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Abstract. Current reputation systems simply aggregate numerical ratings pro-
vided by buyers, but overlook the buyers’ subjectivity difference in evaluating
the transactions with a seller. To address this problem, we propose a subjectiv-
ity alignment approach for reputation computation (SARC). It first requires the
buyers to provide ratings and detailed reviews containing values of objective at-
tributes of the transactions. After that, SARC applies Bayesian learning to model
the correlations between each rating level and each objective attribute, and adopts
a regression analysis model to learn the weights of the attributes, representing
each buyer’s subjectivity. Ratings provided by one buyer can then be aligned
(converted) for another buyer according to the two buyers’ subjectivity. Evalua-
tion results indicate that SARC can more accurately and stably model sellers’ rep-
utation than the BLADE and TRAVOS approaches. It is also not much affected
by deception from dishonest buyers, and more robust to dynamic environments.

1 Introduction
In open e-marketplaces, it is not possible for a buyer to have experience with every
seller. On the other hand, dishonest sellers may advertise perfect deals but never de-
liver the promise. Therefore, there is a significant risk for buyers when selecting a seller
among many alternatives. To address the issue, reputation systems [1] have been pro-
posed, where buyers who previously bought products from a seller share their experi-
ence, normally in the form of a numerical rating reflecting the level of satisfaction about
the transactions with the seller. These ratings are aggregated to represent the seller’s rep-
utation. Other buyers can then rely on the reputation values of sellers to make decisions
on which sellers to do business with.

A rating is a subjective evaluation of a seller by a buyer within the context of a spe-
cific transaction. Therefore, different ratings could be given for the same transaction by
different buyers. Subjectivity difference may come from two sources. First, when the
buyer evaluates her satisfaction level with a transaction, she considers each attribute re-
lated to that transaction. Although the information about each attribute is objective, the
evaluation (i.e., satisfactory level) of the attribute value may be subjective and change
from user to user. This is referred to as intra-attribute subjectivity in this paper. For ex-
ample, a product with the price of “USD1500” may be expensive for buyer a, while not
so expensive for buyer b. Second, when the buyer assigns a satisfaction level to a trans-
action, she may consider some attributes of the transaction more heavily than others.
This is referred to as extra-attribute subjectivity. For example, a buyer with better eco-
nomic conditions may consider a product’s quality more heavily, while another buyer



with worse economic conditions may concern more about the price of the product. The
above two aspects together contribute to the subjectivity difference among buyers. Due
to the subjectivity difference, it may not be effective if a buyer directly aggregates other
buyers’ ratings to compute seller reputation. The computed reputation values may then
mislead the buyer in selecting business partners.

To effectively address the subjectivity difference problem, we propose a subjec-
tivity alignment approach for reputation computation (SARC). In our approach, each
buyer is equipped with an intelligent (buying) agent. At the beginning of her interac-
tions with the reputation system, a buyer a is required to provide her buying agent with
both a single rating and a detailed review containing values of the objective attributes
of transactions with sellers, such as price and delivery time, for each of a few transac-
tions. Based on these rating-review pairs, the buying agent applies a proposed Bayesian
learning approach to model the correlations between buyer a’s each rating level and
the value of each objective attribute involved in the transactions. The learned correla-
tion function, which represents buyer a’s intra-attribute subjectivity, will then be shared
with the agents of other buyers. The agent of buyer a also applies a regression analysis
model to learn the weight of each attribute for buyer a, representing her extra-attribute
subjectivity. This information will not be shared with other buyers. After the learning
phase, buyer a only needs to provide ratings for her transactions with sellers, not de-
tailed reviews.

When another buyer b shares a new rating of her transaction with a seller, the agent
of buyer a will first retrieve a rating level for each attribute of the transaction based
on the shared rating and the intra-attribute subjectivity of buyer b shared by the agent
of b. The rating levels of the attributes will then be aggregated according to buyer a’s
extra-attribute subjectivity learned by the agent of a. In this way, the rating shared by
buyer b is aligned to that can be used by buyer a for computing the reputation of the
seller.

To evaluate the performance of our SARC approach, we simulate an e-commerce
environment involving a number of buyers with different subjectivity in evaluating
products and a set of sellers selling products with different attribute values. In addi-
tion, buyers’ subjectivity may change over time, buyers may also intentionally lie about
their evaluation of products, and sellers may change the attribute values of their prod-
ucts. Experimental results confirm that our SARC approach provides sufficiently good
performance in a general setting. It can more accurately and stably model sellers’ rep-
utation than the representative competing approaches of BLADE [2] and TRAVOS [3].
Our approach is not dramatically affected by deceptive buyers because it treats dis-
honest buyers as the ones with different subjectivity. It is also more robust to dynamic
environments.

2 Related Work
Quite a lot of filtering approaches have been proposed to address the problem of sub-
jectivity difference among buyers and unfair ratings intentionally provided by dishonest
buyers to mislead other buyers. For example, some of the approaches filter out the rat-
ings of some buyers (advisors) whose past ratings differ significantly from the ratings
of all advisors [4, 5], the ratings of a particular buyer [3, 6, 7], or the ratings of both [8].
These filtering approaches generally suffer from the risk of losing or discounting some



important information. In contrast, our approach aligns/converts the ratings of the ad-
visor to those that can be directly used by buyers according to the subjectivity of the
buyers and the advisor learned by their agents.

Some other alignment approaches have also been proposed to align advisors’ advice
about the trustworthiness of sellers. For example, Koster et al. [9] propose a trust align-
ment approach based on the general framework of Channel Theory. In this approach,
each agent computes its own user’s trust evaluation patterns based on the interactions to-
wards the same sellers (i.e., shared interactions). Then, the generalized patterns are used
to align trust advice provided by advisors. The BLADE approach of Regan et al. [2] ap-
plies Bayesian learning to model sellers’ properties and the correlations between sellers’
properties and buyers’ ratings. Once a buyer receives a rating from an advisor, she can
infer back the target seller’s properties, and then compute the rating of her own towards
the seller on the basis of the inferred properties of the target seller. One shortcoming of
these alignment approaches is that they ignore the intra-attribute subjectivity difference
among buyers. Another shortcoming is that they require the buyer and the advisor to
have shared interactions, which may not be the case in an e-commerce environment
with a large population of sellers. In addition, these approaches generally offer limited
flexibility for buyers to deal with the dynamic behavior of sellers and dynamic subjec-
tivity of advisors. In contrast, our SARC approach aligns each rating provided by an
advisor towards a transaction with a seller other than an aggregated trust value of the
seller. In this way, it is not affected by sellers’ changing behavior. Our SARC approach
updates the learned subjectivity of buyers (advisors) in certain interval of time to cope
with the possible dynamic subjectivity of advisors. Our SARC approach does not rely
on shared interactions. Instead, the agent of each buyer makes use of the ratings and
detailed reviews provided by the buyer about her transactions with any sellers, to learn
the buyer’s intra-attribute and extra-attribute subjectivity.

Collaborative filtering [10] and matrix factorization [11] have been proposed to ad-
dress the subjectivity difference problem in the domain of recommender systems. How-
ever, recommender and reputation systems are different in the sense that reputation sys-
tems concern about sellers who may change behavior over time whereas recommender
systems concentrate on static products. In addition, in reputation systems, a buyer may
have several ratings towards one seller whereas a user has only one rating for one prod-
uct in recommender systems.

3 The SARC Approach
In an e-marketplace, we denote the set of buyers by B = {b1, b2, b3, . . .}. The set
of agents (called buying agents) equipped by corresponding buyers is denoted by A =
{a1, a2, a3, . . .}, and the set of sellers are referred to as S = {s1, s2, s3, . . .}. The set of
objective attributes for describing a transaction between a buyer and a seller is denoted
as F = {f1, f2, . . . , fm}, where m represents the total number of objective attributes.
Each rating provided by a buyer for a seller is from a set of predefined discrete rating
levels L = {r1, r2, . . . , rn}, where n is the total number of different rating levels (i.e.,
the granularity of rating scale).

For a buyer bi ∈ B, the goal of her buying agent ai ∈ A is to accurately compute
the reputation value of a target seller sj ∈ S, according to bi’s subjectivity. In order
to achieve this goal, the buying agent ai needs to consider the ratings of other buyers



(advisors) that evaluate the satisfaction levels about their past transactions with seller
sj . Due to the possible subjectivity difference between buyer bi and the advisors, agent
ai also needs to align/convert ratings of each advisor (for example bk) using our SARC
approach.

More specifically, at the beginning of buyer bi’s interactions with the system, agent
ai asks bi to provide a rating for each of her transactions with a seller (which can be any
seller in S). Buying agent ai also asks bi to provide detailed review information about
each transaction containing the values of the set of objective attributes in F . Based
on the provided information (rating-review pairs), agent ai models a set of correla-
tion evaluation functions (CEFs) for buyer bi, capturing bi’s intra-attribute subjectivity.
Each correlation evaluation function is represented by a Bayesian conditional proba-
bility density function that models the correlation between each rating level and each
objective attribute. Thus, for each buyer, the total number of the correlation evaluation
functions is equal to m× n.

The learned CEFs of buyers will be shared with each other buyer’s agent. For a
rating provided by the buyer (advisor) bk, agent ai can then derive a rating for each
attribute, based on the CEFs shared by bk’s agent ak and those of buyer bi’s own. Note
that what is derived for an attribute is in fact a set of probability values, each of which
corresponds to a rating level in L. The rating level with the highest probability will be
chosen as the rating for the attribute.

Based on the provided rating-review pairs by bi, agent ai also learns the extra-
attribute subjectivity of buyer bi, which is represented by a set of weights for corre-
sponding attributes in F . The weight of an attribute is determined by two factors: 1)
the probability value of the rating derived earlier; and 2) the importance of the attribute
learned using a regression analysis model. These weights will not be shared with other
buyers. Once the weights are learned, the aligned rating from that of advisor bk can be
computed as the weighted average of the derived ratings for the attributes.

In the next sections, we will describe in great details how SARC models CEFs
based on rating-review pairs, derives a rating for each attribute, learns the weights for
attributes, and computes a (aligned) rating by aggregating the derived ratings for at-
tributes, organized as intra-attribute subjectivity alignment and extra-attribute subjec-
tivity alignment.
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Fig. 1. A Naı̈ve Bayesian Network for Agent ai of Buyer bi to Align Buyer bk’s Rating rbk

3.1 Intra-attribute Subjectivity Alignment

Given a set of rating-review pairs provided by buyer bi, each of which is for a transac-
tion between bi and a seller, the rating in a pair indicates bi’s satisfaction level about the



corresponding transaction, and the review in the pair is a set of values for the attributes
F of the transaction. Buyer bi’s agent ai learns the correlation evaluation functions
(CEFs) of bi, each of which is represented by a Bayesian conditional probability den-
sity function. Each CEF is the correlation between a rating level and the values of an
attribute. More specifically, let us learn CEFbi

u,v , the correlation function between at-
tribute fu and rating level rv for buyer bi, where 1 ≤ u ≤ m and 1 ≤ v ≤ n. Buying
agent ai first learns pbi(rv) (the probability that buyer bi provides a rating rv), pbi(fu)
(the probability distribution of the values for attribute fu), and pbi(rv | fu) (the condi-
tional probability of rating level rv given the distribution of the values for attribute fu).
By applying the Bayes’ Rule, agent ai can derive CEFbi

u,v as the conditional probability
distribution of the values for attribute fu given rating level rv as follows:

CEFbi
u,v = pbi(fu | rv) =

pbi(rv | fu)× pbi(fu)

pbi(rv)
(1)

In our approach, the agents of buyers share the learned CEFs for their buyers with the
agents of other buyers. Suppose that the agent ak of a buyer bk shares the learned CEFbk

for bk with the agent ai of buyer bi. For a rating rbk shared by buyer bk, agent ai can
then derive a rating level for each attribute in F . We use a Naı̈ve Bayesian Network
model to learn the mapping/alignment from rbk of buyer bk to the ratings of bi for the
attributes, as illustrated in Figure 1. Although in this model we assume that the attributes
are independent given the ratings of buyers, in the next section, we will learn the relative
weights of the attributes to capture the dependency among the attributes.

Let us take any fu ∈ F as an example attribute to show how agent ai derives a
rating for attribute fu. To do so, agent ai first estimates the conditional probability of a
rating level in L for attribute fu, given rating rbk provided by buyer bk. Take any rating
level rv as an example, agent ai computes pbi(rv,fu |rbk), the conditional probability
that buyer bi will assign the rating level rv,fu to attribute fu given the rating rbk of
buyer bk, as follows:

pbi(rv,fu |rbk) =
pbi(rv | fu, rbk)× pbk(fu | rbk)

pbi(fu | rv, rbk)

=
pbi(rv | fu)× pbk(fu | rbk)

pbi(fu | rv)
(2)

where pbk(fu | rbk) is learned by agent ak of buyer bk using Equation 1 and shared
by agent ak to agent ai, pbi(fu | rv) is learned by ai itself using Equation 1, and
pbi(rv | fu) is obtained by agent ai from the rating-review pairs provided by its buyer
bi. In Equation 2, pbi(rv | fu, rbk) is equivalent to pbi(rv | fu) and pbi(fu | rv, rbk)
is equivalent to pbi(fu | rv) because buyer bi provides ratings to corresponding at-
tributes regardless of buyer bk’s ratings. In other words, buyers evaluate transactions
independently.

For attribute fu, agent ai learns the conditional probability of each rating level rv ∈
L according to Equation 2. The aligned rating of attribute fu for buyer bi on the basis
of buyer bk’s rating is then determined as the rating level with the highest probability
value, as follows:

rbiu,k = argmax
rv∈L

(pbi(rv,fu |rbk)) (3)



The aligned ratings for other attributes in F can also be determined in the same way
according to Equations 2 and 3.

3.2 Extra-attribute Subjectivity Alignment
After the ratings of the attributes are obtained, agent ai of buyer bi then aggregates the
ratings to represent an aligned rating of the rating rbk shared by buyer bk. To do this, ai
needs to first determine a weight for each attribute in F as buyer bi may concern more
about one attribute over another.

The weight of an attribute fu is determined by two factors. One factor is the con-
fidence Cu about the rating rbiu,k derived for the attribute fu using Equations 2 and 3.
The confidence can be represented as the conditional probability value of the derived
rating, pbi(rbiu,k|rbk) estimated using Equation 2. A larger probability value means that
it is more probable that the derived rating for attribute fu should be rbiu,k according to
buyer bk’s rating and the subjectivity of buyers bi and bk. In another word, the larger
the probability is, the more reliable the derived rating rbiu,k is. Thus, we have:

Cu = pbi(rbiu,k|r
bk) (4)

Another factor to determine the weight for attribute fu is the importance Iu of fu
in buyer bi’s view. The importance Iu can be modeled as the coefficient of attribute fu
by a regression analysis model, based on the rating-review pairs provided by bi. More
specifically, given the rating-review pairs, we compute the coefficients for attributes by
minimizing the aggregated difference between the true ratings in the rating-review pairs
of bi and the ratings, each of which is predicted for a review by the following equation:

rbi0 = I0 +
∑

m
u=1Iu × Vfu + ε (5)

where rbi0 is the predicted rating for a review, Vfu is the value of fu in the review, I0 is
a constant, and ε is residual. So, the coefficients I = [I0, I1, . . . , Im] can be computed
by:

I ′ = (X
′
X)−1X

′
Y (6)

where if there are c rating-review pairs for buyer bi in total,

X =


1 f11 . . . fm1

1 f12 . . . fm2

...
...

...
...

1 f1c . . . fmc

 , Y =


r1
r2
...
rc


After the weight (confidence and importance) of each attribute is determined, the

aligned rating rbik can be computed as the weighted average of the ratings for attributes
derived using Equations 2 and 3, as follows:

rbik =

∑m
u=1 r

bi
u,k × Cu × Iu∑m

u=1 Cu × Iu
(7)

After aligning all ratings shared by all buyers (advisors), the reputation value of
seller sj in the view of bi can be computed as, for example, the average of the aligned
ratings.



4 Experimentation
In this section, we carry out experiments to evaluate the performance of our SARC ap-
proach and compare it with some representative competing approaches. We simulate an
e-commerce environment involving 50 sellers and 200 buyers. In our simulations, sell-
ers may provide different products. Their products are all different PC configurations
with five objective attributes, namely, Price, Speed of CPU, Processor Type, Graphics
Card Type, and Hard Drive Size with ranges presented in Table 1. For each seller, the
values of the five attributes of her products are randomly chosen within the ranges.

Buyers may have different subjectivity in evaluating their transactions with (the
products of) sellers. We simulate both buyers’ intra-attribute subjectivity and extra-
attribute subjectivity. To be specific, we assume that a buyer’s rating for a transaction
with a seller is derived as follows. First, the buyer evaluates each objective attribute ac-
cording to a specific intrinsic (taste) function. In our experiments, buyers’ intra-attribute
subjectivity is simulated as an approximate Gaussian Distribution. That is, for each at-
tribute, the probability of each rating level given by a buyer is in the form of a normal
distribution. Second, the buyer places random weights (in the domain of [0,1]) on dif-
ferent attributes, and computes the weighted average of her evaluations on attributes as
a single rating for the transaction. Since buyers can only give ratings under the prede-
fined rating scale in reality, the simulated rating is chosen from the predefined rating
scale that is the closest to the weighted average.

Table 1. Product Attributes and Value Ranges

Dimension Type Ranges
Price Double $100-$10,000

Speed of CPU Double 1-10 GHZ
Processor Type Char 5 types

Graphics Card Type Char 2 types
Hard Drive Size Integer 40-1000GB

In the experiments, we also implement a baseline approach without subjectivity
alignment, which computes seller reputation by directly averaging the ratings collected
from other buyers. We choose to implement TRAVOS [3], a representative filtering
approach (see the Related Work section for details). BLADE [2] is chosen instead of
the approach of Koster et al. [9] because they are very similar and the approach of
Koster et al. is complicated to implement.

We compare the performance of these approaches with our approach in reputation
computation. The performance of an approach is measured as the mean absolute error
(MAE) between seller reputation computed for each buyer using the approach, and that
using the ratings according to each buyer’s own subjectivity (representing the ground
truth about seller reputation with respect to the buyer).

To simulate real-world e-commerce environments, we set several important parame-
ters for our simulations, including information availability, dynamic behavior of sellers,
dynamic subjectivity of buyers, ratio of liars (dishonest buyers), and granularity of rat-
ing scale.

Information availability refers to the amount of available information required by
different approaches for subjectivity alignment. Two types of information are needed by
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Fig. 2. (a) Performance Comparison in the Basic Environment; (b) Performance When Varying
Ratio of Objective Attributes; (c) Performance When Varying Granularity of Rating Scale; (d)
Performance When Varying Number of Detailed Reviews

our approach. One is the detailed reviews describing the objective attributes of transac-
tions between buyers and sellers. This information is used by our approach to model the
correlation evaluation functions (CEFs) and the importance of the attributes for buyers.
We vary the number of detailed reviews (Nr) to see how the performance of our ap-
proach is affected by this parameter. Another type of information contributing to our
approach is the number of objective attributes. In reality, some attributes (e.g. appear-
ance) may not be objective. The total number of objective attributes in our simulations
may thus be less than 5. We vary the ratio of objective attributes (Robj) to be 0%, 20%,
40%, 60%, 80% and 100%, to see how much the performance of our approach will be
affected. One type of information required by the BLADE approach is shared interac-
tions where buyers and advisors have interacted with some same sellers. We vary the
ratio of shared interactions (Ri) to see how this parameter affects the performance of
BLADE.

We also set the parameter Pseller to capture the dynamic behavior of sellers. In
real-world e-commerce environments, sellers may change their behavior over time. For
example, they may provide products of high quality at first, but those of low quality
after earning enough reputation. In our experiments, dynamic behavior of sellers is
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simulated by changing the quality of their products (i.e. the values of a subset of the
objective attributes in Table 1).

Buyers may also adjust their subjectivity over time. Dynamic subjectivity of buyers
(Pbuyer) is captured in their rating procedure by adjusting intra-attribute subjectivity,
or extra-attribute subjectivity, or both.

Ratio of liars (Rliar) is adopted to reflect the deception problem in real e-marketplaces
where some buyers may lie about their experience with sellers. Following the work
of [6, 4, 3], we also simulate the complementary lying behavior where if a true rating to
a seller is r in the scale of [0, 1], the liar will modify the rating as 1− r.

Granularity of rating scale (Gscale) refers to the number of rating levels. It may be
different for different reputation systems. In our experiments, we will study the effect
of the granularity of rating scale by varying Gscale from 2 to 10.

We vary the values of the above parameters to simulate basic, deceptive and dy-
namic environments, respectively.

Basic Environment We first simulate a basic environment without any variation of the
parameters (i.e., Rliar = 0, Pseller = 0, Pbuyer = 0), and compare the performance
of our approach and that of the three competing approaches, including the baseline ap-



proach, TRAVOS and BLADE. We compute their mean absolute error (MAE) values
for computing the reputation of sellers in different epoches. In each epoch, each buyer
interacts with one seller in the marketplace. From the results shown in Figure 2(a),
we can see that our approach performs consistently the best no matter whether buyers
have more or less experience with sellers. Because both TRAVOS and BLADE require
shared interactions, their performance is limited. Both TRAVOS and BLADE perform
slightly better than the baseline approach. The performance difference between the dif-
ferent approaches is reduced when buyers have more experience with sellers in the
marketplace.

Based on the basic environment, we then vary some parameters to examine their
effects. We first examine how the ratio of objective attributes Robj affects our SARC
approach. We vary Robj from 0% to 100% for our SARC approach, while keep Robj

to be 100% for BLADE. As shown in Figure 2(b), SARC performs slightly worse
than BLADE when there are no objective attributes. However, it performs better than
BLADE when there are more than 20% of objective attributes. The performance of
SARC consistently increases as the ratio of objective attributes increases. But, the in-
crement becomes smaller when Robj ≥ 20%.

The larger the granularity of the rating scale (Gscale) is, the easier to learn buyers’
subjectivity because buyers’ subjectivity can be better captured by the larger granu-
larity of the rating scale. This trend is verified by our experiment. In Figure 2(c), we
plot the MAE results of the four approaches when varying Gscale from 2 to 10. The
figure shows that the performance of SARC is significantly greater than the baseline
approach, TRAVOS and BLADE. On average, the performance of SARC improves as
Gscale increases.

We also vary the number of detailed reviews (Nr) provided by buyers from 1 to
30. We try to figure out a reasonable Nr for SARC. As shown in Figure 2(d), when
Nr increases from 1 to 5, the performance of SARC increases significantly. While Nr

is larger than 5, as the increase of Nr, the performance of SARC also increases, but
in a much smaller degree. This is simply because SARC requires only a few detailed
reviews to learn buyers’ subjectivity well. After that, any additional information leads
to only small improvement. Thus, we can choose 6 as the acceptable minimum Nr.
Besides, SARC performs better than the baseline approach and BLADE in all the cases
for Nr.

BLADE requires shared interactions in order to learn buyers’ subjectivity. However,
in real e-marketplaces, shared interactions are generally very sparse. In this experiment,
we fix the number of past interactions for each buyer, but vary the ratio of shared inter-
actions (Ri) from 0% to 100%. For each ratio value, MAE is computed as the average
of five repeated runs. Figure 3(a) indicates that BLADE performs significantly worse
than SARC when Ri is in the range from 0% to 30%. The performance of BLADE
increases with the increase of Ri.

Deceptive Environment In this experiment, we examine the effect of deception (buy-
ers lying about their past experience) on different approaches. We vary the ratio of liars
(Rliar) from 0% to 100%, and plot the MAE results of different approaches in Fig-
ure 3(b). We can see that the performance of TRAVOS does not decrease much as Rliar

increases. Our SARC performs much better than the other three models for any Rliar. It



is not dramatically affected by lying buyers because SARC learns a buyer’s subjectivity
from the buyer’s own past experience and treats lying buyers as buyers with different
subjectivity. When Rliar is larger than 0.5, BLADE performs worse than TRAVOS, but
consistently better than the baseline approach. Note that in the environment where most
buyers are liars, the performances of other models are not so bad. This is mainly be-
cause buyers have different subjectivity in our simulations. The effect of buyers’ lying
behavior may be reduced by the subjectivity difference among buyers, and vice versa.

Dynamic Environment In this experiment, we simulate the environment where sellers
may change the quality of their provided products in their transactions with buyers. We
define a predefined parameter, Pseller, to represent the probability that each seller may
vary the values of the five attributes of her provided products. We assume that sellers
only change their behavior once in the marketplace. Once their behavior is changed,
they will keep the behavior. Pseller is ranged from 0 to 1 and increased by 0.05 in
our experiment. The MAE results for SARC and other three approaches are plotted in
Figure 3(c), which demonstrates that the performance of SARC is not sensitive to the
dynamic behavior of sellers, and it performs almost consistently in all cases, while the
performance of Baseline, TRAVOS and BLADE gets worse as the increase of Pseller.
The main reason is that SARC models the rating behavior (subjectivity) of each buyer
from the buyer’s own experience, which is independent of sellers’ behavior change. For
TRAVOS and BLADE, they rely on past shared interactions between the buyer and ad-
visors, and these shared interactions may not be suitable source information used for
aligning the buyer’s subjectivity due to the possible behavior change of sellers in the
shared interactions. For example, for a buyer and an advisor with the same subjectivity,
if they interact with a seller in different time periods where the seller has changed be-
havior, TRAVOS may incorrectly treat the advisor as a liar and BLADE may incorrectly
conclude that the buyer and the advisor have different subjectivity.

In a marketplace, buyers may also change or adjust their subjectivity after several
interactions with sellers. In this experiment, we assume that buyers will change their
subjectivity with a certain predefined probability, Pbuyer. Same as the previous experi-
ment, buyers only change their subjectivity once in the marketplace and then keep their
changed subjectivity in the following interactions with sellers. Figure 3(d) shows that
the performance of SARC is not affected by buyers’ dynamic subjectivity. In SARC,
buying agents can update the learned subjectivity of buyers by acquiring their buyers’
own recent experience, which provides flexibility to deal with their buyers’ dynamic
subjectivity. The performance of BLADE becomes almost equivalent to that of Baseline
as Pbuyer increases, and is consistently lower than SARC. In BLADE, once a buyer’s
subjectivity is changed, her buying agent cannot align ratings from advisors effectively
because new shared interactions between the buyer and advisors are needed. TRAVOS
performs worse than Baseline as Pbuyer increases because the learned results of advi-
sors become misleading after they change subjectivity.

5 Conclusion and Future Work
In this paper, we proposed a subjectivity alignment approach for reputation computa-
tion, SARC, to address the subjectivity difference problem. In SARC, buyers’ subjec-
tivity is learned based on the ratings and detailed reviews they provide about the ob-



jective attributes of their transactions with sellers. More specifically, SARC separately
learns the intra-attribute subjectivity and extra-attribute subjectivity of buyers. Buyers’
intra-attribute subjectivity is modeled using Bayesian learning. Their extra-attribute
subjectivity is learned using a regression analysis model. We also conducted various
experiments to compare the performance of our approach with that of other three com-
peting models, including the baseline approach, TRAVOS and BLADE. Experimental
results demonstrate that: 1) SARC performs better than the other three approaches, and
can more accurately and stably model sellers’ reputation; 2) SARC is capable of cop-
ing with environments with deception and dynamic buyer and seller behavior; 3) the
requirement of detailed reviews and objective attributes is not very restrictive.

For future work, we will conduct more experiments on real data obtained from, for
example, eBay (www.ebay.com) to further validate the effectiveness of our approach.
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