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Abstract—The accuracy of detecting intrusions within a Col-
laborative Intrusion Detection Network (CIDN) depends on the
efficiency of collaboration between peer Intrusion Detection
Systems (IDSes) as well as the security itself of the CIDN.
In this paper, we propose Dirichlet-based trust management
to measure the level of trust among IDSes according to their
mutual experience. An acquaintance management algorithm is
also proposed to allow each IDS to manage its acquaintances
according to their trustworthiness. Our approach achieves strong
scalability properties and is robust against common insider
threats, resulting in an effective CIDN.

We evaluate our approach based on a simulated CIDN,
demonstrating its improved robustness, efficiency and scalability
for collaborative intrusion detection in comparison with other
existing models.

Index Terms—Collaborative intrusion detection system, trust
management, admission control, computer security, security
management.

I. INTRODUCTION

INTRUSION Detection Systems (IDSes) identify intru-
sions by comparing observable behavior against suspicious

patterns. They can be network-based (NIDS) or host-based
(HIDS). Traditional IDSes work in isolation and may be easily
compromised by unknown or new threats. A Collaborative In-
trusion Detection Network (CIDN) is an IDS network intended
to overcome this weakness by having each peer IDS benefit
from the collective information, knowledge and experience
shared by other peers. This enhances the overall accuracy of
intrusion assessment as well as the ability of detecting new
classes of intrusions.

Intrusions can have several forms such as worms, spamware,
viruses, denial-of-service attacks (DoS), malicious logins, etc.
The potential damage of these intrusions can be significant
if they are not detected promptly. An example is the Code
Red worm that infected more than 350,000 systems in less
than 14 hours in 2001 with a damage cost of more than two
billion dollars [1]. Another example is the Conflicker worm
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which infected more than 3.5 million Microsoft server systems
during the year of 2008 to 2009, with the estimated economic
loss of 9.1 billion dollars [2]. IDS collaboration can be an
effective way to throttle or stop the spread of such contagious
attacks.

The centralized collaboration of IDSes relies on a central
server to gather and analyze alerts. This technique suffers
from the classical performance bottleneck and single point
of failure problems. The distributed collaboration of IDSes
can avoid these problems. However, in such collaborative
environments, a malicious (or malfunctioning) IDS can de-
grade the performance of others by sending false intrusion
assessments. It is common in practice that a large number
of nodes are compromised to form Botnets [3]. For example,
the percentage of compromised nodes in 2009 is estimated
to be over 10% across all Internet computers [4]. If some
nodes are controlled by the same Bot-master, they can then
easily collude and send false intrusion assessments. Besides,
the problem of malicious IDSes is not the only concern in a
distributed CIDN. IDSes may have different levels of expertise
in intrusion assessments. To protect a CIDN from malicious
attacks as well as find expert IDSes to consult about intrusion
assessments, it is important to evaluate the trustworthiness
of participating IDSes, especially when they are host-based.
Since the trust model itself may also be the target of malicious
attacks, robustness is a desired feature of the trust management
scheme in collaborative intrusion detection networks.

In this paper, we propose a Bayesian trust management
model that is robust, scalable, and suitable for distributed
HIDS collaboration. More specifically, we adopt the Dirichlet
family of probability density functions in our trust manage-
ment for estimating the likely future behavior of a HIDS
based on its past history. This theoretical model allows us
to track the uncertainty in estimating the trustworthiness of
the HIDS. An acquaintance management algorithm based
on the estimated trust values is also proposed to enhance
intrusion detection accuracy and reduce the overall overhead.
The algorithm dynamically improves the list of peers a HIDS
uses for collaboration and controls the frequency and type of
communication between peers. Together our proposals can be
used to deploy a secure and scalable CIDN where effective
collaboration can be established between HIDSes.

We evaluate our approach based on a simulated collabo-
rative HIDS network. The HIDSes are distributed and may
have different expertise levels in detecting intrusions. A HIDS
may also turn malicious due to runtime bugs, having been
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Fig. 1. The overlay design of a collaborative intrusion detection network.
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Fig. 2. CIDN architecture design.

compromised, having been updated with a faulty new con-
figuration, or having been deliberately made malicious by its
owner. We also simulate several potential threats, e.g., betrayal
attacks where malicious HIDSes masquerade as honest ones
to gain trust then suddenly act dishonestly. Our experimental
results demonstrate that our trust management yields a sig-
nificant improvement in detecting intrusions, is robust against
various attacks, and improves the scalability of the system,
as compared to existing collaborative HIDS systems. The
proposed acquaintance management algorithm is also shown
to be effective, fair, and able to create incentives for HIDSes
to be honest in collaborating with others.

The CIDN framework is presented in Section II, the trust
management model in Section III, and the acquaintance
management algorithm in Section IV. The scalability of our
approach is discussed in Section V and its robustness against
common threats in Section VI. Section VII provides experi-
mental evidence of the efficiency, robustness and scalability of
our approach. Section VIII surveys related work. Section IX
summarizes our contributions and outlines future work direc-
tions.

II. COLLABORATION FRAMEWORK

Our CIDN framework connects HIDSes to form a collabo-
rative network, in which each HIDS is free to choose whom to
collaborate with. For example, it may choose peers with whom
it has a sustained good experience. Peers may have different
expertise levels of detecting intrusions. They may also act
dishonestly or selfishly. Our framework is proposed to have
several features: 1) An effective trust management model to
reduce the negative impact of low expertise HIDSes, dishonest
HIDSes and discover compromised ones; 2) An effective, fair
and incentive algorithm for HIDSes to manage their acquain-
tances from which they can ask advice about intrusions; 3)

Robustness against malicious insiders; 4) Scalability in terms
of CIDN size, trust evaluation, and intrusion assessement.

Figure 1 shows a CIDN as an overlay network of collab-
orating HIDSes. Note that these HIDSes can be produced
by different vendors with different intrusion detection tech-
niques and knowledge. Links between HIDSes indicate their
collaborative relationships. Each node maintains a list of
acquaintances whom it trusts the most and collaborates with.
Nodes communicate by means of intrusion evaluation requests
and corresponding feedback. There are two types of requests:
intrusion consultation messages and test messages. These mes-
sages are passed among HIDSes through the communication
overlay as shown in the architecture design (Figure 2). The
collaboration framework is built around the IDS component.
The purpose of the surrounding components is to enable the
communication and collaboration among different IDSes, and
to archive collaborative intrusion detection. The main com-
ponents of trust management and acquaintance management
will be described in Sections III and IV respectively. The other
components are outlined as follows.

A. Intrusion Consultation

When a HIDS detects suspicious behavior but lacks exper-
tise to make a decision whether it should raise an alarm, it
may send requests to its acquainted HIDSes for consultation.
Feedback from the acquaintances is aggregated and a final de-
cision can be made based on the aggregated results. The alert
information provided to acquaintances depends on the trust
level of each acquaintance. For example, a node may want to
share complete alert information including data payload with
other nodes inside its local network. Some part of the intrusion
information might be digested or even removed when sent to
“less trusted” acquaintances.
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B. Test Messages

We propose that nodes in the CIDN use test messages
to evaluate the trustworthiness of each other. Test messages
are “bogus” consultation requests, sent out in a way that
makes them difficult to be distinguished from real consultation
requests. The content of test messages varies depending on
the type of the intrusion. For example, a behavior graph can
be used to describe activities from suspicious software. The
testing node needs to know beforehand the true diagnosis
result of the test message and uses the received feedback to
derive a trust value for the other nodes. This technique helps
in identifying inexperienced and/or malicious nodes within the
collaborative network.

A test message can be generated artificially by a HIDS using
a knowledge database. The database is downloaded from a
central server and contains information such as the signature
or behavior pattern of known malware. The latter can also be
a real trace of a past intrusion that the HIDS has encountered
and that has been verified by the administrator, or the latest
malicious traffic collected through Honeypots [5].

C. Resource Management

The resource management policy is to decide whether a
host IDS should allocate resources to respond to a consulta-
tion request. This helps in several cases, such as preventing
denial of service attacks launched by sending a large number
of consultation messages to a targeted HIDS. Our CIDN
framework uses an incentive-compatible resource management
policy [6] to assist a HIDS in allocating resources to its
acquaintances. This ensures a fair treatment of HIDSes based
on their past assistance. In this way, a HIDS that abusively
uses the collaboration resources will be penalized by receiving
fewer responses from others. The resource management policy
also controls the rate of test messages in order to avoid
network as well as peer overloading.

D. Communication Overlay

It is the component which handles all communication with
other peers in the collaborative network. Messages passing
through the communication overlay include: test messages,
consultation requests to or from neighbors, and feedback from
or to acquaintances. It enables IDSes from different vendors
to communicate through a common protocol.

III. TRUST MANAGEMENT MODEL

In this section, we propose a robust and scalable trust model
which uses a Bayesian approach to evaluate the trustworthi-
ness between each pair of HIDSes. Specifically, we use a
Dirichlet family of probability density functions to estimate
the likely future behavior of a HIDS based on its past history.
A weighted majority method is used to aggregate feedback to
make intrusion decisions.

A. Satisfaction Mapping

In our model, a HIDS sends requests to its peers and
evaluates the satisfaction level of received feedback. Note that
the request can be a test message or a real request. The true

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

S
at

is
fa

ct
io

n 
Le

ve
l

Risk Level (Feedback)

d=0.1
d=0.5
d=0.9

Fig. 3. Satisfaction level for feedback (r=0.5, 𝑐1 = 2, 𝑐2 = 1).

answer of a test message is known beforehand while that of
a real request is verified by administrators after some delay
through the observed impact of the corresponding alert.

HIDSes may have different metrics to rank alerts. Snort
for example uses three levels (low, medium, high), while Bro
allows up to 100 different levels. We assume the existence of
a function 𝐻 , which maps a HIDS alert ranking onto the [0,1]
interval where 0 denotes benign traffic and 1 highly dangerous
intrusions. 𝐻 preserves the “more severe than” partial order
relationship. That is, if alert 𝑎𝑗 is more severe than alert 𝑎𝑖
then 𝐻 preserves that relationship by having 𝐻(𝑎𝑗) > 𝐻(𝑎𝑖).

The satisfaction level of feedback is determined by three
factors: the expected answer (𝑟 ∈ [0, 1]), the received answer
(𝑎 ∈ [0, 1]) and the difficulty level of the test message
(𝑑 ∈ [0, 1]). The larger is 𝑑 the more difficult it is to correctly
answer the request. Note that the difficulty of the test message
can be roughly estimated by the age of the corresponding
signatures or knowledge. For example, the difficulty level is
low for test messages generated from old signatures; medium
difficulty is for test messages generated from new signatures;
high difficulty for malicious traffic taken from Honeypots and
no local signature is able to detect it.

To quantitively measure the quality of feedback, we use
a function 𝑆𝑎𝑡(𝑟, 𝑎, 𝑑) (∈ [0, 1]) to represent the level of
satisfaction of the received answer based on its distance to
the expected answer and the difficulty of the test message, as
follows:

𝑆𝑎𝑡(𝑟, 𝑎, 𝑑) =

⎧⎨
⎩
1−

(
𝑎−𝑟

max(𝑐1𝑟,1−𝑟)

)𝑑/𝑐2
𝑎 > 𝑟

1−
(

𝑐1(𝑟−𝑎)
max(𝑐1𝑟,1−𝑟)

)𝑑/𝑐2
𝑎 ≤ 𝑟

(1)

where 𝑐1 controls the extent of penalty for wrong estimates.
It is set > 1 to reflect that estimates lower than the exact
answer get stronger penalty than those that are higher. Pa-
rameter 𝑐2 ∈ 𝑅+ controls satisfaction sensitivity, with larger
values reflecting more sensitivity to the distance between the
correct and received answers. The equation also ensures that
low difficulty level tests are more severe in their penalty to
incorrect answers. The shape of the satisfaction function is
depicted in Figure 3.

B. Dirichlet-based Model

Bayesian statistics provides a theoretical foundation for
measuring the uncertainty in a decision that is based on a
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collection of observations. We are interested in knowing the
distribution of satisfaction levels of the answers from each
peer HIDS and, particularly, using this information to estimate
the satisfaction level of future consultations. For the case
of a binary satisfaction level {satisfied,¬satisfied}, a Beta
distribution can be used as appeared in [7]. For multi-valued
satisfaction levels, Dirichlet distributions are more appropriate.

A Dirichlet distribution [8] is based on initial beliefs about
an unknown event represented by a prior distribution. The
initial beliefs combined with collected sample data can be
represented by a posterior distribution. The posterior distribu-
tion well suits our trust management model since the trust is
updated based on the history of interactions.

Let 𝑋 be the discrete random variable denoting the satisfac-
tion level of the feedback from a peer HIDS. 𝑋 takes values
in the set 𝒳 = {𝑥1, 𝑥2, ..., 𝑥𝑘} (𝑥𝑖 ∈ [0, 1], 𝑥𝑖+1 > 𝑥𝑖) of
the supported levels of satisfaction. Let �⃗� = {𝑝1, 𝑝2, ..., 𝑝𝑘}
(
∑𝑘

𝑖=1 𝑝𝑖 = 1) be the probability distribution vector of 𝑋 ,
i.e. 𝑃{𝑋 = 𝑥𝑖} = 𝑝𝑖. Also, let �⃗� = {𝛾1, 𝛾2, ..., 𝛾𝑘} denote
the vector of cumulative observations and initial beliefs of 𝑋 .
Then we can model 𝑝 using a posterior Dirichlet distribution
as follows:

𝑓(𝑝∣𝜉) = 𝐷𝑖𝑟(𝑝∣�⃗�) = Γ(
∑𝑘

𝑖=1 𝛾𝑖)∏𝑘
𝑖=1 Γ(𝛾𝑖)

𝑘∏
𝑖=1

𝑝𝑖
𝛾𝑖−1 (2)

where 𝜉 denotes the background knowledge, which in here is
summarized by �⃗�.

Let

𝛾0 =

𝑘∑
𝑖=1

𝛾𝑖 (3)

The expected value of the probability of 𝑋 to be 𝑥𝑖 given the
history of observations �⃗� is given by:

𝐸(𝑝𝑖∣�⃗�) = 𝛾𝑖
𝛾0

(4)

In order to give more weight to recent observations over
old ones, we embed a forgetting factor 𝜆 in the Dirichlet
background knowledge vector �⃗� as follows:

�⃗�(𝑛) =

𝑛∑
𝑖=1

𝜆𝑡𝑖 × 𝑆𝑖 + 𝑐0𝜆
𝑡0𝑆0 (5)

where 𝑛 is the number of observations; 𝑆0 is the initial
beliefs vector. If no additional information is available, all
outcomes have an equal probability making 𝑆0

𝑗 = 1/𝑘 for
all 𝑗 ∈ {1, .., 𝑘}. Parameter 𝑐0 > 0 is a priori constant,
which puts a weight on the initial beliefs. Vector 𝑆𝑖 denotes
the satisfaction level of the 𝑖𝑡ℎ evidence, which is a tuple
containing 𝑘 − 1 elements set to zero and only one element
set to 1, corresponding to the selected satisfaction level for
that evidence. Parameter 𝜆 ∈ [0, 1] is the forgetting factor. A
small 𝜆 makes old observations quickly forgettable. Parameter
𝑡𝑖 denotes the time elapsed (age) since the 𝑖𝑡ℎ evidence 𝑆𝑖 was
observed. Let Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖+1. For the purpose of scalability,
the �⃗�(𝑛) in Equation 5 can be rewritten in terms of �⃗�(𝑛−1),
𝑆𝑛 and Δ𝑡𝑛 as follows:

�⃗�(𝑛) =

{
𝑐0𝑆0 𝑛 = 0

𝜆Δ𝑡𝑛 × �⃗�(𝑛−1) + �⃗�𝑛 𝑛 > 0
(6)

C. Evaluating the Trustworthiness of a Peer

After a peer receives the feedback for an alert evaluation,
it assigns a satisfaction value to the feedback according to
Equation 1. This satisfaction value is assigned with one of the
satisfaction levels in the set 𝒳 = {𝑥1, 𝑥2, ..., 𝑥𝑘} that has the
closest value. Each satisfaction level 𝑥𝑖 also has a weight 𝑤𝑖.

Let 𝑝𝑢𝑣𝑖 denote the probability that peer 𝑣 provides answers
to the requests sent by peer 𝑢 with satisfaction level 𝑥𝑖. Let
𝑝𝑢𝑣 = (𝑝𝑢𝑣𝑖 )𝑖=1...𝑘 ∣∑𝑘

𝑖=1 𝑝
𝑢𝑣
𝑖 = 1. We model �⃗�𝑢𝑣 using

Equation 2. Let 𝑌 𝑢𝑣 be the random variable denoting the
weighted average of the probability of each satisfaction level
in 𝑝𝑢𝑣.

𝑌 𝑢𝑣 =

𝑘∑
𝑖=1

𝑝𝑢𝑣𝑖 𝑤𝑖 (7)

The trustworthiness of peer 𝑣 as noticed by peer 𝑢 is then
calculated as:

𝑇 𝑢𝑣 = 𝐸[𝑌 𝑢𝑣] =

𝑘∑
𝑖=1

𝑤𝑖𝐸[𝑝𝑢𝑣𝑖 ] =
1

𝛾𝑢𝑣0

𝑘∑
𝑖=1

𝑤𝑖𝛾
𝑢𝑣
𝑖 (8)

where 𝛾𝑢𝑣𝑖 is the cumulated evidence that 𝑣 has replied to 𝑢
with satisfaction level 𝑥𝑖. The variance of 𝑌 𝑢𝑣 is equal to
(superscript 𝑢𝑣 is omitted for clarity):

𝜎2[𝑌 ] =

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑤𝑖𝑤𝑗𝑐𝑜𝑣[𝑝𝑖, 𝑝𝑗] (9)

Knowing that the covariance of 𝑝𝑖 and 𝑝𝑗 (i ∕= j) is given by:

𝑐𝑜𝑣(𝑝𝑖, 𝑝𝑗) =
−𝛾𝑖𝛾𝑗

𝛾20(𝛾0 + 1)
(10)

We get:

𝜎2[𝑌 ] =

𝑘∑
𝑖=1

𝑤2
𝑖 𝜎

2[𝑝𝑖] + 2

𝑘∑
𝑖=1

𝑘∑
𝑗=𝑖+1

𝑤𝑖𝑤𝑗𝑐𝑜𝑣[𝑝𝑖, 𝑝𝑗]

=

𝑘∑
𝑖=1

𝑤2
𝑖

𝛾𝑖(𝛾0 − 𝛾𝑖)

𝛾20(𝛾0 + 1)
+ 2

𝑘∑
𝑖=1

𝑘∑
𝑗=𝑖+1

𝑤𝑖𝑤𝑗
−𝛾𝑖𝛾𝑗

𝛾20(𝛾0 + 1)

=
1

𝛾30 + 𝛾20

𝑘∑
𝑖=1

𝑤𝑖𝛾𝑖

⎛
⎝𝑤𝑖(𝛾0 − 𝛾𝑖)− 2

𝑘∑
𝑗=𝑖+1

𝑤𝑗𝛾𝑗

⎞
⎠ (11)

Let 𝐶𝑢𝑣 ∈ (−1, 1] be the confidence level for the value of
𝑇 𝑢𝑣, and we describe it as:

𝐶𝑢𝑣 = 1− 4 𝜎[𝑌 𝑢𝑣] (12)

where 4 𝜎[𝑌 𝑢𝑣] is roughly the 95% confidence interval.
Lemma 3.1: The confidence level 𝐶𝑢𝑣 formulated by Equa-

tion 12 lies in bound (-1, 1].
Proof:

From Equation 12 and Equation 11, we have,

𝐶𝑢𝑣 = 1− 4√
1 + 𝛾0

√√√⎷ 𝑘∑
𝑖=1

𝑤2
𝑖

𝛾𝑖
𝛾0

− (
𝑘∑

𝑖=1

𝑤𝑖
𝛾𝑖
𝛾0

)2 (13)
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where 𝑤𝑖 ∈ [0, 1], ∀𝑖 is the weight of the satisfaction level
𝑖, and 𝛾0 =

∑𝑘
𝑖=1 𝛾𝑖 > 0. To prove the boundary of 𝐶𝑢𝑣 , we

construct a discrete random variable 𝑍 ∈ {𝑤1, 𝑤2, ..., 𝑤𝑘},
where 𝑤1 ≤ 𝑤2 ≤ ... ≤ 𝑤𝑘 and ℙ[𝑍 = 𝑤𝑖] =

𝛾𝑖

𝛾0
, ∀𝑖. Then

we have,

𝜎2[𝑍] = 𝔼(𝑍2)− 𝔼
2(𝑍) =

𝑘∑
𝑖=1

𝑤2
𝑖

𝛾𝑖
𝛾0

− (
𝑘∑

𝑖=1

𝑤𝑖
𝛾𝑖
𝛾0

)2 (14)

We can see that the variation of 𝑍 is the major component of
𝐶𝑢𝑣 . It is not difficult to see that 𝜎2[𝑍] reaches its maximum
when ℙ[𝑍 = 𝑤1] = ℙ[𝑍 = 𝑤𝑘] = 0.5 and ℙ[𝑍 = 𝑤𝑗 ] =
0, ∀𝑗(1 < 𝑗 < 𝑘). Therefore, we have 0 ≤ 𝜎2[𝑍] ≤ 1

4 . After
replacing Equation 14 back into Equation 13, we have −1 <
𝐶𝑢𝑣 ≤ 1.

D. Feedback Aggregation

Based on their estimated trustworthiness, each peer requests
alert consultation only from those peers in its acquaintance list
whose trust values are greater than a threshold. We introduce
the 95% confidence interval lower-bound 𝑇𝑙 and upper bound
𝑇ℎ as follows:

𝑇 𝑢𝑣
𝑙 = 𝐸[𝑌 𝑢𝑣]− 2𝜎[𝑌 𝑢𝑣] = 𝑇 𝑢𝑣 + 𝐶𝑢𝑣/2− 1/2 (15)

𝑇 𝑢𝑣
ℎ = 𝐸[𝑌 𝑢𝑣] + 2𝜎[𝑌 𝑢𝑣] = 𝑇 𝑢𝑣 − 𝐶𝑢𝑣/2 + 1/2 (16)

Note that for a node with a low confidence value, the lower-
bound trust 𝑇𝑙 is low compared to its expected trust and the
upper-bound 𝑇ℎ is high. In the rest of this paper, we use 𝑇𝑙

and 𝑇ℎ when a confident judgment is needed.
After receiving feedback from its acquaintances, a peer u

aggregates the feedback using a weighted majority method as
follows:

𝑎𝑢𝑖 =

∑
𝑇𝑢𝑣
𝑙 ≥𝑡ℎ𝑢,𝑣∈𝐴𝑢

𝑇 𝑢𝑣𝑎𝑢𝑣𝑖

∑
𝑇𝑢𝑣
𝑙 ≥𝑡ℎ𝑢,𝑣∈𝐴𝑢

𝑇 𝑢𝑣
, (17)

where 𝑎𝑢𝑖 is the aggregated ranking of alert 𝑖 from the feedback
provided by each peer belonging to the acquaintance list 𝐴𝑢 of
peer 𝑢 maintained using our acquaintance management model
in the next section; 𝑡ℎ𝑢 is the trust threshold set by 𝑢; 𝑎𝑢𝑣𝑖 ∈
[0, 1] is the feedback ranking of alert 𝑖 from 𝑣 to 𝑢.

IV. ACQUAINTANCE MANAGEMENT

In this section, we propose an algorithm for a HIDS in
the CIDN to maintain a list of acquaintances from which it
can ask for consultation of intrusions. The HIDS sends test
or consultation messages to its acquaintances and updates
the trust values based on the satisfaction level it gets from
their feedback (see Section III for detailed computation). It
is not recommended for a node to keep all the other nodes
in its acquaintance list because the communication overhead
to maintain a long acquaintance list makes it not scalable.
We propose that each HIDS maintains an acquaintance list
with adapted length (the number of acquaintances in the list)
based on its resource capacity. Each node communicates with

its acquaintances regularly to keep their trust values up to
date. Less trusted acquaintances will be replaced by new nodes
with higher trust values. It also responds to requests from its
acquaintances to maintain its own trustworthiness.

Since it takes some time to learn the trust value of a new
node, we propose that each HIDS also maintains a probation
list, where a new node can stay in probation for some period
of time before it becomes an acquaintance. A node also
communicates with the nodes in its probation list periodically
to learn their trust values. The purpose of the probation list
is to explore potential collaborators and keep introducing new
trustworthy nodes to the acquaintance list.

Suppose that node 𝑖 has a list of 𝑛𝑖 acquaintances, and let
𝑆𝑖
𝑎 and 𝑆𝑖

𝑝 be the acquaintance list and the probation list of
the node. The corresponding trust values for the acquaintances
are 𝑇 𝑖 = {𝑇 𝑖

1, 𝑇
𝑖
2, ..., 𝑇

𝑖
𝑛𝑖
}, and the confidence of estimated

trust is 𝐶𝑖 = {𝐶𝑖
1, 𝐶

𝑖
2, ..., 𝐶

𝑖
𝑛𝑖}. Let 𝑙𝑖𝑎 and 𝑙𝑖𝑝 be the length

of the acquaintance list and probation list, respectively. Let
𝑙𝑖𝑚𝑎𝑥 be the maximum number of nodes in the acquaintance
and probation lists for HIDS 𝑖. 𝑙𝑖𝑚𝑎𝑥 is determined by the
resource capacity of the HIDS. Let 𝑞 be the parameter that
controls the length of the probation list compared to 𝑙𝑖𝑚𝑎𝑥, and
we have 𝑙𝑖𝑝 ≤ 𝑞𝑙𝑖𝑚𝑎𝑥. If we choose 𝑞 too small, the updating of
the acquaintance list may be too slow and less adaptive to the
changes of nodes’ behavior. On the other hand, if the probation
list is too large, a lot of resources are wasted on testing new
nodes. 𝑙𝑖𝑝 is chosen by 𝑙𝑖𝑝 = 𝑚𝑎𝑥(𝑞𝑙𝑖𝑚𝑎𝑥, 𝑙

𝑖
𝑚𝑎𝑥 − 𝑙𝑖𝑎).

The acquaintance management procedure for each node is
shown in Algorithm 1. For convenience, we drop super-script
𝑖. The acquaintance list 𝑆𝑎 is initially empty and the probation
list 𝑆𝑝 is filled by 𝑙𝑚𝑎𝑥 random nodes. An acquaintance
list updating event is triggered every 𝑡𝑢 time units. 𝑆𝑎 is
updated by including new trusted nodes from 𝑆𝑝. A node
that stays at least 𝑡𝑝 > 𝑡𝑢 time units in probation is called
a mature node. Some nodes are discarded early if their upper-
bound trust values formulated by Equation 16 drop below a
low threshold (lines 13-17). Only mature nodes are allowed
to join the acquaintance list (lines 19-24). The purpose of
this requirement is to give time for an IDS to learn its
potential collaborators and set obstacles for newcomer attack
(see section VI-2). Then, 𝑆𝑝 is refilled with new randomly
chosen nodes (lines 27-30 ). After that, the nodes whose lower-
bound trust values formulated by Equation 15 are the smallest
are removed from 𝑆𝑎 if the total number of nodes ∣𝑆𝑎∣+ ∣𝑆𝑝∣
is higher than 𝑙𝑚𝑎𝑥 (lines 32-35).

We use an upper and lower bound to protect new nodes in
the probation list and penalize those which do not respond to
consultations frequently enough. For example, if two nodes
in the probation list have the same bad trust values then
the one with higher confidence level will be removed first.
Similarly, if two nodes in the acquaintance list have the same
low trust values, then the node having lower confidence will
be removed first. We choose to remove the bad nodes entirely
and repopulate probation list so that the system keeps learning
about new nodes and tries to find better collaborators over
time.

Several properties are desirable for the acquaintance man-
agement algorithm, including convergence, fairness, and in-
centive for collaboration. When our acquaintance management
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Algorithm 1 Managing Acquaintance & Probation Lists
1: Initialization :
2: 𝑆𝑎 ⇐ ∅ //Acquaintance list.
3: 𝑙𝑝 = 𝑚𝑎𝑥(𝑙𝑚𝑎𝑥 − ∣𝑆𝑎∣, 𝑞𝑙𝑚𝑎𝑥) //Probation list.
4: //Fill 𝑆𝑝 with randomly selected nodes
5: while ∣𝑆𝑝∣ < 𝑙𝑝 do
6: 𝑒 ⇐ select random node
7: 𝑆𝑝 ⇐ 𝑆𝑝 ∪ 𝑒
8: end while
9: set new timer event(𝑡𝑢, “SpUpdate")

10: Periodic Maintenance:
11: at timer event ev of type “SpUpdate" do
12: //Remove from probation list nodes with bad record
13: for all 𝑒 ∈ 𝑆𝑝 do
14: if 𝑇 (𝑒)− 𝐶(𝑒)/2 + 1/2 < 𝑡ℎ𝑝 then
15: 𝑆𝑝 ⇐ 𝑆𝑝 ∖ 𝑒
16: end if
17: end for
18: //Merge mature nodes into the acquaintance list.
19: for all e in 𝑆𝑝 do
20: if 𝑡𝑒 > 𝑡𝑝 //𝑡𝑒 = age of node 𝑒 in probation list then
21: 𝑆𝑝 ⇐ 𝑆𝑝 ∖ 𝑒
22: 𝑆𝑎 ⇐ 𝑆𝑎 ∪ 𝑒
23: end if
24: end for
25: 𝑙𝑝 = 𝑚𝑎𝑥(𝑙𝑚𝑎𝑥 − ∣𝑆𝑎∣, 𝑞𝑙𝑚𝑎𝑥)
26: //Refill 𝑆𝑝 with randomly selected nodes
27: while ∣𝑆𝑝∣ < 𝑙𝑝 do
28: 𝑒 ⇐ random node not in 𝑆𝑎 or 𝑆𝑝

29: 𝑆𝑝 ⇐ 𝑆𝑝 ∪ 𝑒
30: end while
31: //Remove least trusted nodes from acquaintance list till

∣𝑆𝑎∣+ ∣𝑆𝑝∣ ≤ 𝑙𝑚𝑎𝑥

32: while ∣𝑆𝑎∣+ ∣𝑆𝑝∣ > 𝑙𝑚𝑎𝑥 do
33: 𝑎 ⇐ select 𝑒 ∈ 𝑆𝑎 where 𝑇 (𝑒)+𝐶(𝑒)/2 is minimum
34: 𝑆𝑎 ⇐ 𝑆𝑎 ∖ 𝑎
35: end while
36: set new timer event(𝑡𝑢, “SpUpdate")
37: end timer event

is in place, we expect the acquaintance list of each node to
converge to a stable state. This is important since cooperation
between HIDSes is generally long-term in nature. Frequently
changing collaborators is costly because HIDSes need to spend
considerable amount of time to learn the trustworthiness of
new collaborators. Fairness and incentive for collaboration are
also important properties, and are the foundation for forming
sustainable long-term collaborative relationships. Section VII-I
evaluates our acquaintance management algorithm, to demon-
strate that our algorithm achieves these three properties.

V. TEST MESSAGE EXCHANGE RATE AND SCALABILITY

OF OUR SYSTEM

Each HIDS 𝑢 in our system maintains an acquaintance
list and a probation list with maximum length 𝑙𝑢𝑚𝑎𝑥. This
length can be fixed according to the resource capacity of
node 𝑢 or slightly updated with the changes in CIDN size.

TABLE I
ACQUAINTANCE CATEGORIZATION

Peer category Criterion Rate
Highly Trustworthy 0 <𝑡ℎ≤ 𝑇𝑙 𝑅𝑙
Trustworthy 𝑇𝑙 <𝑡ℎ≤ 𝑇 𝑅ℎ

Untrustworthy 𝑇 <𝑡ℎ≤ 𝑇ℎ 𝑅𝑚

Highly Untrustworthy 𝑇ℎ <𝑡ℎ≤ 1 𝑅𝑙

However, it is always set to a value small enough to account
for scalability. Equation 6 ensures that the process of updating
the trustworthiness of a peer after the reception of a response
is performed with only three operations, making it linear with
respect to the number of answers.

There is a trade-off to be resolved in order to account for
scalability in the number of messages exchanged in the CIDN.
On one hand, the forgetting factor in Equation 6 decays the
importance given to existing highly trusted peers. This implies
that their corresponding test message rates need to be above a
certain minimal value. On the other hand, sending too many
requests to other peers may compromise scalability. To solve
this issue, we adapt the rate of test messages to a given peer
according to its estimated trustworthiness. The adaptation pol-
icy is provided in Table I, where acquaintances are categorized
into highly trustworthy, trustworthy, untrustworthy, and highly
untrustworthy. There are three levels of test message rates:
𝑅𝑙 < 𝑅𝑚 < 𝑅ℎ. We can see in Table I that the test message
rate to highly trustworthy or highly untrustworthy peers is
low. This is because we are confident about our decision of
including or not their feedback into the aggregation. A higher
test message rate is assigned to trustworthy or untrustworthy
peers because their trust values are close to the threshold and
hence need to be kept under close surveillance.

Each peer in the system needs to actively respond to
others’ requests in order to keep up its trustworthiness and be
able to receive prompt help when needed. However, actively
responding to every other peer may cause bandwidth and/or
CPU overloading. Therefore, as a consultant to others, a peer
would like to limit the rate of answers it provides. In this
regard, each peer in our system would respond to requests
with a priority proportional to the amount of trust it places
on the source of the request [6]. It will give higher priority to
highly trusted friends. This obeys the social norm: “Be nice to
others who are nice to you”, and also provides incentives for
encouraging peers to act honestly in order to receive prompt
help in times of need.

VI. ROBUSTNESS AGAINST COMMON THREATS

Trust management can effectively improve network col-
laboration and detect malicious peers. However, the trust
management system itself may become the target of attacks
and be compromised. In this section, we describe common
attacks and provide defense mechanisms against them.

1) Sybil attacks: occur when a malicious peer in the system
creates a large amount of pseudonyms (fake identities) [9].
Such a malicious peer uses fake identities to gain larger
influence over the false alert ranking on others in the network.
Our defense against sybil attacks can rely on the design of
authentication mechanism as well as the acquaintance manage-
ment system. Authentication makes registering fake identities
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difficult. Our model can use a certificate issuing authority
which only allows one identity per (user, machine) tuple. In
addition, our trust management model requires HIDSes to
first build up their trust before they can affect the decision
of others, which is costly to do with many fake identities.
This way, our security and trust mechanisms protect our
collaborative network from sybil attacks.

2) Newcomer attacks: occur when a malicious peer can
easily register as a new user [10]. Such a malicious peer
creates a new ID for the purpose of erasing its bad history
with other peers in the network and create immediate damages.
Our model handles this type of attacks by assigning low
trust values to all newcomers and enforcing the probation
period for each new node. In this way, their feedback on
the alerts is simply not considered by other peers during the
aggregation process. Newcomers may gain more trust over
time and eventually move to acquaintance list of they behave
consistently well.

3) Betrayal attacks: occur when a trusted peer suddenly
turns into a malicious one and starts sending false feedbacks.
A trust management system can be degraded dramatically
because of this type of attacks. We employ a mechanism which
is inspired by the social norm: “It takes a long-time interaction
and consistent good behavior to build up a high trust, while
only a few bad actions to ruin it." When a trustworthy peer
acts dishonestly, the forgetting factor (Equation 6) causes its
trust value to drop down quickly, hence making it difficult
for this peer to deceive others or gain back its previous trust
within a short time.

4) Collusion attacks: happen when a group of malicious
peers cooperate together by providing false alert rankings in
order to compromise the network. In our system, peers will not
be adversely affected by collusion attacks. In our trust model
each peer relies on its own knowledge to detect dishonest
peers. In addition, we use test messages to uncover malicious
peers. Since the test messages are sent in a random manner, it
will be difficult for malicious peers to distinguish them from
actual requests.

5) Inconsistency attacks: happen when a malicious peer
repeatedly changes its behavior from honest to dishonest in
order to degrade the efficiency of the CIDN. Inconsistency
attacks are harder to succeed in the Dirichlet-based model
because of the use of the forgetting factor and the dynamic
test message rate, which makes trust values easy to lose and
hard to gain. This ensures that the trust values of peers with
inconsistent behavior remain low and hence have little impact.

VII. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present a set of experiments used to
evaluate the efficiency, scalability and robustness of our trust
management model in comparison with existing ones [11][12].
Experiments are also carried out to demonstrate the desirable
properties of our acquaintance management algorithm. Each
experimental result presented in this section is derived from
the average of a large number of replications with an overall
negligible confidence interval.

TABLE II
SIMULATIONS PARAMETERS

Parameter Value Description
𝑅𝑙 2/day Low test message rate
𝑅𝑚 10/day Medium test message rate
𝑅ℎ 20/day High test message rate
𝜆 0.9 Forgetting factor
𝑡ℎ 0.8 Trust threshold for aggregation
𝑐0 10 Priori Constant
𝑐1 1.5 Cost rate of low estimate to high estimate
𝑐2 1 Satisfaction sensitivity factor
𝑠 4 Size of grid region
𝑘 10 Number of satisfaction levels
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A. Simulation Setting

We simulate a CIDN environment with 𝑛 HIDS peers
randomly distributed over an 𝑠× 𝑠 grid region. The proximity
distance is given by the minimum number of square steps
between each two peers. The expertise level of a peer can be
low (0.05), medium (0.5) or high (0.95). In the beginning, each
peer receives an initial acquaintance list containing neighbour
nodes based on proximity. The initial trust value of every peer
in the acquaintance list is 0.5. To test the trustworthiness of
acquaintances, each peer sends out test messages following a
Poisson process with rates according to Table I. The parame-
ters we used are shown in Table II.

B. Modeling the Expertise Level of a Peer

To reflect the expertise level of each peer, we use a Beta
distribution to simulate the decision model of answering
requests. A Beta density function is given by:

𝑓(𝑝∣𝛼, 𝛽) =
1

𝐵(𝛼, 𝛽)
𝑝𝛼−1(1− 𝑝)𝛽−1

𝐵(𝛼, 𝛽) =

∫ 1

0

𝑡𝛼−1(1− 𝑡)𝛽−1𝑑𝑡 (18)

where 𝑓(𝑝∣𝛼, 𝛽) is the probability that a peer with expertise
level 𝑙 answers with a value of 𝑝 ∈ [0, 1] to an alert of difficulty
level 𝑑 ∈ [0, 1]. Higher values for 𝑑 are associated to attacks
that are difficult to detect, i.e. many peers fail to identify them.
Higher values of 𝑙 imply a higher probability of producing
correct alert rankings.

Let 𝑟 be the expected ranking of an alert. We define 𝛼 and
𝛽 as follows:
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√
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𝑙
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For a fixed difficulty level, the above model has the property
of assigning higher probabilities of producing correct rankings
to peers with higher levels of expertise. A peer with expertise
level 𝑙 has a lower probability of producing correct rankings
for alerts of higher difficulty (𝑑 > 𝑙). 𝑙 = 1 or 𝑑 = 0 represent
the extreme cases where the peer can always accurately rank
the alert. This is reflected in the Beta distribution by 𝛼, 𝛽 →
∞. Figure 4 shows the feedback probability distribution for
peers with different expertise levels, where we fix the expected
risk level to 0.6 and the difficulty level of test messages to 0.5.

C. Deception Models

A dishonest peer may adopt one of the four deception
models: complementary, exaggerate positive, exaggerate neg-
ative, and maximal harm. The first three deception models
are described in [13], where an adversary may choose to send
feedback about the risk level of an alert that is respectively
opposite to, higher, or lower than the true risk level. We
propose a maximal harm model where an adversary always
chooses to report false feedback with the intention to bring
the most negative impact to the request sender. Figure 5
shows the feedback curve for the different deception strategies.
For instance, when a deceptive peer using the maximal harm
strategy receives a ranking request and detects that the risk
level of the request is “medium”, it sends feedback “no risk”
because this feedback can maximally deviate the aggregated
result at the sender side.

D. Trust Values and Confidence Levels for Honest Peers

The first experiment studies the effectiveness of the collab-
oration and the importance of our trust management. In this
experiment, all peers are honest. We simulate the scenario
where each peer 𝑢 has a fixed size 𝑁𝑢 of its acquaintance
list. The peers are divided into three equally-sized groups
of low, medium and high expertise levels respectively. The
first phase of the simulation is a learning period (50 days),
during which peers learn about each other’s expertise levels

by sending out test messages. Figure 6 shows the resulting
average trust values of the 30 acquaintances of peer 𝑢. The
trust values converge after 30 days of simulation and the actual
expertise levels of the peers are able to be effectively identified
by our trust model.

To study the impact of different test message rates on the
confidence level of trust estimation (Equation 12), we conduct
a second experiment to let 𝑢 use a fixed test message rate in
every simulation round. The rate of sending test messages
starts with one message per day and increases by five for
every simulation round. We plot the confidence level of trust
evaluation for each test message rate in Figure 7. We can
observe that the confidence level increases with the increase
of the test message rate. This confirms our argument that
sending more test messages improves the confidence of trust
estimation. We also observe that the confidence levels increase
with the expertise levels. This is because peers with higher
expertise levels tend to perform more consistently.

E. Trust Values for Dishonest Peers

The purpose of this experiment is to study the impact of
dishonest peers using the four different deception strategies
described in Section VII-C. To study the maximum impact
of these deception strategies, we only use peers with a high
expertise level as deceptive adversaries since they are more
likely to know the true answers and can perform the deception
strategies more accurately.

In this experiment, we let peer 𝑢 have an acquaintance list of
40 dishonest peers divided into four groups. Each group uses
one of the four deception models: complimentary, exaggerate
positive, exaggerate negative, and maximal harm. We use a
dynamic test message rate and observe the convergence curve
of the average trust value for each group of deceptive peers.
Results are plotted in Figure 8.

We notice that the trust values of all adversary peers
converge to stable values after 30 days of the learning phase.
It is not surprising that adversary peers using the maximal
harm strategy have the lowest trust values, while adversary
peers using the complimentary strategy have the second lowest
ones. The converged trust values of adversary peers using
exaggerate positives are higher than those using exaggerate
negatives. This is because we use an asymmetric penalization
mechanism for inaccurate replies (𝑐1 > 1 in Equation 1). We
penalize more heavily peers that untruthfully report lower risks
than those which untruthfully report higher risks.

F. Robustness of Our Trust Model

The goal of this experiment is to study the robustness of our
trust model against various insider attacks. For the newcomer
attack, malicious peers white-wash their bad history and re-
register as new users to the system. If the trust value of a
newcomer can increase quickly based on its short term good
behavior, the system is then vulnerable to newcomer attacks.
However, a newcomer attack is difficult to succeed in our
model. In our model, we use parameter 𝑐0 in Equation 6 to
control the trust value increasing rate. When 𝑐0 is larger, it
takes longer for a newcomer to gain a trust value above the
trust threshold.
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We compare our Dirichlet-based model with our previous
model [11] and the model of Duma et al. [12] in Figure 9.
We observe that in the Duma et al. model, the trust values
of new users increase very fast and reach the aggregation
trust threshold (0.8) in the first day, which reveals a high
vulnerability to newcomer attacks. The reason for this is that
their model does not have an initial trust to new peers and
therefore their trust values change fast in the beginning. In
the model we developed in [11], the trust values increase in a
slower manner and reach the trust threshold after three days.
However, that model is not flexible in that it does not offer
control over the trust increase speed. In the Dirichlet-based
model, the trust increase speed is controlled by the priori
constant 𝑐0. For 𝑐0 = 10, it takes a newcomer four to five
days of consistent good behavior to reach the same trust value.
Larger values of 𝑐0 make it even slower to reach high trust,
hence offering robustness against newcomer attacks.

The second possible threat is the betrayal attack, where
a malicious peer first gain a high trust value and then sud-
denly starts to act dishonestly. This scenario can happen, for
example, when a peer is compromised. To demonstrate the
robustness of our model against this attack type, we set up a
scenario where 𝑢 has seven peers in its acquaintance list, of
which six are honest with an expertise level evenly divided
between low, medium, and high. The malicious one has high
expertise and behaves honestly in the first 50 days. After that,
it launches a betrayal attack by adopting a maximal harm
deceptive strategy. We observe the trust value of the betraying
peer and the satisfaction levels of aggregated feedback in each
day with respect to 𝑢.

Figure 10 shows the trust value of the betraying peer before
and after the launching of the betrayal attack when respectively

using Duma et al., our previous and our current trust models.
For the Duma et al. model, the trust value of the malicious
peer slowly drops after the betrayal attack. This is because
their model does not use a forgetting factor, hence providing
the previous honest behavior of a malicious peer with a heavy
impact on the trust calculation for a considerable amount of
time. The trust value of the betraying peer drops much faster
using our previous model, while the fastest rate is observed
when using our Dirichlet-based model. This is because both
models use a forgetting factor to pay more attention to the
more recent behavior of peers.

We also notice that the Dirichlet-based model has a slight
improvement over our previous model. The Dirichlet-based
model adopts the dynamic test message rate and can react
more swiftly. The rate of sending messages to malicious peers
increases as soon as they start behaving dishonestly. Higher
rates of test messages help in faster detection of dishonest
behavior. However, in our previous model, the test message
rate remains the same. This phenomenon can be further
observed in Figure 12.

The results for the satisfaction levels of aggregated feedback
with respect to 𝑢 before and after the betrayal attack are shown
in Figure 11. We notice that the satisfaction level of 𝑢 for the
aggregated feedback drops down drastically in the first day
following the learning period and recovers after that in all
three models. The recovery period is however much shorter
for the Dirichlet-based and our previous models. This is again
attributed to the use of the forgetting factor. The Dirichlet-
based model has a slight improvement in the recovering speed
over our previous model. This is because in the Dirichlet-
based model, the trust values of betraying peers drop under
the aggregation threshold faster than our previous model.
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Therefore, the impact of betraying peers is eliminated earlier
than that in the previous model.

G. Scalability of our Trust Model

The result of test message rates under betrayal attack is
shown in Figure 12. We notice that in our Dirichlet-based
model, the average test message rates for highly trustworthy
as well as highly untrustworthy peers are the lowest. The
average test message sending rate to peers with the medium
expertise level is higher but still below the medium rate
(𝑅𝑚). Compared to our previous model, the average message
sending rate is much lower, which demonstrates the improved
scalability of our Dirichlet-based model. Note that the spike
from the betraying group on around day 50 is caused by
the drastic increment of the test message rate. The sudden
change of a highly trusted peer behavior will cause the trust
confidence level to drop down quickly. The rate of sending
messages to this peer then switches to 𝑅ℎ accordingly.

H. Efficiency of our Trust Model

To demonstrate the efficiency of our Dirichlet-based trust
model, we conduct another experiment to evaluate the intru-
sion detection accuracy. In this experiment, we let peer 𝑢 have
15 acquaintances, which are evenly divided into low, medium,
and high expertise groups. Among the expert peers, some are
malicious and launch inconsistency attacks synchronously to
degrade the efficiency of the CIDN. More specifically, in each
round of behavior changing, these malicious peers adopt the
maximal harm deception strategy for two days followed by
six days of honest behavior.

In Figure 13, we vary the percentages of malicious peers
from 0% to 80%. We inject daily intrusions to peer 𝑢 with
medium difficulty (0.5) and random risk levels. We then plot
the average satisfaction level for the aggregated feedback. We
observe that our Dirichlet-based model outperforms the others.
This is because the dynamic test message rate in Dirichlet-
based model causes the trust of malicious peers to drop faster
and increase more slowly, hence minimizing the impact of
dishonest behavior. Among the three models, Duma et al. has
the least satisfaction level because of its slow response to
sudden changes in peer behavior and its aggregation of all
feedback from even untrustworthy peers.

Figure 14 shows the success rate of peer 𝑢 in detecting
intrusions. We notice that both our previous model and the

Duma et al. model cannot effectively detect intrusions when
the majority of peers are malicious. Our Dirichlet-based model
shows excellent efficiency in intrusion detection even in the
situation of a dishonest majority.

I. Properties of our Acquaintance Management Algorithm

1) Convergence: In this experiment, we study the conver-
gence of our proposed acquaintance management algorithm.
First, we simulate a network of 30 HIDSes divided into 10
equally-sized groups with expertise levels of 0.1, 0.2, ..., 1.0,
respectively. We set the maximum acquaintance/probation list
length 𝑙𝑚𝑎𝑥 = 8 and probation list ratio 𝑝 = 0.25. The
updating interval is 5 days and the probation period is 30
days. Figure 15 plots the average expertise levels of the
acquaintances for nodes with different expertise levels. We
observe that in the first three rounds, the average expertise
levels of acquaintances for all nodes are close (0.55). After
that, they diverge and converge to stable values depending on
the expertise levels of the host nodes.

We also count the number 𝑁 of nodes that include a
given node into their acquaintance lists. We then compute
the average 𝑁 for each group of nodes with similar expertise
levels as shown in Figure 16. We can see that nodes with
higher expertise levels are more likely to stay in the acquain-
tance list of others nodes and hence have a larger number of
collaborators.

2) Fairness: In this experiment, we create a random CIDN
containing 100 nodes with random expertise levels uniformly
distributed in [0, 1]. All nodes are honest. We observe the
converged average expertise level of nodes in the acquaintance
list for all nodes in the network. The result is shown in
Figure 17. Nodes with higher expertise levels end up having
collaborators whose expertise levels are close by. This reflects
a good fairness in the collaboration.

3) Incentive for Collaboration: We add another 50 nodes
which are dishonest and have random expertise levels uni-
formly distributed between [0, 1]. We observe the distribution
of the acquaintances for all nodes after convergence. Figure
18 shows the distribution of acquaintances’ expertise levels
for all nodes in the network, where a negative expertise
represents a dishonest node. Notice that honest nodes end up
having few dishonest nodes in their acquaintance lists, while
dishonest nodes tend to collaborate with other dishonest nodes.
This reflects the incentive for collaboration induced by our
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acquaintance management algorithm. Nodes are encouraged
to behave honestly no matter what their expertise levels are.
A dishonest node ends up not receiving help from honest ones.

VIII. RELATED WORK

CIDNs can be divided into information-based CIDNs and
experience-based CIDNs. In information-based CIDNs, in-
trusion information such as intrusion alerts, intrusion traffic
samples, firewall logs, are shared in the network and ag-
gregated to achieve better network-wide intrusion decisions.
Many information-based CIDNs, such as [14]-[15], have been
proposed in the past few years. Information-based CIDNs are
especially effective in detecting epidemic worms or attacks,
and most of them require homogeneous participant IDSes.
While in experience-based CIDNs, suspicious data samples
are sent to collaborators for diagnosis. Feedback from col-
laborators are then aggregated to help the sender IDS make
intrusion decisions. Examples of such CIDNs include [11],
[12], [16], and [17]. Experience-based CIDNs may involve
heterogeneous IDSes and are effective in detecting many
intrusion types including worms, malware, port scannings, and
buffer-overflows.

From the perspective of collaboration topology, many
CIDNs are centralized, such as [14], [18], and [19]. A
centralized CIDN requires a consistently on-site central server
and it suffers from the single point of failure problem. A
decentralized CIDN such as [15] can alleviate the workload
of the central server by means of clustering where the cluster
heads partially process data they collect. In a fully distributed
CIDN [11], [16], [20], [21], all IDSs are equally responsible

for collecting/processing information and therefore is the most
scalable and flexible topology.

Most of the existing work on distributed collaborative
intrusion detection relies on the assumption that all HIDSes
are trustworthy and faithfully report intrusion events. The
Indra system [22] distributes among peers information about
attack attempts on different machines so as to proactively
react and increase the chance of detecting an attack. This
system also allows peer neighbors to share information about
intrusion attempts in order to enhance the overall system
security. Another example is the distributed intrusion alert
fusion system called Cyber Disease Distributed Hash Table
(CDDHT) [23]. The CDDHT system provides several load
balancing schemes to evenly distribute intrusion alarms among
the sensor fusion centers in order to increase the scalability,
fault-tolerance and robustness of the system. However, the
systems mentioned above are all vulnerable to malicious
IDS attacks. False information about intrusion events sent by
malicious IDSes may heavily degrade the performance of these
CIDNs.

To protect a CIDN, it is important to evaluate the trustwor-
thiness of participating IDSes. ABDIAS [24] is a community
based CIDN where IDSes are organized into groups and
exchange intrusion information to gain better intrusion de-
tection accuracy. A simple majority-based voting system was
proposed to detect compromised nodes. However, such system
is vulnerable to colluded voting. Duma et al. [12] propose
to address possibly malicious IDSes (peers) by introducing
a trust-aware collaboration engine for correlating intrusion
alerts. Their trust management scheme uses each peer’s past
experience to predict others’ trustworthiness. However, their
trust model is simplistic and does not address security issues
within the collaborative network. For instance, in their system,
the peer’s past experience has the same impact on the final
trust values of others, and therefore is vulnerable to betrayal at-
tacks where compromised peers suddenly change their behav-
ior. In our model, we use a forgetting factor when calculating
trust, in order to rely more on the peer’s recent experience and
be robust to the changes of other peers’ behavior. Our previous
work [11] proposed a robust trust management model that uses
test messages to gain personal experience and a forgetting
factor to emphasize most recent experiences. However, this
model needs to repeatedly aggregate all past experience with
a peer when updating its trust, which makes it not scalable
over time. It uses a linear model to calculate the average
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satisfaction levels of past interactions, and lacks a theoretical
foundation. Also this approach does not capture trust modeling
uncertainties or provide statistical confidence information on
intrusion decisions. Our new model uses Dirichlet distributions
to model peer trustworthiness. It makes use of dynamic test
message rates in order to allow for better scalability. Also, our
new model further improves robustness over our previous one
through the use of flexible test message rates.

Researchers in multi-agent systems have also been develop-
ing trust models to evaluate the trustworthiness of buying and
selling agents in e-marketplaces [7]. One of the earliest trust
models developed by Marsh [25] computes the trustworthiness
of selling agents by taking into account direct interactions
between buying and selling agents. The trust-oriented learning
strategy proposed by Tran and Cohen [26] uses reinforcement
learning to determine the trustworthiness of selling agents,
after the true value of delivered goods is evaluated and
compared to the buying agent’s expected value for the goods.
Selling agents can be classified as untrustworthy if their trust
values fall below a certain threshold and buying agents try to
select the trustworthy selling agent with the highest expected
value for the goods. The Beta Reputation System (BRS) of
Whitby et al. [27] and the TRAVOS model of Teacy et al. [28]
estimate the trustworthiness of a selling agent by employing
a Beta probability density function representing a probability
distribution of a continuous variable. The work of Zhang and
Cohen [7] focuses on coping with inaccurate reputation infor-
mation about selling agents shared by malicious buying agents
in e-marketplaces. The REGRET model of Sabater et al. [29]
offers a multi-dimensional view of trust that includes a social
dimension taking into consideration the social relationships
among agents. However, it is difficult to clearly determine
social relationships among HIDSes in CIDNs.

Our model is different from the above trust models in
several aspects. First, our model is focused on long-term
collaboration trust. Repetitive direct interactions between two
agents are common in CIDN environment. Second, the cost
of experience in CIDN is much lower than in e-commerce
and it allows HIDSes to send test messages to better establish
trust relationships with others. Third, our model uses fine-
grained experience quality rather than a binary measurement
such as “good” or “bad”. Instead, it is categorized into multiple
levels. Finally, our model uses direct trust modeling rather than
reputation models. It is because the latter may suffer from
collusion attacks where a group of malicious IDSes cooperate
together by providing false reputation information about some
IDSes to bad-mouth these targets for example.

Different reputation models were proposed in distributed
systems [30], [31]. These reputation models allow peers to get
advice when evaluating the trustworthiness of other peers. For
example, [30] uses a global reputation management to evaluate
distributed trust by aggregating votes from all peers in the
network. Sun et al. [31] propose for the communication in dis-
tributed networks an entropy-based model and a probability-
based one. The models are used to calculate indirect trust,
propagation trust and multi-path trust. They however involve
a lot of overhead which limits their scalability. Another
important concern is that IDSes can be easily compromised
and become deceptive when reporting the trustworthiness of

others. The reputation models for peer-to-peer networks, such
as PowerTrust [32], TrustGuard [33], Malicious detector [34],
and Fine-Grained reputation [35] are capable of detecting ma-
licious peers. However, they are purposed to detect deceiving
nodes in a P2P network and can not be directly used in IDNs
to improve the intrusion detection accuracy. A trust model in
CIDN should not only detect malicious nodes but also improve
the intrusion detection accuracy as well as contain good levels
of robustness and scalability.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a trust management solution for
evaluating trustworthiness of Host-based Intrusion Detection
Systems in a Collaborative Intrusion Detection Network. Our
trust management adapts Dirichlet density functions as its
theoretical foundation, and is accordingly able to measure the
uncertainty in estimating the likely future behavior of HIDSes.
The measured uncertainty allows our trust management to
employ an adaptive message exchange rate, resulting in good
scalability. Equipped with a forgetting factor, it is also robust
against some common threats. The effectiveness, robustness
and scalability of our trust management have been further
demonstrated through experiments carried out in a simulated
Collaborative Intrusion Detection Network. HIDSes in the
conducted experiments have different levels of expertise in
detecting intrusions and adopt different deception strategies.
The results show that our trust management is more effective
compared to previous trust models. Our acquaintance man-
agement algorithm is also demonstrated to have the properties
of fairness and convergence, and to provide incentive for
collaboration. Putting it all together, our work serves as an
important step toward effective trust management necessary
for the deployment of a secure CIDN capable to enhance
networks and systems security.

One possible direction for future work is to incorporate
reputation models in our trust management. In this case,
the important issues of inaccurate reputation information,
scalability and collusion attacks should be addressed.

For future work, we also plan to deploy a real CIDN using
existing intrusion detection systems, and use it for further
experiments.
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