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Abstract

To alleviate the data sparsity and cold start issues in recommendation, many researchers

leverage user relationships (e.g. social network) to improve the accuracy of recommender

systems. However, social connections may not be available in many real systems, whereas

item relationships are much easier to obtain but lack of study. Therefore, in this disser-

tation, we focus on exploiting item relationships for effective recommendation.

In real applications (e.g. Amazon), items are often organized by category, which is

a popular way to define item relationships. Based on the assumption that users tend

to have similar preferences towards items that belong to the same category, plenty of

category-aware recommendation methods have been proposed. But, they mainly consider

categories that are organized in a flat structure, where categories are independent and in

a same level. In fact, categories can be also organized in a richer knowledge structure, i.e.,

category hierarchy (CH), to describe the inherent correlations among different categories,

which might be more helpful to enhance the recommendation performance.

In order to take advantage of CH for better recommendation, we first propose a

novel matrix factorization framework with recursive regularization – ReMF. It not only

jointly models and learns the influence of hierarchically-organized categories on user-item

interactions, but also provides characterization of how different categories in the hierarchy

co-influence the modeling of user-item interactions. Empirical results show that ReMF

consistently outperforms state-of-the-art category-aware recommendation methods.

Despite the success of ReMF, we notice that all CH based methods merely focus

on the influence of vertically affiliated categories (i.e. child-parent) on user-item inter-

actions. The relations of horizontally organized categories (i.e. siblings and cousins) in

CH, however, have only been little studied. We show in real-world datasets that category

relations in horizontal dimension can help explain and further model user-item interac-

tions. To fully exploit CH, we further devise a unified matrix factorization framework –
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HieVH, that seamlessly fuses both vertical and horizontal dimensions for effective recom-

mendation. Extensive validation on real-world datasets demonstrates the superiority of

HieVH against state-of-the-art algorithms. An additional benefit of HieVH is to provide

better interpretations of the generated recommendations.

Recently, representation learning (RL) has proven to be more effective than matrix

factorization in capturing local item relationships by modeling item co-occurrence in

individual user’s interaction record. We further design a unified multi-level RL based

Bayesian framework – MRLR, thus benefiting from RL. By fusing item category, MRLR

captures fine-grained item relationships from a multi-level item organization: items in

local context (i.e., item co-occurrence relations), items affiliated to the same category,

and items in user-specific ranked list. To the best of our knowledge, we are the first to

investigate item category from the perspective of multi-level RL. Experimental results on

multiple datasets show that MRLR consistently outperforms state-of-the-art algorithms.

Besides, with the development of semantic web, the knowledge graph (KG) has re-

cently attracted a considerable amount of interest in recommendation, as it connects

various types of features related to items (e.g., the genre, director, actor of a movie), in a

unified global representation space. Utilizing such kind of heterogeneous connected infor-

mation facilitates the inference of subtler item relationships from different perspectives,

which are difficult to uncover with the homogeneous information (e.g., item category)

only. To fully exploit the heterogeneous information encoded in KG for better recom-

mendation, we propose a KG embedding framework – RKGE based on a novel recurrent

network architecture that automatically learns semantic representations of entities and

paths. In particular, RKGE learns the semantic representations of entities and paths

between them via a batch of recurrent networks, and seamlessly integrates them into rec-

ommendation. Furthermore, it employs a pooling operator to discriminate the saliency

of different paths in characterizing user preferences over items. Empirical study demon-

strates that RKGE outperforms state-of-the-art algorithms. In addition, we show that

RKGE provides meaningful explanations for the recommendation results.

To sum up, in this dissertation, we propose a series of recommendation approaches

by exploiting auxiliary item relationships to deal with the data sparsity and cold start

problems of recommender systems, which are natural but novel extensions of existing

proposals for effective recommendation.
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Chapter 1

Introduction

1.1 Research Scope

Given the explosive growth of information on the Web [1], recommender systems have

been playing an increasingly important role by providing efficient and personalized on-line

services for customers. The most well-known recommendation technique collaborative

filtering (CF) [97], whereby a user’s preference can be predicted by her like-minded users,

inherently suffers from data sparsity and cold start problems [27, 28].

To address these issues, many researchers attempt to leverage user relationships to

improve the accuracy of recommender systems. A number of trust-aware recommender

systems [28, 43, 65, 116, 32] are emerging due to the advent of social networks. Significant

improvements have been achieved up to date. However, the reliance on social connections

may restrict the application of trust-based approaches to other scenarios where social

networks are not available or supported. Furthermore, the potential noise and weaker

social ties (than trust) in social networks can further hinder the generality of these

approaches [32, 3]. In contrast, the side information describing item relationships is

much easier to obtain and more amenable to explain the reasoning behind predictions,

as users are familiar with items previously preferred by them, but do not know those

allegedly like-minded users [52]. Therefore, in this dissertation, we focus on investigating

how to leverage item relationships to further improve the recommendation performance.
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Chapter 1. Introduction

layer 3 Women’s Clothing

layer 2 Athletic Clothing ...... Fashion Clothing

layer 1 Shirts ... Pants ... Shoes Blouse ... Skirts ... Heels

product

Figure 1.1: Category hierarchy for Women’s Clothing in Amazon

In real-world applications, items are often organized by category. For instance, Ama-

zon classifies the on-line products by category (e.g., clothing, electronics and sports);

IMDB divides the released movies by genre (e.g., action, comedy and thriller). This en-

ables category to become a quite popular way to define item relationships. Such kind of

information, i.e., item category, can be very helpful in generating effective recommenda-

tion. Assume that Tom is into disaster movies and has already watched Titanic. Then,

he is more likely to prefer Poseidon Adventure, as both of the two movies are in the

category of disaster movies.

Based upon the assumption that users tend to have similar preferences towards items

that belong to the same category, plenty of category-aware methods have been proposed

to date. Empirical study has demonstrated the effectiveness of item category in dealing

with the concerned issues of recommendation. However, these methods mainly consider

categories that are organized in a flat structure, where categories are independent and

in a same level. They all ignore categories with more complicated organizations, which

might be more helpful to boost the recommendation performance.

In fact, categories can be also organized in a “category scheme”, i.e., a set of cate-

gories and the relations between those categories. Category hierarchy (CH) is a natural

yet powerful structure to human knowledge, and it provides a machine- and human-

readable description of a set of categories and their relations. Typical examples of CH

include on-line products hierarchy (e.g., Amazon web store [68]), food hierarchy (e.g.,

2



Chapter 1. Introduction

Gowalla [62]), articles hierarchy (e.g., Wikipedia [41]), music hierarchy (e.g., Yahoo!

Music [51]), and ad hierarchy (e.g., Yahoo! traffic streams [69]) and so on. Figure 1.1

shows a running example of CH for women’s clothing in Amazon, where women’s clothing

is first divided into several generalized categories (e.g., athletic), and further classified

into localized subcategories (e.g., shirts). The benefits brought by explicitly modeling

category relations through CH have been investigated in a broad spectrum of disciplines,

from machine learning [44, 50] to natural language processing [41], without recommender

systems being exception. While most of the existing work simply blend CH into flat

structure, leading to severe topological structure information loss, thus hindering further

improvements of recommendation performance. Therefore, how to effectively exploit CH

in recommendation is still an open research question.

Recently, representation learning (RL) has drawn much attention from various do-

mains, with recommender systems being no exception [26, 58, 104, 18, 4]. The popular-

ization of RL in recommendation can be mainly attributed to word embedding techniques

(e.g., CBOW and Skip-gram [71, 70]) originated from the natural language processing

(NLP) domain. Word embedding generally refers to the low-dimensional distributed rep-

resentation of words [5], capturing syntactical and semantic relationships among words.

The fast development of RL has enabled a series of methods for NLP tasks, among which

the most significant are the extensions of word embedding to learn textual representa-

tions in different levels of granularity (e.g., document or paragraph RL [55]), so as to

help capture richer relationships between words and paragraphs or documents.

In recommendation, RL has proven to be effective in capturing local item relationships

by modeling the item co-occurrence in individual user’s interaction record. Although sev-

eral RL based recommendation methods [4, 18, 26, 58, 104] have been proposed to date,

the potential of RL for recommendation has not been fully exploited. First, most of the

RL based recommendation methods are built upon item embedding [4], which always

3



Chapter 1. Introduction

Figure 1.2: The knowledge graph in the movie domain

generate exactly same recommendation list to users who share similar interest, over-

looking personalization for recommendation. Second, all existing methods ignore the

possible multi-level organizations of items with the help of item category for uncover-

ing fine-grained item relationships (similar as word-paragraph-document in NLP), which

could in turn help achieve better recommendation performance.

Moreover, with the development of semantic web, the knowledge graph (KG) as auxil-

iary data source has recently attracted a considerable amount of interests in the commu-

nity of recommender systems. Compared with CH, which is generally limited to describe

categories with child-parent (i.e., affiliatedTo) relations, KG connects various types of

features related to items (e.g., the genre, director and actor of a movie), in a unified

global representation space. Leveraging the heterogeneous connected information from

KG helps with the inference of subtler item relationships from different angles, which are

difficult to uncover with the homogeneous information (i.e., item category) only. The rec-

ommendation accuracy can, therefore, be further boosted with the incorporation of the

knowledge graph. Figure 1.2 illustrates a running example of KG in the movie domain,

which contains users, movies, actors, directors and genres as entities; rating, categorizing,

acting, directing and cooperating as the entity relations. Although there are several stud-

ies adopting KG to design effective recommendation algorithms [121, 122, 90, 91], most

of them heavily rely on handcrafted features which requires lots of domain knowledge.

4
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To summarize, in this dissertation, we aim to devise novel recommendation approaches

by exploiting fine-grained item relationships to achieve high quality recommendations.

1.2 Research Challenges

According to the research scope illustrated in Section 1.1, three recommendation prob-

lems are defined and investigated in this dissertation, namely, category hierarchy based

recommendation, representation learning based recommendation and knowledge graph

based recommendation. Next we will respectively demonstrate the research challenges of

these three problems.

Category Hierarchy based Recommendation. Considering a Web product recom-

mender system, the goal is to recommend products to users. Figure 1.1 depicts a 3-layer

CH of Women’s Clothing, where Women’s Clothing is first divide into several generalized

categories (e.g., Athletic Clothing), and then further classified into localized subcategories

(e.g., Shirts). Compared with flat category structure, CH contains richer knowledge, and

thus can be adopted to further boost recommendation performance. Suppose a customer

who favors Athletic Shirts, she may possibly like Athletic Pants and Shoes. Since Ath-

letic Shirts, Pants and Shoes all belong to Athletic Clothing, they inherit characteristics

from the athletic style. In other words, both the localized category (i.e., Shirts) and the

generalized category (i.e., Athletic Clothing) may co-influence the users tastes, possibly

with different degrees.

The example highlights how related categories (e.g., Shirts and Athletic Clothing,

linked by the affiliatedTo relation) can co-influence user preferences. This observation

suggests the need for category relations (e.g., the affiliatedTo relation) to be properly

considered in recommendation methods. This co-influence could be known as a priori, but

it is often best learnt from historical user-item interaction data. Existing category-aware

methods, e.g., SVDFeature [16], CMF [94] and FM [82], ignore the useful information
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provided by category relations, imposing a conversion step that transforms a hierarchical

structure into a flat one. To better exploit CH, the main challenge is to model the

co-influence of categories on user-item interactions, determined by both the category

relations in the hierarchical structure and the historical user-item interaction data.

Actually, categories in the hierarchy of Figure 1.1 are organized in two dimensions:

vertical dimension (e.g., Shirts and Athletic Clothing) and horizontal dimension (e.g.,

Shirts and Pants). The above example only considers the influence of affiliatedTo category

relations in vertical dimension, while ignores another important dimension of CH, i.e.,

horizontal dimension. Sibling and cousin categories, i.e., positioned in the same layer of

the hierarchy, might capture latent relations that also could be used to better characterize

user-item interactions, and, consequently, to enhance recommendation accuracy.

Suppose a customer who prefers athletic style to fashion style. She may purchase

more products under the category of Athletic Clothing, such as athletic shoes and pants

to match each other, instead of the products under Fashion Clothing, e.g., heels or skirts.

In this case, the two sibling categories Athletic Clothing and Fashion Clothing at Layer

2 are characterized by an alternative relation, as they are purchased by the user in a

mutually exclusive fashion. The sibling categories at Layer 1, Athletic Shoes and Pants,

are characterized by a complementary relation, as they are jointly purchased by the user.

Whereas the cousin categories at this layer, e.g., Athletic Shoes and Heels are alternative

as determined by the relation of their parent categories.

The above example emphasizes that category relations in horizontal dimension can

provide additional characterization of user-item interactions. It is, however, nontrivial

to exploit such kind of relations, as the vertical affiliation of categories in different layers

should also be preserved. As illustrated in the above example, users’ preferences on

products (e.g., Athletic Shoes and Heels) could also be affected by the relations of their

vertically affiliated categories across different layers (e.g., Shoes – Athletic Clothing, Heels
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– Fashion Clothing). In other words, it is often impossible to disentangle the horizontal

dimension from the vertical one.

Representation Learning based Recommendation. In recommendation, represen-

tation learning is used to capture local item relationships (i.e., item co-occurrence), thus

being called item embedding. Item embedding [4] learns low-dimensional item repre-

sentation by modeling item co-occurrence in individual user’s interaction record, thus

boosting recommendation accuracy. While it helps learn better item representation,

item embedding alone (e.g., Item2Vec [4], CoFactor [58], Meta-Prod2Vec [104]) does not

allow for personalized recommendation. Inspired by document RL (e.g., PV-DM [55]),

an important branch of work explores the potential of item embedding in personalized

recommendation by learning representations for both users and items – as documents

and words respectively in NLP (e.g., User2Vec [26]).

However, we argue that the potential of RL for recommendation has not been fully

exploited. Existing RL based recommendation methods all ignore the possible multi-

level organizations of items for uncovering fine-grained item relationships, which could

in turn help achieve better performance. We are inspired by the multi-level word orga-

nizations (i.e., word-paragraph-document) in NLP, where paragraph is the intermediate

level between individual words and documents. Intuitively, each paragraph conveys a key

message, and all the words in the paragraph helps support such message. Analogously,

we introduce item categories as the intermediate level of item organization between in-

dividual items and items rated by the same user, since items with the same category

often share similar characteristics. The key point here is how to efficiently integrate item

category with RL to devise a unified recommendation model from the scope of multi-level

RL, as well as achieving the goal of personalized recommendation.

Knowledge Graph based Recommendation. The knowledge graph (KG) has proven

to be effective in mitigating data sparsity and cold start problems in recommender
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systems. It greatly helps to uncover fine-grained item relationships by providing het-

erogeneous information related to items, i.e., different types of features and relations.

State-of-the-art approaches [64, 91, 110, 122, 132] exploit KGs by extending the matrix

factorization [75] model with item similarity derived from paths connecting items. The

basic intuition is that paths connecting two items in KG represent item relationships of

different semantics, which facilitate the inference of user preferences from different per-

spectives so as to generate effective recommendations. Figure 1.2 shows the idea with a

running example.

Consider a KG based movie recommender system, where Bob’s preference over SPR1

can be inferred by: 1) Bob
rate−−→ TT

categorized by−−−−−−−→ Drama
categorize−−−−−→ SPR; 2) Bob

rate−−→ TT

directed by−−−−−−→ Steven Spielberg
direct−−−→ SPR; 3) Bob

rate−−→ TT
directed by−−−−−−→ Steven Spielberg

cooperate−−−−−→

Tom Hanks
act−→ SPR. These paths capture the semantic relations of 1) belonging to a

same genre, or 2) being directed by a same director for the movies that Bob has watched.

Hence, we may infer that Bob prefers either movies belonging to the genre of Drama, or

those directed by Steven Spielberg based on which, we can recommend GWH (belongs

to Drama) or SL (directed by Steven Spielberg) to Bob.

The example highlights that different paths connecting a same user-item pair often

carry different semantic relations. Typically, they are of different importance in charac-

terizing user preferences over items, i.e., certain paths can better describe user preferences

than the others. In the example, Bob’s preference over SPR can be driven more by his

interest in the genre, than by his preference for the director. To fully exploit paths in

KG for recommendation, it requires to capture not only the semantics of different paths

but also their distinctive importance in describing user preferences.

Existing methods employing KG heavily rely on handcrafted features to represent

path semantics. They define meta paths [98] (i.e., paths with specific types and fixed

1For all the movies, we adopt the abbreviation for short.
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lengths) in advance, then discover the qualified path instances by mining the KG. The

descriptive power of a meta path in characterizing entity relationships is usually defined

by the number of corresponding path instances2. This process requires domain specific

knowledge to define meaningful paths, which is time-consuming. More importantly, man-

ually designed meta-path features are often incomplete in the coverage of possible item

relationships, thus severely hindering the recommendation quality.

The popularity of representation learning (RL) recently prompted a seminal work

[127] that exploits KG embedding to capture entity semantics for recommendation. In

contrast to the meta-path based recommendation approaches with manually extracted

paths, these methods automatically learn the embeddings of entities in the KG by leverag-

ing the one level ego-network of entities with their properties, without dependency on the

handcrafted features. These embeddings are represented in the form of low-dimensional

vectors, referred to as distributed representations, which have shown to be effective in

capturing entity semantics in KG [10, 60]. As a result, KG embedding based methods

have achieved higher performance than meta-path based methods [127]. However, one

major shortcoming of these approaches is the disregard of the semantic relations of enti-

ties that are connected by paths – i.e., those are not directly connected in KG – which

has been extensively studied in meta-path based methods. Therefore, the challenge here

is how to design a new data-driven method that does not rely on handcrafted features,

yet can capture both semantics of entities and paths encoded in KG for recommendation.

1.3 Research Approaches

Category Hierarchy based Recommendation. To take advantages of category affil-

iatedTo relations in the vertical dimension of CH, we propose a novel approach – ReMF

2We use entity as a generic term to represent all the objects (e.g., user, item, item features) in a KG.
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– that models the co-influence of hierarchically-organized categories on user-item inter-

actions, and learns the strength of such co-influence from historical user-item interaction

data, thus to improve recommendation performance.

Specifically, we first define the influence of an individual category as regularization

[124] on item latent factors, then combine the regularization of individual categories by

weighting them recursively over the hierarchy, from root to leaves, according to their or-

ganization. The regularization of the category hierarchy, named recursive regularization,

is expressed as a regularization function parameterized by the weights associated to each

category. We then propose a novel recommendation framework ReMF, that integrates

recursive regularization into the matrix factorization model to better learn user and item

latent factors. By learning the values of weights of each category from the historical

user-item interaction data, ReMF characterizes the influence of different categories in a

hierarchy on user-item interactions.

Based on ReMF, in order to fully exploit CH, we further consider category relations

in the horizontal dimension of CH, i.e., alternative and complementary, together with

category affiliatedTo relation in the vertical dimension, whereby a unified recommenda-

tion framework HieVH is thus proposed by seamlessly integrating both dimensions of

CH, so as to help achieve better recommendation performance.

In particular, to model the vertial dimension, HieVH adapts latent factors of items by

adding weighted aggregation of their affiliated categories’ latent factors, to better model

item latent factors. The weights are automatically learnt from data. Horizontally, cat-

egory relations, i.e., alternative and complementary, are incorporated as regularizers at

each layer of the hierarchy, to better model category latent factors. In so doing, through

the adaption of item latent factors with category latent vectors in vertical dimension, cat-

egory relations in horizontal dimension can be inherited by items. The result is a method

that can seamlessly fuse vertical and horizontal dimensions of CH. While previous CH
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based methods (e.g., ReMF) consider vertical dimension, we stress that it is nontrivial to

extend them to integrate horizontal dimension, due to the lack of a matching mechanism

in vertical dimension such as the use of category latent factors.

Representation Learning based Recommendation. To reach the full exploitation

of RL for effective recommendation, we contribute a multi-level RL method – MRLR – for

personalized recommendation. MRLR not only captures fine-grained item relationships

by leveraging category RL as the intermediate level RL between item RL and user RL,

but also achieves the goal of personalization.

As the original item embedding method only learns from item co-occurrence rela-

tionships, whereas for personalized recommendation the method has to learn from user-

specific lists of rated items w.r.t. user preferences. We hence first extend the original

item embedding method to a more generic Bayesian framework, under which we then

fuse the likelihood function of user-specific pairwise item ranking. This unified frame-

work can then learn user and item embedding from both item co-occurrence relationships

and user-specific ranked lists of items, benefiting from user and item RL while reaching

the goal of personalized recommendation.

Next, we further extend the personalized recommendation framework to multi-level

RL by considering multi-level granularity of item organizations, so as to help capture fine-

grained item relationships. Specifically, we introduce item category as the intermediate

level between items in the same user-specific ranked list and individual items. By lever-

aging category RL to adapt item embeddings, item category is seamlessly integrated into

the recommendation framework. The rationale behind is that items in a same category

generally share similar characteristics. For instance, online products are often described

by categories as meta-data such as clothing, books, electronics, and so on.

The unified Bayesian framework therefore facilitates multi-level RL by combining RL

in all the three levels (i.e., individual item, item category, and user). Although item

11
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category has recently been intensively studied [33, 117], we are the first to investigate

it from the perspective of multi-level RL, which enables our framework to capture the

fine-grained relationships of items in local context (i.e., item co-occurrence relationships),

in the same category, and in user-specific ranked item list.

Knowledge Graph based Recommendation. Inspired by the two lines of work that

adopts KG for better recommendation, i.e., meta-path based methods and KG embedding

based ones, illustrated in Section 1.2, we seek for a new data-driven method that does

not rely on handcrafted features, yet can capture both semantics of entities and paths

encoded in KG for recommendation.

To this end, we consider to use recurrent neural networks (RNN) [17, 114, 126] to learn

the semantic relations between entities encoded by paths to improve recommendation. An

important advantage of RNN is that it can model sequences with varying lengths, making

it particularly suitable for modeling paths – i.e., sequences of different numbers of entities

in KG. Most importantly, RNN can not only model the semantics of entities (with an

embedding layer [119]), but also the semantics of paths that connect different entities by

encoding the entire path, thus providing a unified approach for learning representations of

both entities and relations to fully exploit KG semantics for recommendation. However,

the application of RNN to model KG for recommendation is not trivial, given the different

descriptive power of paths in characterizing user preferences.

We therefore proposes a unified recurrent knowledge graph embedding framework

RKGE, which is able to not only learn semantic representations of entities and paths in

a fully automatic way, but also to automatically discriminate the importance of different

paths for recommendation. In order to learn the relations between a pair of entities,

RKGE first mines all the paths linking paired entities which carry different semantics,

without predefining the specific types of the path. It then encodes all paths between the

entity pair through a batch of RNNs, with each path modeled by a single RNN. RKGE
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is thus flexible in capturing different numbers of paths with various lengths that connect

entity pairs. The different effects of paths are then learned through a pooling operation,

which further discriminates the importance of different paths and aggregates their effects

for learning user preferences.

1.4 Research Contributions

Our major contributions in this dissertation are summarized as follows:

• We define and investigate three recommendation problems, which aim at utilizing

auxiliary item relationships to help achieve high recommendation performance from

different perspectives. They are respectively category hierarchy, representation

learning, and knowledge graph based recommendation.

• To leverage category affiliatedTo relation in vertical dimension of CH, we propose

a novel regularization method named Recursive Regularization for modeling the

co-influence of categories in the hierarchy on user-item interactions. Based on this,

a new recommendation framework ReMF is then proposed to learn hierarchical

category influence from historical user-item interaction data. Different from other

existing CH based methods that simply convert CH into flat structure, ReMF

models the topological structure of CH, and automatically learns the co-influence

of categories in different layers of CH. Experimental results show that ReMF can

largely outperform state-of-the-art methods.

• To fully exploit category relations in both vertical and horizontal dimensions of CH,

we propose a unified recommendation framework HieVH that seamlessly integrates

both dimensions for effective recommendation. Besides category affiliatedTo rela-

tion in vertical dimension of HieVH further considers two types of semantically rich
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category relations in horizontal dimension, i.e., complementary and alternative re-

lations. Therefore, HieVH advances existing CH based recommendation methods,

which only consider vertical dimension of CH. Extensive validation demonstrates

the superiority of HieVH against the state-of-the-art. An additional benefit of

HieVH is to provide better interpretations of the generated recommendations.

• To take advantage of RL in capturing local item relationships, we propose a multi-

level RL framework for personalized recommendation – MRLR. Different from other

existing RL based recommendation approaches which ignore either personalization

or multi-level item organization, MRLR learns both user and item embeddings from

a multi-level item organization for better recommendation. Therefore, it benefits

from RL as well as achieves the goal of personalized recommendation. Empirical

validation on real-world datasets shows that MRLR achieves better recommenda-

tion performance than the state-of-the-art algorithms.

• To employ the heterogeneous connected information encoded in KG, we propose a

KG embedding recommendation framework – RKGE – based on a novel recurrent

network architecture for high quality recommendation. Different from previous

KG based recommendation methods, which either heavily reply on handcrafted

features and domain knowledge, or fail to capture the semantics of entities and

entity relations, RKGE can not only learn the semantic representation of different

types of entities, but also automatically capture entity relations encoded in the

KG. Extensive validation on two real-world datasets demonstrates the superiority

of RKGE against other counterparts.

Figure 1.3 depicts the overall structure for relations of the research problems consid-

ered in this dissertation, and summarize the contributions. To address the data sparsity
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Figure 1.3: The overall structure to illustrate relations of the research problems consid-
ered in this dissertation.

and cold start problems of recommender systems, we propose a series of novel recommen-

dation approaches from two different angles, i.e., auxiliary information and techniques.

First, we leverage the vertical affiliatedTo relation of category hierarchy as auxiliary in-

formation to help infer item relationships, and then incorporated them into latent factor

model to propose ReMF; Second, by considering both vertical and horizontal dimensions

of category hierarchy, another latent factor model based approach HieVH is devised.

Third, as representation learning technique has proven to be more effective to capture

item relationships than latent factor model, we integrate item category information with

representation learning to design MRLR; Lastly, we consider more complicated auxiliary

information, i.e., the knowledge graph, which is capable of inferring more fine-grained

item relationships from different angles. Meanwhile, from the perspective of techniques,

as neural network is more efficient to capture complex interaction patterns between en-

tities, e.g., nonlinear relations between entities, we propose a neural network based ap-

proach RKGE to capture semantics of both entities and entity relations encoded in the

knowledge graph, thus to further enhance recommendation performance.
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1.5 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we provide an overview

of previous studies related to our research problems. Chapter 3 presents our approach to

category hierarchy based recommendation from the angle of leveraging the affiliatedTo

category relation in vertical dimension of CH. From the point of utilizing both vertical and

horizontal dimensions of CH, Chapter 4 introduces our unified framework w.r.t. category

hierarchy based recommendation to further enhance the recommendation performance.

In Chapter 5, we demonstrate the proposed model for representation learning based

recommendation. Chapter 6 illustrates the proposed approach for knowledge graph based

recommendation. Finally, Chapter 7 concludes this dissertation and points out several

promising directions for future work.
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Literature Review

In this chapter, we provide an overview of state-of-the-art recommendation algorithms

that are related to our study. Specifically, we first make a brief introduction about one

of the most successful recommendation techniques, i.e., collaborative filtering (CF), and

then focus on the recommender systems that exploit item relationships to help resolve

the inherent issues of CF, i.e., data sparsity and cold start. Particularly, we survey

the literature related to the three recommendation problems that have been defined

in Chapter 1, i.e., category hierarchy based recommendation, representation learning

based recommendation and knowledge graph based recommendation, and point out their

strength and limitations in the light of recommendation performance.

2.1 Collaborative Filtering

Recommender systems have become an important part of modern applications to help

deal with the information overload problem, where the goal is to actively recommend

relevant items to users by modeling user preference based upon the historical user-item

interaction records (e.g., user-item rating matrix). One of the most successful and preva-

lent recommendation techniques is collaborative filtering (CF) [93, 97], which is built

upon the assumption that a user’s preference can be inferred by aggregating the tastes

of her similar users.
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2.1.1 Memory- and Model-based Approaches

Generally, two types of CF approaches are widely investigated, namely, memory-based

methods and model-based methods, which will be elaborated in the following.

2.1.1.1 Memory-based Approaches

Memory-based approaches [19] exploit user-user or item-item similarity derived from the

user-item rating matrix to make recommendations. User-oriented methods [108] and

item-oriented methods [86] are the two kinds of typical memory-based approaches.

Specifically, user-oriented approaches identify like-minded users who can complement

each other’s ratings. In other words, the ratings of target users are predicted based on the

ratings of similar users found in the system. Whereas, item-oriented approaches evaluate

a user’s preference for an item based on the ratings of neighboring items rated by the

same user. Memory-based methods are thus also called neighborhood-based methods, as

the key point is to find a number of reliable neighbors for the target users or items, when

generating recommendations.

Various types of similarity measurements have been proposed, so as to help efficiently

uncover the nearest neighbors of users or items in the system. The widely utilized ap-

proaches include cosine similarity (COS) [84], Pearson correlation coefficient (PCC) [11],

Jaccard Similarity (JS) [67], Bayesian Similarity (BS) [30], etc. The similarity com-

putation thus has direct and significant influence on the performance of memory-based

recommendation methods. Although memory-based approaches are adopted in some real

applications such as CiteULike1, Youtube2 and Last.fm3, they have been recognized to

be ineffective to large-scale data sets due to the time-consumption searching in user or

item space.

1http://www.citeulike.org/
2http://www.youtube.com/
3http://www.last.fm/
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2.1.1.2 Model-based Approaches

In contrast, model-based CF approaches aim to build models by adopting data mining

or machine learning techniques on user-item rating matrix to uncover the complex user

behavior patterns (offline). The learned models are then used to predict ratings of un-

known items (online). Therefore, they can better adapt and scale up to large-scale data

sets. Besides, model-based approaches usually achieve better recommendation perfor-

mance than memory-based ones [45]. Typical examples include Bayesian based models

[72, 73], clustering based models [87, 15, 85, 115, 31], regression based models [78, 106, 57],

topic model based approaches [7, 38, 54], latent factor based models [93, 52, 82, 83, 75],

representation learning based models [58, 102, 26, 104, 4], and neural network based mod-

els [107, 129, 77], etc. Among them, latent factor based models, representation learning

based models and neural network based models are the most prevalent approaches, which

are also the fundamental models of our proposed approaches in this dissertation.

Latent Factor Models. Due to the high efficiency, state-of-the-art recommendation

methods are mainly dominated by the latent factor model (LFM), which decomposes

the high-dimensional user-item rating matrix into low-dimensional user and item latent

matrices. The basic idea behind is that both users and items can be characterized by a

number of latent features, and thus the prediction can be computed as the inner product

of user-feature and item-feature vectors. Many effective approaches fall into this category,

such as matrix factorization (MF) [75], non-negative matrix factorization (NMF) [128],

tensor factorization (TF) [48], factorization machine (FM) [82], SVD++ [52], collective

matrix factorization (CMF) [94] and SVDFeature [16]. LFM based approaches learn

and model users’ rating patterns by employing global statistical information of user-item

interaction data.

Representation Learning based Models. In contrast to LFM, representation learn-

ing (RL) based methods have proven to be effective in capturing local item relationships.
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It is thus called item embedding in recommendation. These methods are mostly inspired

by word embedding techniques, which can be traced back to the classical neural network

language model [5], and the recent breakthrough of Word2Vec techniques, including

CBOW and Skip-gram [70, 71]. Item embedding learns low-dimensional item represen-

tation by modeling item co-occurrence in individual user’s interaction record [26, 4, 58],

thus boosting recommendation accuracy.

Neural Network based Models. Stemming from the success in related domains (e.g.,

computer vision, speech recognition, and natural language processing), neural network

(NN) based methods have recently attracted major research interests from the recom-

mendation community. In contrast to LFM and RL based methods, NN based models

(e.g., AutoRec [88], NCF [34]) can learn nonlinear latent representations through vari-

ous types of activation functions (e.g., sigmoid, ReLU [76]). Recently, recurrent neural

network (RNN) based approaches [36, 39, 46, 114] have gained significant enhancement

in recommendation thanks to the ability of preserving historical information over time

or dealing with the sequence information for recommendation. To sum up, NN based

methods possess essential advantages and have shown to be more effective to enhance rec-

ommendation performance. While the model complexity of NN based models is generally

higher than latent factor based model and representation learning based one.

2.1.2 Incorporation of Auxiliary Information

Although traditional CF based methods achieve significant success on recommender sys-

tems, it inherently suffers from data sparsity and cold start problems [29]. The former

refers to that most users only rate a small portion of items, while the latter indicates

some users only rate a small number of items.

To resolve these issues, a notable research field is the trust-aware recommender sys-

tems which take into account additional user relationships. Many approaches [32, 116,
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65, 27, 28, 43] are emerging with the advent of social networks. The intuition is that so-

cial friends share similar preferences and influence each other by recommending items. It

has been shown that such additional side information among users is useful to deal with

the concerned issues of traditional CF based methods and thus to boost recommendation

accuracy. However, these approaches suffer from several issues. First, social information

may be unavailable for some real applications. Second, some users may only have few

friends, or even not be active in the social networks, i.e., cold start is also a problem of

social networks. Third, the potential noise and weaker social ties (than trust) in social

networks may also produce negative effects on the generality of these approaches [32, 20].

Another related line of research focuses on exploiting the side information of items,

given its effectiveness in boosting recommendation performance [52]. The rationale be-

hind is that users tend to have similar preferences towards a set of correlated items.

Plenty of approaches [62, 51, 92, 40, 49, 99] have been proposed by utilizing a wide range

of item relationships such as category, genre, location, etc. Compared with user relation-

ships (e.g., social network), item relationships (e.g., item category) are more amenable to

help explain the underlying reason behind recommendations, as users are familiar with

items previously preferred by them, but do not know those allegedly like-minded users

[52]. Furthermore, the item side information is generally available in the real systems,

and thus is much easier to be obtained. Therefore, in this dissertation, we focus on

exploiting item relationships to alleviate the concerned issues of CF.

In the following, we will provide a detailed literature review about the three rec-

ommendation problems defined in Chapter 1 which aim to exploit item relationships to

tackle the inherent issues of recommender systems, thus achieving high recommendation

performance. They are respectively category hierarchy based recommendation, represen-

tation learning based recommendation, and knowledge graph based recommendation.
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2.2 Category Hierarchy based Recommendation

This section reviews studies related to category hierarchy based recommendation. Specif-

ically, we start with the generic category-aware recommendation models that exploit flat

category structure for better recommendation, then focus on the approaches that take

advantages of category hierarchy, followed by the methods that adopt implicit hierarchy.

2.2.1 Modeling Flat Structure

Many category-aware recommendation methods consider only categories with a flat struc-

ture. Early works simply employ item category in data pre-filtering, which causes the

data sparsity problem to be even more severe. For instance, Sharma et al. [89] propose

a memory-based CF approach to compute users’ category-specific neighbors by dividing

users’ ratings into different sub-groups according to product category. The underlying

assumption is that users may rate products similarly in certain categories but differently

in the others. Hwang et al. [42] refer to category experts as those who have high ex-

pertise in specific categories, and contend that users have the tendency to seek advice

from category experts rather than strange users of similar preferences. They propose a

memory-based method by aggregating the ratings of category experts instead of those

of similar users. Yang et al. [118] develop a model-based method by inferring category-

specific social trust circles from the rating matrix and social networks. The authors argue

that a user may trust different subsets of friends dependent on item categories. Liu et

al. [62] propose a novel category-aware POI recommendation model by leveraging the

transition patterns of users’ preference over location category.

Later, some methods attempt to integrate item category into a learning model without

information loss caused by pre-filtering. Ji et al. [45] devise a two-phase layered learning

model. It first calculates user’s average rating to each category, and then learns accurate

estimates of users’ rating for individual item by adopting item keywords. Recently, Hu et
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al. [40] develop a geographical neighborhood based business recommendation approach

by taking into account the influence of business category. They argue that a business’s

latent feature vector can be influenced by its corresponding category latent feature vec-

tors. Therefore, they adopt the weighted linear combination of a business vector and its

corresponding category vectors as the final business vector.

Furthermore, several techniques originally designed for other scenarios can be poten-

tially adapted and applied to the category-aware recommendation, including:

• The presence of user-item rating matrix and item-category affiliation matrix in-

spires us to adopt the technique of collective matrix factorization (CMF) [61, 94],

which takes advantage of correlations among different datasets and simultaneously

factorizes coupled matrices.

• A straightforward technique to handle auxiliary information is known as Multiverse

Recommendation (MR) [48], which is based on Tensor Factorization (TF). TF is

a generalization of matrix factorization in multiple dimensions. By assuming that

user, item and category are located at independent dimensions respectively, a 3-D

tensor is composed, which is then factorized into low-dimensional user, item and

category latent factors for better recommendation.

• Another relevant technique is SVDFeature, which is a machine learning tookit, and

devised by Chen et al. [16]. The basic idea behind is that an item’s latent factor

is influenced by those of its corresponding categories.

• Rendle et al. [82] design a classic feature based recommendation model, i.e., factor-

ization machines (FM), that combines the advantages of support vector machines

(SVM) with the factorization model. FM is a general predictor working with any

real valued feature vector, and it usually performs faster and provides better rec-

ommendation performance than the other three methods mentioned above.
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However, all of the above methods merely consider item category with a flat structure,

ignoring the relationships among different categories. They all fail to handle the situation

where categories are hierarchically organized. Therefore, some researchers attempt to

make use of category hierarchy to further enhance the recommendation accuracy, which

will be introduced in the next subsection.

2.2.2 Modeling Category Hierarchy

Some studies on taxonomy-aware recommendation incorporate hierarchy into recommen-

dation. For example, Ziegler et al. [133] propose to model a user’s taxonomy preferences

as a flat vector, where each element corresponds to the user’s preference over a tax-

onomy feature. The user’s preference is modeled as the frequency that the user rates

items characterized by the feature (i.e., category). Based on the assumption that users

who share similar item preferences may also share similar taxonomic preferences, Weng

et al. [112] further propose a novel recommendation method that combines the users’

preferences towards items and the additional taxonomic preferences together to generate

better quality recommendations. In contrast, the previous model in [133] only considers

users’ taxonomic preferences when making recommendations. After that, Albadvi et al.

[2] also propose a similar approach, however it models each taxonomic feature as a pref-

erence vector, where the elements are feature attributes (e.g., price, brand). All of these

methods, however, overlook the relations among different features (i.e., categories).

Later, several approaches are proposed based upon SVDFeature [16]. For instance,

Dror et al. [51] design a new matrix factorization model for Yahoo! Music competition

that incorporates the taxonomy hierarchy of track album and artist. They predict user

preferences by fusing item (e.g., track) latent factors with category (e.g., album, artist)

latent vectors. Based on the same intuition, Minh et al. [74] later propose a matrix

factorization based method to the Track 2 task of KDD Cup 20114. They utilize the

4http://www.kdd.org/kdd2011/kddcup.shtml
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item relationships information from the provided taxonomy to constrain item latent vec-

tors and adopt the pairwise ranking route [83] at the meanwhile, resulting in improved

predictive performance. Kanagal et al. [47] also devise a taxonomy-aware matrix fac-

torization ranking model, which combines taxonomies and latent factors using additive

models. They develop efficient algorithms to train the proposed model, which scales to

a large number of users or items and develop scalable inference algorithms by exploiting

the structure of the taxonomy. In addition, they extend the model to account for the

temporal dynamics of user interests using high-order Markov chains. After that, Lu et

al. [63] propose a music recommendation model with taxonomy hierarchy. Different from

the approaches devised in [51, 74, 47], they assume that user latent factors are influenced

by the linked taxonomies in the hierarchy with equal weights.

Although category relations are considered, all the methods above cannot fully exploit

the information encoded in category hierarchy as they simply add relevant category latent

factors to the corresponding item or user latent factors, without taking into account the

dependent influence of hierarchically-organized categories on user-item interactions. To

sum up, blending category hierarchy into all the above models requires converting the

hierarchy into a flat structure, thus losing the structural information encoded in the

hierarchy. This severely hinders further improvements of recommendation performance.

There are still some works endeavoring to exploit the structural information of cat-

egory hierarchy. Menon et al. [69] propose an ad-click prediction method for online

advertising via considering ad hierarchy. They devise regularizers for the node (i.e., ads

and their affiliated categories in the hierarchy) and its direct parent node to constrain the

distance of their corresponding latent factors. However, the model assumes that given

its parent, a node is conditionally independent of all higher level nodes in the hierarchy.

Recently, based on the intuition that an item’s property is influenced by its visual ap-

pearance, He et al. [33] propose an efficient sparse hierarchical embedding method for

25



Chapter 2. Literature Review

visually-aware recommendation, called Sherlock. It is scalable and allows simultaneously

learning both general and subtle visual dimensions of items, captured by different lay-

ers on the category hierarchy with different degrees. However, it manually defines the

different effects of categories in the hierarchy on item latent factors.

In summary, existing methods are incapable to model the co-influence of hierarchically-

organized categories on user-item interactions, thus restricting their applications in rec-

ommendation. Most of them simply blend category hierarchy into flat structure, leading

to server topological information loss, thus hindering further recommendation perfor-

mance improvements. In contrast, our proposed framework ReMF can better exploit

the auxiliary category hierarchy through the automatic learning of hierarchical category

influence by a parameterized regularization traversing from root to leaf categories. Fur-

thermore, we argue that the potential of category hierarchy has not been fully employed,

i.e., the influence of hierarchy should not be limited only to the category affiliatedTo

relation in the vertical dimension, but also relations in horizontal one. Therefore, our

unified approach HieVH seamlessly models both dimensions of category hierarchy for ef-

fective recommendation by further considering semantically rich category relations, i.e.,

alternative and complementary in the horizontal dimension of CH.

2.2.3 Modeling Implicit Hierarchy

There are a few methods [109, 130] leveraging implicit hierarchy for better recommen-

dation. Based on the assumption that user preferences and item properties in real-world

recommender systems exhibit certain hierarchical structure, unfortunately explicit hierar-

chy is not always available on the web, Zhang et al. [130] propose a novel recommendation

framework HSR. It enables to capture the influence of implicit hierarchical structures of

both users and items on the user-item interactions simultaneously. To alleviate the data

sparsity problem of recommender systems, Wang et al. [109] design a novel taxonomy-

aware matrix factorization approach that automatically discovers the taxonomies of items
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from online shopping data and jointly learns a taxonomy-based recommendation system.

The underlying assumption is also similar with SVDFeature [16], i.e., an item’s latent

factor is influenced by those of its affiliated categories in the taxonomy.

The implicit hierarchical structure, however, is merely learnt from historical data

[109, 130], thus cannot truly uncover the inherent relations among different categories,

leading to poor recommendation performance. On the contrary, explicit hierarchy is

generally expert-induced, injecting prior knowledge and encoding category relations in

the semantical level. In this dissertation, we therefore focus on how to take advantage of

explicit category hierarchy for effective recommendation.

2.3 Representation Learning based Recommendation

Representation learning based methods have recently drawn much attention in the com-

munity of recommender systems. In this section, we review related state-of-the-art RL

based recommendation methods, which are mainly classified into two types, i.e., non-

personalized RL approaches and personalized ones.

2.3.1 Non-personalized RL Approaches

In contrast to LFM based approaches (e.g., matrix factorization), RL based approaches

have shown to be highly effective in capturing local item relationships by modeling item

co-occurrence in individual user’s interaction record. Several RL based methods have

been proposed to date. For instance, inspired by Word2Vec, Barkan and Koenigstein

[4] propose a neural item embedding method (Item2Vec) for item-based collaborative

filtering that produces embedding for items in a latent space. The method is capable

of inferring item-item relationships even when user information is not available. Later,

Vasile et al. extend Item2Vec to a more generic approach named Meta-Prod2Vec [104],

which is a novel method to compute item similarities for recommendation that leverages
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existing item meta-data. The proposed method leverages past user interactions with

items and their attributes (i.e., categories) to compute low-dimensional embeddings of

items. Specifically, the item metadata is injected into the model as side information to

regularize the item embeddings.

Experimental results have demonstrated that Meta-Prod2Vec consistently outper-

forms Item2Vec on recommendation tasks both globally and in the cold-start regime,

which suggests the effectiveness of the incorporation of item category for better rec-

ommendation. However, they all fail to provide personalized recommendation, as item

embedding techniques are only utilized to learn better item representation, ignoring the

user representation. Therefore, an important branch of work explores the potential of

item embedding in personalized recommendation by learning representations for both

users and items.

2.3.2 Personalized RL Approaches

Item embedding alone (e.g., Item2Vec [4], Meta-Prod2Vec [104]) does not allow for per-

sonalized recommendation. Inspired by document RL (e.g., PV-DM [55]), several re-

searchers endeavor to extend RL for personalization by learning representations for both

users and items – as documents and words respectively in NLP.

Grbovic et al. [26] first introduce the User2Vec recommendation framework, which

simultaneously learns representations of items and users by considering the user as a

global context, motivated by the paragraph2vec algorithm [55]. One of the main ad-

vantages of the User2Vec approach is that the product recommendations are specifically

tailored for that user based on his purchase history. Later, Liang et al. [58] propose

the CoFactor method, which jointly decomposes the user-item interaction matrix and

the item-item co-occurrence matrix with shared item latent factors. For each pair of

items, the co-occurrence matrix encodes the number of users who have consumed both
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items. CoFactor is also inspired by the recent success of word embedding models (e.g.,

Word2Vec) which can be interpreted as factorizing the word co-occurrence matrix. It is

thus equivalent to item embedding.

However, we argue that the potential of RL for recommendation has not been fully ex-

ploited, as these methods all ignore the possible multi-level organizations of items for un-

covering fine-grained item relationships in recommendation (similar as word-paragraph-

document in NLP), which could in turn help achieve better personalized recommenda-

tion performance. Therefore, we contribute a multi-level RL method for personalized

recommendation (MRLR). Specifically, our method is inspired by paragraphs in NLP as

the intermediate level of word organization between individual words and documents.

Analogously, we introduce item categories as the intermediate level of item organization

between individual items and items rated by the same user, since items with the same

category often share similar characteristics. By leveraging category RL as the intermedi-

ate level RL between item RL and user RL, MRLR is able to capture fine-grained item

relationships, as well as achieve personalized recommendation, so as to further enhance

recommendation performance.

2.4 Knowledge Graph based Recommendation

The knowledge graph (KG) has proven to be effective in mitigating data sparsity and cold

start problems in recommendation. It greatly helps to discover subtler item relationships

by providing heterogeneous information related to items, i.e., different types of features

and relations, thus facilitating to infer user preference towards items from different angles.

This section provides an overview of the state-of-the-art methods that exploit KG for

better recommendation. They are generally classified into three types, namely graph

based methods, meta path based methods, and embedding based ones.
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2.4.1 Graph based Approaches

A line of research focuses on making use of KG by designing graph based methods.

Early work [25] proposes a method by applying the spreading activation technique [81]

on KG to provide lower rating estimation error and higher coverage for recommendation

compared to those collaborative filtering methods only using user-item interactions. This

proves the usefulness of KG for better recommendation. Later, Pham et al. [79, 80]

propose HeteRS to solve recommendation problems in event-based social networks. They

transform the recommendation problem into a node proximity calculation problem and

employ Markov chain to solve it. By automatically learning the transition parameters,

HeteRS not only achieves superior performance, but also helps understand the roles of

different types of entities in recommendation. After that, Catherine et al. [12] investigate

a recommendation approach that employs a general purpose probabilistic logic system

called ProPPR, standing for Programming with Personalized PageRank, to infer user

preferences through logic reasoning based on KGs. Recently, Chaudhair et al. [14]

introduce a recommender system – RERA – that adopts a novel normalized version of

Personalized Page Rank to rank candidate items for recommendation.

Nevertheless, these graph based methods are mainly based on the random walk pro-

cess [21], which can be easily biased to the popular and centered entities in KG. More

importantly, they only make use of the topological structure of KG without considering to

model the semantics of entities and entity relations encoded in the KG, thus deteriorating

the recommendation accuracy.

2.4.2 Meta Path based Approaches

Two entity types can be connected via different paths in KG. These paths may contain

different entities and relations in different orders and have various lengths because of the

multiplicity of KG. To clearly describe the path types, meta path [98, 120] is introduced
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to help predefine the specific format and length of the paths, as well as capturing different

semantics carried by KG. To measure the proximity of the entities that are connected

by meta path, a series of metrics have been proposed – to name a few – Personalized

PageRank score [13], Random Walk score [59], and PathSim Score [98]. State-of-the-

art recommendation methods utilizing KG have been dominated by meta path, which

generally leverage meta path to build feature space and then manually extract features

from KG for better recommendation.

In order to take advantage of KG, Yu et al. [121] devise HeteMF – a matrix fac-

torization [75] recommendation framework with meta path based entity similarity. It

decomposes the user-item rating matrix, meanwhile adopts graph regularization [95] to

constrain the distance of latent vectors of similar items that are connected by meta paths.

Later, they propose HeteRec [123] to learn user preference diffusion to the unrated items

that are connected with their rated items via different meta paths in KG. This model

is designed for implicit feedback and estimated by the Bayesian ranking optimization

technique [83]. It is further extended by the same authors of [123] to incorporate person-

alization via clustering users based on their interests. Note that all the above methods

employ meta path in the scope of item-item relationships.

There are also some related works from the perspectives of either user-user or user-

item relationships. For example, Luo et al. [64] investigate a social network based

recommendation algorithm on KG named HeteCF to model the relationships of user-

item, user-user and item-item by meta-path based similarity. In order to accurately

capture semantic relationships among users, Shi et al. [91] propose the SemRec model

and introduce the concept of weighted meta path, which aims to depict the path semantics

by distinguishing subtle differences among link attribute values. Later, the same authors

design a matrix factorization based dual regularization framework SimMF [90], whereby

they design regularization terms for both users and items with the help of meta path
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based similarity. Similarly, Wang et al. [110] and Zheng et al. [132] also devise matrix

factorization approaches by regularizing user-user relationships with the computed meta

path based similarity.

Despite of their success for recommendation, all existing meta path based methods

suffer from an essential limitation: they heavily depend on the handcrafted features.

That is to say, the specific types and the lengths of the paths need to be predefined in

a subtle manner, which makes it difficult to generate a comprehensive feature space as

well as time-consuming, thus leading to a limited recommendation quality.

2.4.3 Embedding based Approaches

The most recently proposed algorithm is collaborative knowledge graph embedding (CKE)

[127], which jointly learns the item latent representations in collaborative filtering as well

as from the KG. To capture the structured information of entities and their rich relations,

CKE embeds KG into a continuous vector space via TransR [60], which is the state-of-the-

art embedding approach for heterogeneous network. By modeling the relations between

any two directly connected entities, CKE automatically extracts item representations

from KGs structural content. The empirical study demonstrates the superiority of CKE

against graph and meta path based methods.

However, TransR cannot explicitly learn the relations of paired entities that are linked

by a path, thus failing to capture the full semantics carried by KG. In contrast, our

proposed framework – RKGE – is designed to learn both semantics of the entities and the

relations among entities. It first automatically mines all the linked paths with different

semantics between entity pairs, then models all the paths by a batch of RNNs, meanwhile

learns the respective path saliency on users preference towards items. By doing so, RKGE

not only takes advantage of representation learning for better KG embedding, but also

achieves a full exploitation of entity relations.
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2.5 Summary

This section provides a systematic summary of the current research related to our study.

We first briefly introduce one of the most successful techniques for recommender sys-

tems, i.e., collaborative filtering, which includes memory-based methods and model-based

methods. Then, we make a comprehensive survey about the state-of-the-art studies that

corresponds to the three recommendation problems defined in Chapter 1, namely, cat-

egory hierarchy based recommendation, representation learning based recommendation,

and knowledge graph based recommendation.

By analyzing strength and weakness of existing works w.r.t. the three recommenda-

tion problems in depth, we propose a series of recommendation framework to alleviate

their respective limitations:

(1) Most of existing CH based recommendation approaches adopt CH for better recom-

mendation by directly blending the hierarchical structure into flat structure, thus

leading to server information loss and limited performance improvements. To tackle

with this issue, we propose a novel matrix factorization framework with recursive

regularization – ReMF – to better leverage the topological structure of CH, i.e.,

vertical category affiliatedTo relation of CH in Chapter 3;

(2) Most of existing CH based recommendation methods only focus on the vertical

affiliatedTo category relations, while ignore another importance dimension of CH.

Therefore, to make a fully exploration of CH, we design a unified framework HieVH

to seamlessly incorporate category relations in both vertical and horizontal dimen-

sions of CH for better recommendation in Chapter 4;

(3) Most of existing RL based recommendation methods ignore either personalization

or multi-level item organization for better recommendation. To resolve this issue, a
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unified Bayesian framework MRLR is then devised to make full use of representation

learning for better recommendation in Chapter 5;

(4) Most of existing KG based recommendation approaches either heavily rely on hand-

crafted features and domain knowledge, or fail to capture the semantics of entities

and entity relations encoded in the KG. Therefore, in Chapter 6, we propose a KG

embedding recommendation approach based on a novel recurrent network archi-

tecture, so as to fully exploit the heterogeneous information encoded in KG, thus

achieving high quality recommendation.
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ReMF: Recommendation with
Recursive Regularization

As emphasized in Chapter 1, the categories with affiliatedTo relation in category hierarchy

(CH) can co-influence user preferences, possibly with different degrees. This suggests the

need for category relation (i.e., affiliatedTo) to be properly considered in recommendation

methods. This co-influence could be known as a priori, but it is often best learnt from

historical user-item interaction data. Existing category-aware methods, e.g., SVDFeature

[16], CMF [94] and FM [82], ignore the useful information provided by category relation,

imposing a conversion step that transforms a hierarchical structure into a flat one.

This chapter proposes a novel approach that models the co-influence of hierarchically-

organized categories on user-item interactions, and learns the strength of such co-influence

from historical user-item interaction data, to improve recommendation performance. We

first define the influence of an individual category as regularization on latent factors, then

combine the regularization of individual categories by weighting them recursively over the

hierarchy, from root to leaves, according to their organization. The regularization of the

CH, named recursive regularization, is expressed as a regularization function parameter-

ized by the weights associated to each category. We then propose a novel recommendation

framework ReMF [117], that integrates recursive regularization into the matrix factor-

ization model to better learn latent factors. By learning the values of weights of each
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category from the historical user-item interaction data, ReMF characterizes the influence

of different categories in the hierarchy on user-item interactions.

This chapter is organized as follows: we first introduce the recursive regularization

method for modeling the co-influence of category with affiliatedTo relation in Section 3.1;

based on this, we then propose the recommendation framework ReMF that incorporates

recursive regularization to achieve high quality recommendation in section 3.2, followed

by the empirical evaluation in section 3.3. Finally, Section 3.4 concludes this chapter.

3.1 Recursive Regularization

We adopt the regularization technique [124] to model the influence of auxiliary categories.

To do so, we have to consider category relations, and further allow for the learning of

category influence from historical user-item interaction data. For this we introduce a

novel regularization method, named recursive regularization, that models the co-influence

of categories by recursively weighting each category influence, traversing from root to

leaves in the category hierarchy.

3.1.1 Preliminaries

We first introduce the notations utilized in this chapter. Let U = {u1, u2, . . . , um} be

the set of m users, and I = {v1, v2, . . . , vn} be the set of n items. Given a user-item

interaction matrix R ∈ Rm×n, Rij is a positive number denoting the rating given by ui

to vj. O ∈ Rm×n denotes the indicator matrix, where Oij = 1 indicates that ui rates

vj, and Oij = 0 otherwise. C = {C1, C2, . . . , Ct} is the set of categories, each of which

describes at least one item in I.

The categories are organized hierarchically in a tree structure, where each node rep-

resents a category in C. The edge between a parent node Cp ∈ C and a child node Cc ∈ C

represents a directed affiliation relationship, i.e., Cc belongs to Cp. Figure 3.1(a) shows
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Table 3.1: Mathematical Notations for ReMF

Notation Description

U , I user, item set

ui, vj/vk the ith user in U , and jth/kth item in I
Rij rating given by user ui to item vj
R̂ij estimated rating for user ui to item vj
O indicator matrix indicating missing entries in R

Ui, Vj latent factors of user ui and item vj
C hierarchically-organized category set

C category in the hierarchy

Dis(c) regularization induced by isolated category C

Cu(c) category unit with parent node C

I′(C) regularization by isolated category unit Cu(C)

g, s weighting parameters in propagating category influence

I(C) regularization by category unit Cu(C) in hierarchy

I(C) regularization by category hierarchy C
Cjk regularization coefficient between Vj and Vk

α impact of recursive regularization

λ regularizaton coefficient to avoid over-fitting

J objective function of ReMF framework

an example containing three leaf categories C1, C2, C3, i.e., categories with no children.

C1, C2 are children of the internal category C4. C3 and C4 are children of the root cate-

gory C5. For simplicity, we assume that each item is explicitly associated with at most

one leaf category in C. Table 3.1 summarizes all the notations throughout this approach.

Our method is built on one of the most successful latent factor model (LFM) – matrix

factorization (MF) [75], which assumes the existence of latent structures in the user-item

interaction matrix. By uncovering latent factors of users and items, it approximates

the observed ratings and estimates the unobserved ratings. MF solves an optimization

problem shown as follows:

min
U,V

1

2

∑
i,j

Oij(Rij −UiV
T
j )2 +

λ

2
(‖U‖2

F + ‖V‖2
F ), (Eq. 3.1)
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3.1.a: Category hierarchy 3.1.b: Regularizer coefficients

Figure 3.1: Category hierarchy and its corresponding regularization coefficients. (a) il-
lustrates a category hierarchy, where categories with children (i.e., C5, C4) are called
internal categories. Particularly, C5 is also named root category, whereas categories with-
out children are called leaf categories. Dash and solid lines respectively represent the
item-category (i.e., an item belongs to a category) and category-category (i.e., parent-
child) relationships. Categories in a red dash box comprises a category unit. (b) shows
the corresponding regularization coefficients of the corresponding example.

where U ∈ Rm×d and V ∈ Rn×d are the latent factors of users and items, respectively. d

is the dimension of latent factors. λ is the regularization coefficient to avoid over-fitting.

The unobserved rating for user ui to item vj can be estimated by the inner product of

the corresponding user and item latent factors, i.e., R̂ij = UT
i Vj.

3.1.2 Modeling Influence of Category Hierarchy

Step by step, we model the influence from a single category to the combinations of

categories and finally the entire category hierarchy.

Influence of an Isolated Category. To start, we first define the regularization by an

isolated category Cp in the hierarchy as:

Dis(Cp) =
∑

vj ,vk∈Cp,j<k

‖Vj −Vk‖2
F , (Eq. 3.2)

where ‖Vj−Vk‖2
F is the squared Frobenius norm distance between the latent factors of vj

and vk belong to category Cp: Cp poses regularization on the cumulation of the pairwise
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distance between items belong to it. Thus, Dis(Cp) can be considered as the influence

of the isolated category Cp on user-item interactions by regularizing the distance of item

latent factors. Dis(Cp) indicates that if two items are characterized by a same category,

then the distance of the corresponding item latent factors should be constrained. Theo-

retically, the distance should be smaller than that of two items which belong to different

categories. The definition here only considers the influence of an isolated category, while

the co-influence of the category hierarchy contributed by the category, i.e., influence of

the category in the hierarchy, is different from – but based on – the influence of the

isolated category, which will be illustrated later.

Note that our method models category influence by regularizing item latent factors,

and can be straightforwardly transferred to modeling the influence by regularizing user

latent factors, or both of them.

Influence of an Isolated Category Unit. Given the above definition, we now model

the influence of an isolated combination of categories, on learning item latent factors, by

introducing the most important relation among categories in a hierarchy, i.e., parent-child

(affiliatedTo) relation, based on which other relations among categories in the hierarchy

such as siblings, ancestors can be derived. We first define the category unit, i.e., Cu(Cp),

as the combination of a single parent node Cp and its child nodes, namely:

Cu(Cp) = {Cp} ∪ {Cc|∀Cc ∈ children(Cp)}. (Eq. 3.3)

Two examples of category units Cu(C5) and Cu(C4) are illustrated in the red dash boxes

in Figure 3.1(a).

Then we consider the influence of an isolated category unit on learning item latent

factors by regularization. For each isolated category unit Cu(Cp), we denote its influence

as I′(Cp), and assign it two parameters gp, sp, with the constraint gp+sp = 1. Parameters

gp and sp are used to distribute the influence of the category unit to two parts. One is
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given by the parent node, weighted by gp, and the other is given by the child nodes,

weighted by sp. The influence of the isolated category unit, i.e., I′(Cp), is defined as:

I′(Cp) = gpDis(Cp) + sp(
∑

∀Cc∈children(Cp)

Dis(Cc)). (Eq. 3.4)

For example, the influence of the isolated category unit Cu(C5) in Figure 3.1, i.e., I′(C5),

is determined by both the influence of the parent node C5, i.e., Dis(C5), weighted by g5,

and the influence of its child nodes, i.e., Dis(C3) andDis(C4), weighted by s5. The overall

influence of this isolated category unit is: I′(C5) = g5Dis(C5) + s5(Dis(C3) +Dis(C4)).

Compared with the influence of the isolated category C5, the influence of category C5 in

Cu(C5) is different, in that Dis(C5) is weighted by g5.

Influence of an Entire Category Hierarchy. Based on the definition of the influence

of an isolated category unit, we now proceed to model the influence of category unit in

the hierarchy, thus to formally derive the overall influence of an entire category hierarchy

on item latent factors. Note that the influence of a category unit in the hierarchy is

different from – but based on – the influence of the isolated category unit, and can be

achieved by recursively defining the regularization of the category unit in the hierarchy,

which is given by the following formula:

Definition 1 (Recursive Regularization)

I(Cp) =



gpDis(Cp) +sp(
∑

∀Cc∈children(Cp)

I(Cc)),

if Cp is an internal category;

Dis(Cp), if Cp is a leaf category and |Cp| > 1;

0, otherwise,

(Eq. 3.5)

where |Cp| is the number of items that belong to category Cp.

From the above definition, we can see the difference between the influence of a category

unit in the hierarchy I(Cp) and the influence of an isolated category unit I′(Cp), that is,
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Algorithm 1: Recursive Regularization Deduction

Input: category hierarchy C, gp, sp∀Cp ∈ C
1 foreach Cp ∈ C do
2 I(Cp) ← 0;
3 layer ← #layers of C ;
4 for l = 0; l ≤ layer; l + + do
5 foreach category Cp at layer l of C do
6 if Cp is a leaf category (l = 0) and |Cp| > 1 then
7 I(Cp) ← Dis(Cp);
8 else if Cp is an internal category (l 6= 0) then
9 I(Cp) ← gpDis(Cp) + sp(

∑
∀Cc∈children(Cp) I(Cc));

10 I(C) ← I(Croot);

I(Cp) is recursively defined on I(Cc). Put another way, the influence of a child category is

included in the influence of its parent category. Hence, the influence of an entire category

hierarchy, denoted by I(C), is equivalent to that of the root category, as it recursively

includes the influence of all categories in the hierarchy. As an example, Eq. 3.6 shows

the influence of the category hierarchy in Figure 3.1, given by,

I(C) = I(C5)

=g5Dis(C5) + s5(I(C4) + I(C3))

=g5Dis(C5) + s5(g4Dis(C4) + s4(I(C1) + I(C2)) +Dis(C3))

=g5Dis(C5) + s5(g4Dis(C4) + s4Dis(C1) +Dis(C3)).

(Eq. 3.6)

The deduction of recursive regularization of a category hierarchy is shown in Al-

gorithm 1, where the co-influence of categories is modeled as a regularization function

parameterized by the weights of each category in the hierarchy. These weights character-

ize the influence of distinct categories, and can be further learnt from historical user-item

interaction data, as we introduce in the next section.

Remark. By recursively weighting and combining category influence over a hierarchy

from the root category to the leaves, recursive regularization can model the influence of

an arbitrarily deep category hierarchy that can be either balanced or imbalanced.
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3.2 The ReMF Framework

In this section, we introduce the novel recommendation framework ReMF, that integrates

the recursive regularization into the MF model to exploit category hierarchy. Meanwhile,

we present the optimization method and complexity analysis for ReMF.

3.2.1 Integration of Recursive Regularization

By incorporating recursive regularization into MF, the ReMF framework is given by:

Definition 2 (The ReMF Framework)

min
U,V,

gp,sp∀Cp∈C

J =
1

2

∑
i,j

Oij(Rij−UiV
T
j )2+

α

2
I(C)+

λ

2
(‖U‖2

F +‖V‖2
F ) (Eq. 3.7)

where I(C) is the recursive regularization term to constrain the distance of item latent

factors by modeling the co-influence of categories in the hierarchy traversing from leaf to

root category; α is a regularization parameter that controls the importance of the recursive

regularization, i.e., I(C)

Thanks to recursive regularization, ReMF can model the co-influence of categories

in the hierarchy to learn item latent factors. It also characterizes the distinct influence

of each category, thus helping with the interpretation of the effect of each category in

the hierarchy on recommendation, illustrated as follows. Considering the example of

Figure 3.1, based on Eq. 3.2 and Eq. 3.6, the category hierarchy influence I(C) can be

rewritten as the following formula:

(g5 + s5g4 + s5s4)‖V1 −V2‖2
F + (g5 + s5g4)‖V1 −V3‖2

F + . . . , (Eq. 3.8)

where the strength of the regularization between v1, v2’s latent factors is (g5+s5g4+s5s4),

and that of v1, v3’s latent factors is (g5+s5g4). In fact, the strength of regularization is the

combination of influence of different categories. For simplicity, we assume g = s = 0.5 for
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each internal category. Therefore, the strength of regularization between v1, v2’s latent

factors is (g5 + s5g4 + s5s4) = 1, from which we could see that the category C5 has an

influence of g5 = 0.5, while its children categories C4 and C1 have influence of s5g4 = 0.25

and s5s4 = 0.25, respectively. Then, for v1, v3, the strength of regularization between

their latent factors is (g5 + s5g4) = 0.75, where the categories C5, C4 have influence of

g5 = 0.5, s5g4 = 0.25, respectively. The distinct influence of categories on learning item

latent factors can therefore be characterized by certain functions of the weights (g, s).

To formally derive category influence on an arbitrary pair of users, we define the

regularization coefficient Cjk to represent the strength of regularization between vj and

vk, where a greater value of Cjk indicates a higher correlation between the two items.

Hence, I(C) can be reformulated as:

I(C) =
∑

vj ,vk∈I,j<k

Cjk‖Vj −Vk‖2
F , (Eq. 3.9)

We next introduce two theorems for deriving Cjk, which is the combination of the

influence by different categories on vj and vk.

Proposition 1 The regularization coefficient for any pair of items vj, vk (i.e., Cjk)

belong to the same leaf category is 1:

groot + sroot(gc1 + sc1(gc2 + sc2(...(gcl + scl)))) = 1,

where the list {Croot, Cc1 , Cc2 , . . . , Ccl} is the set of the common categories of vj and vk,

ordered in a sequence from the root category Croot to the leaf category Ccl.

Proof. This is straightforward to prove, due to the constraint g + s = 1. Considering

the example {v1, v2} in Figure 3.1, the sum of the relevant regularization terms, i.e.,

g5Dis(C5), s5g4Dis(C4) and s5s4Dis(C1), in Eq. 3.6 is:

(g5 + s5(g4 + s4))‖V1 −V2‖2
F

=(g5 + s5)‖V1 −V2‖2
F = ‖V1 −V2‖2

F .

43



Chapter 3. ReMF: Recommendation with Recursive Regularization

Proposition 2 For any pair of items vj, uk that do not belong to a common leaf category,

the regularization coefficient (i.e., Cjk) is:

groot + sroot(gc1 + sc1(gc2 + sc2(...(gcl)))),

where the list {Croot, Cc1 , Cc2 , . . . , Ccl} is the set of the common categories of vj and vk,

ordered from the root feature Croot to the deepest common category Ccl.

Proof. All possible categories that can influence the regularization coefficient of vj, vk are

their deepest common category, parents and ancestors of the deepest common category.

According to the above theorems, the value of regularization coefficient always falls

into the range of [0, 1], with 1 indicating the full regularization and 0 indicating no

regularization. As an example, Figure 3.1(b) shows the regularization coefficients of the

category hierarchy in Figure 3.1(a).

These regularization coefficients naturally connect ReMF to network based recommen-

dation methods, which consider pair-wise regularization on users. There are however two

essential differences: 1) network-based regularization coefficients are usually hard-coded,

while our regularization coefficients are modeled from the category hierarchy structure,

and expressed by the function of weights (g, s). And, 2) (g, s), which parametrizes the dis-

tinct category influence, is automatically learnt from the historical user-item interaction

data, as we will address later.

3.2.2 Optimization and Complexity Analysis

Model Learning. We adopt the SGD scheme [52, 75] to optimize our objective function.

The gradients of Ui,Vj are given by:

∂J
∂Ui

=−
∑
j

Oij(Rij −UiV
T
j )Vj + λUi,

∂J
∂Vj

=−
∑
i

Oij(Rij −UiV
T
j )Ui + λVj + α

∑
vj ,vk∈I,j<k

Cjk(Vj −Vk),
(Eq. 3.10)
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Algorithm 2: ReMF Model Learning

Input: rating matrix R , category hierarchy C, d, γ, λ, α, iter
1 Initialize U,V, gp, sp, and ∀Cp ∈ C;
2 for t = 1; t ≤ iter; t+ + do
3 foreach Ui ∈ U, Vj ∈ V do

4 U
(t)
i ← U

(t−1)
i − γ ∂J

∂Ui
;

5 V
(t)
j ← V

(t−1)
j − γ ∂J

∂Vj
;

6 foreach Internal category in the hierarchy do

7 g
(t)
p ← g

(t−1)
p − γ ∂J

∂gp
;

8 s
(t)
p ← s

(t−1)
p − γ ∂J

∂sp
;

9 Calculate J by Algorithm 1 and Definition 2;
10 if J has converged then
11 break;

In terms of (g, s), it can be predefined by domain experts who can fairly quantify

the influence of different categories. Instead, we provide an effective data-driven solution

that automatically learns (g, s) based on the historical user-item interaction data.

We only need to estimate (g, s) for internal categories in the hierarchy, since the leaf

categories do not have children. For an internal category Cp, the gradients of gp, sp are

equivalent to the multipliers of gp, sp in I(C). Thus, we have:

∂J
∂gp

=

{
Dis(Cp), if Cp is root,∏
∀a:Ca∈ancestors(Cp) saDis(Cp), otherwise;

∂J
∂sp

=

{ ∑
∀Cc∈children(Cp) I(Cc), if Cp is root,∏
∀a:Ca∈ancestors(Cp) sa(

∑
∀Cc∈children(Cp) I(Cc)), otherwise.

(Eq. 3.11)

According to the constraint gp + sp = 1, we can update gp (or sp) using the gradient and

the other by sp = 1 − gp (or gp = 1 − sp). The detailed parameter learning process is

illustrated in Algorithm 2.

Complexity Analysis. The computational time is mainly taken by evaluating the

objective function J and updating the related variables. The time to compute the J is

O(d|R| + dm2), where |R| is the number of non-zero observations in the rating matrix

R. For all gradients ∂J
∂Ui

, ∂J
∂Vj

, ∂J
∂gp
, ∂J
∂sp

, the computational time are O(d|R|), O(d|R| +
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dn2), O
(
d
∑layer−1

l=0
nl(nl−1)nl

2

)
and O(|sp|), respectively. Wherein nl denotes the average

number of items in each node at layer l, nl denotes the number of nodes at layer l, and |sp|

(� |R|) denotes the number of internal nodes. Particularly, we leverage sp = (1− gp) to

update sp. The overall computational complexity of Algorithm 1 is (#iteration ∗ O(d|R|

+dq)), where q = max(
∑layer−1

l=0
nl(nl−1)nl

2
, n2). In real-world applications nl is typically

small (e.g., power-law distributed), thus making ReMF scalable to large data sets.

3.3 Empirical Evaluation

In this section, we conduct comprehensive experiments on multiple real-world datasets

to evaluate the performance of our proposed models by comparing with a number of

state-of-the-art algorithms.

3.3.1 Experimental Setup

Datasets. We collect data of Foursquare check-in’s performed over 3 weeks in 4 Euro-

pean capital cities (Amsterdam, London, Paris, Rome) and published on 2 social media

platforms (Twitter, Instagram). Table 3.2 shows the statistics about the 8 datasets.

We consider users’ residence city, country and continent as category information about

users1, as well as a root category residence location. We use the method described in [9]

to locate users’ residence locations. For conciseness, we only analyze the co-influence of

country and city. Overall we consider 121 countries and 2,873 cities. These datasets also

contain 3-level category hierarchies to describe the check-in locations. Note that, the

category hierarchies of these datasets are all balanced, which means all the users or items

are characterized by categories with the same number of levels. To further demonstrate

the generalizability of our ReMF, we also test on dataset from Amazon web store [68].

The details about Amazon dataset will be shown in the results and analysis part.

1As we mention in Section 3.1.2, our proposed method can be straightforwardly transferred to mod-
eling the influence by regularizing user latent factor. We therefore test the effectiveness of our model on
both user and item side.
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Table 3.2: Statistics of the datasets for ReMF

Amsterdam Rome Paris London

In
st

ag
ra

m #Users 4,318 4,081 11,345 12,719
#POIs 5,768 7,878 14,849 12,892
#Check-in’s 28,142 26,714 80,553 66,092
Sparsity 99.89% 99.92% 99.95% 99.96%

T
w

it
te

r #Users 1,599 1,369 6,521 9,305
#POIs 3,816 4,876 16,046 14,117
#Check-in’s 8,670 8,727 43,541 48,852
Sparsity 99.86% 99.87% 99.96% 99.96%

Evaluation. We adopt the standard 5-fold cross validation, and the following 3 metrics

for evaluation: MAE and RMSE to measure the error of predicted ratings; and Area

Under the ROC Curve (AUC) [35, 131] to measure the quality of predicted ranking of

items (ranked according to the predicted ratings). The smaller MAE and RMSE, and

the larger AUC, the better the recommendation performance.

Comparison Methods. The following methods are compared: (1) MF [75]: matrix

factorization method; (2) CMF [94]: collective matrix factorization; (3) TaxMF [51]:

taxonomy-based matrix factorization; (4) SoReg [65]: network-based recommendation

method incorporating social relations; (5) FM [82]: factorization machine; (6) HieFM:

factorization machine with category hierarchy information.

HieFM is a variation of FM that considers each category path in the hierarchy (from

root to leaf nodes) as an additional category in the design vectors of FM. Similar to FM,

CMF and TaxMF can also incorporate path-based categories. As FM outperforms CMF

and TaxMF [100], we limit our comparison with previous methods exploiting path-based

categories to HieFM.

Parameter Settings. We empirically set optimal parameters for each method using

a grid search in {0.0001, 0.001, 0.01, 0.05} for both λ (including 1-way and 2-way regu-

larization of FM) and the learning rate γ; α = 0.5 for CMF; β = 0.01 for SoReg. For
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fair comparison, we set d = 10 (the dimension of latent factors) for all the methods, and

adopt all categories (i.e., continent, country, and city) as input for TaxMF, CMF, FM

and HieFM. HieFM has path-based categories as additional hierarchy information. In

SoReg, we model the social relations among users by counting the number of common

categories, under the assumption that the commonality establishes implicit social rela-

tionships based on the geo-social correlation phenomenon [24]. Without loss of generality,

we adopt f(x) = 1/(1 + x−1) to map each #check-in Rij ∈ R in POI datasets into the

interval (0, 1) [23].

3.3.2 Results and Analysis

We analyze the influence of recursive regularization on ReMF performance, and discuss

how the weighting parameters g, s can help the interpretation of recommendation results.

The Impact of α. In ReMF, α controls the strength of recursive regularization of cate-

gory hierarchy. We apply a grid search in {10−5, 10−4, 10−3, 10−2, 10−1, 100} to investigate

the impact of α on recommendation performance. Results are shown in Figure 3.2. As

α varies from small to large, the performance first increases then decreases, with the

maximum reached at the range [10−2, 10−1]. The performance variations across differ-

ent datasets suggest the need for data set-specific settings; the similarity in performance

variation across α values shows the robustness of ReMF.

Table 3.3: Values of g for continents and top/bottom countries

Continents Top countries Bottom countries

Name g Name g Name g

Europe 0.1837 Portugal 0.6915 Chile 0.0211
America 0.1656 Monaco 0.5813 Thailand 0.0175
Asia 0.1534 Serbia 0.5130 Spain 0.0100
Africa 0.0375 Poland 0.4453 Indonesia 0.0081
Oceania 0.0139 Hungary 0.4141 Belgium 0.0064
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Figure 3.2: The effects of α on the performance of ReMF

Interpretation from (g, s). We examine (g, s) for the internal categories, i.e., continents

and countries, learnt from data. Table 3.3 shows the list of continents and countries

ranked according to their g values. Recall that for a continent (country), g > s means

that the continent (country) has a stronger effect on user preferences than and its children

categories, i.e., countries (cities).

In general the continents have relatively smaller effects on user preferences (with g

values all below 0.2), suggesting that continents have weaker effects than their countries.

In addition, we observe a big variance in the g values of countries, indicating that different

countries have different influence on user preferences. The high variance of countries’ g

values proves the necessity of parameterizing g, s in recommendation. We then compare

the influence of countries and cities on their residents’ preferences. As cities of a country

and the country comprise a category unit, the influence of a city can be measured by

s = 1− g, where g is the influence of the country. We can see from Table 3.3 that most
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countries have g < 0.5 (only 3 countries have g > 0.5), i.e., s > 0.5, indicating that the

influence of cities in most countries have more influence on their residents’ preferences

than the countries themselves.

Rating Performance. Two views are created for each dataset during the test process:

1) the “All” view includes all users; while 2) the “Cold start” view indicates that only

users with ≤ 5 ratings are involved in the test set.

Table 3.4 compares the performance of the considered recommendation methods for

all datasets. Unsurprisingly, the basic matrix factorization model is consistently out-

performed by category-aware recommendation methods; this shows that, in the context

of the targeted evaluation scenario, the usage of category information about users pos-

itively affects recommendation accuracy. In addition, FM outperforms CMF, TaxMF

and SoReg. This could be explained by FM considering item-category interactions, in

addition to user-item and user-category interactions. HieMF in general outperforms FM,

suggesting that information about category relations (paths) can help predict user pref-

erences. ReMF consistently outperforms the methods in the comparison pool, with an

average performance gain (w.r.t. the second best method) of 7.20% (MAE) and 15.07%

(RMSE). Paired t-test shows that the improvements of ReMF on all datasets are signifi-

cant (p-value < 0.01). Such big improvements clearly show the effectiveness of recursive

regularization, and the advantage derived from the full inclusion of information about

category relations.

Table 3.4 (data view “Cold start”) reports the experimental results of all the compar-

isons with cold start users. As in the previous case, ReMF achieves the best performance

compared with other methods, and significantly outperforms the second best methods

in all datasets (p-value < 0.01) by 12.02% and 17.53% w.r.t. MAE and RMSE re-

spectively. The relatively larger improvements on the testing view “Cold start” than on
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Figure 3.3: AUC of ReMF and the comparative methods

“All” indicates that ReMF has higher capability in coping with the cold start problem

compared to the state-of-the-art methods.

Ranking Performance. We further evaluate the ranking quality of items recommended

by ReMF and other methods in the comparison pool. Results are shown in Figures 3.3(a-

b) for datasets from Instagram and Twitter, respectively. ReMF significantly outperforms

the second best method (p-value < 0.01) on all datasets by 9.86% on average, reaching

an averaged AUC of 0.8175 in Instagram and 0.7568 in Twitter. These observations

show that the influence of category hierarchy modeled by recursive regularization can

effectively complement user-item interaction data in ranking prediction.

Generalizability. We test the performance of ReMF on another task, i.e., product

recommendation, using the data from Amazon web store [68]. Different from the POI

datasets, here we consider the category hierarchy of items. We focus on the product

category of “Clothing, Shoes & Jewelry”, having maximal depth of 7, and an unbalanced

category hierarchy. An example path in the hierarchy from the root category to the leaf

is “Clothing, Shoes & Jewelry → Men → Accessories → Wallets”. We uniformly sample

the raw data set to include 100, 810 ratings performed by 34, 817 users to 45, 716 items.

Table 3.5 compares the performance of ReMF and the other methods in the comparison

pool, measured by RMSE, which is more indicative of large errors than MAE. As in
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Figure 3.4: Runtime (seconds/iteration) of ReMF on Instagram and Twitter.

the previous setting, ReMF (in boldfaced) significantly outperforms (p-value < 0.01) the

second best method (marked with ‘*’), i.e., HieFM, by 5.46% on the testing view of

“All” and 7.42% on “Cold start”. These results show that ReMF can be effective in

multiple recommendation tasks, and with different topologies of category hierarchy.

Table 3.5: Performance of ReMF on Amazon Dataset

CMF TaxMF SoReg FM HieFM ReMF

All 1.6356 1.3921 1.3912 1.3899 1.3847* 1.3091
Cold start 1.6386 1.4057 1.4054 1.4074 1.4033* 1.3242

Complexity Validation. To verify the conclusion made in Complexity Analysis part

that the overall computational time is linear with respect to the number of observations

in the rating matrix (|R|), we test the runtime of ReMF model and the results are shown

in Figure 3.4. It depicts the relationships between the runtime and the size of training

data. We randomly select x% as training data and the rest (1− x%) as test data where

x is scaled from 10 to 90 with step 10. We observe that with the increase of the training

data, the runtime linearly goes up. Note that we only show the results of London and

Rome, which possess the largest and smallest data among the four capital cities. Similar

observations can be noted for all the other cities. In conclusion, the ReMF model is

efficient to scale to very large data sets.
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3.4 Summary

Category hierarchies are a common way to capture relations between categories. Yet, the

value of this additional information is not fully exploited by state-of-the-art category-

aware recommendation methods. This chapter proposes a novel regularization method

named recursive regularization for modeling the co-influence of categories in the hierarchy

on user-item interactions. Based on this, a new recommendation framework ReMF is

proposed to learn hierarchical category influence from historical user-item interaction

data. Experimental validation on multiple real-word datasets shows that ReMF can

largely outperform state-of-the-art methods, proving the value residing in the exploitation

of category hierarchy for better learning user and item latent factors.
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HieVH: Leveraging both Vertical
and Horizontal Dimensions of CH

In Chapter 3, we propose ReMF that integrates recursive regularization into matrix

factorization to enhance recommendation performance. It mainly focuses on investigating

the influence of vertically affiliated categories (i.e., child-parent) in the CH on user-item

interactions. The relations of horizontally organized categories (i.e., siblings and cousins)

in the hierarchy, however, have only been little investigated. We show in real-world

datasets that category relations in horizontal dimension of CH can help explain and

further model user-item interactions.

Hence, this chapter contributes a unified recommendation framework HieVH [101]

that seamlessly exploits both vertical and horizontal dimensions of CH, to boost rec-

ommendation accuracy. To model the vertial dimension, HieVH adapts latent factors

of items by adding weighted aggregation of their affiliated categories’ latent factors, to

better model item latent factors. The weights are automatically learnt from data. Hori-

zontally, category relations are incorporated as regularizers at each layer of the hierarchy,

to better model category latent factors. In so doing, through the adaption of item latent

factors with category latent vectors in vertical dimension, category relations in horizontal

dimension can be inherited by items. Extensive validation demonstrates the superiority
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of HieVH against the state-of-the-art. An additional benefit of HieVH is to provide better

interpretations of the generated recommendations.

The rest of this chapter is organized as follows. In Section 4.1, we first introduce our

metrics for measuring category influence in vertical dimension, and category relations in

horizontal dimension of CH. We then apply the proposed metrics to analyze the Amazon

Web store data to illustrate the presence of category influence and relations in real-world

datasets; Section 4.2 elaborates details of the proposed HieVH framework to enhance the

recommendation performance, followed by the experimental results in Section 4.3 and

conclusion in Section 4.4.

4.1 Measuring Category Influence and Relations

This section first introduces our metrics for measuring category influence in vertical

dimension, and category relations in horizontal dimension of CH. To demonstrate the

need for richer CH characterization of user-item interactions for better recommendation,

we then apply the proposed metrics to analyze Amazon Web store data.

4.1.1 The Proposed Metrics

Let U , I denote the set of users and items, and C denote the set of categories organized

in a hierarchy. rui is the rating given by user u ∈ U to item i ∈ I. Each item i ∈ I is

affiliated with a subset of categories C(i) = {f 1
i , f

2
i , . . . , f

L
i }, organized as a path from

leaf category f 1
i to root category fL

i . Table 4.1 summarizes all the notations utilized in

this chapter. Let P (ei) denote the probability of the event that an item i is rated by a

user, defined as,

P (ei) =
|{u|u ∈ U , rui 6= 0}|

|U|
(Eq. 4.1)

Based on this, we use item co-occurrence IC to measure the closeness of two items.
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Table 4.1: Mathematical Notations for HieVH

Notation Description

U , I, C user, item and category set

C(i) = {f 1
i , · · · , fL

i } category set for item i in the CH

P (ei) the probability of an item i rated by a user

IC(i, j) item co-occurrence
−→
CI(f l) the vertical influence of category f l on items

CR(f, g) category relation in horizontal dimension

oui indicator function

θu, θi, θf user, item and category latent factors

rui rating given by user u to item i

Φ(·) vertical item latent factor adaptive function

Ψ(·) horizontal category regularization function

ϑC(i) influence of categories in C(i) on item i

α importance of horizontal category influence

Ω(Θ) regularization term to avoid over-fitting

J objective function of HieVH framework

σij, σfg item, category relations

Definition 3 (Item Co-occurrence)

IC(i, j) =
P (ei ∩ ej)

P (ei)× P (ej)
(Eq. 4.2)

where P (ei ∩ ej) is the joint probability that both items i and j are rated by a user.

The IC measure can be used to define both category influence in vertical dimension,

and category relations in horizontal dimension of the hierarchy, as illustrated below.

Definition 4 (Category Influence of Vertical Dimension) Given the items i1, i2, . . .

characterized by a same subset of category path C(i1) = C(i2) = . . . = {f 1, . . . , fL}, the

influence of an arbitrary category f l (1 ≤ l ≤ L) in the path on these items is defined as

the following vector,

−→
CI(f l) =

1

|f l| − 1

[ ∑
j∈f l,i1 6=j

IC(i1, j),
∑

j∈f l,i2 6=j

IC(i2, j), . . .
]

(Eq. 4.3)
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where each element in the vector is the average IC between the target item and all the

other items affiliated to the category. Here we assume that there are at least two items

are characterized by category f l. Therefore, |f l| − 1 > 0 always happens. This definition

allows us to test the difference among the influence of categories in the same path.

We then define category relations in horizontal dimension, based on item relationships

formalized as follows.

Definition 5 (Item Relationships) Items i, j are alternative if P (ei|ej)< P (ei) and

P (ej|ei)<P (ej); they are complementary if P (ei|ej)>P (ei) and P (ej|ei)>P (ej); Items

i, j are independent if P (ei|ej)=P (ei) and P (ej|ei)=P (ej);

Two items i and j are therefore alternative, if the probability of i being rated given j

is rated (e.g., P (ei|ej)), is lower than that without knowing whether j is rated or not

(e.g., P (ei)). Contrarily, they are complementary if the former is larger. Besides, they

are independent if the former equals to the latter.

We now turn to the quantification of item relationships, which will be used later for

measuring category relations. It turns out that IC can be a proper metric for measuring

item relationships, according to the following proposition.

Proposition 3 (Item Relationships Measured by IC)

Items i and j are alternative ⇐⇒ IC < 1
Items i and j are independent ⇐⇒ IC = 1
Items i and j are complementary ⇐⇒ IC > 1

(Eq. 4.4)

A Smaller value of IC (< 1) indicates a stronger alternative relationship between items

i and j; vice versa, a larger value of IC (> 1) indicates a stronger complementary rela-

tionship between items i and j.

Proof. Using the relationship between joint and conditional probability, P (ei ∩ ej) =

P (ej|ei)×P (ei), we have

IC(i, j)=
P (ei ∩ ej)

P (ei)× P (ej)
=
P (ej|ei)× P (ei)

P (ei)× P (ej)
=
P (ej|ei)
P (ej)

(Eq. 4.5)
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Similarly, with P (ei ∩ ej)=P (ei|ej)×P (ej), we have IC(i, j)=
P (ei|ej)

P (ei)
. Thus, we can see

that if IC(i, j)< 1, then P (ej|ei)<P (ej) and P (ei|ej)<P (ei), vise versa, suggesting an

alternative relationship between items i, j is equivalent to IC(i, j) < 1. A smaller value

of IC would indicate a larger gap between P (ej|ei) and P (ej), P (ei|ej) and P (ei), i.e.,

a stronger alternative relationship; the opposite also holds, i.e., a stronger alternative

relationship indicates a smaller value of IC. If IC(i, j) > 1, then P (ej|ei) > P (ej) and

P (ei|ej)>P (ei), vice versa, suggesting a complementary relationship between items i, j

is equivalent to IC(i, j) > 1. A larger IC indicates a stronger complementary relationship;

the opposite also holds. Similarly, if IC(i, j) = 1, then P (ej|ei) = P (ej) and P (ei|ej) =

P (ei), vice versa, hence items i, j are independent and IC(i, j)=1 are equivalent.

The independence between two items provides no additional characterization of user

preferences, thus it is neither beneficial for recommendation. With the above metric

for measuring item relationships, we now propose the metric for category relations in

horizontal dimension.

Definition 6 (Category Relations in Horizontal Dimension) The relation of two

categories f and g is given by the following formula,

CR(f, g) =
1

|f | × |g|
∑

i∈f

∑
j∈g

IC(i, j) (Eq. 4.6)

CR is defined as the average IC between all pairs of items, where the two items in each

pair are characterized respectively by the two categories. Similar to IC, CR(f, g) < 1,

CR(f, g) > 1,CR(f, g) = 1 indicate that categories f and g are alternative, complemen-

tary and independent, respectively.

4.1.2 Analysis in Real-world Data

We now show the presence of category influence and relations in the Amazon Web store

data: Clothing, Shoes & Jewelry. The details of the dataset are deferred to the Experi-
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mental Results section. For demonstration purpose, we only show the results of the top-3

layers of the hierarchy.

The category hierarchy contains 116 categories at Layer 1, thus having 116 paths in

vertical dimension. Comparing the influence of categories in the same path, we find that

74.33% of category influence at Layer 1 is significantly larger than that at Layer 2, and

that 72.57% of the influence at Layer 2 is significantly larger than that at Layer 3, with

paired t-test and p-value < 0.01.

The root layer (Layer 3) contains two categories, Women’s Clothing and Men’s Cloth-

ing. It can be observed from Figure 4.1 (log-scaled, i.e., x = log(CR)) at 3 layers of the

hierarchy.) that the two categories have an alternative relation, indicating that women’s

and men’s clothing are generally not purchased together. For Layer 2, we observe that

the category relations are evenly distributed on the side log(CR) < 0 and log(CR) > 0,

indicating that both alternative and complementary category relations exist at this layer.

An example of complementary categories is Women’s Watches, Men’s Watches, suggest-

ing that women’s and men’s watches are usually purchased together, e.g., for couples,

despite of the fact that women’s clothing and men’s clothing are alternative. When look-

ing at category relations at Layer 1, we can see that the relations among most categories

are complementary, e.g., women’s active clothing and women’s athletic shoes. Overall,

as a general trend, more complementary relations can be observed in lower layers than

upper layers, suggesting that customers tend to buy items characterized differently by

fine-grained categories to match each other.

4.2 The HieVH Framework

This section describes the HieVH framework – that seamlessly exploits both vertical and

horizontal dimensions of CH to enhance recommendation performance.
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Figure 4.1: Distribution of category relations

The Basic Model. Our method is built on the latent factor model (LFM), where each

user and item in the high dimensional user-item interaction space are mapped into a low

dimensional space. We generalize the basic LFM to seamlessly integrate both vertical

and horizontal dimensions of CH by minimizing the following equation:

J =

cost function︷ ︸︸ ︷∑
oui 6=0

C
(
rui, < θu, θi >

)
+

regularizers︷ ︸︸ ︷
α
∑
f,g∈C

Ψ(θf , θg) + Ω(Θ) (Eq. 4.7)

where oui = 1 if user u rates item i, otherwise 0; θu, θi, θf , θg ∈ Rd are the latent factors

of user u, item i and categories f and g, respectively; d is the dimension of latent factors;

C(·) is a convex cost function (e.g., quadratic function) measuring the difference between

the real rating rui and the predicted rating, i.e., the inner product of θu and θi; and

θi = Φ(θi, θf ) is the adaptive item latent factor considering the influence of categories in

vertical dimension on item latent factors through function Φ; Ψ is the regularization func-

tion to constrain the difference between θf and θg based on the relations among categories

in horizontal dimension; α controls the importance of Ψ; Ω(Θ) with Θ = {λ, θu, θi, θf , θg}

are regularizers to avoid over-fitting; λ is the regularization hyperparameter. The main

challenge is how to effectively formulate the functions Φ,Ψ by integrating the influence

and relations of categories in the two dimensions of CH.

4.2.1 Modeling Vertical Dimension

Categories are vertically affiliated in the hierarchy. Based on the results shown in sub-

section 4.1.2, we observe that an item i is characterized by all the affiliated categories
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C(i) = {f 1
i , f

2
i , . . . , f

L
i }, organized as a path in the hierarchy with different degrees.

Hence, we formulate the function Φ(θi, θf ) to adapt the latent factor of item i, i.e., θi,

by adding to it the latent factors of its affiliated categories, i.e., C(i) in the hierarchy,

θi =Φ(θi, θf , ϑf )=θi +
[
ϑf1 , ϑf2 , · · · , ϑfL

]
−θf1−
−θf2−
· · ·
−θfL−


L×d

(Eq. 4.8)

where ϑC(i) = [ϑf1 , ϑf2 , . . . , ϑfL ] is the parameter vector, indicating the different influence

of categories in C(i) on item i. It can be automatically learnt by our model. θf l (1 ≤ l ≤

L) is the latent vector of category f l ∈ C(i).

In this equation, any items, e.g., i and j, that belong to the same category set, i.e.,

C(i) = C(j), share the same parameter vector, i.e., ϑC(i) = ϑC(j) = [ϑf1 , ϑf2 , . . . , ϑfL ].

That is to say, the categories organized in a same path influence all items belonging to

the leaf category in that path. In this way, we reduce the number of parameters and avoid

over-fitting. The number of parameter vectors is the total number of the unduplicated

category paths in CH, which is equal to the size of leaf category set. Note that, in the

adaptive function Φ, a good estimation of category latent factors is essential to accurately

adapt item latent factors, which can be facilitated by considering horizontal dimension

of CH, as given below.

4.2.2 Modeling Horizontal Dimension

From the perspective of horizontal dimension, categories are organized as siblings or

cousins at the same layer of the hierarchy. Data analysis on real-world datasets shows

the presence of two types of category relations, i.e., alternative and complementary, which

are highly useful to better model category latent factors.

Hence, we incorporate such kind of category relations by assuming that in each Layer

l (1 ≤ l ≤ L) of the hierarchy: if two categories are alternative, then the distance of
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their latent factors should be large; if complementary, the distance of their latent factors

should be small. Based on the above assumption, we devise the following regularizer to

better model category latent factors,

Ψ(θf , θg) =
∑L

l=1

∑
f,g∈Cl,f<g

σfg‖θf − θg‖2
F (Eq. 4.9)

where Cl is the category set at Layer l of the hierarchy; σfg = log(CR(f, g)) with σfg <

0, σfg > 0, σfg = 0 indicating categories f and g are alternative, complementary and

independent, respectively. Through adaptive function Φ adding latent vectors of affiliated

categories to their items’ latent factors, category relations in horizontal dimension are

inherited by items. Consequently, the better estimated category latent factors can more

accurately adapt item latent factors.

Similarly, we also incorporate item relationships to help better model item latent

factors by assuming that if two items are alternative, the distance of their latent factors

should be large; if complementary, it should be small. Based on this, we design the

following regularizer,

Ψ(θf , θg; θi, θj) = Ψ(θf , θg) +
∑

i,j∈I,i<j
σij‖θi − θj‖2

F

where σij = log(IC(i, j)) with σij < 0, σij > 0, σij = 0 indicating items i and j are

alternative, complementary and independent. Therefore Ψ(θf , θg; θi, θj) combines the

regularizations of both horizontal category relations and item relationships, aiming at

restricting the distance of both category latent factors and item latent factors.

Note that σfg, σij seamlessly accommodate our assumptions illustrated below: if two

categories f, g are alternative, then we have CR < 1, thus σfg < 0. In this case, minimiz-

ing Ψ leads to large distance between θf and θg; if f, g are complementary, then we have

CR > 1, thus σfg > 0. In this case, minimizing Ψ leads to small distance between θf

and θg; if f, g are independent, then CR = 1, thus σfg = 0. In this case, the independent

category relations are not considered in Ψ. σij holds similar properties as σfg.
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Once the category and item relationships are incorporated into the objective function

J , we can more accurately model category and item latent factors in function Φ, thus

can ultimately better model user-item interactions.

Remark. HieVH seamlessly integrates the modeling of both vertical and horizontal

dimensions of CH. Though in this chapter we focus on item CH, HieVH can as well

accommodate user CH. It is noteworthy to remark how HieVH is able to handle arbitrarily

imbalanced CH, thus making its application suitable to a wide variety of application

scenarios. Specifically, it first determines the depth of a category as the number of layers

from the root category to this category in a top-down fashion. Then, the categories that

have the same depth are on the same layer.

4.2.3 Optimization and Complexity Analysis

Model Learning. We adopt the widely utilized stochastic gradient descent (SGD)

method to optimize HieVH. The update rules of all the variables are given by Eq. 4.10.

The optimization process is demonstrated in Algorithm 3, which is mainly composed of

parameter update (line 3-12).

∇J (θu) =
∑

i∈I
oui
(
< θu, θi > −rui

)
θi + λθu

∇J (θi) =
∑
u∈U

oui
(
< θu, θi > −rui

)
θu + λθi + α

∑
i,j∈I,i<j

σij(θi − θj)

∀f ∈ Cl, l = {1, 2, · · · , L},

∇J (θf ) =
∑

u∈U

∑
i∈I,f∈C(i)

ϑfoui
(
< θu, θi > −rui

)
θu

+ λθf + α
∑

f,g∈Cl,f<g
σfg(θf − θg)

∇J (ϑf ) =
∑
u∈U

∑
i∈I,f∈C(i)

oui
(
< θu, θi > −rui

)
< θu, θf > +λϑf

(Eq. 4.10)

Complexity Analysis. The computational time is mainly taken by evaluating the

objective function J and updating the relevant variables. The time to compute J is
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Algorithm 3: HieVH Optimization Process
Input: rating matrix R, category hierarchy C, d, α, λ, γ, Iter

1 Initialize θ, ϑ with small values;
2 L← the highest layer of C;
// Parameter update for J

3 for t = 1; t ≤ Iter; t+ + do
4 foreach u ∈ U , i ∈ I do

5 θ
(t)
u ← θ

(t−1)
u − γ∇J (θu) ;

6 θ
(t)
i ← θ

(t−1)
i − γ∇J (θi) ;

7 for l = 1; l ≤ L; l + + do
8 foreach f ∈ {Cl ∩ C(i)} do
9 θ

(t)
f ← θ

(t−1)
f − γ∇J (θf ) ;

10 ϑ
(t)
f ← ϑ

(t−1)
f − γ∇J (ϑf ) ;

11 if J has converged then
12 break;

O(d|R| + dn2), where |R| is the number of non-zero observations in the rating matrix

R, and n is the number of items. For the gradients ∇J (θu),∇J (θi),∇J (θf ),∇J (ϑf ),

the computational time are O(d|R|), O
(
d|R|+ dn(n−1)

2

)
, O
(
d|C||R|+ d

∑L
l=1

|C|(|C|−1)
2

)
,

O(L|C1||R|), respectively. Wherein |C| is the total number of categories in the hierarchy;

|R| is the average number of ratings under each category; |C| is the average number of

categories at each layer of the hierarchy. Generally due to L < |C| < |C1| < |C| � n and

|R| < |R|, the overall computational complexity of Algorithm 3 is (Iter×O(d|R|+dn2)).

In summary, our proposed framework is scalable to large datasets.

4.3 Experimental Results

In this section, we conduct comprehensive experiments on multiple real-world datasets

to evaluate the performance of our proposed models by comparing with a number of

state-of-the-art algorithms.
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Table 4.2: Descriptive statistics of the datasets for HieVH

Data #users #items #ratings #features #layers

Clothing 36,000 42,201 60,141 2,764 7
Electronics 43,234 38,766 77,962 1,292 6
CDs & Vinyl 33,868 36,320 71,872 1,293 6
Home & Kitchen 44,519 37,445 73,820 2,002 5

4.3.1 Experimental Setup

Datasets. To validate the effectiveness of the proposed HieVH, we use the Amazon Web

store dataset [68]. This dataset has recently been applied for evaluating recommendation

methods incorporating CH [33, 117]. Similar to these works, we consider the Clothing

Shoes & Jewelry dataset; to evaluate the generalizability of HieVH, we further consider

three other datasets in different domains, including Electronics, CDs & Vinyl, and Home

& Kitchen. The CHs of all the datasets are imbalanced. Note that we do not use the

datasets utilized in Chapter 3, i.e., Instagram and Twitter, as the CH contained in these

two datasets is balanced. While we intent to demonstrate the ability of HieVH to model

the unbalanced CH, we thus select Amazon web store dataset directly. We uniformly

sample the datasets to balance their sizes for cross-dataset comparison. Table 4.2 reports

the statistics of the datasets.

Comparison Methods. We compare with six state-of-the-art algorithms, 1) MF [75]:

matrix factorization model; 2) CMF [94]: collective matrix factorization; 3) FM [82]:

factorization machine; 4) TaxMF [16, 51]: taxonomy hierarchy based matrix factoriza-

tion; 5) Sherlock [33]: visually-aware recommendation model with the incorporation of

category hierarchy; 6) ReMF ([117] in Chapter 3): our recursive regularization based

matrix factorization. Methods 2-3 only utilize categories in CH without considering the

structure. Methods 4-6 are all based on CH. Besides, three variants of our proposed

framework are compared. A) HieV: only considers vertical category affiliatedTo influ-

ence of CH; B) HieVC: exploits vertical category influence and horizontal complementary
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category relation of CH; C) HieVH: integrates both vertical category influence and hori-

zontal complementary & alternative category relations of CH.

Evaluation. Standard 5-fold cross validation is adopted to evaluate all the methods.

The Area Under the ROC Curve (AUC) is used as the evaluation metric. Larger AUC

indicates better recommendation performance. Note that we focus on investigating the

ranking results of our proposed method, instead of the rating prediction results. There-

fore, we do not adopt mean absolute error (MAE) and root mean square error (RMSE)

as evaluation metrics, which are typically used to measure the rating prediction results.

Parameter Settings. Optimal parameter settings have been empirically estimated. We

set d = 10 and apply a grid search in {0.001, 0.01, 0.1} for γ, λ and 1/2-way regularization

of FM; α = 0.5, 0.01 for CMF and ReMF, respectively; for Sherlock, we use the same

settings as suggested in [33].

4.3.2 Results and Analysis

Impact of α. In HieVH, α controls the importance of category relations in the horizontal

dimension of FH. We apply grid search in {10−4, 10−3, 10−2, 10−1, 100} to investigate the

impact of α on recommendation performance. Results are shown in Figure 4.2. As

α varies from small to large, the performance first increases then decreases, with the

maximum reached at the range [10−3, 10−2]. The performance variations across datasets

suggest the need for dataset-specific settings; the similarity in performance variation

across α values demonstrates the robustness of HieVH.

Comparative Results. Table 4.3 summarizes the performance of all comparison meth-

ods across all datasets, where two views are created for each dataset: ‘All Users’ indicates

all users are considered in the test data; while ‘Cold Start’ indicates only users with ≤ 5

ratings are involved in the test data. Several interesting observations can be noted.
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Figure 4.2: The impact of parameter α on HieVH

Compared with all other methods incorporating CH, MF considering no auxiliary

information performs the worst, indicating the effectiveness of category-aware recom-

mendation. The methods originally designed for the flat category structure, including

CMF and FM, generally perform worse than the CH based methods (TaxMF, Sherlock

and ReMF). Since CH needs to be converted into a flat structure when applied into

CMF and FM, the result demonstrates that useful information is lost in the conver-

sion. FM outperforms CMF and even some CH based methods. This could be explained

by FM further considering user-category interactions, in addition to the user-item and

item-category interactions, as in CMF.

Among the three state-of-the-art CH based methods, Sherlock performs better than

TaxMF, but worse than ReMF. The reason behind is that TaxMF views the influence

of categories in different layers of CH identically, whereas Sherlock weights the influence

of categories in different layers differently. However, the weights are defined manually.

In contrast, ReMF automatically learns such influence by a parameterized regularization
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Table 4.4: Cp and Ap of the Clothing Hierarchy

Approaches
Layer 1 Layer 2

Cp Ap Cp Ap

ReMF 87.62% 12.38% 75.23% 24.76%
HieV 88.89% 11.11% 76.19% 23.89%
HieVC 92.62% 7.38% 84.62% 15.38%
HieVH 95.65% 4.35% 89.35% 10.65%

traversing from root to leaf categories.

We now compare the three variants of our proposed framework – HieV, HieVC and

HieVH, with our ReMF method in Chapter 3. By considering the vertical influence

of category affiliatedTo relation only, HieV performs slightly better than ReMF. The

possible explanation behind is that in HieV, item latent factors are directly adapted by the

affiliated category latent factors; whereas in ReMF, latent factors of items are regularized

by those of items that share common ancestor categories, which means items are indirectly

influenced by their affiliated categories. In other words, the adaption of item latent

factors in HieV is more straightforward than that in ReMF, thus more effective. HieVC

upgrades HieV by adding complementary category relation in the horizontal dimension;

HieVC is then promoted to HieVH by further incorporating alternative category relation.

In results, HieVC performs better than HieV, but worse than HieVH, implying that

both complementary and alternative category relations among horizontally organized

categories help improve recommendation accuracy.

Overall, when compared with all the other comparison methods across all the datasets,

HieVH achieves the best performance. The improvements w.r.t. all users and cold start

are 5.23%, 5.11% on average, respectively, which are statistically significant (Paired t-

test, p-value < 0.001). This implies that the recommendation performance can be further

enhanced by appropriately considering both vertical and horizontal dimensions of CH.

Interpretations by HieVH. We now analyze how the incorporation of category rela-

tions can better explain user-item interactions. To this end, we first derive for each user
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Figure 4.3: The example of recommendations generated by HieVH

the category relations between the rated items (i.e., training data), and the correctly

recommended items (i.e., intersection between recommended items and test data). We

calculate the percentage of complementarity Cp and alternativity Ap among these re-

lationships for each user. Good recommendations would result in a high percentage of

complementary items and low percentage of alternative items.

Table 4.4 shows the average Cp and Ap for all users in the test data at the top-3

layers of the Clothing hierarchy (Layer 3 excluded since only an alternative relation ex-

ists). We could see that from ReMF, HieV to HieVC, HieVH, with complementary and

alternative category relations considered, Cp increases, and Ap decreases in both layers.

Among all the methods, HieVH achieves the highest Cp, and lowest Ap, with significant

improvements over HieVC (Paired t-test, p-value < 0.01). This clearly indicates that

by incorporating the two types of category relations in the horizontal dimension of CH,

the recommendations better approximate real user preferences. Example users to whom

the recommendations benefit from category relations generated by HieVH are shown in

Figure 4.3. The recommendations to users u1 and u2 are better because of the comple-

mentarity among fashion clothing that u1 is more fond of, and among athletic clothing

that u2 instead is more fond of, and the alternativity between fashion and athletic cloth-

ing. Similarly, the recommendations for u3 are provided because of her interests in fashion

clothing and lingerie. For user u4, it is discovered that he likes clothing collocation, i.e.,

the complementarity of the items he purchased.

71



Chapter 4. HieVH: Leveraging both Vertical and Horizontal Dimensions of CH

4.4 Summary

Category hierarchy is well-known to enhance the recommendation performance, as em-

phasized in Chapter 3, where we propose a recursive regularization based matrix factor-

ization model, i.e., ReMF, to accommodate the influence of category affiliatedTo relation

in vertical dimension of CH, so as to improve the recommendation performance. While

ReMF ignores category relations in horizontal dimension of CH. In this chapter, we first

show the presence of vertical category influence and horizontal relations in real-world

datasets based on our proposed metrics. Then we design HieVH to seamlessly exploit

both the vertical and horizontal dimensions of category hierarchy for better recommen-

dation. Experimental results on four real-world datasets show that HieVH consistently

outperforms state-of-the-art counterparts. Furthermore, HieVH provides better interpre-

tations of the generated recommendations.
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Chapter 5

MRLR: Recommendation with
Multi-level Representation Learning

In Chapter 4, we propose HieVH that incorporates category relations in both vertical

and horizontal dimensions of CH into latent factor model to further boost recommen-

dation accuracy. In the recent years, representation learning (RL) has proven to be

more effective than latent factor model (LFM) in capturing local item relationships by

modeling item co-occurrence in individual user’s interaction record. However, we argue

that the value of RL for recommendation has not reached the full potential. Existing RL

based recommendation methods either neglect personalization or overlook the multi-level

organizations of items for fine-grained item relationships.

In this chapter, we therefore design a unified Bayesian framework MRLR [102] to

learn user and item embeddings from a multi-level item organization, thus capturing

item relationships in different levels of granularity. Specifically, we first extend the origi-

nal item embedding method to a more generic Bayesian framework, under which we then

fuse the likelihood function of user-specific pairwise item ranking. This unified frame-

work can thus benefit from user and item RL while reaching the goal of personalized

recommendation. To fully exploit RL, we further extend the framework to multi-level

RL by introducing item category as the intermediate level of item organization between

individual items and items rated by the same user, so as to capture fine-grained item
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Chapter 5. MRLR: Recommendation with Multi-level Representation Learning

relationships. Extensive validation on multiple real-world datasets demonstrates that

MRLR consistently outperforms state-of-the-art algorithms.

This chapter is organized as follows. In Section 5.1, we first formulate recommendation

as a personalized ranking problem, based on which the objective function is proposed. We

then propose the MRLR framework in Section 5.2. Specifically, we present the details

of modeling personalization and multi-level item organization step by step; later we

introduce the optimization method and complexity analysis for the proposed framework.

Section 5.3 describes the experimental results, followed by the conclusion in Section 5.4.

5.1 Problem Formulation and Objective Function

Suppose we have m users U = {u1, u2, . . . , um}, and n items I = {v1, v2, . . . , vn}. We

use the binary user feedback matrix R ∈ Rm×n. If the interaction (rating) from up to

vi is observed, indicating up prefers vi, then Rpi = 1; otherwise 0. I+
up

is the set of

items that user up prefers. Dr={(up, vi, vj)|up ∈ U , vi ∈ I+
up
, vj ∈ I\I+

up
} is the set of

user-specific ranking triples indicating up prefers vi to vj, where I\I+
up

denotes the set

of items that up has no interaction with. Dc={(up, vi, vk)|up ∈ U , vi, vk ∈ I+
up
} is the

set of item co-rated triples indicating up prefers both vi and vk. For each user, we aim

to provide a personalized ranking list of top-K items that she has not interacted with.

Table 5.1 summarizes all the notations utilized in this chapter.

More specifically, our goal is to design a unified multi-level RL framework (MRLR) to

learn user and item embeddings from both item co-rated relationships and user-specific

ranked lists of items, thus to benefit from user and item RL, as well as to reach the

goal of personalized recommendation. We define the objective function of MRLR using

a Bayesian framework, maximizing the following posterior probability,

P (Θ|D) ∝ P (D|Θ)P (Θ) ∝ P (Dc,Dr|Θ)P (Θ) (Eq. 5.1)
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Table 5.1: Mathematical Notations for MRLR

Notation Description

U , I, C user, item, category set

Rpi rating given by user up to item vi
I+
up

set of items that up prefers

Dr set of user-specific ranking triples

Dc set of item co-rated triples

up,vk, cl user, item and category latent factors

α1 importance of personalization

α2 importance of item co-rated relationships

α3 importance of category influence

λΘ regularization coefficient

Ω(Θ) regularization term to avoid over-fitting

J objective function of MRLR framework

where Θ is the set of parameters in MRLR, D is the observed data. It is proportional

to maximizing the likelihood of the observed triples given the embeddings, i.e., P (D|Θ).

We define the likelihood function as the joint probability of item co-rated triples and

user-specific ranking triples, i.e., P (Dc,Dr|Θ). Assuming the item co-rated triples and

user-specific ranking triples are conditionally independent, the joint probability is then

reformulated as follows:

P (Dc,Dr|Θ) =P (Dc|Θ)P (Dr|Θ)

=
∏

(up,vi,vk)∈Dc

P ((up, vi, vk)|Θ)
∏

(up,vi,vj)∈Dr

P ((up, vi, vj)|Θ)
(Eq. 5.2)

where P ((up, vi, vk)|Θ), P ((up, vi, vj)|Θ) denote the conditional probability of item co-

rated triples and user-specific ranking triples, respectively. Hence, the MRLR framework

seamlessly fuses the two components: (1) item co-rated triples for better user and item

embedding; (2) user-specific ranking triples for personalized ranking. Besides, through

multi-level RL, MRLR can fully exploit RL from a multi-level item organization, i.e.,

items in user-specific ranked list, items in a same category, and individual items, to

capture item relationships in different levels of granularity for better recommendation.
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5.2 The MRLR Framework

This section first presents the proposed multi-level RL framework (MRLR) to achieve

the goal of personalized recommendation. Then the optimization method and complexity

analysis of MRLR are elaborated in detail.

5.2.1 Modeling Personalized Recommendation

Modeling User and Item Embedding. For each user up and item vi ∈ I+
up

, the

Skip-gram method [70, 71] aims at predicting the probability of item vk ∈ I, (i 6= k) also

preferred by up, i.e., P (vk|vi), which is calculated by the softmax function:

P (vk|vi,Θ) =
exp(vT

i v′k)∑
vg∈I exp(v

T
i v′g)

(Eq. 5.3)

where vi,vk,vg are embeddings of items vi, vk, vg, respectively.

To allow for personalization, we model user up’s preference towards item vk by a

similar softmax function:

P (vk|up,Θ) =
exp(uT

p v′k)∑
vg∈I exp(u

T
p v′g)

(Eq. 5.4)

where up denotes the user embedding of up.

We now model the item co-rated triples P ((up, vi, vk)|Θ). It should properly accom-

modate both the item co-rated relationships (Eq. 5.3), and personalization (Eq. 5.4).

Instead of directly optimizing P ((up, vi, vk)|Θ), we optimize the conditional probabil-

ity P (vk|(up, vi),Θ), P (vi|(up, vk),Θ) and P (up|(vi, vk),Θ). Since we aim to recommend

items to given users, we do not need to model P (up|(vi, vk),Θ). We take P (vk|(up, vi)Θ)

for example. Inspired by document RL in NLP [55], the user and item embeddings up,vi

are summed as the new condition to predict the probability of vk rated by up, given by,

P (vk|(up, vi),Θ) =
exp(α1u

T
p v′k + α2v

T
i v′k)∑

vg∈I exp(α1uT
p v′g + α2vT

i v′g)
(Eq. 5.5)
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where α1 + α2 = 1.0; exp(α1u
T
p v′k + α2v

T
i v′k) aims to take into account both the person-

alized aspect by the term uT
p v′k, and item co-rated relationships by the term vT

i v′k. We

model P (vi|(up, vk),Θ) in a similar way.

Modeling Personalized Ranking. It has proven that recommendation is better mod-

eled as a personalized ranking problem than the rating prediction one [83, 111]. Ex-

isting RL methods, however, optimize towards predicting user preferences over individ-

ual items (i.e., rating prediction), instead of predicting user preferences over a list of

items (i.e., personalized ranking). We now proceed to model the user-specific rank-

ing triples P ((up, vi, vj)|Θ), to achieve the goal of personalized ranking. Similarly, we

optimize the conditional probability of P ((vj, vi)|up,Θ) and P (up|(vj, vi),Θ) instead of

P ((up, vi, vj)|Θ). As our goal is to recommend items, we only consider P ((vj, vi)|up,Θ),

which involves a user’s preference over a pair of items. Based on Eq. 5.4, we further

deduce a user’s preference on a pair of items. As the triple (up, vi, vj) indicates that up

prefers vi to vj, it means that for up, we should maximize the probability that vi is pre-

ferred by up but vj is not favored by up. We denote such probability by P ((¬vj, vi)|up,Θ),

which is defined as below:

P ((¬vj, vi)|up,Θ) =
exp(uT

p v′i − uT
p v′j)∑

vh,vg∈I exp(u
T
p v′h − uT

p v′g)
(Eq. 5.6)

where the term exp(uT
p v′i − uT

p v′j) denotes the preference difference of user up towards

item vi and item vj.

As we illustrate in Chapter 3 and 4, item category information has proven to be

effective to enhance recommendation performance, as items in a same category inherit

similar characteristics, and users may have close preference towards the associated items

in the same category. Analogically, item category can be also integrated into our proposed

approach to achieve a multi-level representation learning framework, thus to further boost

recommendation accuracy, as we will elaborate in the next subsection.
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5.2.2 Modeling Multi-level Item Organization

We further consider multi-level granularity of item organizations to capture fine-grained

item relationships. Specifically, we introduce item category as the intermediate level

between items in the same user-specific ranked list and individual items. The rationale

behind is that items in a same category generally share similar characteristics.

To integrate the influence of item category for better recommendation, we extend our

framework to multi-level RL. The item embedding is thus reformulated as,

vi = vi +
α3

|Cvi |
∑

cl∈Cvi
cl (Eq. 5.7)

where Cvi is the set of categories that vi belongs to; |Cvi | is the size of Cvi ; cl is the

embedding for category cl. By replacing the item embedding in Eq. 5.5 and Eq. 5.6,

the category RL can adapt item embedding, which is similar as what we do in the

vertical dimension of HieVH in Chapter 4, serving as the intermediate level RL. α3

controls the strength of the influence of category embeddings on item embeddings. MRLR

can now capture fine-grained relationships of items in local context (i.e., item co-rated

relationships), in the same category, and in user-specific ranked item list.

5.2.3 Optimization and Complexity Analysis

Model Learning. Optimizing our MRLR framework is proportional to minimizing the

negative log-likelihood function, given by,

min
Θ
J =−

∑
(up,vi,vk)∈Dc

logP ((up, vi, vk)|Θ)−

∑
(up,vi,vj)∈Dr

logP ((up, vi, vj)|Θ) + λΘΩ(Θ)
(Eq. 5.8)

where Ω(Θ) is the regularizer to prevent over-fitting, and λΘ is the regularization co-

efficient. To solve the optimization problem, we apply the stochastic gradient descent

(SGD) method to the objective function J .
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Approximation of softmax function. It is impractical to directly adopt the softmax

functions P (vk|(up, vi),Θ), P (vi|(up, vk),Θ) and P ((¬vj, vi)|up,Θ) to optimize our frame-

work, since the cost of computing the denominators of these functions is proportional to

the total number of items (n), which is considerably huge in real-world applications. To

accelerate the speed, we adopt negative sampling proposed in [71]. Take P (vk|(up, vi),Θ)

as an example, which can be approximated via negative sampling as follows:

P (vk|(up, vi),Θ) = σ(uT
p v′k + vT

i v′k)∏N

g=1
E(up,vi,vg)∼P (D−

c )σ(−(uT
p v′g + vT

i v′g))
(Eq. 5.9)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function; D−c = Dr is the opposite triple

set of Dc ; P (D−c ) is a function randomly sampling instances from D−c . N is the number

of negative instances to be drawn per positive instance. The idea behind negative sam-

pling is that we want to maximize the similarity between vk and (up, vi) and minimize

the similarity between a randomly sampled item vg and (up, vi). In this way, we can

approximately maximize P (vk|(up, vi),Θ).

Similarly, P (vi|(up, vk),Θ), P ((¬vj, vi)|up,Θ) are also approximated via negative sam-

pling. One issue we should deal with is that computing the numerators of the soft-

max function P ((¬vj, vi)|up,Θ) is also very expensive, as we have at least O(mn ∗

min(|I+
u1
|, · · · , |I+

um
|)) training triples in Dr, where |I+

um
| is the size of I+

um
. Following

Bayesian personalized ranking model (BPR) [83], we thus randomly sample user-specific

ranking triples instead of using all the triples. This is an optimal trade-off between ef-

ficiency and accuracy, and detailed discussion can be noted in [83]. The optimization

process is shown in Algorithm 4, which is mainly composed of two steps, i.e., negative

sampling (line 3-5), and parameter update (line 6-13).

Complexity Analysis. The computational time is mainly taken by evaluating the

objective function J and updating the related variables. The time to compute J is
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Algorithm 4: The optimization of MRLR

Input: R, C, λΘ, α, γ, d, iter
1 Initialize Θ = {u,v, c} with small values;
2 Randomly sample (up, vi, vj) for Dr;
// Negative sampling procedure

3 foreach (up, vi, vk) ∈ Dc, and (up, vi, vj) ∈ Dr do
4 Draw N negative instances from the distribution P (D−c ) ;
5 Draw N negative instances from the distribution P (D−r ) ;

// Parameter update

6 for t = 1; t ≤ iter; t+ + do
7 foreach (up, vi, vk) ∈ Dc, and (up, vi, vj) ∈ Dr do

8 u
(t)
p ← u

(t−1)
p − γ∇J (up) ;

9 v(t) ← v(t−1) − γ∇J (v),v={vi,vj,vk,vg,vh} ;
10 for l = 1; l ≤ |Cv|; l + + do

11 c
(t)
l ← c

(t−1)
l − γ∇J (cl) ;

12 if J has converged then
13 break;

O
(
d|Dc| + d|Dr|

)
, where d is the dimension of embeddings, and |Dc|, |Dr| are the sizes

of item co-rated triples and user-specific ranking triples, respectively. For all gradients

∇J (up),∇J (vi),∇J (cl), the computational time are O
(
d|Dc| + d|Dr|

)
, O

(
d|Dc| + d|Dr|

)
and O

(
d(|Dc| + |Dr|)|Cvi |

)
, respectively. |Cvi | is generally no larger than 10 in real-world

applications [117]. Hence, the overall computational complexity is (#iteration∗O(d|Dc|+

d|Dr|)). Specifically, |Dc| ≤ mq(q − 1)/2, where q = max (|I+
u1
|, · · · , |I+

um
|). In real-

world, q is typically small (e.g., power-law distribution). For Dr, as illustrated before,

we adopt the random sampling method to reduce its number. To sum up, MRLR is

scalable to large datasets.

5.3 Experimental Results

In this section, we conduct comprehensive experiments on multiple datasets to evaluate

the effectiveness of our proposed approach against other state-of-the-art counterparts.

We further provide an insightful analysis based on the experimental results.

80



Chapter 5. MRLR: Recommendation with Multi-level Representation Learning

5.3.1 Experimental Setup

Datasets. Following Chapter 3 and Chapter 4, we also adopt the Amazon Web store

data [68] in this chapter, which contains a series of datasets from various domains (e.g.,

clothing, electronics). To evaluate the effectiveness of MRLR, we choose four datasets, in-

cluding Clothing, Electronics, Sports, Home. Besides user-item interactions, the datasets

also include the categories that each item belongs to. We uniformly sample the datasets,

to balance their sizes in the same order of magnitude for cross-dataset comparison. Table

5.2 reports the statistics of the datasets.

Table 5.2: Statistics of the datasets for MRLR

Datasets #Users #Items #Ratings #Categories

Clothing 29,550 50,677 181,993 1,764
Electronics 59,457 64,348 518,291 1,292
Sports 28,708 46,315 237,578 1,293
Home 37,884 50,948 313,871 2,002

Comparison Methods. We compare with seven state-of-the-art algorithms, 1) MF

[75]: matrix factorization model aiming at rating prediction; 2) BPR [83]: Bayesian

personalized ranking focusing on item ranking; 3) FM [82]: factorization machine fusing

item category. We only compare with FM, as it generally outperforms other LFM based

methods; 4) Item2Vec [4]: item embedding based method; 5) Meta-Prod2Vec [104]:

integrates item category based on Item2Vec; 6) CoFactor [58]: jointly factorizes user-

item rating matrix and item co-rated matrix; 7) User2Vec [26]: considers the user as a

global context while learning item embedding; Moreover, four variants of our proposed

framework are also compared, a) RL: RL model only considering user and item embedding

; b) PR: personalized ranking model; c) RLR: the RL model combining models a) and

b); d) MRLR: multi-level RL model with multi-level item organizations based on c).
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Figure 5.1: The results of our four variants for MRLR

Evaluation. Standard 5-fold cross validation is adopted to evaluate all the methods.

The Area Under the ROC Curve (AUC) is used as the evaluation metric. Larger AUC

indicates better recommendation performance.

Parameter Settings. We empirically find out the optimal parameter settings for all

method. We set d = 10. We apply a grid search in {0.001, 0.01, 0.1, 1.0} for the learning

rate γ, λΘ and 1/2-way regularization of FM, and a grid search in {1, 5, 10, 20, 50} for

the number of negative instances N .

5.3.2 Results and Analysis

Results of Variants. The performance of our four variants is depicted by Figure 5.1.

RLR outperforms both PR and RL by 3.54% and 1.42% in AUC respectively (both signif-

icant, Paired t-test with p-value < .01), showing the effectiveness of both representation

learning and personalized ranking. MRLR combining RLR with multi-level item organi-

zations, performs the best among the four variants – with 1.12% lift in AUC compared to

RLR (p-value < .01), indicating the benefit of considering fine-grained item relationships.

Impacts of Parameter α. Parameters α1, α2 control the importance of personaliza-

tion and item co-occurrence relationships as shown in Eq. 5.5. α3 controls the effect of

item category for adapting item embedding as shown in Eq. 5.7. We apply a grid search

ranging from 0 to 1 with step 0.1 to investigate their impacts. As α1 + α2 = 1, we only

study the impacts of α1, α3, and we fix one and vary the other each time. The results
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Figure 5.2: The effects of parameters α1 and α3 on MRLR

are described by Figure 5.2. For the four datasets, as α1 varies from small to large, the

performance first increases then decreases, with the maximum reached at around 0.8.

This indicates that user preferences play an important role in item recommendation. In

terms of α3, we observe that the optimal settings range from 0.1 to 0.2, denoting a sub-

stantial contribution of item category in recommendation. The similarity in performance

variation across α1, α3 values on the four datasets demonstrates the robustness of MRLR.

Visualization of Embeddings. MRLR framework can generate meaningful embed-

dings that help interpret recommendation results. To show this, we visualize the embed-

dings of users, items and categories learnt by MRLR in a two dimensional space using

t-SNE [66]. Figure 5.3 illustrates the results of two examples in the Clothing dataset,

which is the visualization of user (red dot), item (blue triangle), and category (brown

square) embeddings in a two dimensional space, where left-pointing triangles are rated

items; right-pointing triangles are recommended items; the category of an item is la-

belled by a rectangle whose color is the same as its belonging category. For conciseness,

we do not visualize the other datasets, however, similar observations as below can be

obtained: 1) the rated items and the recommended items are generally clustered. This

indicates certain similarity among the rated items and the recommended items to the
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Figure 5.3: Visualization of embeddings for MRLR

same user. 2) each cluster is located at the side of the user, and the user is represented

as an endpoint of these clusters, indicating that user preference can be manifested as the

direction along which the rated items are clustered. This suggests that the recommen-

dations are determined by both rated items and user preferences. Finally, we note that

the categories of recommended items are overlapped with those of the rated items. For

instance, for the user in the right plot the overlapped category is Shirts, indicating user

preference over shirts. For the user in the left plot the overlapped categories are Athletic,

Fashion Sneakers, and Sandals, indicating that the user has a more diverse set of prefer-

ences. These observations show that MRLR can capture meaningful item relationships

in multiple levels of item organizations – individual items, items in the same category,

and items rated by the same user.

Comparative Results. Table 5.3 summarizes the performance of all comparison meth-

ods. Two views are considered: ‘All Users’ indicates all users are considered in the test

data; while ‘Cold Start’ indicates only users with less than 5 ratings are involved in the

test data. Several interesting findings are observed as follows.

Among the latent factor model based methods (MF, BPR and FM), MF performs

the worst, as it is the basic rating prediction method without considering any auxiliary

information. FM incorporates item category as auxiliary input, significantly outperforms
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MF, indicating the effectiveness of item category for better recommendation. Interest-

ingly, the performance of FM is worse than that of BPR. This verifies that personalized

ranking is more effective than rating prediction in real-world recommendation scenarios.

The RL methods, including Item2Vec, MetaProd2Vec, CoFactor and User2Vec, gen-

erally perform better than latent factor based methods, despite being rating prediction

models. This confirms that representation learning is more effective than latent factor

models for recommendation. Among them, Item2Vec performs worse than MetaProd2Vec.

This observation further confirms the previous conclusion that item category is useful to

improve recommendation performance.

CoFactor and User2Vec consider personalization in addition to item embedding. Co-

Factor is equivalent to the CMF method as it simultaneously factorizes user-item and

item-item co-occurrence matrices with shared item latent factors, while User2Vec adopts

CBOW to integrate personalization. Theoretically, the performance of the two methods

should be better than that of Item2Vec, since they can provide users with personalized

item recommendation list. We empirically find that User2Vec outperforms CoFactor, but

both are slightly worse than Item2Vec. However, our proposed variant RL with Skip-

gram outperforms Item2Vec, by 6.37% on average (Figure 5.1). Hence, we conjecture that

considering personalization with Item2Vec helps improve recommendation performance,

but CMF, CBOW are less effective than Skip-gram in incorporating item co-occurrence

relationships with personalization.

Overall, compared with all the other methods, MRLR performs the best by learning

user and item embeddings from a multi-level item organization, i.e., items in user-specific

ranked list, items in the same category, and individual items. The improvements w.r.t.

‘All User’ and ‘Cold Start’ are 5.35%, 5.01% on average (both with p-value < .01),

respectively. This implies that recommendation performance can be further enhanced by

appropriately considering multi-level representation learning and personalized ranking.
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Figure 5.4: Impacts of data sparsity on the performance for MRLR

Impacts of Data Sparsity. We further study the impacts of data sparsity on the recom-

mendation performance. Figure 5.4 depicts the variation of performance of all methods

on Clothing & Electronics when the percentage of training data size w.r.t. the overall

data size increases from 50% to 90%. We observe that MRLR consistently outperforms

other methods across all levels of data sparsity. Furthermore, the performance of MRLR

with data sparsity at 60% is better than that of any of other methods with data sparsity

at 90%. Such observations also hold in other datasets, showing that MRLR can achieve

better performance even with high data sparsity.

Generalizability. To evaluate the generalizability of MRLR, we further collect data

of Foursqure check-in performed over 3 weeks in 4 European capital cities (Amsterdam,

London, Paris, Rome), published on Instagram (31,872 users perform 198,801 check-in at

41,387 locations that belong to 492 categories) and Twitter (18,522 users; 109,790 check-

in; 38,855 locations; 482 categories). Figure 5.5 compares the performance of MRLR and

the other methods. As in the previous setting, MRLR significantly outperforms (p-value

< 0.01) the second best method MetaProd2Vec by 5.10% on ‘All Users’ and 5.62% on

‘Cold Start’. These results demonstrate that the proposed MRLR framework can be

effective in multiple recommendation tasks.

Complexity Validation. To verify the conclusion made in Complexity Analysis part

that the overall computational time is linear with respect to the number of observations

in the rating matrix (|R|), we test the runtime of MRLR model and the results are shown
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Figure 5.5: Comparative results on Instagram and Twitter for MRLR

in Figure 5.6. It depicts the relationships between the runtime and the size of training

data. We randomly select x% as training data and the rest (1− x%) as test data where

x is scaled from 10 to 90 with step 10. We observe that with the increase of the training

data, the runtime linearly goes up. Note that we only show the results of Clothing and

Electronics, which possess the smallest and largest data among the four datasets. Similar

observations can be noted for all the other datasets. In conclusion, MRLR is efficient to

scale to very large data sets.

10% 30% 50% 70% 90%

2

3

4

5

Percentage as training data

R
u

n
ti

m
e

fo
r

p
er

it
er

at
io

n

Clothing

10% 30% 50% 70% 90%

5

10

15

20

Percentage as training data

Electronics

Figure 5.6: Runtime (seconds/iteration) of MRLR on Clothing and Electronics.

5.4 Summary

Representation learning (RL) has drawn much attention in recommendation, due to its

effectiveness in capturing local item relationships. However, all existing RL based recom-

mendation models either neglect personalization or overlook multi-level organizations of

items for fine-grained item relationships. Therefore, this chapter proposes a multi-level
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RL framework for personalized recommendation – MRLR, which learns user and item

embeddings from a multi-level item organization for better recommendation. MRLR,

therefore, benefits from RL as well as achieves the goal of personalized recommendation.

Empirical validation on multiple real-world datasets shows that MRLR significantly out-

performs state-of-the-art algorithms.
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Chapter 6

RKGE: Recommendation with
Knowledge Graph Embedding

In Chapters 3, 4 and 5, we focus on incorporating category hierarchy into latent fac-

tor model or representation learning model to help resolve data sparsity and cold start

problems in recommendation, so as to achieve high quality recommendations. With the

development of semantic web, the knowledge graph (KG), as an auxiliary data source,

has proven to be effective in uncovering fine-grained item relationships by providing het-

erogeneous information related to items, i.e., different types of entities and relations, thus

facilitating to infer user preferences towards items from different angles. While existing

recommendation methods mainly rely on heavy and tedious feature engineering processes

to manually extract features from the KG.

In this chapter, we propose RKGE, a KG embedding recommendation approach based

on a novel recurrent network architecture that automatically learns semantic represen-

tations of entities and paths for effective recommendation. In particular, to learn the

relations between a pair of entities, RKGE first mines all the paths linking paired enti-

ties which carry different semantics, in an automatic fashion. It then encodes all paths

between the entity pair through a batch of RNNs to learn the semantic representations of

entities and paths, and seamlessly integrates them into recommendation. Furthermore, it

91



Chapter 6. RKGE: Recommendation with Knowledge Graph Embedding

Table 6.1: Mathematical Notations for RKGE

Notations Descriptions

U = {u1, u2, . . . , um} user set

I = {v1, v2, . . . , vn} item set

R ∈ Rm×n user-item rating matrix

rij, r̃ij ui’s observed/estimated rating to vj

G = (E ,L) the knowledge graph

E = {e1, e2, . . . , ek} entity set

R = {r1, r2, . . . , rg} entity relation set

P(ei, ej) = {p1, p2, . . . ph} paths between ei and ej

ui,vj,pl embeddings for ui, vj, pl

W,H transformation parameters of LSTM

hlt hidden state for path pl at step t

clt cell state for path pl at step t

J loss function

employs a pooling operator to discriminate the importances of different paths in charac-

terizing user preferences over items. Experimental results on multiple real-world datasets

demonstrate the superiority of RKGE against state-of-the-art algorithms. In addition,

we show that RKGE provides meaningful explanations for the recommendation results.

The rest of this chapter is organized as follows: We first formalize the recommendation

problem in Section 6.1. Section 6.2 proposes the RKGE recommendation framework,

which is composed of four components, i.e., semantic path mining, recurrent network

architecture, saliency determination and recommendation generation. We then present

the experimental results in Section 6.3, followed by the conclusion in Section 6.4.

6.1 Problem Formulation

This section formalizes the recommendation problem investigated in this chapter. Sup-

pose we have m users U = {u1, u2, . . . , um}, and n items I = {v1, v2, . . . , vn}. The binary
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matrix R ∈ Rm×n records the historical user-item interactions, with the Rij = 1 indicat-

ing that ui prefers vj; otherwise 0. We use entity as a generic term to represent all the

objects (e.g., user, item, genre, actor) that can be mapped into a KG, denoted as G. The

definition of KG is given as below. The sets of entities and entity relations are denoted

by E = {e1, e2, . . . , ek} and R = {r1, r2, . . . , rg}, respectively. P(ei, ej) = {p1, p2, . . . ph}

represents the set of connected paths between entities ei and ej. Table 6.1 summarizes

all the notations utilized in this chapter.

Definition 7 Knowledge Graph. KG is defined as a directed graph G = (E ,L) with

an entity type mapping function φ : E → A and a link type mapping function ψ : L → R.

Each entity e ∈ E belongs to an entity type φ(e) ∈ A, and each link l ∈ L belongs to a

relation type ψ(l) ∈ R.

The KG investigated in this study can be considered as a heterogeneous information

network, as there are more than one types of entities and entity relations included, i.e.,

|A| > 1 and/or |R| > 1. Figure 1.2 provides a toy example for KG in the movie domain,

where entities include user, movie and the corresponding attributes (e.g., genre, actor

and director); links describe the relations between entities (e.g., “rating” behavior and

“acting” behavior). Without loss of generality, in our study we also includes historical

user-item interaction record in the KG. Given the KG as input, our goal is to exploit

its heterogeneous information to help learn high quality representations of both users

and items, which are then used for generating better recommendations. The extracted

representations are expected to fully capture the semantic meanings of entities and entity

relations encoded in KG. To achieve this goal, we propose the recurrent knowledge graph

embedding framework (RKGE), which will be elaborated in the next section.
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Figure 6.1: The framework of RKGE

6.2 The RKGE Framework

This section presents the details of our proposed Recurrent Knowledge Graph Embed-

ding based framework (RKGE), which aims at leveraging the KG to help achieve better

recommendation performance, followed by the end-to-end model learning process. The

overall framework of RKGE is illustrated by Figure 6.1. It consists of four modules:

1) semantic path mining, to efficiently discover paths between paired entities; 2) recur-

rent network architecture, to seamlessly encode semantic paths via a batch of RNNs;

3) saliency determination, to automatically distinguish different path saliency through

a pooling operation; and 4) recommendation generation, to provide each user a ranked

list of items she will be interested in. Note that Figure 6.1 only describes the case of a

user-item pair. We do not show the recommendation generation module as it involves

multiple items.

6.2.1 Semantic Path Mining

To fully exploit the entity relations encoded in KG, we first mine paths with different

semantics between entities, which are then seamlessly incorporated into a novel recurrent

network architecture for effective recommendation.

Due to the large volume and complexity of KG, there can be a large number of

connected paths between two entities that may contain different entity types and relation
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types in different orders and with various lengths. It is unrealistic to make use of all the

paths to model entity relations on account of high computational cost. Besides, the

utilization of some paths that do not carry sufficient semantics may bring in much noise,

thus degenerating recommendation accuracy. Two strategies are therefore devised to

help select salient paths between entities, so as to increase the efficiency as well as to

reduce the time complexity of the proposed framework:

Strategy 1 We only take into account user-to-item paths P(ui, vj) that connect user ui

with all items that ui has interacted with, i.e., {vj|rij > 0}. These paths are most helpful

for effective recommendation given our goal to recommend items to users. Moreover, they

further include those relevant item-to-item and user-to-user paths as subsequences of the

user to item paths.

Strategy 2 We enumerate paths with a length constraint, i.e., only the paths with length

less than a threshold are used by our framework. As pointed out by Sun et al. [98], paths

with relatively short length are good enough to model entity relations, whereas longer paths

may bring in remote neighbors and lose semantic meanings, thus introducing much noise.

We will investigate how lengths of paths can affect recommendation performance in

our new context of knowledge embedding based approach and show in our experiment

that similar results also hold. Guided by the above two strategies, RKGE can mine the

qualified paths with different semantics that connect the entity pairs (i.e., user-item) in an

automatic fashion, instead of manually designed and extracted features (e.g., meta paths)

from KG. These paths will be further processed by recurrent networks to automatically

learn their semantic representations for recommendation, as will be introduced next.

6.2.2 Recurrent Network Architecture

By regarding the directed path between user and item as a sequence, where entities in

the path correspond to the elements in the sequence, we naturally consider employing
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RNN to encode the path with various lengths, so as to accurately model the semantic

relations and to achieve better user and item representations. This is mainly attributed

to two essential reasons: 1) RNN is effective in modeling sequences with varying lengths;

2) RNN is capable of modeling the semantics of not only entities but also the entire paths

between entity pairs.

Given that multiple paths may connect two entities, we devise a novel recurrent

network architecture to capture all possible relations between any two entities. The

recurrent network architecture comprises a batch of RNNs, with each single RNN learning

the semantic representation of an individual path.

Formally, for an entity pair (ui, vj) in KG, assume there are h connected directed

paths of different lengths, i.e., P(ui, vj) = {p1, p2, · · · , ph}. Given as input an arbitrary

path pl with length T in the format of pl = e0
r1−→ e1

r2−→ e2 · · ·
rT−→ eT with e0 = ui, eT = vj,

RNN encodes the entire path by learning a semantic representation for each entity and

learning one single representation for the whole path. These goals are achieved by two

layers, respectively the embedding layer and the hidden layer, as illustrated in Figure 6.1.

Embedding Layer. For each entity ek in P(ui, vj), the embedding layer learns a dis-

tributed representation plt that maps et to a low-dimensional vector, with each element

of the vector representing the affinity of this entity to a latent topic, thus capturing the

semantic meaning of the entity. Overall, given the full path as input, the embedding

layer will learn an embedded representation of the path as pl = {pl0,pl1,pl2, · · · ,plT},

in which each element denotes the representation (embedding) of the corresponding en-

tity in pl. This new representation will then be fed as input to the hidden layer to learn

a single representation that encodes the entire path.

Hidden Layer. To learn the path representation, the hidden layer considers both the

embeddings of entities in the path and the order of these entities. It takes a flow-based

approach to encode the sequence from the beginning entity of the path e0 to the ending
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entity eT : in each step t, it learns a hidden state hlt that encodes the subsequence from

e0 to et, which is then used as input together with the embedding of et+1 (i.e., pl(t+1)) to

learn the hidden state of the next time step, i.e., hl(t+1). The final state hlT will encode

the entire path, thus is used as the representation of the path.

In order to better control the information flows through the path, we adopt Long

Short-Term Memory (LSTM) [37], which has gained much popularity among different

RNN models due to its strong capability in dealing with the gradient vanishing prob-

lem [126], making it effective in preserving historical information in a sequence. This is

achieved by the two types of gates used by LSTM: the forget gate and the input gate.

LSTM first decides what information of path pl to throw away from the previous cell

state cl(t−1), which is achieved by a sigmoid layer called the “forget gate layer”, given by:

flt = σ
(
Wf · hl(t−1) + Hf · plt + bf

)
(Eq. 6.1)

where flt ranges from 0 to 1, and 0 means completely get rid of the state while 1 represents

entirely keep the state; Wf and Hf are respectively the linear transformation parameters

for the previous and current steps; bf is the bias term; hl(t−1) is the hidden state in the

previous step of path pl, and plt is the representation of the current step, i.e., the tth

entity, for path pl,

LSTM then determines what new information of path pl to store in the cell state,

which consists of two parts: a sigmoid layer called “input gate layer” to decide which

values to update; a tanh layer to create a vector of new candidate values c̃lt, given as:

ilt = σ
(
Wi · hl(t−1) + Hi · plt + bi

)
c̃lt = tanh

(
Wc · hl(t−1) + Hc · plt + bc

) (Eq. 6.2)

We proceed to update the old cell state cl(t−1) into the new cell state clt by balancing

the previous and current information of path pl via the gates, defined by,

clt = flt · cl(t−1) + ilt · c̃lt (Eq. 6.3)
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Finally, the output is also based on a sigmoid layer that decides which parts of the cell

state to output, formulated by:

olt = σ
(
Wo · hl(t−1) + Ho · plt + bo

)
(Eq. 6.4)

The hidden state of path pl at step t is thus defined by,

hlt = olt · tanh(clt) (Eq. 6.5)

After incorporating each of the qualified paths (the total number is h) between ui

and vj into the corresponding LSTM model, we obtain the hidden representations of the

paths, i.e., the representations of the entity relations of ui and vj. These hidden states

are then utilized for learning better representations for ui, vj.

6.2.3 Saliency Determination

As there are h paths linking ui and vj, different paths have different lengths and carry

different semantic meanings. This plays different roles in modeling the relations between

ui and vj. Previous work has shown that the paths with shorter lengths have more

important influences than the longer ones, as the shorter paths usually indicate a stronger

connectivity with clearer semantics, whereas the longer ones suggest a weaker proximity

[98]. This however may not always hold in the real situations. Even the paths with the

same lengths may have different impacts on the relations of ui and vj. Therefore, we

design a data-driven method via conducting a pooling operation [56] to help distinguish

the different path importances.

Generally, the pooling operation is used to combine vectors resulting from different

windows into a single vector with the same dimension, by taking the max value observed

in each dimension of the vectors over the different windows. The intention is to focus on

the most important “features” of these vectors, which is just particularly suitable for our

case, i.e., determining the path saliency on modeling entity relations.

98



Chapter 6. RKGE: Recommendation with Knowledge Graph Embedding

For the h connected paths in P(ui, vj) = {p1, p2, · · · , ph}, we denote their last hidden

states by the recurrent network architecture as h1T1 ,h2T2 , · · · ,hhTh
, where Th is the last

step of ph as well as the length of ph. Based on this, we add a max pooling layer, resulting

in an aggregated hidden state h,

h[j] = max
1≤i≤h

hiTi
[j] (Eq. 6.6)

where h[j] is the value of the jth dimension of h. From the above equation we can see that

the effect of the max-pooling operation is to get the most salient feature across all the

connected paths. The hidden state h is thus an aggregated representation of the paths

in which each dimension reflects the most salient information. Furthermore, to avoid

the aggregated hidden state h being dominated by a certain hiTi
, e.g., a single path in

P(ui, vj), we also perform an average pooling operation [8] towards the last hidden states

of all the paths, where the average values in each dimension are retained instead of the

maximum one. Their respective performance is evaluated in the experiments section.

6.2.4 Recommendation Generation

Through the pooling operation, we obtain a final hidden state of all the paths between

ui and vj, i.e., the aggregated effects of paths on the relations of ui and vj. To further

precisely quantify the relation (proximity) of ui and vj, i.e., r̃ij, we adopt a fully-connected

layer after the pooling layer, given by,

r̃ij = f(h) = σ (Wr · h + br) (Eq. 6.7)

where Wr is regression coefficient and br is the bias term. We adopt a sigmoid function

σ(·) to control the range of f(h) into [0, 1].

Once the model training process is finished, better representations of users and items

can be achieved through encoding the connected paths between them by RKGE. Thus,
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Algorithm 5: RKGE Optimization
Input: rating matrix R, the knowledge graph G, in dim, hidden dim, max path length,

γ, Iter
1 Initialize the embeddings of e ∈ G with small values;
// Semantic Path Mining

2 Built the graph G with Python Networkx;
3 foreach ui ∈ U do
4 Based on R, get positive pairs (ui, vj);
5 Randomly sample to generate negative pairs (ui, vk);
6 (u, v)← (ui, vj) ∪ (ui, vk);
7 foreach (u, v) pair do
8 Mine connected paths P(u, v);

// Recurrent Network Architecture

9 for t = 1; t ≤ Iter; t+ + do
10 foreach (u, v) pair do

// Recurrent Network Batch

11 for pl ∈ P(u, v) do
12 hlTl

← based on Equ. (1-4);
13 Combine(h) ← hlTl

;

// Saliency Determination

14 h← pool
(
Combine (h)

)
based on Equ. (5);

15 Calculate r̃ij based on Equ. (6);

16 Update parameters by back propagation through time;

during the testing process, we calculate the proximity score of users and their unrated

items via the inner product [86] of the corresponding embeddings, which is given by,

s(ui, vj) = 〈ui,vj〉 (Eq. 6.8)

Finally, we rank the items based on the computed proximity score, and then recommend

the top-K items with the highest score to ui.

6.2.5 End-to-End Parameter Learning

Given the training dataDtrain, which containsN instances in the form of (ui, vj, rij,P(ui, vj)),

RKGE learns the involved parameters by minimizing the following loss function:

J =
1

N

∑
rij∈Dtrain

BCELoss(r̃ij, rij) (Eq. 6.9)
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where BCELoss(·) is the Binary Cross Entropy between the target and the predicted

values, which is similar as the Cross Entropy for multiple classification problem. The

details of BCELoss(·) can be found by the provided link1. Since all the modules and

the above loss function are analytically differentiable, RKGE can be readily trained in

an end-to-end manner. In the learning process, parameters are updated by the back

propagation through time (BPTT) algorithm [113] in the recurrent layers of Recurrent

Network Architecture Module, and by normal back-propagation in other parts. We adopt

RMSprop [103] to adaptively update the learning rate, which has proven to be highly

effective to train neural networks. To prevent over-fitting, dropout [96] is employed to

randomly drop hidden units of the network in each iteration during the training process.

Besides, we randomly sample unrated items for each user as the negative instances, the

number of which is the same with her rated items. The paths connected the negative

instances are also incorporated into RKGE to help balance the model learning process.

The detailed optimization process is described by Algorithm 5, which is mainly com-

posed of two modules: the semantic path mining (lines 2-8) and the recurrent network

architecture (lines 9-16) module, including the recurrent network batch (lines 11-13) and

saliency determination (lines 14-15). The computational complexity of RKGE is accept-

able. The training time for the two evaluation datasets, i.e., IM-1M and Yelp2013 is less

than 2 hours. The details about the datasets are deferred to the experiments section.

6.3 Experimental Results

This section conducts an extensive empirical study on multiple real-world datasets to

validate the effectiveness of the proposed RKGE framework. We also provide a detailed

analysis according to the experimental results.

1https://pytorch.org/docs/master/nn.html?highlight=bceloss#torch.nn.BCELoss
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6.3.1 Experimental Setup

Datasets. To demonstrate the effectiveness of our proposed recommendation framework

RKGE, we adopt two widely used real-world datasets from different domains (movie and

local business) for the empirical study. Here we do not employ the Amazon web store

datasets as utilized in Chapters 3, 4 and 5, as the knowledge graph information about

these datasets is unavailable.

• IM-1M: The first dataset is IM-1M, which is built by combing MovieLens 1M2 and

the corresponding IMDB3 datasets. MovieLens 1M is a personalized movie rating

dataset, which consists of 1M ratings (ranging from 1 to 5) with 6,040 users and

3,706 movies; IMDB contains movie auxiliary information, such as genre, actor,

director, etc. The two datasets are linked by the titles and release dates of movies.

After mapping the two datasets, we have 6,040 users and 3,382 movies, and 756,684

ratings in the final dataset.

• Yelp2013: The second dataset is Yelp, which is the Yelp Challenge Dataset4 re-

leased by Yelp5 and is available now at Kaggle6. This dataset contains user check-ins

to local business, together with user reviews and local business information network

(e.g., category, location). Yelp is much sparser than IM-1M, thus the performances

of all the methods are expected to decline accordingly on Yelp.

We process the two datasets in accordance with literature [122, 12] as follows: if a user

provides a rating towards a movie, or wrote a review for a business, we set the feedback

as 1, otherwise it would be set to 0. We split the feedback of IM-1M in the order of their

2http://grouplens.org/datasets/movielens/
3http://www.imdb.com/
4https://www.yelp.com/dataset challenge
5http://www.yelp.com/
6https://www.kaggle.com/c/yelp-recsys-2013/data
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Table 6.2: Statistics of the datasets for RKGE

Datasets IM-ML Yelp2013

User-item #Users 6,040 37,940

interaction #Items 3,382 11,516

#Ratings 756,684 229,178

Data Density 3.704% 0.0052%

#Entities 18,920 46,606

Knowledge #Entity Types 11 7

graph #Links 800,261 302,937

#Link Types 10 6

Graph Density 0.447% 0.028%

timestamps, and use the older 80% of feedback as training data and the more recent 20%

as test data. With Yelp we utilize the original training and test sets in the published

version. The overall statistics of the two datasets are summarized in Table 6.2.

Comparison Methods. For the selection of comparison algorithms, we mainly focus

on the KG based approaches and also include some baseline methods. We compare with

the following state-of-the-art recommendation algorithms, 1) MostPop: recommends

the most popular items to all users without personalization; 2) BPRMF [83]: Bayesian

personalized ranking model based on matrix factorization (MF) [75], which is the basic

latent factor model aiming at item ranking; 3) LIBFM [82]: factorization machine is

a classic feature based latent factor model, to which we feed items’ attributes in the

knowledge graph as raw features; 4) HeteRS [79, 80]: the graph based recommendation

approach integrating the knowledge graph via Markov chain; 5) HeteRec [122]: latent

factor model by incorporating meta path for personalized recommendation; 6) GraphLF

[12]: the knowledge graph based approach using Personalized PageRank to help infer user

preferences through logic reasoning; 7) CKE [127]: the recently proposed state-of-the-art

collaborative knowledge graph embedding based approach that learns better item latent

representations with the help of the knowledge graph.
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For fair comparison, we remove the textual and visual embedding modules from the

original CKE model, due to the unavailability of such auxiliary information in the evalua-

tion datasets. Furthermore, we take FM as the representative feature based latent factor

model, as its performance is generally better than other counterparts, such as SVDFea-

ture [16], collective matrix factorization (CMF) [94] and tensor factorization (TF) [48].

We do not compare with other previous meta path based approaches (e.g., HeteCF [64],

SimMF [90]), since they are generally outperformed by both HeteRec and GraphLF.

Evaluation Metrics. By following state-of-the-art works [122, 12] leveraging the KG

for effective recommendation, we evaluate the performance of all the approaches using

the standard metrics, including Precision at N = {1, 5, 10}, i.e., Prec@N , and the top-10

Mean Reciprocal Rank [105].

Parameter Settings. We empirically find out the optimal parameter settings for each

comparison method. For all the methods, we apply a grid search in {5, 10, 20, 50, 100, 200}

to find the optimal settings for the dimension of the latent factor d. A grid search in

{10−5, 10−4, 10−3, 10−2, 10−1} is applied for the learning rate and regularization coefficient

(including the 1/2-way regularization of FM). For HeteRS, we set β = 104 on the two

datasets. For HeteRec and CKE, a grid search in {5, 10, 20, 50, 100, 200} is applied to

find out the best settings for the number of negative samples; other parameters in these

methods are set as suggested by the original papers. For RKGE, the number of hidden

units is set to 16 and 32 on IM-ML and Yelp2013, respectively, which is selected from

the option set {8, 16, 32, 64, 128} based on a held-out validation set. To avoid potential

over-fitting, the dropout value is validated from the option set {0.00, 0.25, 0.50}.

6.3.2 Impacts of Parameters

Impacts of Different Path Lengths. Paths with different lengths capture different

semantic meanings, which help infer user preferences from different perspectives and
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Figure 6.2: The impacts of different path lengths on RKGE

allow to generate different recommendations. Our hypothesis is that paths with relatively

short lengths are more beneficial for modeling entity relation as they carry clearer and

interpretable semantic meanings. This has been verified in meta-path based method

[98]. Here we study if the same result holds when applying our KG embedding based

approach. To empirically study the impact of path length on recommendation accuracy,

we incorporate paths with different lengths into the proposed RKGE model. We test

with lengths L = {3, 5, 7}, as RKGE is aimed at modeling indirect paths between users

and items, and these paths are of odd lengths since items can only be indirectly linked

via their attribute entities. Figure 6.2 depicts the results on the two datasets. From

the results, we can observe that as the path lengths increase, the performance (including

Pre@1, 5, 10 and MRR) of RKGE decreases gradually on both datasets. This verifies

our intuition and confirms previous findings in the new context of KG embedding based

approach.

Impacts of Different Pooling Operations. To determine the saliency of different

paths between two entities, pooling operations are adopted in the proposed RKGE model;

max-pooling and average-pooling are the most widely utilized operations. Max-pooling

focuses on the most important paths, whereas the average-pooling aims at aggregating
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Figure 6.3: The impacts of different pooling strategies on RKGE

the impacts of all paths. Hence, average-pooling avoids the results being dominated

by a certain path. To study their respective potential for recommendation, we design

RKGE with different pooling versions. Figure 6.3 illustrates their performance on the

two datasets, from which we can note that the performance of average-pooling is gener-

ally better than that of max-pooling. This supports the intuition that user preferences

towards items are determined by combinations of heterogeneous factors and highlights

the importance of a method that can make full use of these factors.

Interpretability of RKGE on Recommendation. By fully capturing the semantics

of entities and entity relations encoded in the KG, RKGE can not only provide effective

recommendations, but also possess a better interpretability for user-item interactions.

To verify this, for each user, we first map her rated items (i.e., items in the training

data) and the correctly recommended items (i.e., the interaction between items in her

top-10 recommendation list and test data) into the KG, and then check whether there

are semantic paths linking those items. For conciseness, we do not show the results for

all the users. Figure 6.4 displays the results of a randomly sampled user, say Bob, on

the IM-ML dataset. Note that similar observations can be also obtained for other users

on the other two datasets.
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Figure 6.4: The interpretability of RKGE on the recommendation

In Figure 6.4, the items above are Bob’s rated items, whereas the items below are

the correctly recommended ones. For simplicity, we only keep four types of entities in

the KG, i.e., movie, genre, actor and director. Several interesting findings are obtained.

First, the correctly recommended movies are all connected to Bob’s rated movies either

by genre (e.g., “Low Down Dirty Shame” – “Star Wars”), actors (e.g., “Air Force One”

– “The Devil’s Own”), or directors (e.g., “Raiders of Lost Ark” – “Jaws”). This suggests

that RKGE can well infer Bob’s specific preference from different perspectives with the

help of KG, based on which generates correct recommendations. Second, most of the

correctly recommended movies are connected with rated movies by different types of

paths, instead of a single one. For example, “Raiders of Lost Ark” is connected with

“Jaws” by “Adventure” and “Steven Spielberg”; “Air Force One” links with “Star Wars”

by “Action”, “Adventure” and “Harrison Ford”. This implies that user-item interactions

are co-influenced by different paths, possibly with different degrees, and that their joint

effects can be effectively captured by RKGE, allowing it to provide recommendations

with high interpretability.
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6.3.3 Comparative Results

Table 6.3 summarizes the performance of all comparison methods across the two real-

world datasets, where two views are created for each dataset: ‘All Users’ indicates all

the users are considered in the test data; while ‘Cold Start’ indicates only users with less

than 5 ratings are involved in the test data. A number of interesting observations can be

noted from the results for the two views.

Performance on All Users. As the basic recommendation approaches considering

no auxiliary information, MostPop and BPRMF perform worse than other methods.

This helps confirm the usefulness of KGs for recommendation. We further observe that

BPRMF highly outperforms MostPop, which is mainly because BPRMF is a personalized

recommendation method via learning individual user’s preference, whereas MostPop is a

simple and non-personalized one.

By incorporating item attributes in the KG as raw features, LIBFM performs better

than BPRMF, sometimes even better than existing KG based methods (e.g., HeteRS,

HeteRec on Yelp), suggesting its superiority in utilizing auxiliary information for effective

recommendation. Despite this, LIBFM models entity interactions in a linear fashion,

thus is intrinsically limited by its expressive power for capturing complex patterns. Well-

designed neural network based methods are more capable of modeling complex entity

relations, as shown by the performance of NCF. Although merely considering user-item

interaction data, NCF sometimes even performs better than LIBFM, demonstrating the

effectiveness of neural architecture.

In terms of the methods specifically designed for KGs, HeteRec outperforms HeteRS.

The possible reason is that HeteRS is a graph based method built upon random walk,

thus failing to explicitly capture the semantics of entities and entity relations encoded in

KG, whereas HeteRec is a latent factor model based approach which exploits the relation
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heterogeneity in the KG by introducing meta paths. This verifies that semantic paths

in KG indeed facilitate to generate effective recommendation. GraphLF is also based

on random walk, yet it combines the strength of latent factorization and logic reasoning,

thus achieving better performance than HeteRS and HeteRec. By learning item semantic

representations from KGs, CKE generally performs the best among the four existing KG

based methods (i.e., HeteRS, HeteRec, GraphLF and CKE), implying the effectiveness

of network embedding for better recommendation. However, it ignores the relations of

paired entities linked by paths, thus failing to capture the full semantics encoded by KGs.

Overall, when compared with all the other comparison methods across the two datasets,

our proposed RKGE consistently achieves the best performance. The improvements w.r.t.

Precision and MRR are 26.42%, 20.30% on average, respectively (Paired t-test, p-value

< 0.01). This implies that the recommendation performance can be further boosted by

appropriately combining the strengths of network embedding and semantic path mining

on KGs.

Performance on Cold Start. Similar observations with “All Users” can be seen on

“Cold Start”. As in the previous setting, RKGE significantly outperforms (p-value <

0.01) the best existing method by 9.25% and 3.36% for Precision and MRR on IM-

1M, respectively. While on Yelp, the case is slightly different. The performance of

RKGE is worse than CKE on some metrics (e.g., Prec@1, MRR). This is possibly due

to the extremely low graph density of Yelp compared with IM-1M, leading to insufficient

semantic paths for RKGE to take advantage of.

We further analyze the robustness of the compared methods for cold start recommen-

dation. We observe that most methods are vulnerable to cold start users. This is because

these methods learn user preference based on historical interactions, which contains very

limited information for cold start users. Interestingly, CKE and RKGE consistently out-

perform other methods, implying the robustness of KG embedding for cold start users.
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Figure 6.5: Impacts of data sparsity on RKGE for IM-1M

RKGE further outperforms CKE, showing that the usage of path semantics by RKGE

can effectively capture users’ preferences even from their limited historical interaction

records. Besides, we also notice that the improvement ratios of RKGE on “All Users”

are larger than those on “Cold Start”. This could be explained by the fact that different

from other cold-start cases where cold-start users possess similar amount of external in-

formation as warm-start users, in recommendation with KGs, cold-start users have very

limited number of paths linking entities in KGs. Therefore, the recommendation with

KGs for cold-start users is more difficult.

Performance on Data Sparsity. We further investigate the impact of data sparsity on

the recommendation performance. Figures 6.5 and 6.6 depict the variation of performance

for all methods when the percentage of training data size w.r.t. the overall data size

increases from 50% to 90% with step 10% on the two datasets, respectively.

As the percentage of training data increases, the ranking performance for all the

methods across the two datasets decreases gradually. The models can be well trained with

more training data available, thus the recommendation performance should be improved.
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Figure 6.6: Impacts of data sparsity on RKGE for Yelp

This is also held by the scenario when doing rating prediction [102]. As more training

data comes, the prediction error (e.g., Mean Absolute Error) goes down. However, for the

item ranking problem, the case is a little bit different. One major possible explanation

for this phenomenon is that although the ranking model might be well trained with more

training data, the test data decreases correspondingly. Therefore, the possibility that

the right items are hit from the test data also goes down. Another reason to explain the

performance variation of the KG based methods might be that with the help of auxiliary

information in the KG, they can achieve a better recommendation performance even with

a higher data sparsity. However, as the training data becomes denser, the user behavior

pattern can be better reflected by the historical data, and the auxiliary information in

KG may introduce some noise, thus deteriorating the accuracy of recommendation.

Despite of the performance variation, our proposed approach RKGE consistently

outperforms the other comparison methods across all levels of data sparsity on the two

datasets. The improvements are statistically significant (Paired t-test, p-value < 0.01).

This implies that RKGE has higher capability in coping with the data sparsity problem
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compared to the state-of-the-art methods.

6.4 Summary

The knowledge graph has recently attracted a considerable amount of interest from the

recommendation community due to its help in dealing with data sparsity and cold start

problems. This chapter proposes a knowledge graph embedding recommendation frame-

work – RKGE – based on a novel recurrent network architecture for high quality recom-

mendation. RKGE can not only learn the semantic representation of different types of

entities, but also automatically capture entity relations encoded in the knowledge graph.

Extensive validation on two real-world datasets demonstrates the superiority of RKGE

against other state-of-the-art recommendation algorithms.
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Chapter 7

Conclusions and Future Work

In this chapter, we first summarize the contributions of this dissertation, and then point

out several promising directions for future work.

7.1 Summary of Contributions

Recommendation is a fundamental task to enable personalized information filtering, thus

to mitigate the information overload problem. The goal is to learn user preferences from

historical user-item interactions, based on which recommend relevant items. Traditional

recommendation technique, i.e., collaborative filtering (CF), however, inherently suffer

from data sparsity and cold start problems. Therefore, in this dissertation, we aim to

exploit item relationships to alleviate the concerned issues of CF, and investigate three

specific recommendation problems.

In real applications, items are often organized by category, which enables category

to become a quite prevalent way to define item relationships. Item category has proven

to be helpful in generating effective recommendations, as users tend to have similar

preferences towards items that belong to the same category. Existing work mainly focuses

on categories that are organized in a flat structure, where categories are independent and

in a same level. In fact, category can be often organized in a richer knowledge structure

- category hierarchy (CH), to reflect the inherent correlations among different categories.
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In Chapter 3, we therefore investigate the problem of category hierarchy based rec-

ommendation. To better employ category affiliatedTo relation in the vertical dimension

of CH, we propose a novel recommendation framework ReMF, that integrates recursive

regularization into matrix factorization model to better learn user and item latent fac-

tors. ReMF not only models the co-influence of hierarchically organized categories on

user-item interactions, but also learns the strength of such co-influence from historical

user-item interaction data, thus to improve recommendation performance. We evaluate

the proposed method on multiple real-world datasets, and the experimental results show

that ReMF significantly outperforms a number of baselines.

Chapter 4 goes deeper into the category hierarchy based recommendation problem.

Based on Chapter 3, we further consider category relations in horizontal dimension of

CH, i.e., alternative and complementary, together with category affiliatedTo relation in

vertical dimension. The result is a unified matrix factorization based recommendation

framework HieVH that seamlessly fuses both dimensions of CH, to help achieve bet-

ter recommendation performance. Specifically, HieVH adapts latent factors of items by

adding weighted aggregation of their affiliated categories latent factors, to better model

item latent factors. The weights are automatically learnt from data. Horizontally, cat-

egory relations, i.e., alternative and complementary, are incorporated as regularizers at

each layer of the hierarchy, to better model category latent factors. In doing so, through

the adaption of item latent factors with category latent vectors in vertical dimension,

category relations in horizontal dimension can be inherited by items. Extensive valida-

tion demonstrates the superiority of HieVH against the state-of-the-art. An additional

benefit of HieVH is to provide better interpretations of the generated recommendations.

Recently, representation learning (RL) has proven to be more effective than ma-

trix factorization model in capturing local item relationships by modeling the item co-

occurrence in individual user’s interaction record. However, we contend that the potential
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of RL for recommendation has not been fully exploited. Existing RL based recommen-

dation methods either ignore personalization or the possible multi-level organizations

of items for uncovering fine-grained item relationships, which could help achieve high

quality recommendation performance.

In Chapter 5, we thus concentrate on the problem of representation learning based

recommendation. In order to reach full exploitation of RL for effective recommendation,

we contribute a multi-level RL method – MRLR – for personalized recommendation. Par-

ticularly, we first extend the original item embedding method to a more generic Bayesian

framework, under which we then fuse the likelihood function of user-specific pairwise

item ranking. This unified framework can then learn user and item embedding from

both item co-occurrence relationships and user-specific ranked lists of items, benefiting

from user and item RL while reaching the goal of personalized recommendation. Inspired

by paragraphs in NLP as the intermediate level of word organization between individual

words and documents, we further extend the framework to multi-level RL, i.e., category

RL as the intermediate level of individual item RL and RL of items that rated by a same

user, so as to capture fine-grained item relationships. Empirical validation on multiple

real-world datasets shows that MRLR achieves better recommendation performance than

the state-of-the-art algorithms.

With the development of semantic web, the knowledge graph (KG) has attracted

much attention in the community of recommender systems, due to its efficiency in re-

solving data sparsity and cold start problems. It greatly helps uncover fine-grained item

relationships by providing heterogeneous information related to items, i.e., different types

of features and relations, thus facilitating to infer user preference towards items from var-

ious perspectives. Existing recommendation methods mainly rely on heavy and tedious

feature engineering processes to manually extract features from the KG, limiting the

enhancement of recommendation performance.
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Chapter 6, therefore, aims at addressing the problem of knowledge graph based rec-

ommendation. We seek for a new data-driven method that does not rely on handcrafted

features, yet can capture both semantics of entities and paths encoded in KG for ef-

fective recommendation. To this end, we proposes a unified recurrent knowledge graph

embedding framework RKGE, which is able to not only learn semantic representations

of entities and paths in a fully automatic way, but also to automatically discriminate

the importance of different paths for recommendation. In order to learn the relations be-

tween a pair of entities, RKGE first mines all the paths linking paired entities which carry

different semantics, without predefining the specific types of the path. It then encodes

all paths between the entity pair through a batch of RNNs, with each path modeled by a

single RNN. RKGE is thus flexible in capturing different numbers of paths with various

lengths that connect entity pairs. The different effects of paths are then learned through a

pooling operation, which further discriminates the importance of different paths and ag-

gregates their effects for learning user preferences. Extensive validation on two real-world

datasets demonstrates the superiority of RKGE against other counterparts.

To sum up, in this dissertation, we contribute to a series of novel recommendation ap-

proaches by exploiting item relationships for more effective recommendation. We achieve

this goal from two different angles: 1) for the representation of item relationships, we

investigate from item category with flat structure to category hierarchy and then to the

knowledge graph; 2) for techniques, we go from latent factor models to representation

learning methods, and then deep learning methods to help capture more and more fine-

grained item relationships step by step.

7.2 Future Work

There are multiple potential directions for future work. In this dissertation, we present

two potential and promising directions:

118



Chapter 7. Conclusions and Future Work

Temporal Context. One possible direction is to further accommodate temporal context

into recommendation, thus adapting our proposed approaches to be dynamic recommen-

dation models. In reality, user preferences often evolve over time, affected by dynamic

user inclinations, item perception and popularity. Temporal context therefore has been

recognized as an important type of information for modeling the dynamics of user pref-

erences. It has extensive applications, ranging from movie recommendation [6], music

recommendation [51], to location recommendation [125]. However, the incorporation of

temporal context into our proposed recommendation approaches is non-trivial due to the

following challenges:

• First, as our methods exploit item relationships (e.g., category hierarchy, the knowl-

edge graph) for better recommendation, it is essential to first figure out how the

two factors (i.e., item auxiliary information and temporal context) co-influence the

final recommendation performance, and then design efficient frameworks to ap-

propriately fuse the two factors in a unified manner. To resolve this issue, we

may conduct extensive data analysis on multiple real-world datasets to get some

insightful guidelines for the model design.

• Second, it is necessary to find out an efficient solution to better capture the tem-

poral dynamics, thus helping achieve high-quality recommendation. Most of the

existing methods [22, 51, 53, 79, 126] model the temporal dynamics by extending

the latent factor model (LFM) with handcrafted features, so as to describe certain

temporal patterns of user-item interactions. They either bin user-item interactions

into time windows, assuming similar user behavioral patterns in the same window

[51, 126], or adopt a time decay function to under-weight the interactions occurring

deeper into the past [53, 79]. The handcrafted features, though proven to be effec-

tive, cannot capture complex temporal patterns in reality [114]. More importantly,
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these methods cannot automatically select important interaction records in user-

item interaction history when modeling user preferences. This greatly limits their

application in real-world scenarios where user-item interactions can often happen

accidentally. This problem may be solved by the recurrent neural network (RNN),

which captures both the latent structures in historical user-item interactions –

through hidden units – and their dynamics along the temporal domain. Unlike

LFM based methods, RNN is nonparametric, thus can learn inherent dynamics

that are more complex and suitable for making recommendations.

Deep Learning Methods. Another direction is pointed out from the perspective of

techniques. In recent years, the revolutionary advances of deep learning technique have

gained significant attention in various domains, such as speech recognition, image anal-

ysis and natural language processing, with recommender systems being no exceptions

[129]. Deep learning provides a better understanding of user’s demands, item’s charac-

teristics and historical interactions between them, thus can be adapted to further enhance

recommendation performance. Actually, the RKGE model proposed in Chapter 6 is an

adaptation and application of RNN, which is just a classic deep learning based method.

The empirical study on real-world datasets has demonstrated the superiority of deep

learning based methods against other state-of-the-art recommendation algorithms.

Similarly, other prevalent deep learning based methods, e.g., convolutional neural

network (CNN), can also be applied into the area of recommender systems. Considering

an on-line hotel booking system, customers may generally select several hotels as can-

didates according to the location and price at first when booking hotels. In order to

make the final decision, they possibly compare the images of candidate hotels posted by

the operators, and finally choose the one in their preferred styles (e.g., furniture, color).

In this scenario, we could first exploit CNN to extract latent features from the hotel
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images, which then can be incorporated into recommendation models for better recom-

mendation service. This idea can be applied to any systems with images available (e.g.,

clothing, restaurants), and images as a type of auxiliary source data could be also helpful

to address data sparsity and cold start issues of recommender systems.
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[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. JMLR, 3(Feb):1137–1155, 2003.

[6] James Bennett, Stan Lanning, et al. The netflix prize. 2007:35, 2007.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

JMLR, 3(Jan):993–1022, 2003.

[8] Phil Blunsom, Edward Grefenstette, and Nal Kalchbrenner. A convolutional neural

network for modelling sentences. In ACL, 2014.

[9] Stefano Bocconi, Alessandro Bozzon, Achilleas Psyllidis, Christiaan Titos Bolivar,

and Geert-Jan Houben. Social glass: A platform for urban analytics and decision-

making through heterogeneous social data. In WWW, pages 175–178. ACM, 2015.

127



References

[10] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. Translating embeddings for modeling multi-relational data. In

NIPS, pages 2787–2795, 2013.

[11] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In UAI, pages 43–52. Morgan Kaufmann

Publishers Inc., 1998.

[12] Rose Catherine and William Cohen. Personalized recommendations using knowl-

edge graphs: A probabilistic logic programming approach. In RecSys, pages 325–

332. ACM, 2016.

[13] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In

WWW, pages 571–580. ACM, 2007.

[14] Sneha Chaudhari, Amos Azaria, and Tom Mitchell. An entity graph based recom-

mender system. AI Communications, (Preprint):1–9, 2017.

[15] Sonny Han Seng Chee, Jiawei Han, and Ke Wang. Rectree: An efficient collabora-

tive filtering method. In DaWaK, volume 1, pages 141–151. Springer, 2001.

[16] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu.

Svdfeature: a toolkit for feature-based collaborative filtering. JMLR, 13(Dec):3619–

3622, 2012.

[17] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
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