Seq∗, crtObj, crtSeq, US, Ψ0)

Input: The best objective value Obj∗, the best sequence Seq∗, the objective

value on the current node crtObj, the partial sequence on the current

node crtSeq, unallocated bidders US, the resource capacity profile on

the current node Ψ0

1 if crtObj > Obj∗ then

2 Obj∗ ← crtObj, Seq∗ ← crtSeq;

3 end

4 B = ∅, Ψ = Ψ0 ;

5 foreach PAi ∈ US do

6 Ask PAi a capacity query with profile Ψ, and collect answer Bi,

B ← B
⋃
{Bi};

7 end

8 Compute upper bound h =
∑

Bi∈B vi(Λi);

9 if (crtObj + h) ≤ Obj∗ then

10 return;

11 end

12 Sort B in descending order based on average price;

13 Create a queue Q of PAs in US according to their order in sorted B;

14 while Q 6= ∅ do

15 Get the first element PAξ in Q, and remove it from Q;

16 Add PAξ to crtSeq, crtObj ← crtObj + vξ(Λξ), Ψ← Ψ− Λξ,

US ← US\{PAξ};
17 BnB(Obj∗, Seq∗, crtObj, crtSeq, US, Ψ);

18 crtObj ← crtObj − vξ(Λξ), US ← US
⋃
{PAξ}, Ψ← Ψ + Λξ;

19 end

20 return

40

represents an upper bound of the total value the remaining bidders can contribute

to the current partial allocation. The branching operation is conducted according

to the average price value, i.e. bidders with higher average price will be added to

the partial sequence first. It should be noted that the upper bound h is admissible

only if the bidding problem can be answered optimally. When an approximation

algorithm is used to solve the bidding problem, some search nodes that can lead to

optimal sequences may be deleted, which could misguide the algorithm to return a

suboptimal sequence. Therefore, in general Algorithm 2 is a heuristic, though it can

guarantee improvement over the results of Algorithm 1. Also note that Algorithm

2 does not guarantee finding the optimal allocation even when the upper bound is

admissible. This is because even when the optimal sequence is found, the valuation

function of all bidders may not be elicited completely.

For M bidders, the number of all possible allocation sequences is M !, which grows

extremely fast with M . To control the execution time, we introduce a parameter

Qnv in the branch-and-bound heuristic. When the number of nodes visited since the

last update of Obj∗ reaches Qnv, the algorithm terminates with the best allocation

found so far. When Qnv = 1, the allocation OB is the same as OG produced by the

greedy allocation strategy.

In Algorithm 2, a PA may be requested to backtrack such that a better allocation

can be found. However, under the fixed unit pricing scheme, backtracking may

decrease the utility of a PA, if it is granted a multiset with lower value. To guarantee

that the utilities of the PAs will not decrease during the branch-and-bound process,

here we adopt the VCG-based payment proposed in (Nisan and Ronen, 2007), which

is built on top of the well-known VCG (Vickrey (Vickrey, 1961), Clarke (Clarke,

1971), Groves (Groves, 1973)) payment scheme. Usually, VCG payment scheme is

used for designing incentive compatible mechanisms in various multi-agent resource

allocation applications. When a mechanism (e.g. auction) is incentive compatible,

it is in the best interest of the participating agents (e.g. bidders) to reveal their

true values to the center (e.g. auctioneer). Different from the typical use of VCG,

here we adopt one of its variations, the VCG-based payment, to guarantee that the

utility of a PA will not be affected negatively by backtracking. Note that here we

still assume that the bidders are willing to reveal their true values in their bids.

VCG-based payment scheme adopts the formulation of VCG payment, and the

41

only difference is to replace the optimal allocation with a suboptimal one, since the

auctioneer may not be able to find the optimal allocation due to the computational

complexity. Mathematically, denote the allocation found by the branch-and-bound

heuristic as OB = {OB
1 , ..., O

B
M}, then the payment for each bidder is:

pi(O
B
i) = −

(
M∑

j=1,j 6=i

vj(O
B
j)− qi

)
, (3.15)

where qi is an arbitrary value calculated without the valuation of bidder i. Then

the utility of a bidder when allocated OB
i can be written as:

ui(O
B
i) = vi(O

B
i)− pi(OB

i) =
M∑
i=1

vi(O
B
i)− qi = SW (OB)− qi. (3.16)

When approximate answers for capacity queries are used, SW (OB) in the above

equation should be replaced by the approximate one S̃W (OB). Equation (3.16)

shows an important property of VCG-based payment, i.e. the utility of a bidder

is aligned with the (approximate) social welfare of the allocation produced by the

branch-and-bound heuristic. Since the allocation will only be updated when another

one with a higher (approximate) social welfare is found (Lines 1-3 of Algorithm 2),

the utility of a bidder will not decrease in the branch-and-bound process.

Below we show a conclusion similar to Lemma 3.3:

Proposition 3.2 Under VCG-based payment scheme, a bidder PAi in the branch-

and-bound heuristic only needs to consider submitting bids for cores when answering

capacity queries.

Proof. Similar to the proof of Lemma 3.3, given a capacity query with profile Ψ,

for any feasible multiset Λ ∈ Λ(Ψ), we can always find a core Λ̂ = Λ̂i(S
∗
i (Λ)) with

vi(Λ) = vi(Λ̂), and λ(Λ̂, k, t) ≤ λ(Λ, k, t),∀k, t. Then, for any allocation O with Oi =

Λ, there always exists an allocation Ô with Ôi = Λ̂ such that SW (Ô) ≥ SW (O).

This is because the additionally required items in Λ could potentially block bids

from other bidders which could help in producing a better allocation. Therefore,

PAi can gain a equal or larger utility by bidding on Λ̂ than Λ.

One way to compute qi in Equation (3.15) is to adopt the formulation of the

Clarke mechanism (Clarke, 1971). More specifically, for each bidder i, run the

branch-and-bound heuristic without the participation of bidder i, and denote the

42

allocation found as OB,i = {OB,i
1 , ..., OB,i

M }, where OB,i
i = 0. Then, set qi =∑M

j=1 vj(O
B,i
j). Due to the heuristic nature of the algorithm, it is possible that

the allocation of some OB,i may have higher social welfare than OB (Nisan and Ro-

nen, 2007). Therefore, the allocation OB in Equation (3.16) should be replaced by

OB∗ = argmax
O∈OB

∑M
i=1 vi(Oi), where OB = {OB, OB,1, ..., OB,M}, such that an equal

or higher social welfare (and higher utilities for PAs) can be achieved.

3.4 Empirical Evaluation

In this section, we conduct experiments on some benchmark problems to verify

the effectiveness of our approach. First, we compare the greedy allocation strat-

egy against state-of-the-art approaches. Then, we examine the improvements the

branch-and-bound strategy can make to the greedy allocation. Since all previous

approaches aim at minimizing APD, to make a fair comparison, here we set the

delay cost for all bidders to be linear with the same unit cost wi, and evaluate the

solution quality according to the APD values.

As mentioned in Section 3.3.2, a reasonable choice for a bidder to answer the

capacity queries is to using anytime algorithms to keep improving the answers until

the time limit is reached. However, since the benchmark cases consist of large

projects (up to 120 activities per project), it may take quite a long time for a

bidder to find a feasible solution for a bidding problem. Here, in the experiments,

to make the computation scalable, we design a fast priority-rule based scheduling

algorithm (Algorithm 7) to approximately solve the bidding problem in polynomial-

time. Details of Algorithm 7 can be found in the Appendix. Algorithm 7 will be used

in most of the following experiments to simulate the process of answering capacity

queries. We also examine the impact of deliberation in Section 3.4.1.1, by solving

the bidding problem using anytime solvers with certain deliberation time Tans.

3.4.1 Results of the Greedy Allocation Strategy

We test the greedy allocation strategy on two problem sets. The first one contains

all the 140 cases from MPSPLIB.5 To the best of our knowledge, this is the only

public benchmark of DRCMPSP. We compare our approach with state-of-the-art

5http://www.mpsplib.com/

43

Table 3.1: Comparison of Average APD Values with Other Approaches

Subset Greedy DMAS/EM DMAS/ABN SASP

MP 30 2 13.60 8.90 15.90 22.40

MP 90 2 5.80 6.60 9.90 18.50

MP 120 2 50.70 59.40 67.20 69.10

MP 30 5 19.08 17.00 21.20 31.90

MP 90 5 11.20 4.60 11.00 23.80

MP 120 5 46.00 54.20 66.48 71.90

MP 30 10 55.92 66.40 87.50 90.20

MP 90 10 38.14 50.90 46.08 65.00

MP 120 10 107.58 119.60 130.96 139.60

MP 30 20 116.23 138.00 207.96 185.50

MP 90 20 21.28 27.40 30.22 48.60

MP 120 20 24.22 28.60 37.18 61.10

MP 90 2AC 108.35 126.00 144.15 158.60

MP 120 2AC 38.30 52.40 47.00 56.70

MP 90 5AC 249.72 284.60 384.08 404.60

MP 120 5AC 181.76 233.50 291.44 258.80

MP 90 10AC 175.91 223.30 313.33 283.90

MP 120 10AC 104.31 169.40 171.54 181.00

MP 90 20AC 94.97 126.70 146.37 161.80

MP 120 20AC 163.54 280.70 297.39 297.40

44

distributed approaches DMAS/EM (Zheng et al., 2014), DMAS/ABN (Adhau et al.,

2012), and a centralized approach SASP on this problem set. We also compare our

approach with another combinatorial auction based approach in (Confessore et al.,

2007) (denoted as Confessore’s). Since this approach can only handle one single-

unit global resource, we conduct experiments on the second problem set, which is

generated from MPSPLIB by replacing the multi-unit global resources in each case

with one single-unit global resource.

3.4.1.1 Experiments on the First Problem Set

The 140 cases from MPSPLIB are divided into 20 subsets named as “MP N M”,

where N ∈{30, 90, 120} is the number of activities per project, and M ∈{2, 5,

10, 20} is the number of projects. Thus the largest cases contain 20 × 120 = 2400

activities. Each case contains 4 resources per project, and the number of global

resources K in each case is chosen between 1 and 4. The cases with no local resource,

i.e. K = 4, are called “Agent Cooperation” cases, and a postfix “AC” is added to the

subset names. Each AC subset contains 10 cases, while each non-AC subset contains

5 cases. To measure the tightness of global resource constraints, a Utilization Factor

(UF) (Homberger, 2012) value is calculated for each case. Here we briefly introduce

how to compute UF . For a DRCMPSP case, a utilization factor UFk for each global

resource rk is computed as follows:

UFk =

∑M
i=1

∑Ni

j=1 b
k
ij

Ck ·GCPL
, (3.17)

where Ck is the average capacity of rk per time slot, and GCPL is the global critical

path length of all projects. Then, UF is set to be the maximum UFk of all the

global resources, i.e. UF = max {UFk|k ∈ {1, .., K}. UF < 1 indicates a low to

medium resource constraint, while UF > 1 indicates a medium to high constraint

(Lova and Tormos, 2001). Average UF value UF of each subset is listed in Table

3.2. In general, AC subsets have higher UF than non-AC subsets given the same

M and N , which makes AC subsets harder to solve.

We implement Algorithm 1 using Java 1.8, and run the algorithm on a single

Intel Xeon Workstation (3.5GHz, 16GB). We set the scheduling horizon T = 1500

for all the cases. We first use Algorithm 7 to solve the bidding problems. All the 140

cases are successfully solved within a total time of 140 seconds. We calculate the

45

Table 3.2: Average Utilization Factor of Each Problem Subset

Subset UF Subset UF Subset UF Subset UF

MP30 2 0.84 MP120 5 1.32 MP90 20 0.90 MP120 5AC 3.80

MP90 2 0.57 MP30 10 2.38 MP120 20 0.87 MP90 10AC 3.85

MP120 2 1.31 MP90 10 1.14 MP90 2AC 2.27 MP120 10AC 2.61

MP30 5 0.82 MP120 10 1.91 MP120 2AC 1.36 MP90 20AC 2.70

MP90 5 0.61 MP30 20 3.37 MP90 5AC 4.99 MP120 20AC 3.65

0

50

100

150

200

250

Overall Non-AC AC UF<1 UF>1

A
v
e
ra

g
e
 A

P
D

Greedy Allocation DMAS/EM DMAS/ABN SASP

Figure 3.2: Comparison of Average APD

average APD of each subset as shown in Table 3.1, where the best results are marked

as bold. Among the 20 subsets, the greedy allocation strategy outperforms other

approaches in 17 subsets. For MP 120 20AC, one of the most complex subset with

the tightest resource constraints, our approach outperforms DMAS/EM by 41.7%.

According to Equation (3.1), the minimum possible APD value is 0. We observe

that for 6 cases, the greedy allocation strategy finds the solutions with APD = 0,

which shows that it has the ability to find the optimal solution and confirms the

correctness of our combinatorial auction formulation of DRCMPSP.

To evaluate the performance of the greedy allocation strategy in different types

of subsets, we first split the problem subsets into two groups that consist of only non-

AC and AC cases, and calculate the average APD obtained by the four approaches.

Then we group the subsets according to if UF > 1, and calculate the corresponding

46

Table 3.3: Comparison with DMAS/EM

Type Overall Non-AC AC UF < 1 UF > 1

Greedy Allocation 97.98 42.48 139.61 15.86 120.38

DMAS/EM 129.89 48.47 187.08 15.52 158.26

Difference (%) -24.57 -12.36 -25.37 2.19 -23.94

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25

E
x
e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

)

M

N=30 N=90 N=120

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

)

N

M=2 M=5 M=10 M=20

Figure 3.3: Execution Time on MPSPLIB Cases: (left) fix N∗, and (right) fix M

average APD. We plot these values along with the overall average APD of all the

140 cases in Figure 3.2. As presented, our greedy allocation strategy produces the

lowest average APD compared with other three approaches. Moreover, our greedy

allocation strategy generates better results for three types of subsets non-AC, AC,

and UF > 1; for UF < 1, our result is comparable with the best result obtained by

DMAS/EM. In Table 3.3, we compare our results with DMAS/EM, which produces

the closest results to ours. As shown in Table 3.3, overall, our approach outperforms

DMAS/EM by 24.57%. For the two harder groups AC and UF > 1, our approach

gives 25.37% and 23.94% improvements against DMAS/EM, respectively. In general,

our greedy allocation approach gives lower APD compared to other three approaches,

and performs better on harder subsets with tighter global resource constraints.

We then evaluate the scalability of the greedy allocation strategy using Algorithm

7 for solving bidding problem according to the total time for solving one case, since

it is simulated on a single computer. Before showing the results, we first give a brief

analysis on the complexity of Algorithm 1. Apparently, the number of iterations

47

between Line 2 and 9 is M , since in each round a bidder will be allocated and

removed from US. Hence, the worst case for a bidder is to generate M bids, and the

total number of bids generated by all bidders is M(M+1)/2. If Algorithm 7 is used,

the worst-case complexity of a bidder is O (MN2
i (K + Li)d

∗
i). The main task for the

auctioneer in each round is to calculate the average price and maintain the capacity

profile, leading to a worst-case complexity of O(MKT). Since d∗i and K + Li are

constants in all the cases of MPSPLIB and T is fixed, the worst-case complexity of

the MA and PA are O(M) and O(MN2
i). Thus, if Algorithm 1 is simulated on a

single thread, the worst-case complexity to generate a solution is O(M2N∗2), where

N∗ = max{N1, ..., NM}.
We plot the average execution time against M and N∗ in Figure 3.3, by fixing

one parameter and increasing the other. The time increasing trends in Figure 3.3

are compatible with our complexity analysis and show that the greedy allocation

strategy with polynomial-time bidding algorithm can efficiently solve large problem

cases with thousands of activities from tens of projects.

To evaluate the impact of the bidder’s deliberation, we simulate the capacity

answering using standard solver. Specifically, we model the RCPSP as an Integer

Linear Program (ILP) and solve it using the Gurobi solver (Gurobi Optimization,

2015). To control the deliberation time, we set the time limit Tans of the solver

to be 10, 20, 30, 40, 50 seconds. To guarantee that a feasible solution will be

found, we first use Algorithm 7 to generate a feasible solution, then use the solver

to improve the result until the time limit is reached. We only test the cases with

M ∈ {2, 5}, since the approach is executed using one thread and the execution

time increases quadratically with M , according to the complexity analysis in the

previous paragraph6. Totally, we test 70 cases out of the 140 cases from MPSPLIB.

We list the results according to Tans in Table 3.4, where the column ALG3 consists

of the results of the corresponding subset from Table 3.1. As shown in this table,

in general, a longer deliberation time tends to produce better solutions. Compared

with the results produced with Algorithm 7, we can conclude that for all the Non-

AC subsets, the deliberation helps in improving the results of Algorithm 7, while the

solution quality could drop for the AC subsets. An explanation for this observation

is that, the deliberation enables a bidder to find a better schedule which utilizes

6However, in reality the bidders should deliberate in parallel.

48

Table 3.4: Average APD Values of Greedy Allocation with Different Deliberation

Time

Subset ALG3 Tans=10 Tans=20 Tans=30 Tans=40 Tans=50

MP30 2 13.60 12.90 12.40 12.30 11.90 11.90

MP90 2 5.80 5.80 5.40 5.40 5.40 5.40

MP120 2 50.70 50.10 49.90 49.90 49.20 48.00

MP30 5 19.08 18.00 17.24 16.60 16.40 16.36

MP90 5 11.20 9.84 9.84 9.84 9.84 9.84

MP120 5 46.00 45.16 45.12 44.84 44.96 44.96

MP90 2AC 108.35 109.50 109.50 109.50 109.50 109.50

MP120 2AC 38.30 37.95 37.95 37.95 37.95 37.95

MP90 5AC 249.72 252.10 251.96 251.80 251.80 251.80

MP120 5AC 181.76 182.74 182.68 182.68 182.68 182.68

its own local resources more effectively. In contrast, when all resources are shared,

better schedules of the bidders who are allocated earlier may affect the utilities of

the bidders who will be allocated later.

3.4.1.2 Experiments on the Second Problem Set

In this section, we describe the experiments on the second problem set, which con-

tains 140 cases generated from the MPSPLIB. More specifically, for each case in

MPSPLIB, we first keep the global resource that has the minimum capacity and

remove other ones. Then, we replace the capacity of that resource and requirements

of each activity on that resource with 1. We classify the newly generated cases based

on the number of activities and projects. Hence, 12 subsets can be obtained.

We implement Confessore’s approach using Java 1.8 and run both Confessore’s

and Algorithm 1 on the same workstation as we explained in the previous section.

Algorithm 7 is used here to solve the bidding problem. During the experimentation,

we observe that Confessore’s approach cannot converge on some cases. Hence, we

limit the maximum iterations of this approach to 3000. The scheduling horizon T

is set to 15000.

All the 140 cases in this problem set are successfully solved by our approach

49

Table 3.5: Number of Cases Solved by Confessore’s Approach for Each Subset of

the Second Problem Set

Subset Total Solved Ratio (%) Subset Total Solved Ratio (%)

MP30 2 5 5 100 MP30 10 5 4 80

MP90 2 15 15 100 MP90 10 15 10 67

MP120 2 15 15 100 MP120 10 15 14 93

MP30 5 5 5 100 MP30 20 5 4 80

MP90 5 15 12 80 MP90 20 15 3 20

MP120 5 15 14 93 MP120 20 15 9 60

0

20

40

60

80

100

120

0 5 10 15 20 25

S
o

lv
e
d

 R
a

ti
o

 (
%

)

M

Greedy Allocation Confessore's Approach

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25

E
x
e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

)

M

Greedy Allocation Confessore's Approach

Figure 3.4: Scalability Comparison on the Second Problem Set

within 730 seconds, while Confessore’s approach can solve 79% (110/140) of all cases

in about 15 hours. We list the number of cases solved by Confessore’s approach for

each subset in Table 3.5, and plot the ratio of solved cases against the number

of projects M in the left of Figure 3.4. The trend in this figure indicates that

Confessore’s approach may not be able to solve large cases where tens of projects

are involved. To compare the computational efficiency, we calculate the average

execution time of the cases successfully solved by both approaches regarding the

number of projects M , and plot the curves in the right of Figure 3.4 (the vertical

axes is in log scale). As shown in this figure, the execution time of our greedy

allocation strategy are much smaller than those of Confessore’s approach, and when

N is larger than 10, our approach can be two orders of magnitude faster.

50

Table 3.6: Comparison of Average APD Values on the Second Problem Set

Subset Greedy Confessore’s Diff(%)

MP30 2 106.40 122.80 -13.36

MP90 2 354.27 393.70 -10.02

MP120 2 362.20 439.60 -17.61

MP30 5 167.28 279.80 -40.21

MP90 5 641.02 869.67 -26.29

MP120 5 993.36 1281.24 -22.47

MP30 10 393.30 667.08 -41.04

MP90 10 1504.75 2111.30 -28.73

MP120 10 1564.11 2360.66 -33.74

MP30 20 937.39 1540.06 -39.13

MP90 20 1591.27 2800.17 -43.17

MP120 20 3037.74 5075.11 -40.14

We then evaluate the solution quality of these two approaches by calculating the

average APD of the cases in each subset in Table 3.6. Here we only consider the

cases that are solved by both approaches. From this table, we can conclude that

our approach consistently achieves lower APD values on all the subsets. Further-

more, the improvement tends to increase on harder cases having more activities and

projects. The results show that our approach is computationally frugal, and can

efficiently solve large cases where tens of projects are involved.

3.4.2 Results of the Branch-and-bound Strategy

We implement and run the branch-and-bound heuristic on the 140 cases from MP-

SPLIB, with the same setting as in Section 3.4.1.1. The algorithm is executed with

different Qnv values chosen from [10, 1000]. We also use Algorithm 7 to solve the bid-

ding problem. Table 3.7 shows the results for Qnv equals to 10, 100, 500, and 1000.

We can observe that for all subsets except those where M = 2, solution quality is

improved. This makes sense since there are only 2 possible sequences when M = 2.

Table 3.7 also shows that the improvement over the greedy allocation increases with

Qnv. We plot the increase of the improvement (Impr) in Figure 3.5, along with the

51

Table 3.7: Average APD Values of the Branch-and-bound Strategy with Different

Qnv

Subset Greedy Qnv = 10 Qnv = 100 Qnv = 500 Qnv = 1000

MP30 2 13.60 13.00 13.00 13.00 13.00

MP90 2 5.80 5.60 5.60 5.60 5.60

MP120 2 50.70 50.70 50.70 50.70 50.70

MP30 5 19.08 17.48 17.28 17.28 17.28

MP90 5 11.20 9.04 9.04 9.04 9.04

MP120 5 46.00 45.36 44.60 44.60 44.60

MP30 10 55.92 55.34 54.72 53.40 53.12

MP90 10 38.14 36.72 36.26 35.72 35.58

MP120 10 107.58 106.38 105.74 104.84 103.84

MP30 20 116.23 115.70 115.50 115.46 115.37

MP90 20 21.28 20.82 20.25 20.25 20.24

MP120 20 24.22 24.09 23.84 23.43 23.42

MP90 2AC 108.35 107.20 107.20 107.20 107.20

MP120 2AC 38.30 37.80 37.80 37.80 37.80

MP90 5AC 249.72 248.62 247.28 247.28 247.28

MP120 5AC 181.76 178.64 176.88 176.88 176.88

MP90 10AC 175.91 175.52 175.43 174.76 174.64

MP120 10AC 104.31 103.71 103.10 102.87 102.63

MP90 20AC 94.97 94.85 94.47 94.27 94.04

MP120 20AC 163.54 163.14 162.95 162.72 162.64

Average APD 97.98 97.11 96.67 96.46 96.36

Improvement (%) N/A 0.88 1.33 1.55 1.65

52

0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
)

Im
p

ro
v
e
 (

%
)

Qnv

Improve AvgTime MaxTime

Figure 3.5: Improvement and Execution Time of the Branch-and-bound Strategy

average execution time per case (AvgTime) and the maximum execution time for a

case (MaxTime). When Qnv = 1000, the maximum execution time for a case is 191s,

which is acceptable since we are dealing with an offline static scheduling problem.

Here we only run the algorithm to find the allocation OB without the computation

of VCG-based payment. However, since the sizes of problems of finding OB
i for

computing payments for each bidder is smaller than the problem of finding OB, the

increasing trend of the execution time should be in accordance with the curves in

Figure 3.5. To summarize, the branch-and-bound strategy can effectively improve

the solution quality of the greedy allocation strategy, within reasonable computation

time.

3.5 Conclusions

In this chapter, we study how to solve DRCMPSP using the multi-unit combinatorial

auction, since it naturally suits the requirement of DRCMPSP, i.e. making resource

allocation decisions without the need of knowing private project information. To this

end, we make three contributions. Firstly, we formally analyze the relations between

the optimal allocations of the auction and the optimal solutions of the DRCMPSP

case. Secondly, to deal with the hard valuation problem in the formulation, we

introduce the capacity query to elicit the valuations of the bidders in the DRCMPSP

53

auction. Thirdly, we employ two strategies proposed in (Gonen and Lehmann,

2000) that work with the capacity queries to efficiently find good allocations for the

DRCMPSP auction.

The first strategy allocates the global resources in a greedy manner, which em-

ploys an iterative process of querying and allocating. In each round, the bidder with

a bid that has the maximum average price will be granted. We show that under

fixed unit pricing scheme, the bidders will bid only for cores, which are compact

resource utilization profiles of their projects. We also show that when the bidders

can answer the capacity queries optimally and requires sufficient large amounts of

global resources, the greedy allocation strategy is shown to preserve a worst-case

approximation guarantee for DRCMPSP auctions, which is the same as the one

proved in (Gonen and Lehmann, 2000) for the winner determination problems.

The second strategy is based on a branch-and-bound process, which aims at

improving the greedy allocation by finding a better sequence of the bidders for

granting their bids. To guarantee that the bidders’ utilities will not decrease during

backtrakcing, VCG-based payment in (Nisan and Ronen, 2007) is adopted to align

the utility of each bidder to the social welfare of the final allocation.

We conduct experiments on benchmark problem sets. The two proposed strate-

gies show good performance both in solution quality and scalability. Specifically, the

greedy allocation strategy can produce solutions with higher quality than state-of-

the-art approaches, and the improvement on solution quality tends to be higher on

harder cases with more projects, more activities and higher resource contention. The

computation could be very efficient when polynomial-time algorithms are used by

the bidders to find approximate answers to the capacity queries. Also, the branch-

and-bound strategy is shown to be effective in further improving the results of the

greedy allocation, and can scale to large cases within reasonable computation time.

54

Chapter 4

Risk-Neutral Proactive Scheduling

with Time-dependent Workability

Uncertainty

In the previous chapter, we study a scheduling problem in a distributed environment

with deterministic activity durations. However, real-world activities often have ran-

dom durations, since the execution could be affected by various uncertainties. In

this chapter, we discuss how to deal with a centralized scheduling problem, but with

uncertain activity durations. More specifically, we study the proactive schedul-

ing problem for RCPSP, aiming at minimizing the expected makespan which is a

risk-neutral objective. Different from previous research on this topic, we allow the

activity duration uncertainty to be time-dependent, caused by the time-dependent

workability uncertainty. To circumvent the underlying complexity caused by the un-

certainty, we propose a principled approximate approach with convergence guaran-

tee based on Sample Average Approximation (SAA). Finally, we design two efficient

branch-and-bound algorithms to optimally solve the SAA problem, which is proved

to be NP-hard. Experimental results on benchmark problem instances and different

models of activity duration uncertainties confirm the effectiveness of our algorithms.

This chapter is organized as follows. Section 4.1 introduces two types of solutions

that will be used in our work, i.e. Partial-Order Schedule and AON-Flow Network.

In Section 3.2, we describe our generalized activity duration model and formulate

our proactive scheduling problem. In Section 4.3, we show how to approximate the

55

0

0,0

1

3,2

2

5,3

3

1,3

4

3,1

5

2,1

6

4,2

7

5,3

8

6,1

9

4,1

10

4,1

11

0,0

Figure 4.1: An Example of the AON Network

hard proactive scheduling problem using SAA. In Sections 4.4 and 4.5, we present

the two proactive scheduling algorithms. Section 4.6 is dedicated to the numerical

experiments and analysis. The chapter ends with the conclusions in Section 4.7.

4.1 Preliminaries: POS and AON-Flow Network

In this section, we introduce two concepts that are very useful in handling unforeseen

disruptions in project execution, i.e. Partial Order Schedule (POS) and AON-Flow

Network. We begin with the graph representation of the temporal constraints.

It is well known that the precedence relations between activities within a project

can be represented as an Activity-On-Node (AON) network. Recall that for a

RCPSP instance, Ap = A ∪ {a0, aN+1} is the set of activities including the dummy

ones, and Ep is the precedence relations between them. Then the AON network of

this project is Gp = (Ap, Ep), which is a directed acyclic graph (DAG). The AON

network of a sample project containing 10 activities is shown in Figure 4.1, where a

circle represents an activity, and the left and right numbers below it are the duration

and requirement for a single resource with limited capacity of 4 units, respectively.

The arrows between circles represent the precedence relations. Throughout this the-

sis, let V (G) and E(G) be the vertex set and edge set of a graph G, respectively. We

also denote Tr(G) as the transitive closure of G, where (ai, aj) ∈ Tr(G) indicates

there is a path from ai to aj.

When the activity durations are uncertain, a feasible schedule S generated by

solving a deterministic instance could be disrupted and become infeasible during

56

240 2 4 6 8 10 12 14 16 18 20 22

0

1

2

3

4

1
4

2 3

5 9

6
7

8

10

Figure 4.2: A Feasible Schedule

240 2 4 6 8 10 12 14 16 18 20 22

0

1

2

3

4

1
4

2 3

5

6
7

8

109

Figure 4.3: An Example of Schedule Disruption

execution, since the activity completion times are also uncertain. Below we give

a simple example of disruption. A feasible schedule of the project in Figure 4.1 is

shown in Figure 4.2. Suppose that during execution, the duration of activity a9 is

elongated from 4 to 6, as shown in Figure 4.3. This unexpected duration elongation

makes the schedule infeasible, since the accumulated resource requirement from

time 15 to 17 exceeds the capacity of 4. Whenever such disruption happens, the

schedule must be repaired (i.e. restore its feasibility) so that the project execution

can be resumed. The repair procedures are often expensive and complex, since both

temporal and resource constraints need to be taken into account.

Different from the start-time schedules, POS (Policella et al., 2004) offers a

flexible way for project execution, where the start time of each activity is determined

during execution time instead of before execution. A POS is a DAG GR = (Ap, Ep∪
ER) that augments the AON network Gp by adding an additional set of precedence

constraints ER, such that any temporal feasible solution of GR is also resource

feasible. A sample POS for the project represented in Figure 4.1 is shown in Figure

4.4, where the dotted arrows represent the additional precedence constraints in ER.

The additional temporal constraints in ER must be chosen carefully, such that GR

is acyclic and all the possible resource conflicts are resolved. We denote the set of

POS as GR. In Section 4.4 and 4.5, we will further discuss how to generate a feasible

57

0

1

2

3

4

5

6

7

8

9

10

11

Figure 4.4: An Example of POS

240 2 4 6 8 10 12 14 16 18 20 22

0

1

2

3

4

1
4

2 3

5 9

6
7

8

10

26

Figure 4.5: The Schedule Obtained by Executing the POS

POS by finding suitable ER.

POS provides a very efficient way for dealing with uncertain durations, by re-

moving the requirement of reasoning on complex resource constraints. Specifically,

the start time of each activity is determined solely based on the precedence con-

straints and actual activity durations. Given a POS GR, let Pre(ai, GR) = {aj ∈
Ap|(aj, ai) ∈ Ep ∪ ER} be the immediate predecessors of an activity ai specified by

GR. During execution time, the start time si of ai can be computed very easily

using the equation below:

si = max{cj = sj + dj|aj ∈ Pre(ai, GR)}, (4.1)

where dj is the actual duration of aj. In other words, ai is started after the comple-

tion of all its immediate predecessors in GR. Along with execution, the start times

of all ai ∈ Ap can be determined, hence a feasible schedule is obtained. Figure 4.5

shows the actual schedule obtained by executing the project according to the POS

in Figure 4.4, with the unexpected elongation of a9 shown in Figure 4.3. According

to the POS, a7 can only start after a5, a6 and a9 are all completed. Therefore,

when the duration of a9 is elongated to 6, the start time of a7 will be set to 17,

58

0

1

2

3

4

5

6

7

8

9

10

11

2

1

1
2

3

2

1

1

1

2

1
1

2

1

1

Figure 4.6: An Example of AON-flow Network

which further makes a11 to start at 22. Clearly, the schedule shown in Figure 4.5 is

conflict-free.

Another concept that will be used here is the AON-flow Network (Artigues et al.,

2003). Though POS eliminates the requirements for resource reasoning, the resource

allocation decision (i.e. which resource unit is allocated to which activity) is not

clearly specified. The resource allocation decision is considered to be very important

in practice, since it can provide great advantage in preparing and coordinating the

execution process (Leus and Herroelen, 2004). AON-flow Network explicitly specifies

such resource allocation decision by specifying resource flows between activities.

Similar to POS, an AON-flow Network GF = (Ap, Ep ∪ EF) is also an augmented

DAG of the original AON network Gp. The difference lies in the set EF , where each

element (ai, aj) ∈ EF carries a resource flow from ai to aj. The flow is represented as

a vector fij = (fij1, ..., fijK), where 0 ≤ fijk ≤ Ck is the amount of resource rk being

transfered from ai to aj, i.e. ai will release fijk of rk to aj after completion. It should

be noted that Ep ∩EF is not necessarily ∅, which means some edges in the original

AON network Ep may also carry resource flows. Figure 4.6 shows a sample AON-

flow Network for the project in Figure 4.1, where the arrows associated with values

represent the resource carrying edges in EF , and the values indicate the transfered

resource units.

According to (Artigues et al., 2003), the resource flows in a feasible AON-flow

Network should satisfy a set of conditions since the problem context is resource-

constrained. For convenience, let the requirement for each resource rk of the two

59

dummy activities be bk0 = bkN+1 = Ck.
1 Then GF should satisfy the conditions below:

• Positive flow:
∑

rk∈R fijk > 0,∀(ai, aj) ∈ EF ;

• Inflow balance:
∑

(aj ,ai)∈EF
fjik = bki ,∀rk ∈ R, ai ∈ Ap \ {a0};

• Outflow balance:
∑

(ai,aj)∈EF
fijk = bki ,∀rk ∈ R, ai ∈ Ap \ {aN+1}.

The positive flow condition guarantees that no edge in EF carries zero resource flow.

The inflow and outflow balance guarantee that the total resource units received and

sent by an activity should equal its requirement. We denote the set of AON-flow

Networks as GF .

Intuitively, POS and AON-flow Network have close relationship since they share

some similarities in their definitions and structures. For example, an AON-flow

Network is also a POS since all the possible resource conflicts are resolved by the

resource flows. We will further analyze the connections between these two concepts

in Section 4.4.1.

4.2 Problem Formulation

In this section, we formulate our proactive scheduling problem. We first generalize

the traditional stochastic RCPSP model with the time-dependent workability un-

certainty in Section 4.2.1, and then formulate the stochastic optimization model for

the proactive scheduling problem in Section 4.2.2.

4.2.1 The Model of Uncertainty

The problem we studied in this chapter shares almost the same statement as the

deterministic RCPSP in the earlier part of Section 3.1, expect the duration of an

activity ai is now a random variable Di, instead of a deterministic value. Here

we abuse the notation and use di to denote the realization of Di. Below we first

formulate Di under the time-dependent workability uncertainty.

Without loss of generality, we first classify all activities in A into Z types, and

activities of the same type can be described by the same workability uncertainty

model (e.g. requiring the same weather condition). For each activity type z, its

1Note that this does not affect the problem, since a0 and aN+1 have zero durations.

60

(uncertain) workability in a time slot t ∈ {1, ..., T} can be represented by a binary

random variable Xzt, where its realization xzt ∈ {0, 1} and activities of type z can

only work on t when xzt = 1.2 Then, the workability model of activity type z can

be represented by a random vector Xz = (Xz1, ...,XzT). Note that here we do not

require Xzt to be independent of each other. Therefore, depending on applications,

Xz can also be described by complex models, e.g. a (truncated) random process.

The complete workability uncertainty model can be represented as a random matrix

X = [Xzt]Z×T , where row z is the random vector for activity type z.

Next, we discuss the probabilistic activity durations under the workability un-

certainty. We first assume that this is the only uncertainty source, and each activity

ai has a fixed baseline duration dsi . Specifically, dsi is the condition for determining

the completion of an activity: once started, ai must acquire at least dsi workable

time slots before completion. Then we can formulate the cumulative distribution

function (CDF) of the random duration Di of an activity ai, conditioning on its

start time si as:

FDi
(di | si = t) = P (Di ≤ di | si = t)

= P

(
t+di−1∑
τ=t

Xziτ ≥ dsi

∣∣∣∣∣si = t

)
,

(4.2)

where di is the realization of Di, and zi ∈ {1, ..., Z} is the type of ai. Clearly, Di

depends on si since Xziτ is time-dependent.

Below we generalize the probabilistic model in Equation (4.2) to incorporate the

traditional time-independent duration model. In stochastic RCPSP, it is assumed

that the duration of ai can be represented as a random variable Yi that is not

conditioned on si. Hence, the duration uncertainty model is a random vector Y =

(Y1, ...,YN). In reality, it is possible that both X and Y exist at the same time,

since they reflect different sources of uncertainty. In this case, the baseline duration

of ai is not fixed as dsi , instead it is the time-independent random variable Yi. Then

Di conditions on si and Yi at the same time, and its CDF can be written as:

FDi
(di | si = t,Yi = yi) = P (Di ≤ di | si = t,Yi = yi)

= P

(
t+di−1∑
τ=t

Xziτ ≥ yi

∣∣∣∣∣si = t,Yi = yi

)
,

(4.3)

2The binary assumption is somehow restrictive; however our approach can be easily adapted

to support more “fine-grained” models where the domain of xzt has more values.

61

where yi is a possible realization of Yi. We denote the uncertainty model studied

here as U =< X,Y >, which is a tuple with two components. Clearly, when the

baseline durations are deterministic, i.e. P (Yi = dsi) = 1 holds for all activities,

Equation (4.3) is equivalent to Equation (4.2) when Yi = dsi since the dependence

on Yi can be removed. Meanwhile, we can have the following observation:

Observation 4.1 When P (Xzt = 1) = 1 holds for all z and t, the random duration

Di specified by Equation (4.3) is time-independent, and shares the same distribution

with Yi.

The correctness of Observation 4.1 can be verified as follows:

FDi
(di | si = t,Yi = yi) = P (Di ≤ di | si = t,Yi = yi)

= P

(
t+di−1∑
τ=t

Xziτ ≥ yi

∣∣∣∣∣si = t,Yi = yi

)
= P (di ≥ yi|si = t,Yi = yi) = P (Yi ≤ di).

(4.4)

Therefore, the uncertainty model U =< X,Y > and the CDF in Equation

(4.3) can be used to describe the random activity duration with both the traditional

time-independent uncertainty and the time-dependent workability uncertainty.

4.2.2 The Proactive Problem

Now, we are ready to formulate the proactive problem studied in this chapter: given

a RCPSP instance and the uncertainty model U , find a POS G∗R ∈ GR that mini-

mizes the expected makespan:

G∗R = argmin
GR∈GR

{g(GR) = E[MS(GR,U)]} , (4.5)

where E[·] is the expectation operator and MS(GR,U) is a random variable rep-

resenting the (stochastic) makespan of a solution GR on U . Note that when the

uncertainty model U only contains component Y , the problem in Equation (4.5)

reduces to the traditional stochastic RCPSP.

Equation (4.5) is a hard stochastic optimization problem, not only due to the

combinatorial nature of RCPSP. In fact, even evaluating a solution is intractable.

When U only contains component Y , the expected value computation of a given

solution GR is equivalent to the MEAN PERT problem (Hagstrom, 1988), which is

62

shown to be #P-complete. When U only contains component X, the number of

possible realizations of X is 2ZT , which grows exponentially with the problem size.

To circumvent the hardness in computing the expected makespan, we use SAA to

approximate the problem in Equation (4.5) in the next Section.

4.3 Sample Average Approximation

Sample Average Approximation (SAA) is a Monte-Carlo simulation based approach

for approximately solving hard discrete stochastic optimization problems (Kleywegt

et al., 2002). The basic idea of SAA is very intuitive. Essentially, a set of independent

random samples are drawn from the distribution, and then a SAA problem, which is

an approximation of the original problem, is formulated by substituting the original

objective function (i.e. expected value) with the sample average function. By solving

the SAA problem, an approximate solution can be found, which is proved to converge

to the optimal solution of the original problem at an exponential rate with the

increase of sample size (number of samples).

Now we show how to approximate the problem in Equation (4.5) using SAA.

Given the uncertainty model U =< X,Y >, a sample is a tuple u =< X, Y >,

where X = [xzt]Z×T and Y = (y1, ..., yN) is a realization of X and Y , respectively.

For convenience, we use x(u, z, t) to represent the workability of activity type z

in time slot t specified by sample u, and let y(u, i) to be the baseline duration of

activity ai in u. We first draw Q random samples u = {u1, ..., uQ} independently

from U . Then, the SAA problem of Equation (4.5) can be formulated as:

Ĝ∗R = argmin
GR∈GR

{
ĝ(GR) =

1

Q

Q∑
q=1

MS(GR, u
q)

}
, (4.6)

where Ĝ∗R is the optimal solution of the SAA problem, ĝ(GR) is the sample aver-

age function of the original expected value function g(GR) in Equation (4.5), and

MS(GR, u
q) is the makespan of a solution GR on sample uq. As proved in (Kley-

wegt et al., 2002), Ĝ∗R will converge to G∗R at an exponential rate with the increase

of Q. Moreover, Equation (4.6) is a deterministic problem instead of a stochastic

one, which can help to avoid reasoning on the complex activity duration models and

facilitate the design of solution algorithms.

63

Next, we show how to compute the sample average function ĝ(GR) for a given

solution GR. More specifically, we only need to show the computation of MS(GR, u).

According to Equation (4.1), the start time si of an activity ai can be determined by

the completion times of all its predecessors specified by a solution GR. Therefore, we

only need to determine the durations of these predecessors on sample u. Intuitively,

the duration of an activity on a sample should be also time-dependent. Specifically,

for activity ai, if it starts at si on a sample u, then a duration di is feasible if ai can

obtain enough workable time slots before completion, i.e.
∑ci−1

τ=si
x(u, zi, τ) ≥ y(u, i),

where ci = si + di is the completion time. Many di values can satisfy the above

condition, but we can show that it is sufficient to use the minimum value of them,

as given by the following equation:

di(si, u) = min

{
d > 0

∣∣∣∣∣
si+d−1∑
τ=si

x(u, zi, τ) ≥ y(u, i)

}
. (4.7)

In other words, an activity should be completed once it acquires enough workable

time slots. By definition, di(si, u) is the smallest feasible duration. To show the

rationale, we first prove the following lemma:

Lemma 4.1 For an activity ai and a sample u, given two start times s1
i and s2

i ,

if s1
i ≤ s2

i , then for any feasible duration d2
i of s2

i , c
1
i (s

1
i , u) ≤ c2

i holds, where

c1
i (s

1
i , u) = s1

i + di(s
1
i , u) and c2

i = s2
i + d2

i .

Proof. We only need to show that c1
i (s

1
i , u) ≤ c2

i (s
2
i , u) = s2

i +di(s
2
i , u), since di(s

2
i , u)

is less than any other feasible d2
i . For convenience, below we denote c1

i (s
1
i , u) and

c2
i (s

2
i , u) as ci(1) and ci(2), respectively. According to Equation (4.7),

ci(1)−1∑
t=s1i

x(u, zi, t) =

ci(2)−1∑
t=s2i

x(u, zi, t) = y(u, i). (4.8)

It is easy to verify that the lemma holds if s2
i ≥ ci(1). When s1

i ≤ s2
i < ci(2), we

first assume ci(1) > ci(2). Then, we have

s2i−1∑
t=s1i

x(u, zi, t) +

ci(2)−1∑
t=s2i

x(u, zi, t) +

ci(1)−1∑
t=c2i

x(u, zi, t) = y(u, i). (4.9)

Since the second term in the left hand side of Equation (4.9) equals to y(u, i), we have∑s2i−1

t=s1i
x(u, zi, t)+

∑ci(1)−1
t=ci(2) x(u, zi, t) = 0, which indicates that

∑ci(1)−1
t=ci(2) x(u, zi, t) = 0

64

since x(u, zi, t) ≥ 0. Hence, the third term in the left hand side of Equation (4.9)

can be removed, indicating d′i = ci(2)− s1
i is a feasible duration. However, based on

the assumption, d′i < ci(1)− s1
i = di(s

1
i , u), which contradicts Equation (4.7) which

states that di(s
1
i , u) is the minimum feasible duration.

Based on Lemma 4.1, we can prove the following proposition:

Proposition 4.1 Given a POS GR and a sample u, the schedule S(GR, u) generated

by using Equations (4.1) and (4.7) produces the lowest makespan.

Proof. Let S ′(GR, u) be a schedule obtained by setting the duration of an activity

ai to a feasible duration d′i > di(si, u). Then according to Equation (4.1), the start

time of any immediate successor aj of ai cannot be earlier than the corresponding

start time in S(GR, u). According to Lemma 4.1, the finish time of j determined

by S ′(GR, u) cannot be earlier than that determined by S(GR, u), which indicates a

non-negative delay of aj. By further propagating this delay through GR, a makespan

equal or larger than MS(S(GR, u)) will be obtained.

It should be noted that Equation (4.7) does not exclude the possibility that an

activity could obtain a smaller duration by starting later, due to the time-dependent

workability uncertainty. However, Lemma 4.1 and Proposition 4.1 show that for

activities in a POS, it is not helpful to start late, since the delay will be propagated

to the “downstream” activities and finally lead to a non-negative increase of the

makespan. Further, we can have the following observation which will be used in

designing our algorithms:

Observation 4.2 Given two POS G1
R and G2

R, if V (G1
R) = V (G2

R) = Ap and

E(G1
R) ⊆ E(G2

R), then MS(G1
R, u) ≤MS(G2

R, u) holds for any sample u.

The reason is that, for any activity ai ∈ Ap, we can see that Pre(ai, G
1
R) ⊆

Pre(ai, G
2
R). Therefore, the start time of ai in schedule S(G2

R, u) cannot be earlier

than that in S(G1
R, u), according to Equation (4.1). This indicates that ai cannot

complete earlier by using G2
R than using G1

R, according to Lemma 4.1. Thus, G2
R

results in an equal or larger makespan than G1
R on u.

Let MS(GR, u) = MS(S(GR, u)) be the makespan of GR on u. The value

of MS(GR, u) can be computed in many efficient ways. In Algorithm 3, we give a

simple algorithm with a complexity of O(N2T). Therefore, it is tractable to evaluate

65

Algorithm 3: ComputeMakespan(GR, u)

Input: GR: a solution; u: a sample

Output: MS(GR, u): the makespan of GR on u

1 CS ← {a0};
2 while |CS| < |Ap| do

3 ES ← {ai /∈ CS|Pre(ai) ⊆ CS} ;

4 foreach ai ∈ ES do

5 si ← max{cj|aj ∈ Pre(ai)} ;

6 ci ← si + di(si, u) ;

7 CS ← CS ∪ {ai} ;

8 return MS(GR, u) ;

the objective ĝ(GR), with a complexity of O(MN2T). However, the SAA problem

is intractable, as stated below:

Proposition 4.2 The SAA problem in Equation (4.6) is NP-hard.

Proof. We follow the proof for deterministic RCPSP (Blazewicz et al., 1983), where

it is reduced from a NP-complete problem Partition Into Triangles (PIT): for a graph

G = (V,E) where |V | = 3t, is there a partition of G into t disjoint subsets, such

that each subset contains three pairwise adjacent vertices?

For any PIT instance, we first construct a RCPSP instance as in (Blazewicz

et al., 1983). Firstly, for each i ∈ V we create an activity ai. Next, for each pair

(i, j) /∈ E, a resource rij with capacity Cij = 1 is added, which is only required by

ai and aj with biji = bijj = 1, and bijl = 0 for other activities al. Then we construct

an instance for the SAA problem, by adding one sample u where xzt = 1 for all z

and t, and yi = 1 for all ai. We claim that the SAA problem has a solution GR with

ĝ(GR) ≤ t if and only if the PIT instance has a solution.

If we can find a solution to the PIT instance, then we immediately have a schedule

S with MS(S) ≤ t. From S, a feasible GR can be constructed by sequencing the

activities on each resource and adding a resource carrying edge from one activity to

its immediate successor in the sequence. Propagating this GR on u will produce a

schedule with the makespan MS(GR, u) ≤ t, hence ĝ(GR) ≤ t. On the other hand,

if we can find a GR satisfying ĝ(GR) ≤ t, then the schedule S(GR, u) must satisfy

66

MS(GR, u) ≤ t, indicating that the PIT instance has a feasible solution.

Since the SAA problem is intractable, we design two branch-and-bound algo-

rithms in the next two sections to solve it efficiently.

4.4 The Flow-based Algorithm

In this section, we design a branch-and-bound algorithm to solve the SAA problem,

which searches for the optimal POS by constructing feasible resource flows. We first

analyze the relations between POS and AON-flow Network.

4.4.1 Relations between POS and AON-flow Network

As we have mentioned in Section 4.1, an AON-flow Network is also a POS, since

all the possible resource conflicts are resolved by the resource flows. However, the

reverse relation, i.e. whether an AON-flow Network can be obtained from a POS, is

not straightforward. Below we analyze this relation in detail.

We first introduce a method for finding a feasible flow in a given DAG G =

(Ap, E). When there is only one resource r with capacity C, it has been shown in

(Leus and Herroelen, 2004) that the existence of a feasible flow for G can be checked

by computing a maximum flow in a transformed network GT constructed as follows:

1) create two vertices asi and ati for each ai ∈ A, and one vertex for a0 and aN+1

named as as0 and atN+1, respectively; 2) create two vertices, s and t with an edge (t, s)

as the virtual source and sink, and add edges (s, asi), (ati, t) for all ai ∈ Ap; 3) for

each (ai, aj) ∈ E(G), add an edge (asi , a
t
j). Each (s, asi) and (ati, t) has a capacity bi

that is equal to the resource requirement of ai, while the capacities of other edges are

+∞. An example of this transformation is shown in Figure 4.7. Let f(GT) be the

maximum (s, t) flow value in GT , then there exists an AON-flow Network GF with

E(GF) ⊆ E(G) if and only if f(GT) = fmax, where fmax = C +
∑

ai∈A bi. Moreover,

a feasible flow in G can be obtained by setting fij to the flow value on the edge

(asi , a
t
j) in GT . Furthermore, based on the well-known integral flow theorem, there

exists an optimal integer flow, i.e. all fij are integers. This integer maximum flow

can be found very efficiently using maximum flow algorithms (e.g. Edmonds-Karp

algorithm).

67

Figure 4.7: An Example of Network Transformation (left: original DAG GV ; right:

transformed network G′V , where integers beside edges represent capacities)

Here we extend the above procedure to support multiple resources. For each

rk ∈ R, we maintain a transformed network GT (k) for a given DAG G. Note that

these networks have the same edge sets, while the edge capacities are set to bki for

the corresponding GT (k). Let fkmax = Ck +
∑

ai∈A b
k
i for rk, then we can conclude

that there exists an AON-flow Network GF with E(GF) ⊆ E(G) if and only if

f(GT (k)) = fkmax holds for all rk ∈ R. Furthermore, we can show that whether

a DAG is a POS can be checked in polynomial time, by checking the existence of

AON-flow Network.

Proposition 4.3 For any POS GR ∈ GR, there must be an AON-flow Network

GF ∈ GF such that E(GF) ⊆ E(GR).

Proof. If no such AON-flow Network exists, then there must be a resource rk ∈ R
with f(GT

R(k)) < fkmax. This means there must be some activity ai which cannot

secure enough amount of rk by the edges in E(GR), since the flow in GT
R(k) is already

maximized. Hence in the actual execution, it is possible that rk is not enough for

ai to start at the time determined by GR, which implies that potential precedence

constraints are needed to resolve resource conflicts.

Proposition 4.3 enables us to search for the optimal POS by searching in the

space of AON-flow Networks, which is to solve the following problem3:

Ĝ∗F = argmin
GF∈GF

{
ĝ(GF) =

1

Q

Q∑
q=1

MS(GF , u
q)

}
. (4.10)

3Note that the computation of g(GF) and MS(GF , u
q) follow the same procedure as that for

POS, since only the precedence relations in E(GF) are needed.

68

This is can be justified by the following conclusion:

Proposition 4.4 For any optimal solution Ĝ∗F of the problem in Equation (4.10),

the corresponding POS Ĝ∗R = (Ap, E(Ĝ∗F)) solves the problem in Equation (4.6)

optimally.

Proof. Clearly we have ĝ(Ĝ∗F) = ĝ(Ĝ∗R). Suppose there is another POS G′R 6= Ĝ∗R

that has a lower SAA objective value than Ĝ∗R, i.e. ĝ(G′R) < ĝ(Ĝ∗R). Then according

to Proposition 4.3, there must exist an AON-flow NetworkG′F with E(G′F) ⊆ E(G′R).

Based on Observation 4.2, for any sample u, we have MS(G′F , u) ≤ MS(G′R, u),

leading to ĝ(G′F) ≤ ĝ(G′R) < ĝ(Ĝ∗R) = ĝ(Ĝ∗F). This indicates that in the space of

AON-flow Networks GF , G′F is a better solution than Ĝ∗F , which contradicts the

fact that Ĝ∗F is optimal.

Next, we introduce our algorithm for solving the problem in Equation (4.10).

4.4.2 Branching Scheme

Our flow-based algorithm, named BnB-Flow, is a depth-first tree search process that

directly exploits the feasible domain GF to find the optimal solution G∗F . Each

search node is associated with a partial solution G′F that contains a subset of ac-

tivities, i.e. V (G′F) ⊆ Ap, and each of them is provided enough resources by the

incoming resource-carrying edges in G′F . The branch-and-bound process is based

on a two-level branching scheme to determine the next activity to be linked to the

partial solution, along with the corresponding edges. The first level is called the

activity level, where an unlinked and precedence feasible activity will be selected for

branching. The second level is called the link level, where a resource and precedence

feasible link of the chosen activity will be selected for branching.

The branch-and-bound process can be described by the pseudo code in Algorithm

4, which shows a BnB Flow function that will be called on each search node. This

function starts with identifying a set ES of activities that are eligible for being linked

to the partial solution G′F . An activity is feasible if it is not included in G′F , but

all its immediate predecessors are, therefore ES = {ai ∈ Ap|ai /∈ V (G′F), P re(ai) ∈
V (G′F)}. If ES is empty, then all activities are linked to G′F and a feasible solution

is reached. Then the algorithm computes the SAA objective of the solution G′F ,

updates the best solution, and backtracks (Lines 3-7). If ES is not empty, then the

69

algorithm enters the two-level branching process. In the activity level, an eligible

activity al ∈ ES will be chosen and removed from ES (Lines 9-10) for branching,

until ES is empty. The activity can be chosen based on any criterion without

affecting the correctness of the algorithm, but certain heuristic for activity selecting

may help in reducing the computational time. We will further discuss the branching

heuristics in Section 4.4.5. Once al is chosen, the algorithm computes the lower

bound of this branching choice (link al to G′F) (Line 11). If the lower bound is

greater than or equal to the current best objective value ĝ∗, the search path is

pruned; otherwise the algorithm enters the link level.

The first step in the link level is to identify all the feasible links for incorporating

the chosen activity al to G′F , and put them into set LK (Line 13) as branching

candidates. A link lk = {(ai, al)|ai ∈ V (lk)} is a set of edges that link a set of

vertices V (lk) ⊆ V (G′F) in the partial solution G′F to the chosen activity al. The

approach of generating LK will be further discussed in Section 4.4.3. Then, similar

to the activity level, a feasible link lk will be chosen and removed from LK for

branching, until LK is empty (Lines 15-20). Once a link lk is chosen, it will be

used to link al to G′F , by calling the function LinkActivity (Line 17). Then, a new

partial solution Ḡ′F = (V (G′F) ∪ {al}, E(G′F) ∪ lk) is obtained, and the algorithm

continues by calling BnB on Ḡ′F . Upon backtracking in the link level, the function

RemoveActivity (Line 19) will be called to conduct inverse operation as LinkActivity,

in order to remove al and lk from Ḡ′F . The branching heuristic and lower bounds

for the link level are embedded in the ChooseLink function shown in Algorithm 5,

and will be discussed in Section 4.4.3.

In BnB-Flow, an outgoing capacity matrix OC = [ocik](N+2)×K is also maintained

to record the remaining available resource amounts for each activity. Specifically,

ocik is the current amount of resource rk that can be transfered from ai to another

activity. Before executing the algorithm, OC is set to be the initial value OC0, where

for each rk ∈ R, oc0
ik is set to bki for all ai ∈ A, while oc0

0k and oc0
N+1,k are set to Ck

and 0, respectively. In the LinkActivity function of Algorithm 4, if al is linked to

G′F using a link lk, then for each rk ∈ R and ai ∈ V (lk), ocik will be set to ocik−filk
if the edge (ai, al) carries positive flow for rk. Accordingly, the reverse operation

will be conducted by the RemoveActivity function upon backtracking. BnB-Flow is

invoked by calling BnB Flow(G
′0
F , null, L,OC

0), where G
′0
F = ({0}, ∅) is the initial

70

Algorithm 4: BnB Flow(G′F , Ĝ
∗
F , ĝ

∗, OC)

Input: G′F : current partial solution; Ĝ∗F : current best solution; ĝ∗: current

best objective value; OC: outgoing capacity matrix

1 ES ← FindEligibleActivities(V (G′F)) ;

2 if ES = ∅ then

3 ĝ′ ←ComputeObj(G′F) ;

4 if ĝ′ < ĝ∗ then

5 ĝ∗ ← ĝ′;

6 Ĝ∗F ← G′F ;

7 return;

8 while ES 6= ∅ do

9 al ← ChooseActivity(ES);

10 ES ← ES \ {al};
11 LB(G′F , al)← ComputeLB A(G′F , al);

12 if LB(G′F , al) < ĝ∗ then

13 LK ← FindFeasibleLinks(G′F , al, OC);

14 lk ←ChooseLink(G′F , LK, ĝ
∗);

15 while lk 6= null do

16 LK ← LK \ {lk};
17 Ḡ′F ←LinkActivity(al, G

′
F , lk, OC);

18 BnB Flow(Ḡ′F , Ĝ
∗
F , ĝ

∗, OC);

19 G′F ←RemoveActivity(al, Ḡ
′
F , lk, OC);

20 lk ←ChooseLink(G′F , LK, ĝ
∗);

21 return;

partial solution which contains only the dummy start activity a0 and L is a large

double value. BnB-Flow is complete when the lower bounds are admissible (i.e. they

never overestimate the best objective that can be achieved by the subtree rooted

from the corresponding search node), since the solution domain GF is completely

exploited.

71

4.4.3 Finding and Choosing Feasible Links

In this section, we describe the approach of identifying and selecting the feasible

links for a chosen activity. We begin by defining the feasibility of a link. Given

a partial solution G′F and an unlinked activity al, a link lk is said to be fea-

sible if the following conditions are satisfied by the new partial solution Ḡ′F =

(V (G′F) ∪ {al}, E(G′F) ∪ lk):

(ai, al) ∈ Tr(Ḡ′F),∀ai ∈ Pre(al) (4.11)∑
(ai,al)∈lk

filk = bkl ,∀rk ∈ R. (4.12)

The first condition in Equation (4.11) guarantees the original precedence constraints

in Gp is respected by Ḡ′F . The second condition in Equation (4.12) requires that al

must obtain enough resources from all the edges in lk. Below we give an observation

that enables us to limit the search space to integer resource flows only.

Observation 4.3 For all k and i, if Ck ∈ N and bki ∈ N, then it is sufficient to

consider only integer flows.

The correctness of this observation can be justified as follows. For any AON-

flow Network GF , clearly the DAG GR = (Ap, E(GF)) is a POS. According to

Proposition 4.3, there must be an AON-flow Network G′F with E(G′F) ⊆ E(GR). As

we mentioned in Section 4.4.1, the flow values in G′F should be integers. Based on

the same procedure in the proof of Proposition 4.4, we have ĝ(G′F) ≤ ĝ(GF). This

means for any GF , there must exist a G′F with integer flows that has a better SAA

objective value.

Here we use an enumeration approach to generate the set LK. Firstly, all activ-

ities ai ∈ G′F with positive ocik values are identified as the candidates for linking al.

Then, all the links that satisfy the condition in Equation (4.12) and contain only

positive resource flows are enumerated to form the set LK. Finally, each element

lk ∈ LK is checked against the condition in Equation (4.11). If any immediate

predecessor ai ∈ Pre(al) cannot reach al by lk, i.e. (ai, al) /∈ Tr(Ḡ′F), an additional

edge (ai, al) with zero resource flow is incorporated in lk to make it precedence

feasible. Note that this does not violate the positive flow condition of AON-flow

Network, since (ai, al) simply represents a precedence constraint in Ep.

72

Algorithm 5: ChooseLink(G′F , LK, ĝ
∗)

Input: G′F : current partial solution; LK: current set of feasible links; ĝ∗:

current best objective value

Output: lk: the chosen edge

1 while LK 6= ∅ do

2 lk ←GetLink(LK);

3 LB(G′F , lk)←ComputeLB L(G′F , lk);

4 if LB(G′F , lk) < ĝ∗ then

5 return lk;

6 else

7 LK ←RemoveLinks(LK, lk);

8 return null;

The branching and pruning process in the link level is shown in Algorithm 5.

When LK is not empty, an element is selected based on certain criterion (will be

further discussed in Section 4.4.5) in Line 2. Then in Lines 3-5, the lower bound of

this branching alternative (i.e. link al to Ḡ′F using lk) is computed and compared

with the current best objective value ĝ∗ to determine if the search path should be

pruned or not. If not, lk will be returned to Algorithm 4 for branching.

Due to the combinatorial nature, the enumeration operations may produce many

branching alternatives. Here we design an additional pruning step in Lines 6-7 of

Algorithm 5 to further reduce the size of LK. Essentially, whenever a link lk is

pruned, then any link lk′ ∈ LK satisfying V (lk) ⊆ V (lk′) can also be safely pruned,

since they can only result in equal or larger lower bound values than that of lk. The

rationale is based on the following observation:

Observation 4.4 Given two links lk1 and lk2 for linking al to G′F , if V (lk1) ⊆
V (lk2), then LB(G′F , lk

1) ≤ LB(G′F , lk
2).

Observation 4.4 will be justified in Section 4.4.4 when the lower bounding func-

tion ComputeLB L is discussed. Note that not all admissible lower bounds satisfy

this observation, but the one we design in Section 4.4.4 does.

73

4.4.4 Lower Bounds

In this section, we introduce the lower bounds we designed for the two branching

levels, i.e. ComputeLB A for the activity level, and ComputeLB L for the link level.

To guarantee the optimality, these two lower bounds must be admissible. Before

introducing the lower bounding technique, we first give a general lower bound on

the sample average function defined in Equation (4.6). Given a partial solution G′F

and a branching alternative ∆ (either an activity or a link), it is straightforward

to verify that the LB function defined in the equation below is an admissible lower

bound of ĝ:

LB(G′F ,∆) =
1

Q

Q∑
q=1

MSLB(G′F ,∆, u
q), (4.13)

where MSLB(G′F ,∆, u
q) is a lower bound of the makespan of choosing ∆ on sample

uq. In other words, to compute the lower bound of ∆ on ĝ, we only need to compute

its lower bound on each individual sample uq. Next, we give an observation based

on the properties of POS and SAA problem:

By leveraging Equation (4.13) and Observation 4.2, we construct the two lower

bounds based on the critical path lower bound for solving deterministic RCPSP

(Demeulemeester and Herroelen, 1997). Essentially, for the unlinked activities ai /∈
V (G′F), only the original precedence constraints in Ep are considered in computing

the lower bounds. Below we first discuss the lower bounding computation at the

link level.

ComputeLB L. Given a partial solution G′F , to compute the lower bound of a

feasible link lk, we construct an auxiliary graph Ḡ′′F and compute its makespan on

each sample uξ. Specifically, Ḡ′′F is an augmented graph of Ḡ′F where the unlinked

activities ai /∈ V (Ḡ′F) are linked using the edges in Ep, i.e. Ḡ′′F = (Ap, E(Ḡ′F)∪Ep).
Then Ḡ′′F is propagated on each sample uξ to obtain a temporal feasible schedule

S(Ḡ′′F , u
ξ), where ai /∈ Ḡ′F is not necessarily resource feasible. We can conclude that

the LB value defined in the below equation is an admissible lower bound of the

branching choice of linking al to G′F using lk:

LB(G′F , lk) =
1

Q

Q∑
q=1

MS(Ḡ′′F , u
q). (4.14)

74

This is because for any feasible solution GF ∈ GF obtained by extending Ḡ′F , we

have E(Ḡ′′F) ⊆ E(GF) since additional edges are added to resolve resource conflicts.

According to Observation 4.2, MS(Ḡ′′F , u
q) is a lower bound of the makespan ob-

tained by using GF on uq, indicating LB(G′F , lk) ≤ ĝ(GF) according to Equation

(4.13).

Now we show the the correctness of Observation 4.4. Given two links lk1 and

lk2 for linking the same activity al to a partial solution G′F , we can construct two

auxiliary graphs Ḡ
′′1
F and Ḡ

′′2
F . If V (lk1) ⊆ V (lk2), then we have E(Ḡ

′′1
F) ⊆ E(Ḡ

′′2
F).

According to Observation 4.2, LB(G′F , lk
1) ≤ LB(G′F , lk

2).

ComputeLB A. Different from ComputeLB L, we cannot construct a common

solution and propagate it on all samples to compute a lower bound, since the feasible

links have not been identified yet. Below we take a different approach to compute

the lower bound of linking an activity al to a partial solution G′F . We first construct

an auxiliary graph G
′r
F = (Arp, E

r) for the unlinked activities except al, where Arp =

Ap \ (V (G′F) ∪ {al}) and Er = {(ai, aj) ∈ E|ai, aj ∈ Arp}. Then, for each sample u,

we propagate G′F on it to obtain a schedule S(G′F , u) that contains only activities in

V (G′F). Based on S(G′F , u), we compute the earliest precedence and resource feasible

start time sl of al, along with the duration dl(sl, u) as defined in Equation (4.7).

Finally, we propagate the auxiliary graph G
′r
F on u to obtain a complete schedule

that contains all activities in Ap. The propagation of G
′r
F should consider S(G′F , u),

cl = sl+dl(sl, u) and a set of precedence constraints El = {(ai, aj) ∈ E|ai /∈ Arp, aj ∈
Arp}. Let S(G′F , al, u) be the schedule obtained in this way on sample u. Then we can

conclude that MS(G′F , al, u) = MS(S(G′F , al, u)) is a lower bound for the makespan

of any feasible solution GF ∈ GF obtained by extending any Ḡ′F , where Ḡ′F is a

partial solution obtained by incorporating al to G′F using a feasible link. This is

because for any G′F and u, we have ∀S(Ḡ′F , u) since al cannot start earlier than

sl on u. According to Lemma 4.1, MS(G′F , al, u) ≤ MS(Ḡ′F , u) ≤ MS(GF , u).

Therefore, the LB value defined in the below equation is an admissible lower bound

of incorporating al to G′F using any feasible link:

LB(G′F , al) =
1

Q

Q∑
q=1

MS(G′F , al, u
q). (4.15)

75

4.4.5 Branching Heuristics

In this section, we introduce the heuristics for selecting the branching alternatives in

BnB-Flow. In general, we aim at finding high-quality solutions as early as possible,

so that more search space can be pruned.

For the activity choosing step in Line 9 of Algorithm 4, we adopt two priority

rules, Maximum Total Successors (MTS) and minimum Latest Finish Time (LFT),

which are commonly used for solving deterministic RCPSP. These two rules are

experimentally shown to be able to produce good solutions with heuristic schedule

generation schemes Kolisch (1996), in which the activities are scheduled in an order

determined by these priority rules. When used for choosing activity from the eligible

set ES, MTS gives priority to the one with more number of immediate successors,

while LFT prefers the activity with smaller LFT value. For a given activity, the

number of total immediate successors can be easily determined by the AON network

Gp, and the LFT value can be computed by critical path method Kolisch (1996).

For the link choosing step in Line 5 of Algorithm 5, we design two heuristics,

minimum Average Earliest Start Time (AEST) and Minimum Link Predecessors

(MLP) based on the properties of the SAA problem. Specifically, AEST is designed

according to Lemma 4.1, which prefers the link lk with smaller average earliest start

time aest(lk) on all samples. To compute aest(lk), we first compute the earliest

start time est(lk, uq) of the chosen activity on each sample uq, then take the average

value, i.e. aest(lk) = 1/Q ·
∑Q

q=1 est(lk, u
q). The intuition of designing MLP is

based on Observation 4.4, which prefers a link with a smaller number of vertices,

i.e. |V (lk)|.

4.5 The MCS-based Algorithm

Different from BnB-Flow, our second algorithm, named BnB-MCS, directly searches

for the optimal solution in the space of POS. This is done by iteratively detecting

and resolving possible resource conflicts represented as Minimal Critical Set (MCS),

which will be introduced in the section below.

76

4.5.1 Detecting and Resolving Minimal Critical Sets

We begin with the definitions of Critical Set and Minimal Critical Set, following the

definitions in (Lombardi and Milano, 2012).

Definition 4.1 Given an instance of RCPSP, for an augmented DAG GV of the

AON network Gp, a set of activities Ac ⊆ A is a Critical Set (CS) of resource rk, if

(a)
∑

ai∈Ac
bki > Ck and (b) ∀ai, aj ∈ Ac, (ai, aj) /∈ Tr(GV) and (aj, ai) /∈ Tr(GV).

In other words, activities in a CS may temporally overlap, and have a total

resource requirement higher than the capacity. When no CS exists in a temporal

network GR, it is a POS where all the possible resource conflicts are resolved by the

temporal constraints in E(GR). The definition of MCS is given below:

Definition 4.2 A critical set Amc is a Minimal Critical Set (MCS), if ∀ai ∈ Amc,∑
aj∈Amc\{ai} b

k
j ≤ Ck.

Intuitively, a MCS is a CS satisfying the minimality condition, i.e. it is no longer

a CS if any activity is removed from it. Therefore, an MCS Amc can be resolved

by adding a precedence relation between any pair of activities (ai, aj) in it, which

is called a resolver of Amc. Let Res(Amc) = {(ai, aj)|ai, aj ∈ Amc, i 6= j} be the

set of all the possible resolvers of a MCS Amc. Note that the resource conflict in

CS may not be able to be resolved by adding precedence constraints for one pair of

activities, since the minimality condition is not satisfied. Therefore, a CS should be

reduced to a MCS to resolve the resource conflicts.

It has been shown in (Lombardi and Milano, 2012) that for a temporal network G

and a resource rk, the problem of detecting a possible CS is equivalent to the problem

of routing the minimum amount of flow of rk from source (a0) to sink (aN+1), such

that the resource requirements bki of all the activities ai ∈ A are satisfied. Further,

this problem can be solved by solving a minimum flow problem on a transformed

network GM(k), which can be solved in polynomial time using the inverse Ford-

Fulkerson’s algorithm (Lombardi and Milano, 2012). Denote this minimum flow as

f(GM(k)). When f(GM(k)) > Ck, a CS Ac for rk can be extracted by identifying all

the activities in the source-sink cut, and
∑

ai∈Ac
bki = f(GM(k)). When f(GM(k)) ≤

Ck, all the possible conflicts for rk has been resolved by E(G). Therefore, starting

from the AON network Gp, all resource conflicts can be resolved by iteratively

77

detecting and resolving MCS. This method is called Precedence Constraint Posting

(PCP), and has already been applied in designing branch-and-bound approaches

for deterministic RCPSP (Laborie, 2005; Lombardi and Milano, 2012; Lombardi

et al., 2013)4, where temporal reasoning can be applied for branching and constraint

propagation. In contrast, our problem in Equation (4.5) is defined on multiple

samples with time-dependent durations, which makes it very difficult to conduct

the temporal reasoning. Therefore, we design the BnB-MCS algorithm, which purely

reasons with resource constraints, except the lower bound computation.

4.5.2 Branching Scheme

Similar to BnB-Flow, BnB-MCS also employs a depth-first branch-and-bound search-

ing process. Starting from the original AON network Gp, a POS is found by iter-

atively detecting and resolving MCS, until a conflict-free augmented DAG is ob-

tained, which is a POS. For resource conflict detection, we adopt the method in

(Lombardi and Milano, 2012) to detect CS, and then reduce it to MCS based on

a heuristic procedure which will be further discussed in Section 4.5.4. In addition,

we extend the constraint propagation procedure in (Leus and Herroelen, 2004),

which is designed for single resource problems, to speed up the searching process.

Since a POS must be acyclic, the set of feasible edges that can be added to Gp is

FS = {(ai, aj) /∈ E(Gp)|(aj, ai) /∈ Tr(Gp)}. For each (ai, aj) ∈ FS, we maintain

lower bound fLijk and upper bound fUijk of the (integer) flow fijk that can be im-

posed on it for rk, with 0 ≤ fLijk ≤ fUijk. Initially, fLijk = 0 and fUijk = min{bki , bkj}.
During searching, these bounds will be tightened by constraint propagation. Let

sumL
ij =

∑
rk∈R f

L
ijk and sumU

ij =
∑

rk∈R f
U
ijk. Then sumL

ij > 0 means there must

be a flow on (ai, aj) while sumU
ij = 0 indicates (ai, aj) cannot carry flow for any rk.

Based on the bound values and branching decisions, an edge (ai, aj) ∈ FS has four

status: 1) included, if sumL
ij > 0; 2) banned, if sumU

ij = 0; 3) undecided, if sumL
ij = 0

and sumU
ijk > 0; 4) conflicted, if (aj, ai) ∈ Tr(G′R) where G′R is the current partial

solution. We will further discuss how to maintain consistency of the flow bounds in

Section 4.5.3.

Detail of this branching process is shown in the BnB MCS function in Algorithm

4Though (Lombardi et al., 2013) aims at obtaining a POS for dynamic execution, it essentially

solves a deterministic RCPSP where the duration of each activity is replaced by the expected value.

78

6. Inputs of the algorithm includes a partial solution G′R = (Ap, Ep ∪ E ′R) which

is an augmented DAG of Gp, the incumbent Ĝ′R and its objective ĝ∗, and a set of

edges BE that are banned by the current branching decisions. The first operation in

Algorithm 6 is to detect an MCSAmc in the input partial solutionG′R (Line 1). IfAmc

is empty, then no resource conflict exists and a POS is found, hence the algorithm

updates Ĝ∗R and ĝ∗ if the found POS G′R has a better objective value. Note that

when a POS GR is reached, the algorithm can backtrack safely. Because for any G′R

with E(GR) ⊆ E(G′R), MS(GR, u) ≤ MS(G′R, u) holds for any sample u according

to Observation 4.2, therefore ĝ(GR) ≤ ĝ(G′R) holds. If Amc is not empty, then all

its resolvers are retrieved as branching candidates. Specifically, these resolvers are

ranked and put into a list RESL(Amc) according to some heuristic (Line 9).

In Lines 10-25, the ranked resolvers are selected for branching one by one. For a

selected resolver, the algorithm first checks if it is applicable to G′R, which requires it

to be 1) not banned, 2) not implied by G′R, and 3) not conflicted with G′R (Lines 11-

12). Only applicable resolvers will be considered for branching in Lines 13-25. For

an applicable resolver, the algorithm can enforce two status to it, i.e., either included

in or banned from G′R. For the option of including, the algorithm first computes

the lower bound of incorporating it into G′R, and compare it with the incumbent

value ĝ∗ to decide if the search path should be pruned or not (Line 13). If not, G′R

will be updated to include the resolver (Line 14). Further, all resources rk ∈ R will

be ranked as a list RL to conduct constraint propagation. The ranking heuristic

will detailed in Section 4.5.4. More specifically, if rk is chosen, we impose fLijk = 1

and propagate it to maintain the bound consistency (Line 17). If the propagation

is successful, the algorithm branches to the next level, otherwise the search path is

pruned. If all resources have been tried, the chosen resolver will be removed from G′R

(Line 20) and the algorithm will try the option of banning the chosen resolver from

G′R, i.e. adding it to BE (Line 21). Then, we impose fUijk = 0 (which automatically

imposes fLijk = 0) for all rk ∈ R, and propagate it to maintain bound consistency. If

the propagation is successful, the algorithm continues by calling BnB MCS. Upon

backtracking, the banned resolver will be removed from BE (Line 25). BnB-MCS is

invoked by calling BnB MCS(Gp, null, L, ∅). Upon termination, the optimal POS

can be found, if the lower bound is admissible.

79

Algorithm 6: BnB MCS(G′R, Ĝ
∗
R, ĝ

∗, BE)

Input: G′R: current partial solution; Ĝ∗R: current best solution; ĝ∗: current

best objective value; BE: current banned edges

1 Amc ← DetectMCS(G′R) ;

2 if Amc = ∅ then

3 ĝ′ ←ComputeObj(G′R) ;

4 if ĝ′ < ĝ∗ then

5 ĝ∗ ← ĝ′;

6 Ĝ∗R ← G′R;

7 return;

8 else

9 ResL(Amc)←GetRankedResolvers(Amc) ;

10 foreach (ai, aj) ∈ ResL(Amc) do

11 if (ai, aj) ∈ BE or (ai, aj) ∈ Tr(G′R) or (aj, ai) ∈ Tr(G′R) then

12 continue;

13 if ComputeLB MCS(G′R, ai, aj)< ĝ∗ then

14 G′R ← (Ap, E(G′R) ∪ {ai, aj});
15 RL ←GetRankedResources(ai, aj);

16 for rk ∈ RL do

17 if propagateLB(ai, aj, k)=true then

18 BnB MCS(G′R, Ĝ
∗
R, ĝ

∗, BE);

19 Restore();

20 G′R ← (Ap, E(G′R) \ {(ai, aj)});

21 BE ← BE ∪ {(ai, aj)};
22 if propagateUB(ai, aj)=true then

23 BnB MCS(G′R, Ĝ
∗
R, ĝ

∗, BE);

24 Restore();

25 BE ← BE \ {(ai, aj)};

26 return;

80

4.5.3 Constraint Propagation

In this section, we present our constraint propagation method in detail. For single

resource problems, (Leus and Herroelen, 2004) proposes to maintain the flow bound

consistency by conducting constraint propagation on the remainder network GRD =

(Ap, Ep∪ERD), where ERD = {(ai, aj) ∈ FS|fUij > 0} is the set of edges not banned

by the current branching decisions. For (ai, aj) ∈ E(GRD), let OTij = {(ai, al) ∈
E(GRD)|l 6= j} and INij = {(al, aj) ∈ E(GRD)|l 6= i} be the set of other edges

in E(GRD) that starts from ai and ends at aj, respectively. Since an AON-flow

Network must satisfy inflow and outflow balance, the bounds of fij can be tightened

using the following equations:

fLij = max

fLij , bi − ∑
(ai,al)∈OTij

fUil , bj −
∑

(al,aj)∈INij

fUjl

 (4.16)

fUij = min

fUij , bi − ∑
(ai,al)∈OTij

fLil , bj −
∑

(al,aj)∈INij

fLjl

 (4.17)

Consistency can be achieved by updating bounds for all edges in E(GRD) till no

bound changes. The network GT
RD transformed from GRD using the procedure in

Section 4.4.1 is also used for detecting infeasibility in (Leus and Herroelen, 2004).

If f(GT
RD) < fmax, then clearly the current branching decisions cannot lead to any

AON-flow Network, hence no POS can be generated according to Proposition 4.3.

For our problem with multiple resources, we maintain the flow bounds indepen-

dently for each rk based on Equations (4.16) and (4.17). The branching decisions

on resources in Algorithm 6 enable the independent bound updates: when an edge

(ai, aj) is included, fLijk of a chosen rk changes from 0 to 1 which makes the positive

flow condition satisfied, and function propagateLB only maintains consistency for

rk; when (ai, aj) is banned, function propagateUB maintains consistency for all re-

sources by setting fUijk to 0 (so as fLijk) for all rk and propagating to other bounds. If

any bound infeasibility (i.e. fUijk < fLijk) is detected during propagation, a false value

is returned to signal the algorithm for backtracking. In addition to the early detec-

tion of infeasibility, another benefit of constraint propagation is that it may imply

that certain edges (ai, aj) /∈ E(Gp) should be included (if sumL
ij > 0) or banned (if

sumU
ij = 0).

81

If the flow bounds are updated successfully, propagateLB and propagateUB try to

detect flow infeasibility. For each rk, we maintain the transformed network GT
RD(k)

and G
′T
R (k) for the current partial solution G′R and the the remainder network GRD,

and try to maximize flows in GT
RD(k) and G

′T
R (k) for the resource rk affected by

constraint propagation. If f(GT
RD(k)) < fkmax or f(G

′T
R (k)) < fkmax, then according

to Proposition 4.3, the current branching decisions cannot lead to any POS and a

false value is returned to signal backtracking.

4.5.4 Heuristics for CS Reduction and Resolver Selection

In (Lombardi and Milano, 2012), the reduction of CS to MCS and resolver selection is

based on the so-called preserved space heuristic designed in (Laborie, 2005), which

estimates the amount of searching space left after adding a resolver. However,

this heuristic is designed for deterministic RCPSP hence is not applicable to our

problem due to the existence of multiple samples and time-dependent durations.

Below we design a heuristic that evaluates resolvers from the perspective of resource

constraints.

Essentially, by adding edges to a partial solution G′R, we wish to increase the

maximum flow in each G
′T
R (k) to fkmax so that a POS is obtained. Note that when

f(G
′T
R (k)) = fkmax for all rk ∈ R, the MCS detection function returns an empty set

(Line 1 of Algorithm 6) since all resource conflicts have been resolved. Hence, we

prefer the edge that can bring the largest increment for each f(G
′T
R (k)) so that a

POS is reached as early as possible. Here we design a heuristic Resource Score to

estimate the contribution that an eligible edge (ai, aj) could have for reaching a POS

as follows:

RS(ai, aj) =
∑
rk∈R

{
RSk(ai, aj) =

fRDijk
fkmax − f(G

′T
R (k))

}
, (4.18)

where RSk(ai, aj) is a normalized estimate for the contribution of (ai, aj) to resource

rk, with the nominator fRDijk being the flow for rk on edge (ai, aj) in the remainder

network GRD and the denominator being the current flow gap for G
′T
R to reach fkmax.

Based on the resource score heuristic, we use a greedy procedure to reduce a CS

to MCS in function DetectMCS (Line 1 of Algorithm 6). For a CS Ac, we define its

resource score as the summation of the resource scores of all its activity pairs, i.e.

RS(Ac) =
∑

(ai,aj)∈Res(Ac) RS(ai, aj). We aim at obtaining a MCS Amc ⊆ Ac with

82

the highest resource score. Therefore, DetectMCS employs the following procedure

to select a MCS: 1) for each rk ∈ R, detect a CS Akc and reduce it to a MCS Akmc

using a greedy procedure iteratively removes an activity from Akc that causes the

smallest reduction in RS(Akc) until a MCS is obtained; 2) return the Akmc with the

maximum RS(Akmc). Similar to (Lombardi and Milano, 2012), the greedy procedure

of reducing a CS Akc to an MCS Akmc has a complexity of O(|Akc |2).

Resource score is also used in ranking resolvers and resources for branching.

More specifically, function GetRankedResolvers in Line 9 of Algorithm 6 ranks the

resolvers in the descending order of their resource score values. Function GetRanke-

dResources in Line 15 of Algorithm 6 ranks all resources also in the descending

order, based on the values of RSk(ai, aj) of each resource rk. For an MCS Akmc,

the number of possible resolvers is |Akmc|(|Akmc − 1|), therefore the resolver selection

procedure has a complexity of O(|Akmc|2).

4.5.5 Lower Bound

Here we design an admissible lower bound for BnB-MCS following the similar idea

in Section 4.4.4, based on Equation (4.13) and Observation 4.2. Specifically, in the

ComputeLB MCS function of Algorithm 6 (Line 13), given a partial solution G′R

and a resolver (ai, aj), we first generate the new solution Ḡ′R by including (ai, aj) to

G′R, then propagate it on each sample to obtain a lower bound for the makespan of

using Ḡ′R, and finally take the average value as the lower bound of ĝ.

4.6 Experimental Results

In this section, we conduct a series of experiments to examine the performance of our

algorithms on benchmark problem instances and different distributions from real-

world data and literature. In Section 4.6.1, we first describe the general settings of

our experiments. Then we examine different configurations of our algorithms and

analyze the impact of different problem parameters in Section 4.6.2, on uncertainty

models with both the time-dependent component X and the time-independent com-

ponent Y . Finally, in Section 4.6.3 and 4.6.4, we report the results on uncertainty

models with only component X and Y , respectively.

83

4.6.1 Experiment Setting

The RCPSP instances used in our experiments are generated using a widely used

benchmark problem generator RanGen2 (Vanhoucke et al., 2008). Five parameters

are required to generate an instance, namely number of activities N , number of

resources K, order strength (OS), resource factor (RF) and resource-constrainedness

(RC). The values of OS, RF and RC are all chosen from [0, 1]. OS specifies the

structure of the project network G, and a higher OS value indicates that G has

more precedence constraints. RF and RC are used to specify the resource utilization

status. In an instance with a higher RF value, more activities will have non-zero

resource requirements bki . On the other hand, a higher RC value specifies an instance

where activities tend to require more resources (i.e. bki is closer to Ck). More details

of these parameters can be found in (Vanhoucke et al., 2008). We generate two

sets of instances where the values of N and K are chosen from {10, 20, 30} and

{1, 2, 3}, respectively, but the values of OS, RF and RC are chosen from different

ranges. Specifically, in Set1, the values of OS, RF and RC are chosen from {0.2,0.7}
to represent the “low” and “high” level, while in Set2 we set OS∈ {0.2, 0.4}, RF∈
{0.7, 0.9} and RC∈ {0.2, 0.4} to have more focused experiments since our approaches

tend to show better performance on instances with lower OS, higher RF and lower

RC. For each parameter combination, a subset with 10 instances are generated,

therefore Set1 and Set2 contain 720 instances each. The duration of each activity

ai in these instances is an integer in d0
i ∈ [1, 10].

To model the duration uncertainty U , we need to model its two components, i.e.

the time-dependent workability uncertainty X and the time-independent duration

uncertainty Y , respectively. Here we model X using a distribution dataset collected

from a real-world aero engine testing project. As shown in Table 4.1 and visualized

in Figure 4.8, this dataset describes the Probability of Workability (POW) of four

types of activities in each month of a year. In our experiments, we assume that

the scheduling horizon starts from the first date of a year. To obtain a sample of

X, we conduct random sampling for each activity type on each time slot of the

horizon according to the corresponding POW value to determine the workability

xzt. For each activity in the generated RCPSP instances, we randomly assign a type

z ∈ {1, 2, 3, 4}. In addition, except the experiments in Section 4.6.4, we increase

the deterministic activity durations d0
i of each instance to elongate the critical path

84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

P
ro

b
a

b
il

it
y
 o

f
W

o
rk

a
b

il
it

y

Month

Type 1
Type 2
Type 3
Type 4

Figure 4.8: The Trend of Monthly POW

Table 4.1: Monthly POW Data

Month 1 2 3 4 5 6 7 8 9 10 11 12

Type 1 0.536 0.579 0.576 0.579 0.44 0.231 0.184 0.136 0.107 0.165 0.253 0.447

Type 2 0.704 0.833 0.8 0.802 0.76 0.628 0.552 0.488 0.512 0.38 0.549 0.766

Type 3 0.56 0.684 0.664 0.702 0.624 0.488 0.472 0.4 0.314 0.223 0.341 0.521

Type 4 0.824 0.904 0.88 0.959 0.952 0.959 0.944 0.976 0.909 0.826 0.813 0.883

length to a random integer value in [200, 300], such that most of the POW data can

be covered. To model the time-independent component Y , we use two distributions

from the literature: 1) a normal distribution Yi ∼ N (d0
i , σ

2) with σ = d0
i×0.5, which

is used in (Beck and Wilson, 2007); 2) an exponential distribution Yi ∼ Exp(1/d0
i),

which is used in (Creemers, 2015; Leus and Herroelen, 2004).

Since existing approaches cannot handle the time-dependent uncertainty, in most

part of this section, we compare the quality of the solutions generated by our ap-

proaches with the ones given by general-purpose POS generation approaches. We

call them general-purpose approaches because they directly generate POS for a given

deterministic RCPSP instance, without the need of any probabilistic knowledge

about the uncertainty. Therefore they can be applied to any type of uncertainty

and is comparable in our experiments. Specifically, we implement three general-

purpose approaches as benchmark algorithms:

• ESTA-Iter: this algorithm first generates a start-time schedule for the deter-

85

ministic problem, then transforms it using a chaining procedure to obtain a

POS (Policella et al., 2004). Here we implement the iterative chaining proce-

dure (100 iterations) in (Policella et al., 2009) to generate POS.

• EBA-Minow: this algorithm shares similarities with our algorithm BnB-MCS,

which also generates a POS by iteratively detecting and resolving MCS (Po-

licella et al., 2004). However, the resource conflicts are resolved greedily, i.e.

the precedence relations are added without backtracking. Here we implement

this algorithm with the state-of-the-art MCS detection method in (Lombardi

and Milano, 2012).

• Artigues03: this algorithm is proposed in (Artigues et al., 2003), which gener-

ates a feasible AON-flow Network (which is also a POS) based on the tradi-

tional priority-rule based schedule generation scheme.

In Section 4.6.4, which presents our results on uncertainty models with only

component Y , we also compare our algorithms with state-of-the-art solver for time-

independent uncertain durations in (Creemers, 2015). We denote this approach as

Creemers15, and more details will be given in Section 4.6.4. All the algorithms are

implemented using JAVA5, and run on an Intel Xeon Workstation (3.5GHz, 16GB).

The CPU time of our branch-and-bound algorithms are limited to 300 seconds. If

the optimal solution is not found, we use the best solution returned during searching.

Since the expected makespan defined in Equation (4.5) is intractable to compute,

we use Monte Carlo simulation to estimate the real objective g by ĝQs(GR), which

is the value of the sample average function in Equation (4.6) on a set of Qs testing

samples. As suggested in (Kleywegt et al., 2002), this is a reliable way to estimate the

expected value when the number of testing samples is large. Here we set Qs = 2000

as in (Kleywegt et al., 2002).

4.6.2 Results on Models with Both Components

In this section, we conduct experiments on uncertainty models with both compo-

nents X and Y . Specifically, X is modeled using the dataset in Table 4.1, and

Y is modeled using the normal distributions N (d0
i , σ

2). We first examine the im-

pact of different algorithm configurations, including sample size (Section 4.6.2.1)

5For Creemers15, we use the program from http://www.stefancreemers.be/software.php.

86

and branching heuristics (Section 4.6.2.2). Next we examine the impact of problem

parameters on our algorithms in Section 4.6.2.3. Finally, we compare the quality of

solutions given by our algorithms with those given by the benchmarking algorithms

in Section 4.6.2.4.

4.6.2.1 Impact of Sample Size

We first examine the impact of sample size Q, which is an important parameter for

SAA based approaches. Intuitively, a SAA problem with larger number of samples

could produce solutions with higher quality, but requires longer computation time

due to the increase of problem size. For SAA based approaches, the solution quality

is often evaluated using the optimality gap proposed in (Kleywegt et al., 2002). To

compute the optimality gap ρ for a given Q, first we replicate the SAA process

by solving Qrep SAA problems independently, each with its own sample set uη,

η ∈ {1, ..., Qrep}. Let Gη
R be the solution of each replication, and Grep

R be the

solution with the minimum value of ĝ(Gη
R) on uη. Next, we generate Qs = 2000

samples, and compute SAA value of Grep
R as ĝQs(G

rep
R). Then the optimality gap

value can be computed as:

ρ =

∣∣∣∣∣ĝQs(G
rep
R)− 1

Qrep

Qrep∑
η=1

ĝ(Gη
R)

∣∣∣∣∣ . (4.19)

Furthermore, we can estimate the variance of ρ as:

V arρ =
V arQs

Qs

+
V arQrep

Qrep

, (4.20)

where V arQs and V arQrep are the variance of the SAA values in Qs times of sim-

ulations and Qrep times of SAA replications, respectively. According to (Kleywegt

et al., 2002), the lower value of ρ and V arρ, the higher quality of the produced

solution.

Following (Kleywegt et al., 2002), we set the number of replications Qrep to 20

in the experiments. The values of ρ and V arρ are normalized by the estimated

objective value ĝQs(G
rep
R). For the purpose of clarity and brevity, we report the

results on two representative instance subsets, each with 10 instances. Figure 4.9(a)

shows the results for BnB-Flow, where the average normalized ρ and V arρ for a

instance subset with 10 activities and 3 resources are plotted, along with the average

computation time. Figure 4.9(b) shows the same curves for BnB-MCS on a subset

87

0

10

20

30

40

50

60

70

80

90

0

1

2

3

4

5

6

0 5 10 15 20 25 30

A
v

er
a

g
e

c
o

m
p

u
a

ti
o

n
 t

im
e

(s
ec

o
n

d
)

A
v

er
a

g
e

g
a

p
 a

n
d

 v
a

ri
a

ti
o

n
 (

%
)

Q

Average gap

Average variation

Average computation time

(a) BnB-Flow

0

20

40

60

80

100

120

140

0

2

4

6

8

10

12

0 5 10 15 20 25 30

A
v

er
a

g
e

c
o

m
p

u
a

ti
o

n
 t

im
e

(s
ec

o
n

d
)

A
v

er
a

g
e

g
a

p
 a

n
d

 v
a

ri
a

ti
o

n
 (

%
)

Q

Average gap

Average variation

Average computation time

(b) BnB-MCS

Figure 4.9: Impact of Sample Size

with 20 activities and 3 resources. As shown in these figures, there exists a clear

trade-off effect between the solution quality and computational cost. In general,

the values of ρ and V arρ decrease with the increase of Q, and become stable when

Q ≥ 20. In the following experiments, we set Q = 20 according to this observation.

4.6.2.2 Impact of Algorithm Configurations

In this section, we study the performance of different algorithm configurations. First,

we examine the performance of different branching heuristics we designed in Section

4.4.5 for BnB-Flow. The combination of these heuristics yields four possible con-

figurations of Algorithm 4, including LFT+AEST, LFT+MLP, MTS+AEST, and

MTS+MLP. In this section, we conduct experiments on the 240 instances from Set1

with N = 20 to examine the performance of these four configurations. Specifically,

when one heuristic is used, the other one for the same branching level is used for tie-

breaking. We classify the instances according to the four parameters K, OS, RF and

RC, and report the results in Table 4.2. As shown in the table, LFT+AEST tends to

give the best performance among all configurations. This is probably because they

are more “focused” on evaluating the branching alternatives from the time aspect,

which is in accord with the SAA objective function. On the other hand, their coun-

terparts (i.e. MTS and MLP) are more focused on the graph characteristics of the

solution. In the remaining experiments, we use LFT+AEST as the configuration

for BnB-Flow.

Next, we examine the performance of the constraint propagation module in BnB-

MCS. We run BnB-MCS with and without constraint propagation on the 240 in-

88

Table 4.2: Comparison of Branching Heuristics

Instance LFT+AEST LFT+MLP

group Best1 First2 Time3 PTO4 Best First Time PTO

K=1 624.33 638.88 92.65 30 627.36 678.08 92.68 30

K=2 682.65 694.07 120.41 40 688.15 744.35 120.58 40

K=3 721.44 733.87 147.7 48.75 753.81 798.8 151.41 50

OS=0.2 895.71 914.19 150.58 50 920.58 1006.39 153.26 50.83

OS=0.7 456.57 463.69 89.93 29.17 458.96 474.43 89.85 29.17

RF=0.2 516.34 523.08 57.74 19.17 516.41 545.01 57.75 19.17

RF=0.7 835.94 854.8 182.77 60 863.13 935.81 185.36 60.83

RC=0.2 602.63 606.35 33.23 10.83 623.51 696.13 35.82 11.67

RC=0.7 749.65 771.53 207.28 68.33 756.04 784.69 207.29 68.33

Instance MTS+AEST MTS+MLP

group Best First Time PTO Best First Time PTO

K=1 626.72 636.52 92.89 30 627.78 680.62 89.14 28.75

K=2 692.5 702.47 131.69 43.75 683.59 725.94 127.93 42.5

K=3 730.95 736.32 146.98 48.75 738.51 788.39 154.55 51.25

OS=0.2 908.31 918.78 165.66 55 908.54 989.36 165.65 55

OS=0.7 458.47 464.77 82.04 26.67 458.04 473.94 82.09 26.67

RF=0.2 514.51 521.68 57.72 19.17 516.39 537.48 57.73 19.17

RF=0.7 852.27 861.87 189.98 62.5 850.2 925.82 190.02 62.5

RC=0.2 595.5 597.99 42.82 14.17 613.86 688.38 42.83 14.17

RC=0.7 771.28 785.55 204.88 67.5 752.73 774.92 204.92 67.5

1 The average of the best objective values upon termination.

2 The average of the first objective values found in searching.

3 The average computation time (in seconds).

4 The percentage (%) of time-out instances.

89

Table 4.3: Effectiveness of Constraint Propagation in BnB-MCS

Instance Without CP With CP

group Best Time PTO Best Time PTO

K=1 617.71 76.54 0.25 611.34 53.23 0.18

K=2 682.53 94.79 0.31 662.08 81.61 0.25

K=3 715.94 123.99 0.4 708.19 110.25 0.36

OS=0.2 891.14 145.42 0.48 868.5 124.12 0.41

OS=0.7 452.98 51.46 0.17 452.57 39.28 0.12

RF=0.2 507.62 10.08 0.03 507.43 0.79 0

RF=0.7 836.5 186.8 0.62 813.65 162.6 0.53

RC=0.2 597.01 60.2 0.2 598.37 48.08 0.16

RC=0.7 747.11 136.68 0.44 722.7 115.32 0.37

stances from Set1 with N = 20, and summarize the results in Table 4.3. As shown

in this table, results with constraint propagation are better in almost all instance

groups. While the solution quality is close, algorithm with constraint propagation

shows significantly better computational efficiency, with 17% less average time (81.7

versus 98.4 seconds) and 18% less time-out instances (63 versus 77). In the remain-

ing experiments, we will execute BnB-MCS with constraint propagation by default.

Finally, we examine the objective values of the first feasible solutions returned

by BnB-Flow and BnB-MCS. We run the experiments on 720 instances in Set1, and

report the average objective value of the first feasible solutions in Table 4.4, classified

by the problem parameters. As shown in the table, the first solutions returned by

BnB-Flow tend to have higher quality (on average 9% improvement). An intuitive

explanation is that the resource conflict detection in BnB-MCS focuses on activities

with the tightest resource contention, therefore resolving the detected MCS may

not lead to a high quality solution in terms of makespan. On the contrary, the

constructive procedure in BnB-Flow is more likely to link each activity in the way

that it can start as early as possible. In order to achieve better pruning with a higher

quality solution in the early stage, in the following experiments we will initialize

BnB-MCS using the first feasible solution GFI
R found by BnB-Flow. In other words,

BnB-MCS is invoked by calling BnB MCS(Gp, G
FI
R , ĝ(GFI

R), ∅).

90

Table 4.4: Comparison of the First Feasible Solutions

Instance

group
BnB-Flow BnB-MCS Diff(%)

Instance

group
BnB-Flow BnB-MCS Diff(%)

N=10 795.02 808.79 1.73 OS=0.2 958.26 1083.2 13.04

N=20 691.77 768.69 11.12 OS=0.7 497.79 501.24 0.69

N=30 697.29 799.18 14.61 RF=0.2 568.91 580.32 2.01

K=1 676.51 725.22 7.2 RF=0.7 887.15 1004.12 13.19

K=2 719.85 778.09 8.09 RC=0.2 616.22 721.31 17.05

K=3 787.72 873.35 10.87 RC=0.7 839.83 863.13 2.77

4.6.2.3 Impact of Problem Parameters

In this section, we examine the efficiency and solution quality of BnB-Flow and

BnB-MCS, and analyze the impact of different problem parameters. We use the 720

instances in Set1 for these experiments. In general, BnB-Flow solves 402 (55.8%)

instances optimally with an average computation time of 140.1 seconds. In compar-

ison, BnB-MCS solves 559 (77.6%) instances optimally in 71.4 seconds on average.

We believe the better scalability of the MCS-based algorithm is because the search

space of POS can “summarize” that of AON-flow Network, since a POS could ac-

commodate multiple feasible AON-flow Networks.

To study the impact of different problem parameters on the algorithm efficiency,

we classify all instances in Set1 according to their parameters, and plot the average

computation time and the percentage of time-out instances of the two algorithms in

Figure 4.10(a) and 4.10(b), respectively. As shown in the figures, BnB-MCS shows

better scalability for all instance groups. We also observe that the two algorithms

share a common pattern for different parameter values, i.e. the hardness for solving

an instance increases with N , K, RF and RC, but decreases with OS. Below we

briefly analyze the rationale for this observation. Firstly, it is straightforward to see

that the problem size grows with the increase of N and K. Secondly, recall that

the OS value determines original AON network G, and an instance with a higher

OS value has more precedence constraints. This will lead to a smaller search space

for the two algorithms due to a) smaller number of branching alternatives in the

activity level of BnB-Flow, and b) smaller number of MCS needed to be resolved by

BnB-MCS. On the contrary, for the two resource-related parameters RF and RC, a

91

0

50

100

150

200

250

A
v

e
ra

g
e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
co

n
d

) BnB-Flow BnB-MCS

(a) Average Computation Time

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e
 o

f
T

im
e

-o
u

t
In

st
a
n

ce
s

(%
) BnB-Flow BnB-MCS

(b) Average Percentage of Time-out Instances

0

100

200

300

400

500

600

700

800

900

1000

E
x

p
e

c
te

d
 M

a
k

e
sp

a
n

BnB-Flow BnB-MCS

(c) Average Expected Makespan

Figure 4.10: Impact of Problem Parameters on Algorithm Performance

higher value indicates a larger search space for the two algorithms, since a) more

feasible links exist in the link level of BnB-Flow, and b) more activity combinations

satisfy the conditions of MCS and need to be resolved by BnB-MCS.

In Figure 4.10(c), we plot the average objective values of the solutions produced

by BnB-Flow and BnB-MCS for instance groups classified by different problem pa-

rameters. As shown, BnB-MCS tends to find better solutions than BnB-Flow. On

the other hand, the difference is relatively small, which shows that BnB-Flow can

find high-quality solutions even if the search is not exhausted. In fact, BnB-Flow

returns the optimal solutions for 66 instances in the 157 ones closed by BnB-MCS

but remain open for BnB-Flow.

4.6.2.4 Comparison with other Approaches

In this section, we compare the quality of solutions produced by our approaches

with the ones generated by the benchmark algorithms, i.e. ESTA-Iter, EBA, and

Artigues03. We first report and analyze the results on instances from Set1, which is

92

Table 4.5: Quality of Solutions on Models with Both Components - Set1

Instance BnB-Flow BnB-MCS ESA-Iter EBA-Minow Artigues03

group AvgObj AvgObj AvgObj Diff(%)1 AvgObj Diff(%) AvgObj Diff(%)

N=10 772.66 762.16 793.21 4.07 804.31 5.53 808.06 6.02

N=20 683.39 660.54 705.18 6.76 743.33 12.53 724.32 9.66

N=30 689.72 665.68 709.22 6.54 782.34 17.52 727.3 9.26

K=1 665.4 651.03 669.69 2.87 704.75 8.25 693.9 6.58

K=2 704.9 689.26 726.91 5.46 767.59 11.36 745.3 8.13

K=3 775.46 748.08 811.01 8.41 857.63 14.64 820.48 9.68

OS=0.2 939.63 905.92 979.61 8.13 1059.12 16.91 1005.86 11.03

OS=0.7 490.88 486.33 492.13 1.19 494.19 1.62 500.59 2.93

RF=0.2 562.43 554.03 565.6 2.09 564.93 1.97 570.62 3

RF=0.7 868.08 838.22 906.14 8.1 988.38 17.91 935.83 11.64

RC=0.2 615.58 620.49 644.39 4.68 727.3 18.15 663.2 7.74

RC=0.7 814.93 771.76 827.34 7.2 826.01 7.03 843.25 9.26

1 The difference (%) from the best value given by BnB-Flow and BnB-MCS.

listed in Table 4.5. As shown in Table 4.5, the results of BnB-MCS are the best among

all instance groups, which clearly shows the advantage of incorporating the stochastic

knowledge in the proactive scheduling problem. We also observe that EBA-Minow

performs worse than ESTA-Iter and Artigues03. A possible reason is that EBA-

Minow focuses more on the resource conflict detection and removing, but gives

little attention to the precedence constraints between activities. On the contrary,

ESTA-Iter explicitly considers minimizing the “dependencies” between activities (i.e.

reducing the edges in POS).

Another interesting observation from Table 4.5 is that the improvement of our

approach tends to be lower when the instances have higher OS, lower RF and higher

RC. Here we give an intuitive explanation for this observation. For instances with

higher OS values, the original project graph G is denser since more precedence

constraints exist in E. In this case, a majority of edges in the final solution belong to

E. For instances with lower RC values, the lower resource requirements of activities

result in a relatively small number of additional edges in the final solution. For

instances with higher RC value, the smaller improvement may result from the larger

search spaces, in which our algorithms cannot return high quality solutions within

93

Table 4.6: Quality of Solutions on Models with Both Components - Set2

Instance BnB-Flow BnB-MCS ESA-Iter EBA-Minow Artigues03

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 1009.73 965.27 1096.28 13.57 1176.56 21.89 1122.76 16.32

N=20 1044.3 1014.6 1168.89 15.21 1354.62 33.51 1247.05 22.91

N=30 1094.51 1082.56 1223.02 12.98 1532.78 41.59 1275.93 17.86

K=1 955.17 934.31 1050.44 12.43 1252.15 34.02 1100.54 17.79

K=2 1047.7 1021.09 1166.48 14.24 1352.2 32.43 1221.43 19.62

K=3 1145.68 1107.03 1271.26 14.84 1459.61 31.85 1323.76 19.58

OS=0.2 1276.89 1246.59 1504.11 20.66 1819.71 45.97 1533.23 22.99

OS=0.5 822.14 795.02 821.35 3.31 889.59 11.9 897.27 12.86

RF=0.7 977.05 956.29 1068.64 11.75 1222.25 27.81 1118.36 16.95

RF=0.9 1121.98 1085.32 1256.82 15.8 1487.06 37.02 1312.13 20.9

RC=0.2 852.82 854.07 932.21 9.31 1163.81 36.47 1001.6 17.45

RC=0.4 1246.21 1187.55 1393.24 17.32 1545.49 30.14 1428.89 20.32

the time limit. To further study the performance of our algorithms on lower OS,

higher RF and lower RC, we conduct experiments on the 720 instances from Set2.

In this test set, BnB-Flow and BnB-MCS closes 133 and 324 instances with the

average computation time of 248.1 and 171.5 seconds, respectively. The results are

summarized in Table 4.6, which shows a more prominent improvement.

4.6.3 Results on Models with Component X

In this section, we summarize the experiments on uncertainty models with only com-

ponent X modeled by the dataset in Table 4.1, while component Y is deterministic

(i.e. Pr(Yi = d0
i) = 1 for all i). We report the results on Set1 and Set2 in Table 4.7

and 4.8, respectively. Compared to the corresponding values in Table 4.5 and 4.6,

the expected makespan values in these two tables are smaller. This is reasonable

since now only one uncertainty source exists. We also have similar observations as

the ones in Section 4.6.2.4, which can be explained by similar rationale.

4.6.4 Results on Models with Component Y

In this section, we report the experiments on uncertainty models that only consist

of component Y , i.e. Pr(Xzt = 1) for all z and t. We also restore the deterministic

94

Table 4.7: Quality of Solutions on Models with Component X - Set1

Instance BnB-Flow BnB-MCS ESTA-Iter EBA-Minow Artigues03

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 699.36 697.27 722.31 3.59 744.01 6.7 743.07 6.57

N=20 627.75 614.06 654.82 6.64 722.88 17.72 678.14 10.44

N=30 639.25 618.23 656.47 6.18 754.91 22.11 682.15 10.34

K=1 608.62 595.24 615.6 3.42 673.94 13.22 644.27 8.24

K=2 646.7 638.34 667.45 4.56 733.08 14.84 693.11 8.58

K=3 711.04 695.99 750.55 7.84 814.69 17.05 765.98 10.06

OS=0.2 842.39 821.37 887.06 8 1001.15 21.89 921.62 12.21

OS=0.7 468.51 465.01 468.67 0.79 478.81 2.97 480.62 3.36

RF=0.2 512.16 503.17 514.44 2.24 520.2 3.38 879.89 3.81

RF=0.7 798.75 783.21 841.29 7.41 961.58 22.77 522.35 12.34

RC=0.2 548.6 548.27 573.08 4.53 695.12 26.78 599.52 9.35

RC=0.7 762.31 738.11 782.65 6.03 786.17 6.51 802.72 8.75

Table 4.8: Quality of Solutions on Models with Component X - Set2

Instance BnB-Flow BnB-MCS ESTA-Iter EBA-Minow Artigues03

group AvgObj AvgObj AvgObj Diff(%) AvgObj Diff(%) AvgObj Diff(%)

N=10 897.02 878.16 996.22 13.44 1127.67 28.41 1028.67 17.14

N=20 941.3 941.66 1079.82 14.72 1333.94 41.71 1170.69 24.37

N=30 992.41 991.35 1117.48 12.72 1513.08 52.63 1185.34 19.57

K=1 852.64 862.31 957.02 12.24 1213.79 42.36 1021.23 19.77

K=2 937.84 931.03 1070.7 15 1340.17 43.95 1131.93 21.58

K=3 1040.23 1017.82 1165.79 14.54 1420.72 39.58 1231.53 21

OS=0.2 1119.1 1130.08 1369.51 22.38 1754.99 56.82 1408.78 25.89

OS=0.5 768.05 744.03 759.5 2.08 894.8 20.26 847.68 13.93

RF=0.7 874.67 870.4 968.65 11.29 1210.94 39.12 1031.08 18.46

RF=0.9 1012.47 1003.71 1160.36 15.61 1438.86 43.35 1225.38 22.08

RC=0.2 750.16 749.57 826.36 10.24 1142.79 52.46 911.96 21.67

RC=0.4 1136.98 1124.54 1302.65 15.84 1507 34.01 1344.5 19.56

95

durations d0
i to the original values (i.e. integers in [1, 10]) since X is not considered

here. In this case, the proactive scheduling problem in Equation (4.5) is reduced to

the traditional stochastic RCPSP. As mentioned in Section 4.6.1, the current best

approach for solving stochastic RCPSP with the objective of minimizing expected

makespan is Creemers15, where the stochastic scheduling procedure is considered as

a continuous time Markov Decision Process, and the optimal scheduling policy is

found by dynamic programming technique (Creemers, 2015). When the activity du-

ration follows exponential distribution, i.e. Yi ∼ Exp(1/d0
i), the expected makespan

returned by Creemers15 is the actual optimal value. Therefore, we conduct exper-

iments on Set1 and Set2 with exponential distributions, and compare the solution

qualities by computing the gap (%) of a solution’s objective value given by our algo-

rithms or benchmarks to the optimal expected makespan given by Creemers15. As

we have mentioned in Section 2.3, the solution of Creemers15, i.e. elementary policy,

represents a much larger solution space than POS, therefore it is expected that the

expected makespan given by Creemers15 is lower than ours. However, Creemers15 is

not anytime and can only terminate when the optimal expected makespan is found.

In our experiments, Creemers15 solves 690 and 685 instances for Set1 and Set2, re-

spectively, with a limitation of 16GB memory and 300 seconds running time. Below

we only report the results for the instances solved by Creemers15.

The results are summarized in Table 4.9 and 4.10. On both Set1 and Set2, our

algorithms consistently outperform the three benchmark algorithms. For Set1, our

two algorithms can find solutions within 5% to the optimal expected makespan,

while BnB-MCS tends to perform better than BnB-Flow. For Set2, the gaps become

larger for all algorithms, and the results of BnB-Flow and BnB-MCS are close. The

increasing of optimality gap on Set2 is probably because the parameter configuration

for Set2 results in a larger policy space for Creemers15, which gives more possibility

for finding an optimal policy that has a much better expected makespan than the

optimal POS.

4.7 Conclusions

In this chapter, we study the problem of proactive scheduling with the objective

of minimizing the expected makespan. Different from previous approaches, we al-

96

Table 4.9: Quality of Solutions on Models with Component Y - Set1

Instance group BnB-Flow1 BnB-MCS ESTA-Iter EBA-Minow Artigues03

N=10 0.43 0.47 2.3 2.39 3.5

N=20 3.29 2.41 5.79 6.58 7.23

N=30 5.15 4.1 7.74 8.33 8.53

K=1 1.62 1.43 2.75 3.96 4.27

K=2 3.12 2.39 5.47 5.95 7.04

K=3 3.81 2.9 7.24 7.01 7.63

OS=0.2 4.75 4.19 8.49 10.06 10.01

OS=0.7 1.13 0.47 2.12 1.61 2.96

RF=0.2 0.75 0.24 1.73 1.13 1.69

RF=0.7 4.92 4.19 8.51 10.05 10.84

RC=0.2 1.77 1.87 5.4 6.38 5.99

RC=0.7 3.95 2.62 4.94 4.93 6.67

1 The average gap (%) to the value given by Creemers15.

Table 4.10: Quality of Solutions on Models with Component Y - Set2

Instance group BnB-Flow BnB-MCS ESTA-Iter EBA-Minow Artigues03

N=10 5.78 5.34 11.88 13.44 14.22

N=20 13.01 13.27 23 25.15 29.62

N=30 17.56 17.96 24.56 23.21 31.25

K=1 8.3 9.28 15 20 19.93

K=2 12.43 12.41 19.99 19.55 25.51

K=3 14.7 13.94 23.62 21.82 28.6

OS=0.2 15.07 16.04 29.66 31.37 32.71

OS=0.5 8.92 8.15 10.46 10.62 17.49

RF=0.7 9.67 9.61 16.42 17.69 20.5

RF=0.9 14.02 14.18 22.73 23.26 28.94

RC=0.2 7.01 7.29 14.54 16.41 20.25

RC=0.4 16.76 16.59 24.7 24.61 29.27

97

low the activity duration uncertainty to be time-dependent, caused by the time-

dependent workability uncertainty. We propose a stochastic optimization prob-

lem that can incorporate the traditional stochastic RCPSP model and the time-

dependent workability uncertainty model at the same time. The resulting proactive

problem is very challenging, since even evaluating a solution is computationally in-

tractable. To tackle the hardness in solution evaluation, we approximate the prob-

lem based on SAA, which is a principled approximation scheme with convergence

guarantee. We prove that the resulting SAA problem is still NP-hard, due to the

combinatorial nature of RCPSP.

We then propose two branch-and-bound algorithms to solve the SAA problem

optimally. The first algorithm uses a constructive approach to extend a partial

temporal network with part of activities to a full feasible solution, by identifying

precedence and resource feasible links. The second algorithm finds a feasible solution

by iteratively detecting and removing possible resource conflicts, until a temporal

network is proved to be conflict-free. By exploiting some properties of the SAA

problem, we design several components for the branch-and-bound algorithms, in-

cluding branching heuristics and lower bounds. To verify the performance of our

algorithms, we conduct a series experiments on pure workability uncertainty, pure

time-independent duration uncertainty, and mixture models with two uncertainty

sources that are built from real-world dataset and common distributions used in the

literature.

98

Chapter 5

Risk-Aware Proactive Scheduling

via Conditional Value-at-Risk

The previous chapter studies the problem of proactive scheduling for centralized

RCPSP, with the objective of minimizing the expected makespan. However, such a

risk-neutral criterion may not be realistic when the actual project execution needs

to be controlled by certain risk requirement. In this chapter, we study the proac-

tive scheduling problem for RCPSP with the objective of minimizing the robust

makespan, which is a risk-aware objective. State-of-the-art approaches for solving

this problem rely on probabilistic constraint optimization, which leads to intractable

Mixed Integer Linear Programs (MILP) that does not scale to large sets of samples,

leading to unsatisfactory solution quality. We resolve this issue by conducting the

risk-aware optimization via Conditional Value-at-Risk (CVaR), a coherent risk mea-

sure. Since previous CVaR optimization approaches are not applicable to combina-

torial problems, we propose a general branch-and-bound framework for combinato-

rial CVaR optimization. By instantiating this framework with the two algorithms

(BnB-Flow and BnB-MCS) we proposed in Chapter 4, we obtain efficient risk-aware

algorithms that scales well to hundreds of samples with significantly better solution

quality.

This chapter is structured as follows. We first introduce the optimization of two

popular risk measures, i.e. Value-at-Risk (VaR) and CVaR. In Section 5.2, we for-

mulate our risk-aware proactive problem based on CVaR. In Section 5.3, we present

the general framework for combinatorial CVaR minimization, which is further in-

stantiated in Section 5.4 to solve the proactive problem. Empirical evaluation of our

99

algorithms is provided in Section 5.5, followed by the conclusions in Section 5.6.

5.1 Preliminaries: Minimizing VaR and CVaR

In this section, we introduce the basic concepts of two widely used measures for risk

management, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). Let x be

a decision vector with domain X , and g = g(x,y) be the loss function of x on a

random vector y. Given a confidence level β ∈ (0, 1), the β-VaR of x is defined as

ζβ(x) = min{ζ|Pr(g ≤ ζ) ≥ β}, which is the β quantile of the random loss g. The

β-CVaR of x is defined as φβ(x) = E[g|g ≥ ζβ(x)], which is the expected loss beyond

β-VaR. For risk-aware settings, x with smaller VaR or CVaR is more preferable.

Hence, the best decision x∗ can be found by minimizing VaR or CVaR in X .

In the theory of risk management, CVaR is believed to be a more realistic and

desirable objective than VaR, mainly for two reasons. Firstly, CVaR is computa-

tionally more tractable than VaR since it is mathematically coherent. Also, CVaR is

an upper bound for VaR (i.e. φβ(x) ≥ ζβ(x) holds for any x ∈ X), and the decision

with a smaller CVaR tends to have a smaller VaR too. Secondly, VaR only provides

a bound for loss g but does not quantify the loss beyond that bound. In contrast, by

definition, CVaR explicitly captures this using the conditional expectation. Detail

discussion about the superiority of CVaR over VaR can be found in (Rockafellar and

Uryasev, 2002).

The minimization of CVaR is often done by minimizing a function Fβ = Fβ(x, ω)

defined as follows:

Fβ(x, ω) = ω +
1

1− β
E{[g(x,y)− ω]+}, (5.1)

where ω is an additional real variable and [·]+ = max{·, 0}. It has been shown in

(Rockafellar and Uryasev, 2002) that CVaR minimization in X has an equivalent

form:

(x∗, ω∗) = argmin
(x,ω)∈X×R

Fβ(x, ω), (5.2)

where x∗ minimizes CVaR. Since Fβ has an expectation form, Sample Average Ap-

proximation (SAA) (Kleywegt et al., 2002) is immediately applicable to approximate

100

Problem (5.2), by optimizing F̂β = F̂β(x, ω) defined below in the joint space X ×R:

F̂β(x, ω) = ω +
1

(1− β)Q

Q∑
q=1

[g(x, yq)− ω]+, (5.3)

where (y1, ..., yQ) are Q samples independently drawn from y. Guaranteed by the

property of SAA, the optimal solution (x̂∗, ω̂∗) is proven to converge to (x∗, ω∗) in

Equation (5.2) exponentially fast with the increase of sample size Q.

5.2 CVaR based Proactive Scheduling

As mentioned, we aim at optimizing the α-robust makespan. Here we give the

definition of this problem on the generalized uncertainty model U =< X,Y > we

proposed in Section 4.2.1, following the problem definition in (Beck and Wilson,

2007) for job-shop problems. Given a risk parameter α ∈ (0, 1), a real value D is α-

achievable for POS GR if Pr(MS(GR,U) ≤ D) ≥ 1−α, i.e. the probability that the

random makespan exceeds D is bounded by α. Then the α-robust makespan of GR

is the minimum of all the α-achievable D, i.e. Dα(GR) = min{D|Pr(MS(GR,U) ≤
D) ≥ 1− α}. The proactive problem can be formulated as:

G∗R = argmin
GR∈GR

Dα(GR). (5.4)

It is easy to verify that Dα(GR) is the β-VaR of GR on U , with β = 1 − α and

the loss being MS(GR,U). Hence Problem (5.4) is equivalent to minimizing the

β-VaR. Note that when the uncertainty model U only contains component Y , i.e.

there is no workability uncertainty, the problem in Equation (5.4) corresponds to

the problems studied in (Fu et al., 2012, 2016).

The typical way for VaR minimization is to transform it into a chance constrained

optimization problem (Hong et al., 2014). However, for Problem (5.4), this results

in MILPs that are computationally prohibitive, as presented in (Varakantham et al.,

2016; Fu et al., 2016). Therefore, we take a different approach here which optimizes

CVaR instead of VaR. To be more specific, we optimize the approximate function

F̂β defined in Equation (5.3) on independent samples {u1, ..., uQ} drawn from U :

(Ĝ∗R, ω̂
∗) = argmin

(GR,ω)∈GR×R
F̂β(GR, ω). (5.5)

101

Then the optimal solution (Ĝ∗R, ω̂
∗) for the above problem converges to the actual

CVaR minimizing solution (G∗R, ω
∗) exponentially fast with the increase of Q.

As mentioned in (Hong et al., 2014), most CVaR optimization approaches as-

sume that the decision space X is linear. In this case, the optimization of F̂β can

be transformed to a linear program which can be solved efficiently. However, our

problem does not comply with this assumption since the POS space GR is combi-

natorial. Similar to Proposition 4.2, we can show that it is NP-hard to optimize

F̂β(GR, ω):

Proposition 5.1 The SAA problem in Equation (5.5) is NP-hard.

Proof. We first construct an RCPSP instance from a PIT instance with graph G =

(V,E), following the same procedure as in the proof of Proposition 4.2. Then we add

one sample u with xzt = 1 for all z and t, and yi = 1 for all activity ai, and obtain an

instance of problem (5.5) with the objective F̂β(GR, ω) = ω+1/(1−β)[MS(GR, u)−
ω]+. We claim that this problem has a solution (GR, ω) with F̂β(GR, ω) ≤ t if

and only if the corresponding PIT instance has a solution. Firstly, if the PIT

instance has a solution, then a feasible schedule S can be obtained immediately

with MS(S) ≤ t. Then on each resource unit, we sort the consuming activities in

ascending order based on their start times in S, and create a POS GR by adding

precedence constraints for each activity and its immediate successor on each resource

it consumed. Clearly MS(GR, u) ≤ t, hence we have a solution (GR, ω) with ω =

MS(GR, u) and F̂β(GR, ω) = MS(GR, u) ≤ t. Secondly, if problem (5.5) has a

solution (GR, ω) with F̂β(GR, ω) ≤ t, then we must have MS(GR, u) ≤ t. This is

because if MS(GR, u) = t′ > t, then function F̂β(ω) = ω+ 1/(1− β)[t′−ω]+ has an

infimum t′, indicating F̂β(GR, ω) > t for any ω ∈ R. Hence schedule S = S(GR, u)

has a makespan MS(S) ≤ t, indicating the PIT instance has a solution.

Therefore, linear approaches cannot be applied to solve the SAA problem in

Equation (5.5). In the next section, we design a general branch-and-bound frame-

work for combinatorial CVaR minimization.

102

5.3 A Branch-and-bound Framework for Combi-

natorial CVaR Minimization

In general, a branch-and-bound algorithm iteratively partitions the solution space

into smaller pieces, and uses a bounding function to fathom searching in certain solu-

tion pieces. Here we aim at designing a branch-and-bound framework for minimizing

F̂β defined in Equation (5.3) in the solution space X ×R where X is combinatorial.

Our framework only partitions X , since ω is an unbounded real variable which is

relatively easy to optimize.

The core component of a branch-and-bound algorithm is the bounding function.

Below we design a lower bounding function for minimizing F̂β. Given a subset of

decisions X ′ ⊆ X , suppose we can lower bound the loss function g on each sample

yq for X ′, by calling a function gLB(X ′, yq). Next, we define an auxiliary function

Lβ as follows:

Lβ(X ′, ω) = ω +
1

(1− β)Q

Q∑
q=1

[gLB(X ′, yq)− ω]+. (5.6)

Then we can have the following conclusion:

Proposition 5.2 Define LB(X ′) as follows:

LB(X ′) = min
ω∈R

Lβ(X ′, ω), (5.7)

then LB(X ′) is a lower bound for X ′.

Proof. For any decision x ∈ X ′ and sample yq, we have gLB(X ′, yq) ≤ g(x, yq) since

gLB is a lower bound. Then for any ω ∈ R, we have Lβ(X ′, ω) ≤ F̂β(x, ω). In other

words, for any x ∈ X ′, function Lβ is pointwise smaller than or equal to F̂β with

respect to ω. Therefore the minimum value of Lβ with respect to ω, i.e. LB(X ′),
should satisfy LB(X ′) ≤ F̂β(x, ω) for any (x, ω) ∈ X ′ × R.

Remark. We can also conclude that if gLB is stronger, then LB(X ′) is also

stronger which leads to more effective pruning. For any X ′ and yq, if g1
LB(X ′, yq) ≤

g2
LB(X ′, yq), then the corresponding two functions L1

β and L2
β satisfy L1

β(X ′, ω) ≤
L2
β(X ′, ω) for any ω ∈ R. Therefore, minω∈RL

1
β(X ′, ω) ≤ minω∈RL

2
β(X ′, ω).

According to Proposition 5.2, the lower bound value can be computed in two

steps: 1) compute the lower bound on each sample; 2) solve the optimization problem

103

(5.7). It is easy to verify that Lβ is convex (though not differentiable) with respect

to ω, therefore (5.7) is a univariate convex optimization problem, which can be

solved by standard techniques such as the subgradient method. Nevertheless, we

can show that Problem (5.7) can be solved more efficiently by simply ranking the

sample lower bounds.

Proposition 5.3 If Q sample lower bound values are ranked ascendingly as g1
LB ≤

... ≤ gQLB, then ω∗ = gq
∗

LB with q∗ = dβQe solves Problem (5.7) optimally.

Proof. The ranked sample lower bounds split R into a set of intervals (−∞, g1
LB],

...,[gqLB, g
q+1
LB],...,[gQLB,∞). It is easy to verify that Lβ is linear in each interval, and

is continuous in R. We can then write the derivative of Lβ with respect to ω: when

ω ≤ g1
LB, L′β = −β/(1− β) < 0; for any integer q ∈ [1, Q− 1], when ω ∈ [gqLB, g

q+1
LB],

L′β = (q−βQ)/(Q−βQ); when ω ≥ gQLB, L′β = 1 > 0. Hence, along with the increase

of ω in R, L′β increases from negative to positive. The smallest q that makes L′β ≥ 0

is q∗ = dβQe, meaning that Lβ stops decreasing in [gq
∗

LB, g
q∗+1
LB] and ω∗ = gq

∗

LB is an

optimal solution to Problem (5.7).

Therefore, LB(X ′) can be obtained very easily after computing the sample

lower bounds. With proper branching functions to partition the solution space

X , the branch-and-bound process can be executed correctly to find the optimal

solution (x̂∗, ω̂∗). Note that when a feasible decision x′ ∈ X is reached, a candi-

date (x′, ω′) for the optimal solution can be obtained by fixing the loss g(x′, yq)

in Equation (5.3) for each sample, and minimizing F̂β with respect to ω follow-

ing a similar ranking procedure as minimizing Lβ. The sample losses can also

be used to retrieve the (approximate) β-VaR of x′ on the samples (y1, ..., yQ), i.e.

φ̂β(x′) = max{g(x′, yq)|g(x′, yq) ≤ ω′} (Rockafellar and Uryasev, 2002). This frame-

work is general and applicable for any combinatorial CVaR minimization problem,

as long as the sample bounding function gLB is available.

5.4 The Risk-Aware Proactive Algorithms

In this section, we instantiate our CVaR minimization framework to solve Problem

(5.5) by adapting the two risk-neutral algorithms in Chapter 4, i.e. BnB-Flow and

BnB-MCS. The branching decisions for partition the solution spaces are already

104

provided in Algorithm 4 and 6, therefore we only need to modify the computation

of objective values and lower bounds.

For BnB-Flow, we first need to modify the objective computation function Com-

puteObj (Line 3 of Algorithm 4). This can be done by computing the makespan

of the POS on each sample using Algorithm 3, then compute the objective value

following the ranking procedure we mentioned in the last section. Next, we need

to modify the two lower bound computation functions in the two branching levels,

i.e. ComputeLB A (Line 11 of Algorithm 4) and ComputeLB L (Line 3 of Algo-

rithm 5). Since the lower bound computation in our CVaR optimization framework

only requires a sample bounding function, we can use the corresponding methods

in Section 4.4.4 to compute the lower bound on each sample, then use the ranking

procedure to compute the lower bound for the CVaR objective function F̂β.

The adaptation of BnB-MCS is similar to the modification of BnB-Flow. Firstly,

we modify the ComputeObj function (Line 3 of Algorithm 6) for computing the

CVaR objective. Then, for the lower bounding function ComputeLB MCS (Line 13

of Algorithm 6), we use the method in Section 4.5.5 to compute the sample lower

bounds. Note that when a POS GR is reached, the algorithm can backtrack safely.

Because for any POS GR and G′R with E(GR) ⊆ E(G′R), MS(GR, u) ≤MS(G′R, u)

holds for any sample u, therefore minω∈RF̂β(GR, ω) ≤ F̂β(G′R, ω) holds for any ω.

5.5 Experimental Results

In this section, we empirically evaluate our approach on benchmark instances, and

compare with two state-of-the-art approaches SORU-H (Varakantham et al., 2016)

and BACCHUS (Fu et al., 2016). SORU-H computes start-time schedule, while BAC-

CHUS generates POS as our approach does. Our algorithms BnB-Flow and BnB-

MCS are implemented in JAVA 1.8, while SORU-H and BACCHUS are coded using

Java API for CPLEX 12.7.1. For BnB-Flow, we use LFT+AEST as the branching

heuristics; for BnB-MCS, we execute the algorithm with constraint propagation. All

algorithms run on an Intel Xeon E5 Workstation (3.5GHz, 16GB).

Though our algorithms are applicable to the generalized uncertain duration mod-

els in Section 4.2.1, we focus on the pure time-independent model (i.e., Pr(Xzt =

1) = 1 for all z and t) in most part of this section since the benchmark approaches

105

can only solve the time-independent models. The RCPSP instances used in most

of this section are the 720 instances from Set1 in Section 4.6, without elongation

of the activity durations. Two distributions are used to model the uncertainty: 1)

a normal distribution N (d0
i , σ

2) with d0
i being the deterministic duration of ai (an

integer in [1, 10] in the generated instances) and σ = 0.5, which is used in (Fu et al.,

2012; Varakantham et al., 2016); 2) an exponential distribution Exp(1/d0
i) used in

(Creemers, 2015; Leus and Herroelen, 2004). The uncertainty level of Exp is higher

than N , since its squared coefficient of variance (SCV) is much higher (Creemers,

2015)1. We will also provide some results on the time-dependent workability uncer-

tainty in later part of this section.

Following (Varakantham et al., 2016), we employ two evaluation metrics: 1)

α-robust makespan (α-RM) output by an algorithm, and 2) Probability of Failure

(PoF) which is the ratio of instances either having an actual makespan larger than α-

RM (for POS) or violating any constraint (for start-time schedule). PoF is computed

on a large number of Qs = 2000 testing samples. Time limits for all algorithms are

10 minutes, and the returned best results are used for analysis.

5.5.1 Analysis of Our Algorithm

In this section, we examine our algorithms against different values of Q and α.

5.5.1.1 Impact of sample size

Since we (approximately) optimize Fβ, we evaluate the impact of Q on Fβ based

on the gap estimator ρ of SAA, as we have done in Section 4.6.2.1. Specifically,

notations ĝ(·), Gη
R and Grep

R in Equation (4.19) should be replaced by F̂β(·), (Gη
R, ω

η)

and (Grep
R , ωrep), respectively. The V arQs and V arQrep in Equation (4.20) should also

be replaced by the variances of F̂ (·) in the Qs times of simulations and Qrep times

of replications, respectively.

We plot the average gap, variance and execution time of our algorithms on a

representative subset (10 instances) with Exp and α = 0.2 in Figure 5.1. Similar to

the observations in Section 4.6.2.1, we can clearly see the trade-off between solution

1SCV of a distribution is defined as σ2/µ2, where σ and µ are the standard deviation and

mean, respectively.

106

0

10

20

30

40

50

60

0

5

10

15

20

25

0 100 200 300 400 500

A
ve

r
a
g

e

C

o
m

p
u

ta
ti

o
n

T

im
e

(s
e
c
o
n

d
s
)

A
ve

r
a
g

e

G

a
p

a
n

d
 V

a
r
ia

n
c
e

Q

Average Gap

Average Variance

Average Computation Time

(a) BnB-Flow

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

5

10

15

20

25

0 100 200 300 400 500

A
ve

r
a
g

e

C

o
m

p
u

ta
ti

o
n

T

im
e

(s
e
c
o
n

d
s
)

A
ve

r
a
g

e

G

a
p

a
n

d
 V

a
r
ia

n
c
e

Q

Average Gap

Average Variance

Average Computation Time

(b) BnB-MCS

Figure 5.1: Results for Sample Size Test

Table 5.1: Results of BnB-Flow for Different Risk Levels

N Exp

α α-RM PoF #Vio 1 #Vio-ε 2 α-RM PoF #Vio #Vio-ε

0.2 65.26 0.13 5 0 87.55 0.19 33 5

0.15 65.97 0.08 8 0 91.83 0.15 31 2

0.1 66.15 0.06 6 0 100.33 0.09 26 1

1 The number of instances with PoF> α.

2 The number of instances with PoF> α when ε = 0.05.

quality and computational effort, which is expected since it is theoretically guaran-

teed by the properties of SAA. As shown in Figure 5.1, while the gap is relatively

stable, its variance drops with the increase of Q, indicating the solution becomes

more stable. The increase of execution time is not very fast, which shows good

scalability of our approach on large Q. We also have similar observations in other

instance subsets. In the remaining experiments, we set Q = 100.

Table 5.2: Results of BnB-MCS for Different Risk Levels

N Exp

α α-RM PoF #Vio #Vio-ε α-RM PoF #Vio #Vio-ε

0.2 63.4 0.13 5 0 87.33 0.19 31 8

0.15 64.44 0.09 8 0 91.54 0.15 31 3

0.1 65.49 0.06 6 0 99.95 0.09 29 0

107

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Normal, α=0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Normal, α=0.15

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Normal, α=0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Exp, α=0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Exp, α=0.15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Exp, α=0.1

Figure 5.2: PoF Distributions of BnB-MCS for Different Risk Levels

5.5.1.2 Impact of risk parameter

To examine the impact of α, we select 72 instances by randomly picking one in

each subset. In Tables 5.1 and 5.2, we present the average α-RM and PoF pro-

duced by BnB-Flow and BnB-MCS for the two distributions, with different risk levels

α ∈ {0.2, 0.15, 0.1}. As shown, the results of the two algorithms are rather close.

The average computation time for BnB-Flow and BnB-MCS are 138.2 and 97.4 sec-

onds, with 43.1% and 31.3% instances being time-out. We can observe that with

stricter risk requirement (smaller α), α-RM increases since it needs to tolerate more

execution scenarios. The values of α-RM is higher for Exp than N , since the un-

certainty level of the former is higher. On average, PoF is close to α which shows a

precise risk control. We plot the PoF values produced by BnB-MCS in Figure 5.2,

which shows most of PoFs are below the required level α.2 But still, some instances

have higher PoF than α, as shown in the columns “#Vio” of Tables 5.1 and 5.2,

and Exp has more violations than N . This is because Problem (5.5) is built on

limited samples which cannot cover all situations. This is also observed in (Luedtke

and Ahmed, 2008; Varakantham et al., 2016), and they propose to solve the SAA

problems with stricter risk level α′ than required, i.e. α′ = α−ε. Following this idea,

we set ε = 0.05 for our algorithms, as can be observed in the columns “#Vio-ε” in

Tables 5.1 and 5.2 that this value can effectively reduce PoF violations. Due to the

similar performance of BnB-Flow and BnB-MCS, below we will only report results of

BnB-MCS for the purpose of simplicity and clarity.

2PoF distributions for BnB-Flow are similar as those in Figure 5.2, hence are omitted here.

108

Table 5.3: Number of Violations for Different ε Values

N Exp

ε BACCHUS SORU-H BACCHUS SORU-H

0 43 71 24 72

0.05 0 57 12 72

0.1 0 14 2 72

Table 5.4: Summary of Results

N Exp

BnB-MCS BACCHUS SORU-H BnB-MCS BACCHUS

PoF≤ α (%) 98.06 98.19 86.94 94.72 84.44

α-RM 1 64.66 65.85 68.4 99.96 132.71

LowestRM (%) 2 77.81 26.99 7.78 86.98 15.1

1 The average α-RM on instances that are successful for all algorithms.

2 The ratio of successful instances with the lowest α-RM among all algorithms (sum-

mation may larger than 100% since different algorithms may give the same α-RM).

5.5.2 Comparison with other Approaches

Before comparing the solution quality, we first tune the parameter ε for BACCHUS

and SORU-H. α is set to 0.2 in this section. We conduct experiments on the 72

instances used in Section 5.5.1.2, with ε ∈ {0, 0.05, 0.1}. We report the number

of violations in Table 5.3. As shown, ε = 0.05 is reasonable for BACCHUS with

a violation ratio of at most 12/72 = 16.7% for both N and Exp. For SORU-H,

ε = 0.1 leads to satisfying results for N , which is also the recommended value in

(Varakantham et al., 2016). But for Exp which has a higher uncertainty level, all

test instances are violated with ε = 0.1. This is because SORU-H generates start-

time schedule as proactive solution, which is too rigid and has a high chance to

violate when the duration uncertainty level is high. In contrast, BACCHUS and our

approach generate flexible solution POS, which provides better robustness (Bidot

et al., 2009). In the remaining experiments, we only report the results of SORU-H

on N .

In Table 5.4, we summarize the results of the three algorithms (BnB-MCS, BAC-

109

CHUS and SORU-H) on all the 720 instances from Set1. We say an instance test is

successful, if its PoF≤ α. For distribution N , BACCHUS and our algorithm BnB-

MCS succeed on over 98% of the instances, which are more than SORU-H. On the

604 instances that are successful for all three algorithms, the average α-RM values

are comparable. However, our algorithm achieves the lowest α-RM in over 77% of

the successful instances, which is significantly higher than the other two. For distri-

bution Exp, BnB-MCS succeed on nearly 95% of instances, which is higher than that

of BACCHUS. On the 576 instances successfully solved by both algorithms, the aver-

age α-RM produced by our algorithm is significantly lower than that of BACCHUS,

with a 25% improvement. In fact, BnB-MCS achieves lower α-RM on nearly 87% of

the successful instances. We believe this performance gap is caused by the summa-

rization heuristic used in BACCHUS. To verify our intuition, we plot the 720 PoF

values produced by BACCHUS and BnB-MCS with Exp in Figure 5.3. As shown,

PoF values of our algorithm distribute densely around the required level α = 0.2,

with 90.8% PoFs within [0.1, 0.3] and 9.2% smaller than 0.1. In contrast, PoFs of

BACCHUS distribute rather sparsely, with 28% PoFs within [0.1, 0.3], 5% higher

than 0.3, and nearly 67% smaller than 0.1. In addition, most of the instances with

OS=0.7 have PoFs smaller than 0.1. These results indicate that the summarization

heuristic tends to over-compensate for α, i.e. produces α-RM that is higher than

required, especially for instances with higher OS. Since our algorithm solves SAA

problems with tens to hundreds of samples instead of a representative one, better

estimation and control of the risk level can be achieved. Similar to Chapter 4, in

Table 5.5 we report the average α-RM values for Exp on different instance groups

classified by the instance parameters. We can observe that BnB-MCS has better

results on all instance groups, and the improvements on different K, RF and RC are

all above 20%. However, on instances with smaller number of activities and smaller

OS, the improvements are not as prominent. It would be interesting to further in-

vestigate the possible reasons of this observation to further improve the performance

of our algorithm.

Finally, we briefly report the computational efficiency of the three algorithms.

Note that while our algorithm BnB-MCS solves Problem (5.5) with hundreds of sam-

ples, SORU-H and BACCHUS essentially solve a much simpler deterministic RCPSP

since only one summarized sample is used. In general, our algorithm BnB-MCS finds

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BACCHUS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BnB-MCS

Figure 5.3: PoF Distributions for Exp

Table 5.5: Comparison of α-RM values for Exp on different instance groups

Instance
BnB-MCS BACCHUS Diff(%)

Instance
BnB-MCS BACCHUS Diff(%)

group group

N=10 61.48 75.2 18.24 OS=0.2 80.29 93.03 13.7

N=20 98.42 129.92 24.25 OS=0.7 113.71 159.76 28.82

N=30 134.64 183.87 26.78 RF=0.2 87.71 114.48 23.38

K=1 94.67 126.09 24.92 RF=0.7 112.72 150.89 25.29

K=2 100.67 132.01 23.74 RC=0.2 93.53 125.23 25.31

K=3 104.88 139.26 24.69 RC=0.7 104.85 137.69 23.85

the optimal solutions of Problem (5.5) for over 70% of all instances with an average

computation time of 93.02 seconds, while SORU-H and BACCHUS optimally solve

nearly 90% of the corresponding deterministic instances in 8.38 seconds on aver-

age. However, it is common in the experiments that a sub-optimal solution given

by BnB-MCS is much better than the optimal solutions given by SORU-H and BAC-

CHUS. We plot the percentage of time-out instances with the problem parameters in

Figure 5.4. As shown, the three algorithms share the same trend, i.e. the hardness

increases with N , K, RF and RC, but decreases with RF. This corresponds to our

observation in Section 4.6.2.3, and can be explained by similar reasons.

5.5.3 Results on Time-dependent Workability Uncertainty

In this section, we conduct experiments on instances with time-dependent worka-

bility uncertainty modeled using the dataset in Table 4.1. We run our algorithm

BnB-MCS on the 72 instances used in Section 5.5.1.2 with elongated durations, and

set the risk level α = 0.2. In Table 5.6, we summary the results according to the

111

0

10

20

30

40

50

60

N=10 N=20 N=30 K=1 K=2 K=3 OS=0.2 OS=0.7 RF=0.2 RF=0.7 RC=0.2 RC=0.7

P
er

ce
n

ta
g
e
 o

f
T

im
e
-o

u
t

In
st

a
n

ce
s

(%
)

BnB-MCS BACCHUS SORU-H

Figure 5.4: Percentage of Time-out Instances

Table 5.6: Comparison of Expected and Robust Makespan for Time-dependent

Workability Uncertainty

Instance Expected Robust Instance Expected Robust

group Makespan Makespan group Makespan Makespan

N=10 582.28 600.29 OS=0.2 788.95 801.17

N=20 583.99 598.21 OS=0.7 473.02 503.25

N=30 726.68 758.13 RF=0.2 511.77 540.36

K=1 572.51 601.58 RF=0.7 750.2 764.06

K=2 630.14 652.13 RC=0.2 559.07 576.61

K=3 690.3 702.92 RC=0.7 702.9 727.81

instance parameters, along with the corresponding expected makespan values. As

shown in this table, the robust makespan are larger than the expected makespan,

which is reasonable since the probability of violation needs to be controlled as spec-

ified by α. We also plot the PoF values for the 72 instances in Figure 5.5. As

shown, our algorithm successfully controls the risk level for most of the instances

(70 out of 72) as required by α. Therefore, our approach can also effectively solve

the risk-aware proactive scheduling problems with the time-dependent workability

uncertainty, which cannot be solved by existing risk-aware approaches.

112

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.5: PoF Distribution for Time-dependent Workability Uncertainty

5.6 Conclusions

In this chapter, we propose a novel approach for risk-aware project scheduling, by

exploiting a mathematically coherent risk measure CVaR. Since previous CVaR

optimization approach cannot be applied to our proactive problem due to the com-

binatorial nature of RCPSP, we design a general branch-and-bound framework with

efficient bound computation for combinatorial CVaR minimization. We then instan-

tiate it to solve the proactive scheduling problem with the components we designed

for the risk-neutral problem in the previous chapter. Empirical results show that our

approach scales well to a large number of samples, and provides better risk control

and robust makespan than state-of-the-art approaches.

113

114

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we have provided effective approaches to address complex RCPSP

with two important practical factors, namely distributed management and execution

uncertainty. Under these factors, traditional RCPSP approaches with the assump-

tions of centralization and static execution environment are invalidated. However,

incorporating these practical factors requires carefully designed algorithms to achieve

good performance, since RCPSP is already computationally intractable. Our con-

tributions in designing novel algorithms for addressing these challenging problems

are summarized below.

In Chapter 3, we address the problem of distributed multi-project scheduling,

formally named as DRCMPSP. Different from RCPSP, this problem involves mul-

tiple decision makers (project agents) in the scheduling process, which requires an

algorithm that can schedule these projects in a distributed manner, and respect the

information privacy of the project agents. We consider the multi-project schedul-

ing problem as a multi-agent resource allocation problem, and formulate it as a

multi-unit combinatorial auction named as DRCMPSP auction. In such an auction

process, the project agents bid for the shared resources controlled by a mediator

agent. Some existing works have applied combinatorial auction on similar problems

as DRCMPSP, but with much simpler settings (e.g. single-unit resource, small ac-

tivity sets). In addition, formal analysis on the relations between scheduling and

auction is rather rare. We first fill this gap by theoretically proving that under

115

reasonable assumption (i.e. revenue of each project agent is sufficiently high), an

optimal multi-project schedule can be found by finding an optimal allocation of

the auction. However, to participate the DRCMPSP auction, the bidders need to

evaluate different resource allocations, which are intractable problems due to the

combinatorial nature of RCPSP. Therefore, we propose to elicit useful valuation

information from the bidders by using capacity query, which can be answered by

solving an RCPSP with time-varying resource capacities. Based on the capacity

query, we design two allocation strategies for efficiently finding good resource allo-

cations, including a greedy allocation strategy and a branch-and-bound heuristic.

Empirical results show that both strategies can produce high quality solutions that

are better than state-of-the-art approaches, and scale well to large problem instances

with tens of projects and thousands of activities.

In Chapter 4, we study the risk-neutral proactive scheduling problem of RCPSP

with uncertain activity durations. More specifically, we aim at finding an (approx-

imately) optimal POS with the minimal expected makespan. Most of the existing

proactive scheduling approaches assume that the uncertain duration of an activ-

ity can be modeled as a time-independent random variable. We relax this limited

assumption and allow the existence of the time-dependent workablity uncertainty,

which causes the random activity durations to be time-dependent. To the best of

our knowledge, this type of uncertainty has never been studied in the literature. In

this work, we first generalize the traditional time-independent duration model to sup-

port the time-dependent workability uncertainty. We then formulate the proactive

scheduling problem as a stochastic optimization problem on this generalized model,

which naturally generalizes the traditional time-independent proactive problem. To

solve the challenging stochastic optimization problem, we propose to approximate it

based on SAA which provides asymptotical guarantee of converging to the optimal

solution. To optimally solve the NP-hard SAA problem, we design two branch-

and-bound algorithms that search for the optimal POS from different angles, by

exploiting interesting problem properties. We conduct rich experiments on multiple

uncertain duration models, including pure time-dependent, pure time-independent,

and mixture models with both components. Results confirm that our algorithms

can find high-quality proactive solutions on a variety of uncertainty distributions.

In Chapter 5, we focus on the proactive scheduling problem with a risk-aware

116

objective, i.e. minimization of the robust makespan. This objective is more practical

in risk-aware settings than minimization of the expected makespan, since it controls

the probability that the actual makespan exceeds certain value within a predefined

risk level, while the expected makespan may be violated with a high chance during

execution. From the perspective of stochastic optimization, this objective corre-

sponds to the minimization of VaR, which is commonly solved by applying SAA

on a chance-constrained optimization problem. However, directly optimizing VaR

for the proactive scheduling problem leads to intractable MILPs that scales poorly

with the sample size. Alternatively, we propose to solve the proactive problem by

optimizing CVaR, which is mathematically coherent and more tractable than opti-

mizing VaR. Due to the involvement of RCPSP, the solution space of our problem

is combinatorial, which excludes the application of traditional CVaR optimization

approaches since they normally assume linear solution spaces. We then propose a

general branch-and-bound framework for combinatorial CVaR optimization, which

is equipped with a computationally efficient lower bound and requires only a sample

bounding function. We adapt the two algorithms designed in Section 4 with this

general framework, and perform numerical studies to verify the effectiveness of our

algorithms. Experimental results show that our algorithms scale well to large num-

bers of samples, and can provide better solution quality and risk management than

state-of-the-art approaches.

Finally, we give a brief discussion on the applicability of different techniques

proposed in this thesis. When the scheduling problem is deterministic and contains

multiple projects that are controlled by multiple agents in a distributed manner,

the greedy and branch-and-bound strategies in Chapter 3 can be applied. Given

the good scalability, large problem instances with tens of projects and thousands of

activities can be solved within reasonable computational time. When the scheduling

problem is centralized with random activity durations, the algorithms in Chapters 4

and 5 are useful. Depending on the requirement, the decision maker can choose either

of the risk-neutral and risk-aware versions of the algorithms. Small and median-sized

problem instances with tens of activities can be solved, but large problem instances

may take very long time to solve, since the algorithms are (approximately) complete

with the proven ability of finding the (approximately) optimal solutions.

117

6.2 Future Work

In this section, we identify several promising directions for extending our current

research as future work.

6.2.1 Distributed Resource Allocation and Scheduling un-

der Uncertainty

The DRCMPSP model studied in Chapter 3 is deterministic. It would be very in-

teresting to investigate the distributed scheduling problem under uncertainty, which

considers both distributed management and execution uncertainty at the same time.

However, this comes with several challenges. Firstly, as we have demonstrated in

Chapter 3, a large number of activities may be involved in a multi-project setting,

which makes it impractical to find the optimal solutions. Instead, we should fo-

cus on developing approximate algorithms that can produce high quality solutions

within reasonable computation time. Secondly, we need to find a suitable way to

represent the solutions. For single project and centralized multi-project problems,

POS is an ideal flexible solution. However, in a distributed setting, the representa-

tion and generation of POS should be conducted in a distributed manner, since no

agent have full control of all the activities. The third issue is about how to represent

the preferences of the agents. Depending on the solution representation, preference

of project agents may be defined and evaluated on different graphs, instead of on

the multisets of items. These three issues should be addressed together in designing

efficient distributed algorithms. Intuitively, theory and methods in the Distributed

Constraint Optimization Problems (DCOP) (Rogers et al., 2011; Ghosh et al., 2015)

may be suitable foundations for building practical solutions to this problem.

6.2.2 Designing Stronger Sample Bounding Functions

In Section 4 and 5 which study proactive scheduling techniques, we have designed

several branch-and-bound algorithms for solving the corresponding SAA problems.

Though they can solve most of the test instances optimally, there is potential in

further improving the computational efficiency to reduce the average time and close

more instances. One promising direction is to design stronger sample bounding

functions, which are common components that are used in both the risk-neutral and

118

risk-aware settings. Our current sample bounding functions only use the original

precedence constraints to compute the lower bounds. It would be interesting to

design stronger lower bounding functions that explicitly incorporate the resource

constraints. A possible way is to conduct temporal constraint propagation on each

sample, which requires extending the traditional constraint propagation techniques,

such as edge-finding and energetic reasoning (Laborie, 2003), to our problem setting.

6.2.3 Incorporating General Temporal Relations

Currently, the temporal constraints in our problem models are all precedence con-

straints. Though they are useful in modeling the temporal relations between activ-

ities, in general, more types of temporal constraints may exist. More technically,

precedence constraints are commonly referred to as Finish-to-Start relations (Neu-

mann et al., 2012), since they require an activity to start after the completion of

another one. Similarly, Start-to-Start, Start-to-Finish, and Finish-to-Finish rela-

tions can also be defined for two activities. Though these temporal relations can

be easily converted from one to another (Varakantham et al., 2016), our current

methods and algorithms are not directly applicable to problems with general tem-

poral relations. Nevertheless, it is worth extending our approaches to support these

general temporal constraints, since they exist widely in real-world problems and can

greatly improve the usefulness and generality of our algorithms.

119

120

Bibliography

Adhau, S., Mittal, M., and Mittal, A. (2012). A multi-agent system for distributed

multi-project scheduling: An auction-based negotiation approach. Engineering

Applications of Artificial Intelligence, 25(8):1738–1751.

Amir, O., Sharon, G., and Stern, R. (2015). Multi-agent pathfinding as a combina-

torial auction. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence (AAAI’15), pages 2003–2009.

Artigues, C., Michelon, P., and Reusser, S. (2003). Insertion techniques for static

and dynamic resource-constrained project scheduling. European Journal of Oper-

ational Research, 149(2):249–267.

Ashtiani, B., Leus, R., and Aryanezhad, M.-B. (2011). New competitive results

for the stochastic resource-constrained project scheduling problem: exploring the

benefits of pre-processing. Journal of Scheduling, 14(2):157–171.

Ausubel, L. M. and Milgrom, P. R. (2002). Ascending auctions with package bidding.

Frontiers of Theoretical Economics, 1(1).

Baarslag, T. and Gerding, E. H. (2015). Optimal incremental preference elicitation

during negotiation. In Proceedings of the Twenty-Fourth International Conference

on Artificial Intelligence (IJCAI’15), pages 3–9. AAAI Press.

Ballest́ın, F. (2007). When it is worthwhile to work with the stochastic rcpsp?

Journal of Scheduling, 10(3):153–166.

Baptiste, P., Le Pape, C., and Nuijten, W. (2012). Constraint-based scheduling:

applying constraint programming to scheduling problems, volume 39. Springer

Science & Business Media.

121

Beck, J. C. and Wilson, N. (2007). Proactive algorithms for job shop scheduling with

probabilistic durations. Journal of Artificial Intelligence Research, 28:183–232.

Beşikci, U., Bilge, Ü., and Ulusoy, G. (2015). Multi-mode resource constrained

multi-project scheduling and resource portfolio problem. European Journal of

Operational Research, 240(1):22–31.

Bidot, J., Vidal, T., Laborie, P., and Beck, J. C. (2009). A theoretic and practical

framework for scheduling in a stochastic environment. Journal of Scheduling,

12(3):315–344.

Blazewicz, J., Lenstra, J. K., and Kan, A. R. (1983). Scheduling subject to resource

constraints: classification and complexity. Discrete Applied Mathematics, 5(1):11–

24.

Blumrosen, L. and Nisan, N. (2009). On the computational power of demand queries.

SIAM Journal on Computing, 39(4):1372–1391.

Browning, T. R. and Yassine, A. A. (2010). Resource-constrained multi-project

scheduling: Priority rule performance revisited. International Journal of Produc-

tion Economics, 126(2):212–228.

Brucker, P. and Knust, S. (2012). Complex Scheduling. Springer.

Bruni, M. E., Beraldi, P., and Guerriero, F. (2015). The stochastic resource-

constrained project scheduling problem. In Handbook on Project Management

and Scheduling Vol. 2, pages 811–835. Springer.

Clarke, E. H. (1971). Multipart pricing of public goods. Public choice, 11(1):17–33.

Conen, W. and Sandholm, T. (2001). Preference elicitation in combinatorial auc-

tions. In Proceedings of the 3rd ACM conference on Electronic Commerce (EC’01),

pages 256–259. ACM.

Confessore, G., Giordani, S., and Rismondo, S. (2007). A market-based multi-agent

system model for decentralized multi-project scheduling. Annals of Operations

Research, 150(1):115–135.

122

Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic

activity durations under resource constraints. Journal of Scheduling, 18(3):263–

273.

Cui, J., Yu, P., Fang, C., Haslum, P., and Williams, B. C. (2015). Optimising

bounds in simple temporal networks with uncertainty under dynamic controlla-

bility constraints. In Proceedings of the Twenty-Fifth International Conference on

Automated Planning and Scheduling (ICAPS’15), pages 52–60.

Davenport, A., Gefflot, C., and Beck, C. (2001). Slack-based techniques for robust

schedules. In Sixth European Conference on Planning (ECP), pages 43–49.

de Nijs, F. and Klos, T. (2014). A novel priority rule heuristic: Learning from

justification. In Proceedings of the Twenty-Fourth International Conference on

Automated Planning and Scheduling (ICAPS’14), pages 92–100.

Demange, G., Gale, D., and Sotomayor, M. (1986). Multi-item auctions. The

Journal of Political Economy, pages 863–872.

Demeulemeester, E. L. and Herroelen, W. S. (1997). New benchmark results

for the resource-constrained project scheduling problem. Management Science,

43(11):1485–1492.

Fink, A. and Homberger, J. (2015). Decentralized multi-project scheduling. In

Handbook on Project Management and Scheduling Vol. 2, pages 685–706. Springer.

Fu, N., Lau, H. C., and Varakantham, P. (2015). Robust execution strategies for

project scheduling with unreliable resources and stochastic durations. Journal of

Scheduling, 18(6):607–622.

Fu, N., Lau, H. C., Varakantham, P., and Xiao, F. (2012). Robust local search for

solving rcpsp/max with durational uncertainty. Journal of Artificial Intelligence

Research, 43:43–86.

Fu, N., Varakantham, P., and Lau, H. C. (2016). Robust partial order schedules

for rcpsp/max with durational uncertainty. In Proceedings of the Twenty-Sixth

International Conference on International Conference on Automated Planning

and Scheduling (ICAPS’16), pages 124–130.

123

Ghosh, S., Kumar, A., and Varakantham, P. (2015). Probabilistic inference based

message-passing for resource constrained dcops. In Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence (IJCAI’15), pages

411–417.

Gonen, R. and Lehmann, D. (2000). Optimal solutions for multi-unit combinatorial

auctions: Branch and bound heuristics. In Proceedings of the 2nd ACM conference

on Electronic Commerce (EC’00), pages 13–20.

Groves, T. (1973). Incentives in teams. Econometrica: Journal of the Econometric

Society, pages 617–631.

Gul, F. and Stacchetti, E. (2000). The english auction with differentiated commodi-

ties. Journal of Economic theory, 92(1):66–95.

Gurobi Optimization, I. (2015). Gurobi optimizer reference manual.

Hagstrom, J. N. (1988). Computational complexity of pert problems. Networks,

18(2):139–147.

Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of operational

research, 207(1):1–14.

Herroelen, W. and Leus, R. (2005). Project scheduling under uncertainty: Survey

and research potentials. European journal of operational research, 165(2):289–306.

Homberger, J. (2012). A (µ, λ)-coordination mechanism for agent-based multi-

project scheduling. OR Spectrum, 34(1):107–132.

Hong, L. J., Hu, Z., and Liu, G. (2014). Monte carlo methods for value-at-risk

and conditional value-at-risk: A review. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 24(4):22.

Hudson, B. and Sandholm, T. (2004). Effectiveness of query types and policies

for preference elicitation in combinatorial auctions. In Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems-

Volume 1 (AAMAS’04), pages 386–393.

124

Igelmund, G. and Radermacher, F. J. (1983). Preselective strategies for the op-

timization of stochastic project networks under resource constraints. Networks,

13(1):1–28.

Kang, D., Bing, Z. C., Song, W., Hu, Z., Chen, S., Zhang, J., and Xi, H. (2017).

Automatic construction of agent-based simulation using business process diagrams

and ontology-based models (demo). In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems (AAMAS’17), pages 1793–1795.

Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis.

Operations research, 9(3):296–320.

Kelso Jr, A. S. and Crawford, V. P. (1982). Job matching, coalition formation,

and gross substitutes. Econometrica: Journal of the Econometric Society, pages

1483–1504.

Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002). The sample average

approximation method for stochastic discrete optimization. SIAM Journal on

Optimization, 12(2):479–502.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling meth-

ods revisited: Theory and computation. European Journal of Operational Re-

search, 90(2):320–333.

Kolisch, R. and Hartmann, S. (2006). Experimental investigation of heuristics for

resource-constrained project scheduling: An update. European journal of opera-

tional research, 174(1):23–37.

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. (2011). Event-based milp mod-

els for resource-constrained project scheduling problems. Computers & Operations

Research, 38(1):3–13.

Krysta, P., Telelis, O., and Ventre, C. (2013). Mechanisms for multi-unit combina-

torial auctions with a few distinct goods. In Proceedings of the 2013 International

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’13), pages

691–698.

125

Kurtulus, I. and Davis, E. (1982). Multi-project scheduling: Categorization of

heuristic rules performance. Management Science, 28(2):161–172.

Kutanoglu, E. and Wu, S. D. (1999). On combinatorial auction and lagrangean

relaxation for distributed resource scheduling. IIE transactions, 31(9):813–826.

Laborie, P. (2003). Algorithms for propagating resource constraints in ai plan-

ning and scheduling: Existing approaches and new results. Artificial Intelligence,

143(2):151–188.

Laborie, P. (2005). Complete mcs-based search: Application to resource constrained

project scheduling. In Proceedings of the Nineteenth International Joint Confer-

ence on Artificial Intelligence (IJCAI’05), pages 181–186.

Lamas, P. and Demeulemeester, E. (2016). A purely proactive scheduling procedure

for the resource-constrained project scheduling problem with stochastic activity

durations. Journal of Scheduling, 19(4):409–428.

Lambrechts, O., Demeulemeester, E., and Herroelen, W. (2011). Time slack-based

techniques for robust project scheduling subject to resource uncertainty. Annals

of Operations Research, 186(1):443–464.

Larson, K. and Sandholm, T. (2001). Costly valuation computation in auctions. In

Proceedings of the 8th conference on Theoretical aspects of rationality and knowl-

edge, pages 169–182. Morgan Kaufmann Publishers Inc.

Lau, J. S., Huang, G. Q., Mak, K.-L., and Liang, L. (2006). Agent-based modeling

of supply chains for distributed scheduling. Systems, Man and Cybernetics, Part

A: Systems and Humans, IEEE Transactions on, 36(5):847–861.

Leus, R. and Herroelen, W. (2004). Stability and resource allocation in project

planning. IIE transactions, 36(7):667–682.

Liao, T. W., Egbelu, P., Sarker, B., and Leu, S. (2011). Metaheuristics for project

and construction management–a state-of-the-art review. Automation in construc-

tion, 20(5):491–505.

126

Lombardi, M. and Milano, M. (2012). A min-flow algorithm for minimal critical

set detection in resource constrained project scheduling. Artificial Intelligence,

182:58–67.

Lombardi, M., Milano, M., and Benini, L. (2013). Robust scheduling of task graphs

under execution time uncertainty. IEEE transactions on computers, 62(1):98–111.

Lova, A. and Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules

performance in resource-constrained multiproject scheduling. Annals of Opera-

tions Research, 102(1-4):263–286.

Luedtke, J. and Ahmed, S. (2008). A sample approximation approach for optimiza-

tion with probabilistic constraints. SIAM Journal on Optimization, 19(2):674–699.

Mao, X., Roos, N., and Salden, A. (2009). Stable multi-project scheduling of air-

port ground handling services by heterogeneous agents. In Proceedings of The

8th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS’09)-Volume 1, pages 537–544.

Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing against a random-

izing adversary. Edited by G. Goos, J. Hartmanis and J. van Leeuwen, page 15.

Morris, P. and Muscettola, N. (2005). Temporal dynamic controllability revis-

ited. In Proceedings of the Twentieth national conference on Artificial intelligence

(AAAI’05), pages 1193–1198.

Morris, P., Muscettola, N., and Vidal, T. (2001). Dynamic control of plans with

temporal uncertainty. In Proceedings of the Seventeenth International Joint Con-

ference on Artificial Intelligence (IJCAI’01), pages 494–499.

Naber, A. and Kolisch, R. (2014). Mip models for resource-constrained project

scheduling with flexible resource profiles. European Journal of Operational Re-

search, 239(2):335–348.

Neumann, K., Schwindt, C., and Zimmermann, J. (2012). Project scheduling with

time windows and scarce resources: temporal and resource-constrained project

scheduling with regular and nonregular objective functions. Springer Science &

Business Media.

127

Nisan, N. and Ronen, A. (2007). Computationally feasible vcg mechanisms. Journal

of Artificial Intelligence Research, 29:19–47.

Parkes, D. C. (2005). Auction design with costly preference elicitation. Annals of

Mathematics and Artificial Intelligence, 44(3):269–302.

Parkes, D. C. and Ungar, L. H. (2000). Iterative combinatorial auctions: Theory

and practice. In Proceedings of the Seventeenth National Conference on Artificial

Intelligence (AAAI’00), pages 74–81.

Parkes, D. C. and Ungar, L. H. (2001). An auction-based method for decentral-

ized train scheduling. In Proceedings of the 5th International Conference on Au-

tonomous Agents (AAMAS’01), pages 43–50.

Policella, N., Cesta, A., Oddi, A., and Smith, S. F. (2009). Solve-and-robustify.

Journal of Scheduling, 12(3):299–314.

Policella, N., Smith, S. F., Cesta, A., and Oddi, A. (2004). Generating robust sched-

ules through temporal flexibility. In Proceedings of the Fourteenth International

Conference on International Conference on Automated Planning and Scheduling

(ICAPS’04), pages 209–218.

Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. (1969). Multiproject scheduling

with limited resources: A zero-one programming approach. Management science,

16(1):93–108.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss

distributions. Journal of banking & finance, 26(7):1443–1471.

Rogers, A., Farinelli, A., Stranders, R., and Jennings, N. R. (2011). Bounded

approximate decentralised coordination via the max-sum algorithm. Artificial

Intelligence, 175(2):730–759.

Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of constraint programming.

Elsevier.

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial

auctions. Artificial intelligence, 135(1):1–54.

128

Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. (2013). Solving rcpsp/max

by lazy clause generation. Journal of Scheduling, 16(3):273–289.

Schwindt, C., Zimmermann, J., et al. (2015). Handbook on project management

and scheduling vol. 1. Cham: Springer International Publishing.

Song, W., Kang, D., Zhang, J., and Xi, H. (2016). Decentralized multi-project

scheduling via multi-unit combinatorial auction. In Proceedings of the 2016

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS’16), pages 836–844.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017a). A multi-unit combinatorial

auction based approach for decentralized multi-project scheduling. Autonomous

Agents and Multi-Agent Systems (JAAMAS), 31(6):1548–1577.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017b). Proactive project scheduling with

time-dependent workability uncertainty. In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems (AAMAS’17), pages 221–229.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017c). A sampling based approach

for proactive project scheduling with time-dependent duration uncertainty (stu-

dent abstract). In Proceedings of the Thirty-first AAAI Conference on Artificial

Intelligence (AAAI’17), pages 4985–4986.

Song, W., Kang, D., Zhang, J., and Xi, H. (2018). Risk-aware proactive scheduling

via conditional value-at-risk. In Proceedings of the Thirty-second AAAI Confer-

ence on Artificial Intelligence (AAAI’18, to appear).

Stork, F. (2001). Stochastic resource-constrained project scheduling.

Stranjak, A., Dutta, P. S., Ebden, M., Rogers, A., and Vytelingum, P. (2008).

A multi-agent simulation system for prediction and scheduling of aero engine

overhaul. In Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS’08): Industrial Track, pages 81–88.

Van Peteghem, V. and Vanhoucke, M. (2014). An experimental investigation

of metaheuristics for the multi-mode resource-constrained project scheduling

129

problem on new dataset instances. European Journal of Operational Research,

235(1):62–72.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. V. (2008).

An evaluation of the adequacy of project network generators with systematically

sampled networks. European Journal of Operational Research, 187(2):511–524.

Varakantham, P., Fu, N., and Lau, H. C. (2016). A proactive sampling approach

to project scheduling under uncertainty. In Proceedings of the Thirtieth national

conference on Artificial intelligence (AAAI’16), pages 3195–3201.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders.

The Journal of finance, 16(1):8–37.

Vytelingum, P., Rogers, A., Macbeth, D. K., Dutta, P., Stranjak, A., and Jennings,

N. R. (2009). A market-based approach to multi-factory scheduling. In Inter-

national Conference on Auctions, Market Mechanisms and Their Applications,

pages 74–86. Springer.

Walsh, W. E. and Wellman, M. P. (2003). Decentralized supply chain formation:

A market protocol and competitive equilibrium analysis. Journal of Artificial

Intelligence Research, 19:513–567.

Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-Mason, J. K. (2001).

Auction protocols for decentralized scheduling. Games and economic behavior,

35(1):271–303.

Xi, H., Goh, C. K., Dutta, P. S., Sha, M., and Zhang, J. (2015). An agent-based

simulation system for dynamic project scheduling and online disruption resolving.

In Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems (AAMAS’15), pages 1759–1760.

Zheng, Z., Guo, Z., Zhu, Y., and Zhang, X. (2014). A critical chains based dis-

tributed multi-project scheduling approach. Neurocomputing, 143:282–293.

130

Publications

Kang, D., Bing, Z. C., Song, W., Hu, Z., Chen, S., Zhang, J., and Xi, H. (2017).

Automatic construction of agent-based simulation using business process diagrams

and ontology-based models (demo). In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems (AAMAS’17), pages 1793–1795.

Song, W. (2016). An auction-based approach for decentralized multi-project schedul-

ing (doctoral consortium). In Proceedings of the 2016 International Conference

on Autonomous Agents & Multiagent Systems (AAMAS’16), pages 1518–1519.

Song, W. (2017). Project scheduling in complex business environments (doctoral

consortium). In Proceedings of the Thirty-first AAAI Conference on Artificial

Intelligence (AAAI’17), pages 5052–5053.

Song, W., Kang, D., Zhang, J., and Xi, H. (2016). Decentralized multi-project

scheduling via multi-unit combinatorial auction. In Proceedings of the 2016

International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS’16), pages 836–844.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017a). A multi-unit combinatorial

auction based approach for decentralized multi-project scheduling. Autonomous

Agents and Multi-Agent Systems (JAAMAS), 31(6):1548–1577.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017b). Proactive project scheduling with

time-dependent workability uncertainty. In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems (AAMAS’17), pages 221–229.

Song, W., Kang, D., Zhang, J., and Xi, H. (2017c). A sampling based approach

for proactive project scheduling with time-dependent duration uncertainty (stu-

131

dent abstract). In Proceedings of the Thirty-first AAAI Conference on Artificial

Intelligence (AAAI’17), pages 4985–4986.

Song, W., Kang, D., Zhang, J., and Xi, H. (2018). Risk-aware proactive scheduling

via conditional value-at-risk. In Proceedings of the Thirty-second AAAI Confer-

ence on Artificial Intelligence (AAAI’18), pages 6278–6285.

132

Appendix A

Fast Bid Generation Algorithm

Here we design a fast polynomial-time algorithm to solve the RCPSP with time-

varying resource capacities, as shown in Algorithm 7. This algorithm is based on

the parallel generation scheme (Kolisch, 1996). The original algorithm in (Kolisch,

1996) is designed for resources with constant capacity over the whole scheduling

horizon. Here we modify it to incorporate the time-varying resource capacities.

Intuitively, Algorithm 7 consists of a series of stages at certain time tic td. Three

sets of activities are maintained during the whole process: Active Set AS, Complete

Set CS, and Decision Set DS. In each stage, firstly the activities in AS that

complete before td are moved from AS to CS. Next, a set of activities that can be

scheduled with respect to precedence and resource constraints are identified and put

into DS. Then, an iterative process is imposed on DS, which includes three steps:

1) choose the activity aij according to certain priority rule to start at td, 2) move aij

from DS to AS, and 3) update the activities in DS. This process terminates when

no more activity can be scheduled in td, i.e. DS = ∅, which leads to the update of

td. If AS is not empty, then the new td is set to be the minimum complete time of

the activities in AS. In the case AS is empty, which indicates no remaining activity

can start at td (due to insufficient resource), td is set to the next time tic. When all

activities are scheduled, the algorithm terminates with a feasible schedule.

The operation of updating DS in Line 4 and 8 includes two steps: 1) find the un-

scheduled activities whose predecessors are all in CS, and 2) exclude those activities

aij that cannot be scheduled to start at td due to insufficient resource at some time

slot td ≤ t ≤ td + dij. Different priority rules (e.g. Latest Finish Time (LFT), Most

Total Successors (MTS), Minimum Slack (MS)) can be used in Line 6 to select an

133

activity. Among these priority rules, LFT has been empirically shown to be the most

effective one in minimizing the project delay Kolisch (1996) and is chosen for our

scheduling algorithm. Complexity of Algorithm 7 is O (N2
i (K + Li)d

∗
i) (ignore the

update of td between Line 9 and 11), where d∗i = max{di1, ..., diJi} is the maximum

duration of the activities of Pi.

Algorithm 7: Fast algorithm for solving RCPSP with time-varying resource

capacities

Input: A project Pi, scheduling horizon T , local resource capacity profile

[Clit]Li×T , global resource capacity profile [Ψkt]K×T

Output: A feasible schedule Si = {si1, ..., siNi
}

1 Initialization: td ← edi, AS ← ∅, CS ← ∅, DS ← ∅;
2 while |AS|+ |CS| < Ji do

3 CS ← CS
⋃
{aij ∈ AS|sij +dij ≤ td}, AS ← AS\{aij ∈ AS|sij +dij ≤ td};

4 Update DS;

5 while DS 6= ∅ do

6 Select one activity aij ∈ DS according to a priority rule, and sij ← td;

7 DS ← DS\{aij}, AS ← AS
⋃
{aij};

8 Update DS;

9 if AS = ∅ then

10 td ← td + 1;

11 else

12 td ← min{sij + dij|aij ∈ AS};

13 return Si

134

