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Abstract. In this paper we outline an approach for reasoning about
the trustworthiness of users when advice from peers is provided and a
majority opinion is central to the overall calculation. Typically, trust
modeling frameworks have reasoned with binary reports from peers (i.e.
trustworthy or not). In this paper, we illustrate how to do trust modeling
when numeric advice is provided, instead (i.e. degree of trustworthiness
within a continuum). This is done in the context of a specific application:
directing the travel decisions of users with peer-provided traffic reports.
We demonstrate the effectiveness of our solution by mapping the average
time for completing paths in simulated traffic environments when vehicles
are modeling trust using our framework and road reports are shared.
We conclude with a discussion of the value of our approach for other
applications as well.

1 Introduction

Many current trust modeling researchers choose to represent the trustworthiness
of a user (or agent) as a binary value. With each new experience, the user
is determined to be trustworthy or untrustworthy, resulting in an increase or
decrease in the overall reputation of that user (typically on a scale of 0 to 1).
At times, it is the experiences of peers that help to determine the calculation
that is done (rather than the direct experience of the party that is modeling the
trust). The trustworthiness of these peers then also needs to be modeled.

In this research, we consider scenarios where users’ trustworthiness is modeled
on the basis of reports they have provided and where it would be valuable to
determine whether there is a consensus among the views of various peers about
another user’s reputability. While it is relatively straightforward to determine
consensus when the possible evaluations are simply binary values (yes or no,
when asked whether another party is trustworthy), it becomes more challenging
to do so when evaluations can assume a range of possible values on a continuum
(a level of trustworthiness, in a range of 0 to 1). Since more specific evaluations
are in fact more precise and valuable for the trust modeling, it is important to
support these more complex calculations.

In this paper, we first present a trust model that includes a majority con-
sensus calculation but that assumes only binary reports, one that is used in
the context of vehicle travel planning (within mobile vehicular ad-hoc networks



(VANETS) communicating traffic reports). We then propose an extension of
this trust modeling to support the exchange of numeric evaluations. For this, we
sketch the algorithms required to employ the trust modeling as part of travel
planning together with the formulae to introduce in order to achieve the proper
calculation of majority consensus.

We then include a few results from a simulation of travel planning (using
a metric of average path time to demonstrate effective solutions), to confirm
that our proposed algorithms for reasoning about trustworthiness are able to
cope well with reports presented from users with varying honesty: modeling
trustworthiness, relying on more reputable sources and achieving effective travel
decisions. This serves as a validation of our proposed model for reasoning about
numeric trust values. We conclude with a brief discussion of the potential value
of this framework for applications other than VANETs and a comparison to
related work.

2 Multi-faceted Trust Model

We consider the driver of each vehicle in our VANET environment to be a user. In
order for each vehicle on the road to make effective traffic decisions, information
is sought from other vehicles (about the traffic congestion on a particular road).
As a result, for each driver an intelligent agent constructs and maintains a user
model for each of the other vehicles. Travel decisions are then made based on
a multi-faceted model of user trustworthiness. In particular, we propose a core
processing algorithm to be used by each user that seeks advice from other vehicles
in the environment as summarized below.

Algorithm 1: Computation Steps

while on the road do
Send requests and receive responses;
if in need of advice then

Choose n; //number of users to ask for advice
//according to roles and experiences
Prioritize n users;
if response consensus > acceptable ratio then

Follow advice in response;

else
Follow advice of user with highest role and highest trust value;

Verify reliability of advice;
Update users’ trust values;

Experience-based trustworthiness is represented and maintained following
the model of [6] where TA(B) ∈ (−1, 1) represents A’s trust in B (with -1 for
total distrust and 1 for total trust) which is incremented by α if B’s advice is
found to be reliable or decremented by β if unreliable, with |β| > |α| to reflect



that trust is harder to build up but easier to tear down. Distinct from the original
model of [6], the values of α and β can be set to be event-specific. The equations
which adjust experience-based trust are as below:

TA(B)←
{
TA(B) + α(1− TA(B)) if TA(B) ≥ 0,
TA(B) + α(1 + TA(B)) if TA(B) < 0,

(1)

TA(B)←
{
TA(B) + β(1− TA(B)) if TA(B) ≥ 0,
TA(B) + β(1 + TA(B)) if TA(B) < 0,

(2)

For each user Bi (1 ≤ i ≤ n) belonging to a subset of users B(Rj) ⊆ B who
report the same report Rj ∈ R (1 ≤ j ≤ m), we aggregate the effect of its report
according to the above factors. The aggregated effect E(Rj) from reports sent
by users in B(Rj) can be formulated as follows (per [2]):

E(Rj) =
∑

Bi∈B(Rj)

Te(Bi)Tr(Bi)

Ct(Rj)Cl(Bi)W (Bi)
(3)

We define Ct (time closeness), Cl (location closeness), Te (experience-based
trust) and Tr (role-based trust). Note that all these parameters belong to the
interval (0, 1) except that Te needs to be scaled to fit within this interval. W (Bi)
is a weight factor set to 1 if user Bi who sent report Rj is an indirect witness,
and W (Bi) is set to a value in (0, 1) if user Bi is a direct witness1.

A majority consensus can be reached if

M(Rj)∑
Rj∈RE(Rj)

≥ 1− ε (4)

where ε ∈ (0, 1) is set by user A to represent the maximum error rate that A can
accept and M(Rj) = maxRj∈RE(Rj) . A majority consensus can be reached if
the percentage of the opinion (the effect among different reports) over all possible
opinions is above the threshold set by user A.

3 Our proposed numeric trust modeling

Our new proposed confidence metric and use of numeric congestion and trust
values serve to allow a more accurate description of traffic and agent information,
which will be explained below.

The original theory in Section 2 assumed that congestion would be communi-
cated as a simple true (Heavy) or false (Light), stating either that the road was
congested or not. However, direct application may result in an unfair and biased
calculation of the majority opinion. This is because determining whether a road
is congested or not is a subjective opinion and is prone to inaccuracies. Also, by
representing the congestion as a Boolean, this severely limits the system’s ability

1 For example, setting W (Bi) = 1/2 for the case of direct witnesses indicates that the
requesting user values direct evidence two times more than indirect evidence.



to compare roads, evaluate agents, and make the best decisions. Our proposed
model seeks to alleviate this problem by representing congestion as a number ,
which will bring a more suitable level of accuracy to the system 2.

Formula (3) shows the calculation for the aggregated effect of a majority
opinion. The new way of representing congestion as a numeric value requires a
careful recasting of formula (3). (3) aggregates the effect of all agents that sent
the same report (i.e. cong = true). This simple aggregation of similar reports is
impossible with the new congestion representation because there are no longer
only two types of reports (Cong=true or Cong=false). In the new framework,
each report must be evaluated for addition into the majority opinion system. This
is done by giving the report a confidence and then evaluating it for inclusion
into the majority opinion (similar to the aggregated effect calculation). The
following sections will detail how the factors of experience and role based trust,
time and location closeness, and whether the advice is direct or indirect are
incorporated into our proposed confidence metric and utilized in calculating a
majority opinion.

Confidence Calculation Confidence functions as a metric similar to trust, and
is calculated by combining many different report and agent factors, which were
introduced in Formula 3 and will be described in detail later in this section. These
factors include experience and role based trust, time and location closeness, and
whether the advice is direct or indirect.

Our proposed Equation for calculating confidence must effectively replace
Formula 3, while representing a trust-like metric. Modifications to confidence
should then be reflected in a manner similar to how trust is increased and de-
creased in Equations 1 and 2. α and β function in these Equations as a standard
for increasing and decreasing trust, respectively. For our proposed confidence
calculation it did not make sense to atomically increase or decrease the value
according to the influencing factor (role, time closeness, etc.). The increase or
decrease should reflect the significance of the factor. As a result, our proposed
confidence metric replaces Formula 3 with Equation 5, where Equations 1 and
2 are used as the basis for calculating the confidence of report Rj , through a
modified summation of a geometric series 3.

The factors of role based trust, time and location closeness, and whether
the advice is direct or indirect in formula (3), are reflected through Variable
(G). Experience based trust of an agent automatically forms the default value

2 Note that a reported congestion value for instance of 23 would ideally be representing
the actual number of cars on the road; in reality a car would be more likely to provide
a value on a fixed scale to represent whether the traffic it observed were very heavy,
moderate or light, for example. It may also be reasonable for cars to report their
speed and for this to be used as a reflection of the road’s congestion. In so doing,
this deflects issues of number of cars relative to length of the road, for example.

3 A Geometric series is necessary because the calculations are capturing atomic in-
creases in trust values but we are reasoning about non-Boolean factors that are
therefore not atomic.



of the confidence metric (CurrConf(Rj)). Variable (G) represents the number
of times4 to increase or decrease confidence. G’s calculation is specific to each
factor. If G is calculated to a negative value, this indicates that β should be
used instead of α. An example is shown in Section 3.2. The following sections
briefly detail how each factor influences G; however the exact calculations are
dependent on how parameter values are chosen, within an implementation.

Conf(Rj) = (CurrConf(Rj)− 1)(1− (α or β))|G| + 1 (5)

3.1 Majority Calculation

Algorithm 2 is a modified algorithm from Algorithm 1, which shows the calcu-
lation of a majority opinion in the framework. The algorithm uses suspicious
agent detection in helping to avoid the inclusion of congestion advice which is
outside a standard deviation from the current majority congestion. The majority
opinion is used if there are at least n agents to use advice from and the majority
confidence is above the majority threshold.

Algorithm 2: New Majority Computation Steps, with Numerical Conges-
tion Metric

while on the road do
Send requests and receive responses;
if in need of advice then

Choose n reports R; //number of reports to use for advice
Check Priority Road(Current Road);//to help update the Priority list
Prioritize n reports; //according to Confidence (roles, experiences, time,
location, and if report is indirect or direct)
foreach n reports do

if Rj suspicious then
Report suspicious agent Rj ;

else
Include report Rj in Majority;

if Majority suspicious then
Decrease Majority confidence;

if Majority confidence > acceptable threshold && Number of reports >
n threshold then

Follow advice in response;

else
Follow advice of report with highest confidence;

Verify reliability of reports;
Update users’ trust values;

4 Note that we use the absolute value of G as the exponent in order to ensure that
the number of times is a positive number.



Algorithm 2 clarifies whether an agent will choose to take a certain road or
not based on consensus about the congestion on the road. If the agent wants
to reason about which road to choose (from a set of possible roads), it can run
Algorithm 2 for each road 5.

Suspicion detection is important to include to help avoid congestion advice
that greatly deviated from the current majority. Only using advice that has
similar congestion reports forms our majority opinion, rather than conceiving
of majority opinion as just an average congestion of the highest trusted agents
(n). If an agent is deemed suspicious, then they are reported and the agent’s
advice is not used in the majority opinion calculation. However, the reverse is
possible where if an agent’s advice has higher confidence than the majority and
confidence greatly deviates from the majority. If this happens then the majority
confidence is decreased proportionally and the agent’s advice is potentially used
as the report with highest confidence.

Experience based trust is the most basic type of trust and is applied to every
agent in our model framework. This is the initial confidence value we begin with.

Role based trust is incorporated into a proposition’s confidence calculation by
increasing it by a magnitude proportional to the particular role’s rank. Equation
6 shows how G is calculated for Equation 5. RPenal is a standard value for
weighting roles, and RoleRank is the rank of the roles.G is inversely proportional
to RoleRank so that higher roles (Authority has RoleRank of 2) warrant greater
increases in confidence.

G = RPenal/RoleRank (6)

Time and location closeness helps alleviate the issue of old and inaccurate
reports. Equations 7 and 8 show how G is calculated for Equation 5. TPenal and
LPenal are standard values for weighting time and location respectfully. TimeD-
ifference and LocDifference are time difference and location difference respec-
tively. MultiplicativeFactor is a standard multiplicative factor for the calculation
(max confidence increase will be MultiplicativeFactor, and not 1, if TimeDiffer-
ence or LocDifference is 0.). The calculation finds the difference between TimeD-
ifference/LocDifference and TPenal/LPenal and then divides the difference by
TPenal/LPenal. This achieves the purpose of scaling the values to be within
their unit metrics.6

G = (TPenal − TimeDifference)/TPenal ∗MultiplicativeFactor (7)

G = (LPenal − LocDifference)/LPenal ∗MultiplicativeFactor (8)

Direct reports are reports which have been directly observed and reported
by an agent. Indirect reports are direct reports of a third agent which are stored
in the knowledge base of the agent the resident agent is communicating with.

5 Note that this is in fact what we do in our implementation in Section 4.
6 This required scaling was not considered in sufficient detail in the model of Minhas

et al. and Equation 3.



Equation 9 shows how G is calculated for Equation 5. InPenal is a standard
value for penalizing indirect reports, and IfIndirect is 1 if the report is indirect
and 0 otherwise.

G = InPenal ∗ IfIndirect (9)

3.2 Confidence Calculation Example

The following calculation demonstrates how a confidence value can be calculated.
Example 1: (illustrating α)

Confidence = Agent 39:trust degree (0.6)

Gtime = (TPenal(90)-TimeDiff(18))/TPenal(90)
*MultiplicativeFactor(1.5)

Gtime = 1.2

Confidence(0.6) = (Confidence(0.6)-1)(1− α)|Gtime|+1
Confidence = 0.6475

Gloc = (LPenal(200)-LocDiff(100))/LPenal(200)
*MultiplicativeFactor(1.5)

Gloc = 0.75

Confidence(0.6475) = (Confidence(0.6475)-1)(1− α)|Gloc|+1
Confidence = 0.674

Example 2: (illustrating β)

Confidence = Agent 41:trust degree (0.7)

Grole = RPenal(8)/RoleRank(2)
Grole = 4

Confidence(0.7) = (Confidence(0.7)-1)(1− α)|Grole|+1
Confidence = 0.8032

Gtime = (TPenal(90)-TimeDiff(180))/TPenal(90)
*MultiplicativeFactor(1.5)

Gtime = -1.5

Confidence(0.7813) = (Confidence(0.7813)-1)(1− β)|Gtime|+1
Confidence = 0.7413

Gloc = (LPenal(200)-LocDiff(500))/LPenal(200)
*MultiplicativeFactor(1.5)



Gloc = -2.25

Confidence(0.7604) = (Confidence(0.7604)-1)(1− β)|Gloc|+1
Confidence = 0.6100

Gindirect = InPenal(-2)*IfIndirect(1)
Gindirect = -2

Confidence(0.6991) = (Confidence(0.6991)-1)(1− β)|Gindirect|+1
Confidence = 0.4385

4 Simulation

This section describes the simulation tests performed to compare and contrast
the effectiveness of our model’s implementation against a system that does not
use traffic information in routing; a best case scenario; the inclusion of time,
location, and indirect advice.

The implementation makes use of the following third party software,
JiST/SWANS, vans, DUCKS, and Protege. JiST stands for Java in Simulation
Time; it is a high-performance discrete event simulation engine that runs over
a standard Java Virtual Machine (JVM). SWANS stands for Scalable Ad-hoc
Network Simulator; it is built on top of the JiST platform and serves as a host
of network simulation tools. Vans is a project comprising the geographic routing
and the integrated Street Random Waypoint model (STRAW). STRAW utilizes
an A* search algorithm to calculate shortest path to a destination. DUCKS is a
simulation execution framework, which allows for a Simulation Parameters file
to be provided to define the simulation. Protege is a free, open source ontology
editor and knowledge base framework.

The simulation was set to poll cars every 6-15 seconds; with 100 cars in total,
experience with every other car would be gained quickly. In order to simulate
environments with low experience-based trust, we introduce a variable called
sparsity. For example, 80% sparsity resembles having a lack of previous experi-
ence with 80% of the agents. In the simulation, this variable effectively ignores
updates of trust values, thus hindering experience-based trust.

These graphs chart the performance of simulations that either use trust mod-
eling (i.e. profiling) (Hon #) or not (no P, Hon #)#)7. Agent honesty represents
the percent of honest agents in the simulation (i.e. 0.5 is 50% honesty). By de-
fault, trust modeling uses at least experience and majority based trust. These
are the central elements of the original model of Minhas et al. [2, 3]. In the sim-
ulations displayed below, we map an initial version of the implementation with
only these two trust elements included and refer to this as Basic.

Role-based trust represents the percent of agents in the simulation that have
been assigned a role and this is the default value that we used in the simulations

7 With no profiling, agents do not model the trustworthiness of the traffic reports
received and assume that they are truthful.



displayed below (i.e. 0.2 will have 20% of agents assigned a role). Sparsity repre-
sents the percent sparsity in the simulation (i.e. 0.8 will have 80% sparsity and
this is the default value that we used in the simulations displayed below). The
other trust model components individually indicated are time closeness (Time),
location closeness (Loc), and indirect advice (Indir). (Full) indicates when all
multidimensional trust components are being used.

The VANET trust modeling results are also compared against two additional
simulations: the first is a worst case scenario where traffic is ignored (no traffic)8,
and the other is a best case omnipresent version (omni) which simulates the
ability for any car to look up the exact congestion of any road at anytime. All
simulation tests results are averaged over 5 runs.

Fig. 1. Avg Path Time comparison of our model vs. best and worst case scenarios

Figure 1 examines a metric referred to as average path time (appropriate due
to the ultimate goal of reducing the travel time of users). This figure compares
the worst case scenario against the best case scenario and various simulations
which use our VANET system, at different degrees of honesty. Greater average
path time in the figure indicates lower performance. As seen in the figure, the
simulations that used our trust modeling framework (except Basic, Hon 0.1 )
and the Omni setup averaged close to the same path time at the end of the
10000 second simulation. The other simulations produced a predictably declining
performance as the honesty percentage approached the worst case scenario. The
Basic, Hon 0.1 simulation did much worse than the other Basic simulations
most likely due to the extreme lack of trustworthy agents, but it still performed
significantly better than the Basic, No P, Hon 0.1 simulation. The VANET trust
modeling simulations show approximately a 35% decrease in average path time
over the worst case scenario. The curves in the scenarios are representative of the
simulations approaching a steady state. Another observed trend is the tendency

8 Routing without traffic just uses a shortest path calculation.



for the profiling-enabled simulations to reach a steady state faster than the other
simulations.

Fig. 2. Avg Path Time comparison of simulation types over varying degrees of honesty
at 10,000 seconds

Figure 2 compares the average path time, at 10,000 seconds, of the No Traf-
fic, Omni, Basic, Basic, No P, and Full scenarios, across a range of honesty
values. No Traffic and Omni are shown as straight lines because they do not
use honesty values, but are useful as comparisons. The figure clearly shows the
effectiveness of our framework across the range of honesty values. The Basic
scenario consistently performs better than the Basic, No P scenario. The Full
scenario also consistently performs better than the Basic scenario. All of the
framework enabled simulations have a similar average path time at 0% honesty
because they have no useful traffic data (and at 100% honesty because there are
no untrustworthy agents to deflect through profiling). Figure 2 clearly demon-
strates the impact dishonest agents can have on simulations (Basic, No P) and
the effectiveness our proposed model framework scenarios (Basic and Full) can
have on countering the influence of dishonest agents.

Figure 3 compares the average path time, at 10,000 seconds, of the No Traffic,
Omni, Basic, Basic, No P, and Full scenarios, across a range of values for the
number of agents in the environment. The figure clearly shows the robustness of
our framework across the span of agent values. The simulations around 50 agents
have approximately the same path time because with such a small number of
cars there is no real need for using traffic information in path planning. When
increasing the number of agents, the Basic scenario consistently performs better
than the Basic, No P scenario. The Full scenario also consistently performs



better than the Basic scenario, when there are more than 50 agents. Figure
3 clearly demonstrates the robustness and scalability of our proposed model
framework and implementation across a range of values for the number of agents
in the environment.

Fig. 3. Avg Path Time comparison, varying number of agents

5 Discussion

The framework presented in this paper required a calculation of majority con-
sensus in order to guide the decision making of a user. Other researchers have
integrated majority opinion into their trust modeling but have instead used this
calculation to reflect the general reputation of an agent (e.g. just how trustwor-
thy a user is may be represented as a numeric value calculated as the average of
all the scores provided by peers (say 1 for trustworthy and 0 for untrustworthy).
For instance, Zhang [9] has calculations that integrate a public reputation into
the trustworthiness calculation and that also weight the contributions provided
by peers according to the estimated trustworthiness of each of the advisors. Work
with Singh, with various co-authors [8, 7] and that of Gorner [1] outlines the use
of a social network of advice as well, for trust calculations. While reputation
becomes a non-numeric value, the input to this calculation are always binary
reports. This is true as well of the models TRAVOS [5] and BLADE [4]. Our
approach, in contrast, illustrates how to support advice that is numeric, instead.

While we have sketched our proposed formulae and their validation in the
context of a specific VANET application, the approach is applicable to any sce-
nario where experience-based trust and majority consensus are to be integrated



into the overall determination of user trustworthiness. The formulae in use would
simply omit the undesired elements of Equation 5: for instance, time and location
may be irrelevant. The remaining calculations would remain the same.

In conclusion, we offer an approach for supporting reasoning about agent
trust with advice from peers, whose trustworthiness is then also modeled, when
non-numeric reports are provided and have shown the merit of our framework in
the context of the VANET application (resulting in effective travel decisions due
to the modeling of trustworthiness). As such, we offer a method that supports the
exchange of more detailed trustworthiness information, leading to more precise
and valuable calculations. Future work includes the exploration of a variety of
additional applications and their trust modeling needs, towards refinement and
expansion of the approach. Additional research will explore in greater depth the
related elements of reputation and majority consensus, to determine to what
extent both may be integrated into the trust modeling.
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