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Abstract. In this paper, we develop an approach for trust modeling
that uses expectations on probability distributions to derive the pre-
dicted benefit of a message in a participatory media setting. Our solution
addresses the issue of false information propagation in social networking
settings by examining the role that global credibility might play when
determining peer trustworthiness. We present an overall algorithm, illus-
trated with examples and discuss next steps. The model is presented in
the context of related work on trust modeling and on selecting messages
to present to users in peer-based networks.

1 Introduction

Today, users are increasingly engaged with online media via the internet. A
plethora of available information, ranging from online news networks to various
forums to social and participatory media sites, contributes to information over-
load germane to our information rich society. Moreover, the advent of Massive
Open Online Courses (MOOCs) and the increasing use of both online retailers
(like eBay) and information feeds (like Twitter) suggests the following question:
how can we help users sift through excess information to retrieve the most rele-
vant objects of interest? In this work, we offer a novel approach that copes with
false information propagation by incorporating an element of global credibility.

Related work in trust modeling that motivates the development of our ap-
proach includes: Jøsang et al.’s Beta Reputation System [5], Teacy et al.’s
TRAVOS system [11], and Zhang et al.’s Personalized Trust Model PTM [12],
as well as a Bayesian Credibility Model (BCM) by Seth et al. [10] and a model
for recommending annotations of learning objects to peers, of use in large social
networks, termed Learning Object Annotation Recommendation (LOAR) [1].
We present a brief overview of these models, below.

Beta Reputation System (BRS): The Beta Reputation System (BRS) [5]
for use in e-marketplace reputation systems, provides a foundation for later trust
modelling work carried out by Zhang et al. [12]. BRS is foundational because
it is grounded in probability theory; it uses the beta probability distribution,
which is a conjugate prior for binary events. In particular, in BRS, the expected
value of a beta density function is given by the formula

E(f(p)) =
α

α+ β
(1)
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In [5], the authors interpret this expected value as the probability of some pos-
itive outcome occurring in the future, where α = r + 1 (r being the number of
positive outcomes that occurred in the past) and β = s+ 1 (s being the number
of negative outcomes that previously occurred). Thus, the expected value of a
beta distribution is a suitable trust metric. One characteristic of BRS, however,
is that all ratings, even from potentially dissimilar peers, are treated equally.

TRAVOS: Teacy et al. developed a system called TRAVOS to model trust
relationships between agents in virtual organizations [11]. Like BRS, TRAVOS
defines a trust metric to be the probability that a trustee will perform on a future
obligation and uses a beta pdf to model relative trust probabilities. Unlike BRS,
TRAVOS incorporates the notion of confidence in the inferred trust metric, i.e.,
it models the probability that the true trust metric lies within a certain mar-
gin of error. TRAVOS also allows the truster to seek third party advice when
this probability is below some threshold. Trusters can then aggregate reports to
derive a more confident perspective. TRAVOS, however, relies on the assump-
tion that truster and pundits have extensive historical dealings that enable each
pundit’s expected honesty to be assessed. There is also no time discounting of
reports.

Personalized Trust Model (PTM): Zhang and Cohen [12] propose a per-
sonalized trust model to determine whom to listen to amongst a network of
buyers and sellers in an e-marketplace domain. Global advice from other buyers
(advisors) is combined with the buyer’s own local experiences with a seller. The
PTM global metric is further broken down to combine public and private trust
estimates of advisors. As with other trust models, the ratings of a seller are
binary. The beta pdf is then used to estimate the probability that an advisor
will provide a fair rating to a buyer. To estimate the private reputation of an
advisor, a, PTM defines

R(a)private = E(Pra(fair rating)) =
α

α+ β
(2)

In essence, the number of times the buyer and advisor have the same rating
of the seller (and the number of times they are dissimilar) forms the basis of
the calculation of α and β; in addition, this comparison is done within limited
timewindows, to ensure timely evaluations. The advisor’s public reputation is
calculated similarly, measuring whether its ratings correspond to the average
rating vector over all ratings of the seller. In the end, the trust level of the advisor
is derived by calculating a weighted average of private and public trust (including
a forgetting factor to discount less recent ratings). The trust value of the seller
in turn involves a weighted combination of both private and public reputation
ratings. With PTM, however, when advisors are dissimilar to a particular buyer,
their advice is simply not regarded as highly (and the model does not take
advantage of their advice).
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Bayesian Credibility Model (BCM): Seth, Zhang, and Cohen [10] propose
a Bayesian model to derive the crediblity of messages within a social network
of peers for the purpose of recommending participatory media content (e.g.,
blog posts, consumer product reviews, Twitter tweets, etc.) to users. BCM uses
the strength of weak ties hypothesis from social network theory to categorize
clusters of users within a social network, G. The topic-induced subgraph of G,
denoted Gt, is a subgraph of users who are interested in some topic, t. Users
within Gt can be categorized as belonging to particular clusters, i.e., subgraphs
of users that are strongly tied and affect knowledge propagation throughout the
cluster in certain ways. Clusters are connected together via weak ties to form
the topic-induced subgraph Gt.

For each user ui ∈ Gt, BCM derives a topic-specific crediblity score for each
message mk, denoted Ck,t. Ck,t depends on Contextual (how easily a message is
understood, CN) and Completeness (the depth and breadth of media content,
CM) information. Context and Completeness are in turn dependent on four
sub-crediblity types (evidence variables):

Cluster credibility (denoted si,k,t) is the credibility the cluster of user ui (de-
noted Vit) assigns to message mk authored by some other user, uj .

Public crediblity (denoted pk,t) is the credibility that the entire network of
users in Gt assigns to message mk.

Experienced credibility (denoted ei,k,t) is the credibility that ui assigns to
message k based on ui’s past experience with the author of mk, viz., uj .

Role-based credibility (denoted li,k,t) is the credibility ui assigns to mk given
that uj has some role (and thus has some level of expertise).

BCM has some drawbacks, including its requirement of explicit connections be-
tween users (e.g., in the form of “friendships” or some other such designation)
to derive “clusters”, and the requirement of several ratings in common to derive
an adequate Bayesian network.

Learning Object Annotation Recommender (LOAR): In [1], Champaign
et al. draw inspiration from Zhang’s PTM [12] to develop a recommender system
that selects annotations on a learning object to display to students in an online
learning environment. The model displays those annotations with the highest
predicted learning benefits.

When viewing learning objects, students are allowed to vote on the attendant
annotations (ratings are binary). The “curent” student experiences a learning
object with annotations displayed in a customized fashion according to their
predicted learning benefit. An annotation’s predicted benefit is calculated us-
ing a combination of the annotator’s reputation and explicit ratings the given
annotation has recieved. An annotator’s reputation is derived as follows:

1. An author q has created a set of annotations Aq = {a1, . . . , an}, each of
which has an associated set of ratings Rai

= {r1, . . . , rmi
} left by some

number, mi, of students who have previously experienced the annotation.
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2. Compute a set of average ratings, V = {va1
, . . . , van

}, corresponding to each
annotation using the associated rating set, i.e., vai

= 1
mi

∑
ri

3. The annotator reputation, Tq, is the mean average rating, i.e., 1
n

∑
vai

.

Here, parallels between Champaign’s annotator model and Zhang’s trust model
begin to emerge. An annotator in LOAR corresponds to a seller in PTM, and the
total annotator reputation, Tq, is akin to a seller’s global reputation, R(S)global.
Moreover, student peers in LOAR act as advisors in the system, albeit the calcu-
lation of R(S)global from advisor experiences in PTM requires additional work to
derive the trust values between the buyer and advisors, and more recent experi-
ences are weighted higher in PTM due to a forgetting factor. Another difference
is that LOAR models the predicted benefit (or trustworthiness) of annotations,
whereas PTM models the trustworthiness of sellers (not products). Even if the
annotator is highly regarded in a community, any one particular annotation will
be influenced more heavily by the ratings it receives. The annotator reputation
serves only as a proxy for ratings when an annotation has not received votes
(e.g., is relatively new).

A “local” annotation reputation depends on the number of votes it receives.
In particular, votes for and against an annotation are weighted according to the
similarity between the current student and peer voter, which, as in PTM, is
calculated according to prior votes the pair have cast in common (ignoring the
complexity of time windows and focusing solely on common items). The global
and local annotation reputations are then combined in one of two ways to derive
the predicted benefit for the current student:

1. Using a Cauchy CDF, pred-ben(a) =
1

π
arctan

vFa − vAa + Tq
γ

+
1

2
, where

vFa and vAa are the number of votes for and against the annotation, each
weighted according to voter similarity to the current student.

2. Weighting Tq as a proxy for the annotation’s reputation according to some

requisite minimum number of votes. That is, pred-ben(a) = min

(
1,
|Rai
|

Nmin

)
·

Vai + max

(
0, 1− |Rai

|
Nmin

)
· Tq.

LOAR is a good first step in applying trust modelling in the online education
domain. However, the heuristics of which the model makes use are not grounded
in the same probability theory as the trust work upon which the model is loosely
based. Furthermore, in its current capacity, the model does not guard against
the rise of false but popular annotations (i.e., “folklore”).

2 Incorporating a measure of credibility

2.1 A Motivating Example: Folklore and Popularity

To begin, we develop an example that exhibits the “folklore” problem in Cham-
paign’s model. We sketch what LOAR does with this and assume:
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– A single annotator, a, who has created a set of 6 annotations/messages,

Ma = {m1, . . . ,m6}. The 6th annotation contains false information (e.g.,
claims cancer can be cured by magic crystals).

– Four peers, p1 through p4, who have experienced and rated a’s annotations.
– A student s for whom we are trying to determine whether to recommend m6

annotation.

Table 1 shows the ratings given by each respective participant to each mi ∈M .
In Table 1, a’s reputation is simply the mean average rating, Tq, which can be

Table 1. User message ratings

m1 m2 m3 m4 m5 m6

p1 0 1 1 1 0 1
p2 1 1 1 1 0 1
p3 0 0 0 1 0 0
p4 0 1 1 0 1 1
s 1 1 1 1 1 ?

Table 2. Peer similarities to student s

p1 p2 p3 p4
s 0.2 0.6 -0.6 0.2

verified to be 0.6583. Next, we calculate the participant pairwise similary scores
per Champaign’s model (see Table 2). Note that we only show the relevant
pairwise similarities (to student s)

To calculate these scores, we simply find the proportion of common ratings
(i.e., annotations that both parties have rated) that agree between both parties,
viz., the number of times both parties rate an annotation the same (both 1 or
both 0) divided by the total number of common ratings. This metric is a number
in the interval [0, 1], which we then map to the interval [−1, 1] to derive the final
similarity (to facilitate weighting votes). In particular, this allows the system to
make recommendations based on consistently divergent behaviour (i.e., a peer
whose annotation preferences are completely opposite the current student).

Next, LOAR uses the similarity scores along with peer scores for the marginal
message in order to derive a trust metric. In particular, LOAR tallies the votes
for and against a given message, and combines these tallies into a final metric
(using, for example, the cauchy CDF). So, for example, p1’s vote for m6 would
increase the “votes for” tally by 1 + 1 ∗ 0.2 = 1.2. On the other hand, p2 would
increase the “votes for” tally by 1 + 1 ∗ 0.6 = 1.6, and p3 would increase the
“votes against” tally by 1 + 1 ∗ (−0.6) = 0.4. Lastly, the system combines the
ratings on m6 with a’s overall reputation to derive the predicted benefit, using
either the Cauchy or Trust approach, which results in a trust metric of 0.86 and
0.76, for Cauchy and Trust, respectively.

Clearly then, m6 has a very high predicted benefit. Accordingly, there is a
high likelihood that m6 will be shown to s (it will likely be over a predetermined
threshold, and will be among the top annotations). However, it contains errors
that could detract from learning, and so should in fact not be shown to s. This
example shows how the popular opinion of a message could ultimately enable
false information to spread in a network of peers.
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2.2 New Trust Model to Address Folklore

At first glance, it appears as though the folklore problem could be addressed
by classifying peers into different roles and weighting peer feedback according
to these roles. For example, one could introduce two classes of users, “students”
and “professors”, and set professors’ weights to infinity. This would allow pro-
fessors to prevent false message propagation; a single bad vote from a professor
would outweigh any number of votes from students. But even “professors” can
be wrong, so instead of an infinite weight, one could set the weights according to
some heuristic that allows for a sufficiently large number of other user roles to
outweigh a “super user”. Even then, it seems reasonable that the weights of users
in any role should be variable, owing to the fact that users can make mistakes
and can gain and lose credibility in a community. Accordingly, a simple static
“weight” solution is insufficient and somewhat naive.

Instead, we proceed first by redefining the notion of “trust” in the online
education scenario. In LOAR, a trust metric was annotation-specific, and corre-
sponded to the predicted benefit of a given message, where predicted benefit was
a combination of an annotator’s mean reputation and the annotation’s similarity-
weighted rating. Instead of introducing a weight under the same model, we de-
velop a new model drawing on the probability theory used throughout trust
literature. We draw inspiration from PTM and TRAVOS in the use of Beta dis-
tributions, but continue to model the benefit of annotation objects themselves,
drawing inspiration from BCM in this regard.

Recasting the trust model Determining whether an annotation or message
will be well-received (i.e., is beneficial) is not deterministic; it can instead be
modelled as a Bernoulli process. That is, if M is the event a message is well-
received, then we seek to determine ψ = Pr(M). Moreover, we allow this pa-
rameter to itself be represented as a random variable and rely on Bayes’ theorem
to update prior probability distributions over ψ. In particular, we can use the
Beta distribution to represent the prior Pr(ψ):

Pr(ψ) = Beta(α∗, β∗) (3)

However, since we model the trustworthiness of messages (not annotators), the
user does not have any prior belief that directly corresponds to the message
itself (he has yet to experience it, and so the only rational belief is to assume
that α∗ = β∗ = 1, i.e., that ψ is uniformly distributed in the interval [0, 1]).
Accordingly, we construct a suitable belief by looking to the experiences of peers
in the system, as in LOAR.

When a user solicits feedback about a message, his peers report binary rat-
ings3. Equivalently, peers report parameters αp and βp such that αp + βp = 1.

3 For example, 0 could mean “did not find the message helpful” and 1 could represent
“found the message helpful”.
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Initially, we restrict this report such that αp, βp ∈ {0, 1}4. To combine peer re-
ports, we model the similarity between users i and j using Hamming distance.
The Hamming distance is a measure of the number of bits by which two binary
strings differ, or equivalently, how many changes need to be made to string a to
transform it into string b. Here, we can consider the series of common annotation
ratings between two users to form “binary rating strings”. (Table 1 above shows
such a set of binary rating strings in the form of a matrix).

From the Hamming distance we derive the Hamming ratio between i and j,
denoted hrij (the Hamming distance divided by the length of the binary strings,
i.e., the number of common ratings). Since a Hamming distance of 0 means that
the two strings are identical, a Hamming ratio of 0 suggests we simply take a
peer report as given; in contrast, if the Hamming ratio is 1, we swap the values
reported for αp and βp. We formalize this combination scheme as follows:

α∗ = 1 +
∑
p∈P

(1− hrsp) · αp + hrsp · βp (4)

β∗ = 1 +
∑
p∈P

(1− hrsp) · βp + hrsp · αp (5)

Here, P is the set of all peers. This combination capitalizes on the fact that
the Beta distribution is well-defined for all real-valued parameters α, β > 0.
Moreover, it allows us to easily extend peer reports to include expectations on
message trust values. That is, a report r ∈ [0, 1] can be translated into parameters
(α, β) = (r, 1− r) so that a report of r = 1 corresponds to α = 1, β = 0, a report
of r = 0.5 corresponds to α = β = 0.5, and r = 0 to α = 0, β = 1. Thus, a user
can solicit feedback from peers about an annotation even if those peers have
yet to personally experience the annotation. This is useful if, for example, the
current user has no or limited ratings in common with peers who have rated the
annotation in focus. (That is, it might be more useful to use a report of expected
usefulness from a peer who is highly similar to the current user rather than use
an explicit report from a peer with whom the user has no history and thus no
notion of similarity).

Incorporating a measure of credibility Under the new trust framework
described above, we now introduce the notion of credibility. Credibility is a
measure of the extent to which users should trust the opinions of peers within the
community. Thus, credibility influences the similarity weighted Beta distribution
derived above. In particular, we now also seek to determine κ = Pr(C), where
C is the event that a peer report is credible.

As before, we assume that κ is randomly distributed and can be described by
a Beta distribution. Thus, the credibility metric E(Pr(κ)) is reported alongside
peer ratings of annotations. For now, we assume that this credibility score is

4 A report of 1 corresponds to the combination (αp, βp) = (1, 0) whereas a report of 0
corresponds to the combination (αp, βp) = (0, 1).
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made available by an oracle, and we leave a discussion of one possible derivation
to the next section5.

The question that remains is how a user should combine his knowledge of
peer credibility and a particular annotation’s reputation gleaned through peer
reports. When a user is highly similar to the peer from whom he receives a
report, this combination is trivial; credibility can directly discount the reported
rating. That is, one should listen to the advice of highly credible and similar
peers more than the advice of non-credible peers. However, a difficulty arises
when a user is dissimilar from a credible peer. In this circumstance, our above
model will reverse the opinion of a credible peer. In some instances, this reversal
could actually detract from the user’s learning.

To make this more explicit, suppose that user i solicits advice from user j
about a message m. Suppose further that the Hamming ratio between i and j
is 1 (that is, they are completely opposite). Then, if j reports (α, β) = (0, 1)
(i.e., he thinks the message not useful, or perhaps even incorrect), the similarity
weighting scheme described above will reverse this opinion to (α, β) = (1, 0) when
determining the trust metric from i’s perspective. That is, the message, which
j thinks should not be shown, will now be more likely to be shown. However,
in this case, if j is perfectly credible, his opinion of a message corresponds to a
very credible one. Accordingly, his report might be better taken verbatim rather
than dampened by the Hamming ratio.

Accordingly, we propose a scheme detailed in Algorithm 1. This algorithm
computes a trust metric by discounting peer reports by their community cred-
ibility, except when they report negatively on the given annotation. When this
happens, the peer’s negative rating is weighted using a combination of similar-
ity and credibility. In particular, the role that similarity plays in blending the
reported message rating is linearly reversed as the peer’s credibility approaches
1 (i.e., perfect credibility). This credibility weighting scheme helps to address
the issue of folklore propagation in an e-learning system. That is, highly credible
peers (like professors and TAs) who report negatively about a given annotation
will hold more sway than a number of less credible peers, even if the credible
voters usual voting patterns tend to make them dissimilar to the current student.

Incorporating annotator reputation Lastly, we address the notion of an
annotator’s reputation. It is useful to model an annotation’s reputation using
some combination of explicit annotation ratings and the annotator’s inherent
reputation, especially when the given annotation has little or no explicit ratings.
We will assume that an annotator’s reputation is the same as his credibility
(described and used above). In order to calculate the credibility for user u, we
propose the following heuristic, inspired by the recursive derivation of credibility
evidence variables in BCM: that a peer is considered credible if credible peers
vouch for his annotations. We can derive such a credibility score as follows:

5 In particular, we will use the following heuristic: users will be considered credible if
many credible peers rate their messages as credible, a tenet of BCM [10]
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Algorithm 1: Deriving A Trust Score Using Similarity and Credibility

Input: The current user, u, his set of peers, P , their credibility scores,
cp ∈ [0, 1], and their corresponding ratings for the annotation in
focus, rp ∈ [0, 1]

Output: Parameters α∗ and β∗ to a Beta distribution describing trust in
the current annotation

1 α∗ = β∗ = 1 // At the start, user has uniform expectation

2 foreach p ∈ P do
3 hrup ←− computeHammingRatio(u, p)
4 (αp, βp)←− (rp, 1− rp)

5 if rp == 0 then
// Adjust the similarity weight by credibility:

6 α∗+ = [1− hrup · (1− c)]αp + hrup(1− c) · βp
7 β∗+ = [1− hrup · (1− c)]βp + hrup(1− c) · αp

8 else
// Else simply compute a credibility-dampened trust score

9 α∗+ = cp · [(1− hrup)αp + hrupβp]
10 β∗+ = cp · [(1− hrup)βp + hrupαp]

11 end

12 end

1. User credibility is given by κu ∼ Beta(αcu , βcu). In this paper, we assume
that a single, global credibility distribution across all subjects suffices to
describe the reputation of an annotator (versus a topic-specific metric).

2. When a peer p rates message mu authored by u, p’s report updates αcu and
βcu as follows: a positive (negative) rating will increment αcu (βcu) by 1.

3. A rating by p should also only affect u’s credibility to the extent that p is
credible. That is, when p rates mu, the κu hyperparameters are incremented
as above, except that p’s report is discounted by E(κp). Thus, if p rates m
positively and p is perfectly credible, i.e., E(κp) = 1, αc is incremented by 1.
If p is not credible at all, i.e., E(κp) = 0, then αc is incremented by 0 (i.e.,
non-credible peers cannot influence u’s credibility).

Ultimately, the annotation-specific reputation and annotator credibility can be
combined to finalize a trust metric using either of the schemes proposed in LOAR
(e.g., Cauchy-based combination)6.

Example Revisited Returning to the example in §2.1, we present the LOAR
similarities and Hamming ratios together in Table 3. Here we see very clearly
the relationship between the similarity metric used by LOAR and the Hamming
ratio. In particular, a higher Hamming ratio corresponds to a similarity that is
closer to −1. A mapping f : h 7→ s from row h to row s is defined as f(h) =

6 This derivation of credibility only works for those users who have created annotations
and is only useful if those annotations have received ratings.
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Table 3. Similarities and Hamming Ratios

p1 p2 p3 p4
s 0.2 0.6 -0.6 0.2
h 0.4 0.2 0.8 0.4

Table 4. α and β reports (ci = 1)

p1 p2 p3 p4
h 0.4 0.2 0.8 0.4

(αp, βp) (1,0) (1,0) (0,1) (1,0)
(α′p, β

′
p) (0.6,0.4) (0.8,0.2) (0,1) (0.6,0.4)

Table 5. α and β reports (ci = 0)

p1 p2 p3 p4
h 0.4 0.2 0.8 0.4

(αp, βp) (1,0) (1,0) (0,1) (1,0)
(α′p, β

′
p) (0,0) (0,0) (0.8,0.2) (0,0)

1− 2 · h. Hence, these metrics fundamentally measure the same thing and differ
only by an affine transformation.

The cred-trust algorithm dampens trust values according to peer credibility.
A peer is credible if credible peers rate their annotations highly, or if credible
peers rely on their ratings. To begin, let us assume that all peers are perfectly
credible, i.e., that ci = 1. Table 4 shows the initial αp, βp reports as well as their
credibility-weighted values α′p, β

′
p, as given by Algorithm 1.

Using these values, we can see that the reported trust metric would be 0.5.
Upon reflection, this trust value makes sense. Similarity forms a continuum be-
tween “exactly like me” and “exactly opposite me”. Peers p1 and p4 have Ham-
ming ratios of 0.4, indicating they are centered in that continuum. Accordingly,
one cannot gain much insight from their reports. Furthermore, p2 (p3) has a
Hamming ratio of 0.2 (0.8). On the balance, these two peers’ opinions should
offset each other. Ultimately, we cannot learn anything about the trustworthiness
of the medium in this case, since all peers are equally and perfectly credible.

Table 5 illustrates the case where all peers have a credibility score of 0. These
combinations result in a trust metric equal to 0.6. In this case, the algorithm
completely disregards the votes of peers who liked the given message. However,
p3, who is almost completely opposite to s, disliked the message. Even though
p3 is not credible at all, or perhaps because he is not credible, the algorithm
reverses his opinion, resulting in a trust metric of 0.6.

As a final example, suppose we let c1 = c2 = c4 = c, c ∈ [0, 1), and c3 = 1.
The interplay between credibilities for the two peer sets is shown in Figure 1.
In the cases where p1, p2, p3 have bad trust, their opinions will be discounted,
while p3’s opinion will be taken verbatim.

3 Conclusions
In summary, we have developed a new trust model for use in determining the
reputability of a particular message in a social networking environment, moti-
vated by earlier work on limiting the presentation of annotations in repositories
of learning objects, for peer-based intelligent tutoring. Our model incorporates
feedback from peers and then weights this feedback by Hamming similarity. The
combination of peer feedback is accomplished using a Beta distribution, and it
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Fig. 1. Credibility impact on trust under the current ratings profile
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takes advantage of various properties of the distribution (notably, that it is well-
defined for real-valued hyperparamters, as in BRS). However, the model also
combines feedback according to peer credibility, inspired by the use of that term
in BCM. This distinguishes our approach from trust models that only discount
reputability based on similarity (as in PTM). The use of an external measure
of credibility in addition to similarity allows the model to combat the spread of
false information in the system.

Our work contrasts with that of other researchers. The Bayesian learning
trust model BLADE [9] for modeling seller/advisor trustworthiness employs
Dirichlet distributions to allow multiple dimensions to be considered. Addition-
ally, BLADE tries to learn the evaluation function of agents and thus does not
simply ignore reports deemed untrustworthy. While BLADE does address sub-
jective differences, this notion of similarity is not also combined with a modeling
of credibility and thus our approach goes beyond BLADE’s focus, which may be
best seen as a kind of reputation alignment [6]. Other researchers exploring trust
in social networks are focused more on how to propagate opinions amongst peers.
For example, Hang, Zhang and Singh [3, 4] suggest which peers might have the
most valuable advice to offer (with research that evaluates the trustworthiness
of a witness in terms of trust it puts in common acquaintances). That work,
however, does shed light on peer credibility and as such may be of value for us
to explore for future extensions of our model, which instead focuses on which
messages to recommend to users. In a similar vein, the concept of confidence
explored in [7] or the suggestion of measuring credibility in terms of behavioural
models [8] may also serve as starting points for deepening our solution.

As a final remark on this model, it would be beneficial to incorporate confi-
dence thresholds into peer reports. In so doing, peers who have extensive evidence
about a message’s expected usefulness (either through a number of ratings-in-
common with other users who rated the current message or via numbers of peer
interactions with the given annotator) could report more confidently. This idea,
inspired by TRAVOS, is left as a future extension. Of interest for future work
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as well is to do a head to head comparison with the LOAR model, in order
to quantify the benefits accrued from our model in correcting for the potential
of folklore and in expanding peer reports to include expectations about mes-
sage benefits. Another important avenue is to explore learning to determine a
more precise relationship between rating Hamming distances and the probabil-
ity a user will find an annotation useful. A final open direction is to return to
Gorner’s question [2]: how best to determine the size and composition of a social
network, considering whether the number of peers whose advise is sought should
be unbounded as in LOAR or delimited as in PTM or BCM.
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