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AbstractService selection is one of the important problems in applications of multi-agent systems. A qualitative way is desirable
for service selection according to agents’ preferences on non-functional Quality of Service (QoS) attributes of services. However,
it is challenging when the decision has to be made for multiple agents with preferences on attributes that may be incomplete. In
this paper, we first use a qualitative graphical representation tool called CP-nets to describe preference relations in a relatively
compact, intuitive and structured manner. We then propose a preference reasoning algorithm to construct a derivation tree from
a CP-net for each agent and then generate all service patterns for this agent. The Rank semantic is used together with the Lex
semantic to provide the ordering of different service patterns. After that, we merge ranked service patterns for all agents and
select a set of services that satisfy these agents the most. Finally, we also propose a semantic validation algorithm to show the
satisfactory degree of the best service patterns according to other voting semantics. Experimental results indicate that this method
can always obtain optimal outcomes which closely satisfy all agents, within acceptable execution time.
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1. Introduction

Service selection has drawn more and more atten-
tion [1,2,3]. The service that satisfies an agent the most
among a set of services needs to be selected based
on the agent’s preferences on non-functional QoS at-
tributes of services. In most existing solutions, an util-
ity function is used to represent an agent’s preferences,
which is a powerful quantitative approach to knowl-
edge representation. In many cases, it is however de-
sirable to assess preferences in a qualitative rather than
quantitative way. For example, an agent may express
its preference that it prefers value a over value b for
one attribute of some type of services, instead of using
a numeric value to represent its preferences on value
a and value b respectively. Besides, a quantitative ap-
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proach may induce errors from agents in identifying
their utilities and thus make wrong selection of ser-
vices, as it is sometimes not straightforward to assign
an utility value to an attribute value.

Research studies on services selection based on
preferences mainly focus on a single agent’s prefer-
ences. But in many real situations, a decision may
have to be made for a group of agents with different
preferences on QoS attributes of web services [4]. In
addition, the agents’ preferences may also be incom-
plete [5]. Incompleteness of preferences represents an
absence of knowledge about the relationship between
certain pairs of outcomes. It arises naturally when we
have not fully elicited agents’ preferences or when
agents have privacy concerns which prevent them from
revealing their complete preference orderings. It then
becomes difficult to comprehensively consider all the

1570-1263/07/$17.00 c⃝ 2007 – IOS Press and the authors. All rights reserved



2 H. Wang et al. / Qualitative Preference-Based Service Selection for Multiple Agents

agents’ preferences and select services which satisfy
them the most.

In this paper1, we use CP-nets [7] to represent qual-
itative preference relations in a relatively compact, in-
tuitive and structured manner under conditional ceteris
paribus (all else being equal) preference statements.
Based on this representation, we propose a preference
reasoning algorithm to first construct a derivation tree
from a CP-net for each agent and then generate all ser-
vice patterns for this agent. We also rank the service
patterns by the Rank semantic [8]. Finally, we merge
ranked service patterns for all agents based on the Lex
semantic, and select a set of services that satisfy these
agents the most. In addition, a semantic validation al-
gorithm is proposed to show the satisfactory degree of
the best service patterns according to the voting se-
mantics of Pareto, Majority and Max. The processes of
service selection for multiple agents with incomplete
preferences are demonstrated by a concrete example,
involving three agents with different preferences.

The performance of our method is also evaluated
by a wide set of artificially generated QoS attributes
of services and values of attributes. More specifically,
we verify the effectiveness of our algorithms and com-
pare it with the quantitative approach. We also record
down the execution time of our algorithms. For these
experiments, we vary the total number of available ser-
vices, the number of attributes for services, the num-
ber of agents involved in service selection, as well as
the number of possible attribute constraint values. Ex-
perimental results confirm that our method is able to
more effectively select the most optimal services for
agents than the quantitative approach in different sim-
ulation scenarios. The execution time of our method is
also acceptable.

The remainder of the paper is organized as fol-
lows. A motivation scenario is given in Section 2. Sec-
tion 3 introduces the notions and concepts of prefer-
ence logic, CP-nets, mCP-nets, and voting semantics.
In Sections 4 and 5, the representing and reasoning
techniques of preferences and the illustrative examples
are presented. The experimental results are provided
in Section 6. Section 7 summarizes and compares our
method with the related work. Conclusions and future
work are finally given in Section 8.

1This paper is the extended version of our previous work in [6].

2. An Example Scenario

In a typical scenario of service selection between
a group of users, each user describes her preferences.
The agent acting on behalf of the user will identify the
relevant services that satisfy this user the most. The
agent will also communicate and negotiate with other
agents to reach an agreement on services that closely
satisfy all these users.

A motivating real life example for our work is the
field of enterprise information management [9]. In this
field, the most widely used application by different de-
partments is probably the data storage and access ser-
vice. These services need to meet the needs of differ-
ent departments. For example, a company’s branches
need to choose a proper data storage and access service
when they conduct joint marketing activities. Each
branch expresses its preferences over QoS attributes
of services. The branch A may prefer security over
other attributes (i.e. response time and price). Branch B
may be concerned more with the attribute of response
time. Other branches may prefer some other quality
attributes (e.g. the platform). If no branch can per-
suade other branches, no service can satisfy all these
branches. In addition, some branches may express their
preferences on only a part of the attributes. We focus
on service selection for finding services that closely
satisfy these branches.

3. Preliminaries

We begin with a brief outline of relevant notions
from decision theory, CP-nets introduced by Boutilier
et al. [7], and mCP-nets and voting semantics proposed
by Rossi et al. [8], which are the fundamental concepts
and methods for the proposal of our algorithms of ser-
vice selection for multiple agents with qualitative pref-
erences that may be incomplete.

3.1. Preference Logic

Assume that the world can be in one of a set of states
S, and in each state s there are a number of actions As

that can be performed. Each action in one state denotes
a specific outcome. The set of all outcomes is denoted
by O. A preference ranking is a total preorder over the
set of outcomes: o1 ≽ o2 means that outcome o1 is
equal to or more preferred than outcome o2; o1 ≻ o2
means that outcome o1 is strictly more preferred than
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outcome o2; while o1 ∼ o2 denotes that the decision
maker is indifferent between o1 and o2.

Assume a set of variables (attributes) V = {X1, ..., Xn}
with domains D(X1), ..., D(Xn). An assignment x of
values to a set X ⊆ V of variables (also called an in-
stantiation of X) is a function that maps each variable
in X to an element of its domain: if X = V , x is a
complete assignment, otherwise x is a partial assign-
ment [4]. We denote by Asst(X) the set of all assign-
ments to X . If x and y are assignments to disjoint sets
X and Y (X ∩ Y = ∅), respectively, we denote the
combination assignment set of x and y by xy. For any
outcome o, we denote by o[X] the value x ∈ D(X)

assigned to variable X by that outcome. A subset of
variables X is preferentially independent of its com-
plement Y = V − X iff for all x1, x2 ∈ Asst(X)

and y1, y2 ∈ Asst(Y ), we have: x1y1 ⊆ x2y1 iff
x1y2 ⊆ x2y2. That is, the structure of the prefer-
ence relation over assignments to X does not change
and can be assessed as other attributes vary. Let X ,
Y , and Z be a partition of V into three disjoint non-
empty sets. X is conditionally preferentially indepen-
dent of Y given an assignment z ∈ Asst(Z) iff for all
x1, x2 ∈ Asst(X) and y1, y2 ∈ Asst(Y ), we have:
x1y1z ⊆ x2y1z iff x1y2z ⊆ x2y2z. In other words, if
X is conditionally preferentially independent of Y for
all z ∈ Asst(Z), then X is conditionally preferentially
independent of Y given the set of variables Z.

3.2. CP-nets

CP-nets introduced by Boutilier et al. [7] is a tool
for compactly representing qualitative preference re-
lations under the ceteris paribus assumption. A CP-
net over variables V = {X1, ..., X2} is a directed
graph G over X1, ..., X2 whose nodes are annotated
with conditional preference tables CPT(Xi) for each
Xi ∈ V . Each conditional preference table CPT(Xi)

associates a total order ≻i
u with each instantiation

u of Xi’s parents Pa(Xi) = U . For each variable
Xi, we ask the user to identify a set of parent vari-
ables Pa(Xi) that can affect her preference over var-
ious values of Xi. Formally, given Pa(Xi) we have
that Xi is conditionally preferentially independent of
V − (Pa(Xi)∪{Xi}). Given this information, we ask
the user to explicitly specify her preferences over the
values of Xi for all instantiations of the variable set
Pa(Xi) to generate the CP-net and CPT.

3.3. mCP-nets

We first introduce partial CP-nets as a CP-net in
which certain attributes may not be ranked. This im-
plies that the agent is indifferent to the values of
these attributes. We put together several partial CP-
nets to represent the incomplete preferences of multi-
ple agents. A mCP-nets [8] is a set of m partial CP-
nets which may share some attributes, such that every
attribute is ranked by at least one of the partial CP-
nets. An outcome for a mCP-nets is an assignment of
the values to the attributes in all the partial CP-nets
in their domains. Note that a CP-net is also a special
mCP-nets where m=1. Thus, service selection based
on mCP-nets inherits complexity of and is more com-
plicated than that based on a single CP-net.

3.4. Voting Semantics

We reason about a mCP-nets by querying each par-
tial CP-net and then merging the results, which can
be seen as each agent “voting" whether an outcome
dominates another. There are five different voting se-
mantics: Pareto, Majority, Max, Lex, and Rank [8], de-
scribed as follows:

– In Pareto, outcomes are often incomparable. An
outcome is Pareto optimal iff no other outcome is
better.

– Majority and Max are the weaker criteria, and
many agents often vote in favor or for incompa-
rability. Two outcomes are majority OR max in-
comparable iff they are not ordered either way.

– In the Lex semantic, agents are ordered by their
importance. Two outcomes are lexicographically
incomparable iff there exists some distinguished
agent such that all agents higher in the ordered
are indifferent between the two outcomes and the
outcomes are incomparable to the distinguished
agent.

– In the Rank semantic, each agent ranks each out-
come. Two outcomes are ranked indifferent iff the
sums of the ranks assigned to them are the same.

The Pareto, Lex and Rank semantics define strict or-
derings. By comparison, neither the Majority nor Max
semantics induce a strict ordering. The five voting se-
mantics are also embedded by Rossi et al. [8] in the
context of mCP-nets, but they did not provide ac-
tual algorithm designs. We extend and implement the
Rank semantic together with the Lex semantic to ad-
dress multiple agents’ preferences on QoS attributes



4 H. Wang et al. / Qualitative Preference-Based Service Selection for Multiple Agents

in service selection, by considering the case where
agents may have different preferences and they may be
weighted differently in making decisions on services.
We also validate the selected best services according to
the other three voting semantics (Pareto, Majority and
Max).

4. Preference Representation and Reasoning

We first describe the representation for incomplete
preferences of an agent using CP-nets. The example
scenario in Section 2 will be used throughout the cur-
rent section. We then present the processes and al-
gorithms of our reasoning about possibly incomplete
qualitative preferences of multiple agents for service
selection.

4.1. Representing Incomplete Preference

Assume that the data storage and access service
of a company can be described by a number of
QoS attributes, including Platform (A: a file system
or a database), Security (B: low or high level), Re-
sponse_time (C: 0 - 100ms), Price (D: $0 - $100),
and Location (E: New York, Toronto or London). Let
V = {A,B,C,D,E} be the set of the five attributes.

Definition 1 Attribute Constraint: is used to de-
scribe the constraints on quality attributes defined by
agents. For example, an agent may define constraints
on Security as b1: low and b2: high.

Definition 2 Preference Statement: is used to de-
scribe a preference about one quality attribute. For ex-
ample, an agent may prefer high level security for a
service. The preference statement is b2 ≻ b1.

If an agent X proposes its incomplete preference se-
quence: Platform ≽ Response_time ≽ Location, the
partial CP-net is shown in Figure 1. The arrows de-
note that one attribute dominates another. This partial
CP-net consists of only three variables A, C, and E
because the agent does not provide the full preference
information. The agent has an unconditional prefer-
ence on Platform, and it prefers a file system for stor-
ing data. In this example, no matter which preference
statement is met between a1 and a2, c1 is always bet-
ter than c2. The agent’s preference on Location, how-
ever, depends on Response_time. For example, if the
response time is longer than 50ms, agent X is indiffer-
ent between e2 and e3, but e1 is less preferred than e2
and e3 by X.

A: Platform a1 ≻ a2

C: Response time

E: Location

a1 : c1 ≻ c2
a2 : c1 ≻ c2

c1 : e1 ≻ e2 ≻ e3

c2 : (e2, e3) ≻ e1

file systema1 :
a2 : database

Response time≥50ms

c1 : Response time<50ms

c2 :

Location = Toronto

e1 : Location = New York

Location = London

e2 :

e3 :

(a) (b) (c)

Figure 1. (a, b) CP-net for Agent X, (b) CPT, (c) Preference State-
ments
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4.2. Service Selection Processes

The service selection processes are as follows. For
each agent, we first transform its CPT of preference
description to a derivation tree. We then generate a set
of service patterns (called aSet) that satisfy the agent’s
preferences. The rank value of each item in the aSet
will be computed based on the Rank semantic. The
total rank values of each service pattern will then be
computed by merging rank values of service patterns
from each agent based on the Lex semantics. The avail-
able services will be divided into different patterns ac-
cording to their quality attribute values. We also pro-
vide the results of the other semantics (i.e. Pareto, Ma-
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jority and Max) for the best patterns. Finally, the ser-
vices that match the best patterns will be chosen for all
agents. The process of service selection in our system
is shown in Figure 2.

4.3. Preference Reasoning Algorithms

We describe the algorithms that transform CP-nets
to derivation trees, generate service pattern sets from
the derivation trees, rank service patterns in each set,
and merge rank values of service patterns for service
selection. We also provide the algorithm for validating
the selected service patterns according to the Pareto,
Majority and Max semantics. We finally discuss com-
plexity analysis for these algorithms that will also be
confirmed by the experimental results in Section 6.

Algorithm 1 Generating Derivation Tree
Input:

CP-net of an agent;
root of the tree Tr;
RUNTIME : the allowed runtime of program;

Output:
Derivation tree Tr of the agent

1: Add constraints of unconditional attribute in CP-
net as root’s children,left to right under priority;

2: for each other attribute preference in CP-net do
3: Find attribute constraints on condition of left-

most node in upper level;
4: Add as children,left to right under priority;
5: end for
6: for each node m̸= leaf, from bottom up do
7: if preference on condition of m = left node n

then
8: Duplicate subtree of n as m’s subtree;
9: else

10: Find constraints on condition of m;
11: Add as children,left to right under priority;
12: end if
13: if run time > RUNTIME then
14: break;
15: end if
16: end for

4.3.1. Derivation Tree
Based on an agent’s preferences represented in a

CP-net, an algorithm is proposed to generate a deriva-
tion tree. The agent’s preference statements of the at-
tributes that are conditioned by a smaller number of
or no other attributes will be in the upper level of

the tree. Nodes are conditioned by their parents. In
the same level of the tree, the preference statements
(nodes) will be listed according to their priorities from
left to right. For the children of the same parent, the
left children are more preferred than the right children.
The pseudo-code summary for generating a derivation
tree is shown in Algorithm 1, and the derivation tree
for agent X’s preferences in Figure 1 is shown in Fig-
ure 3. Nodes a1 and a2 are in the upper level of the tree
because attribute A is unconditional. Node a1 is a left
child because it is more preferred than node a2.

4.3.2. Service Patterns and Rank Semantic
Service patterns of an agent are generated from its

derivation tree. We then use the Rank semantic method
to separate the service patterns into different sets in
order to find the best patterns.

Definition 3 Service Pattern: is a combination of
attribute constraints for all attributes of QoS, i.e.
a1b1c1d1e1.

Definition 4 Rank of Service Pattern: is a number
expressing the degree of the service pattern to meet
agents’ preferences.

Definition 5 aSet: short for an analogous set is a set
of items ordered according to their values. An item in
an aSet can also be an aSet called Sub_aSet.

Definition 6 Service Pattern aSet: is an aSet whose
items are service patterns ordered based on their rank
values.

As shown in Figure 3, there may be many paths
from the top to the bottom of the derivation tree. The
left paths are more preferred than the right ones (see
Algorithm 1). The combination of all paths will be-
come an aSet T . For example, the aSet from Figure 3 is
T = {T1, T2, ..., T10}, and T1 = a1c1e1, T2 = a1c1e2
and etc. If the agent’s preferences are incomplete, the
attributes that are not in the CP-net (called remaining
attributes) should be added to each path to become a
service pattern. If the remaining attributes have their
own priority order, the order will be added into pat-
terns for integrity and accurateness. Suppose that the
attributes of Security (B) and Price (D) have strict pri-
orities, b1 ≻ b2 and d1 ≻ d2. T1 becomes a ser-
vice pattern Sub_aSet as T1 = {{a1c1e1b1d1} ≻
{a1c1e1b1d2, a1c1e1b2d1} ≻ {a1c1e1b2d2}}. The
pseudo code for generating all service patterns is
shown in Algorithm 2.
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Figure 3. Derivation Tree of CPT for Agent X

Algorithm 2 Generating Service Pattern aSet
Input:

Preference statements;
Derivation tree Tr;

Output:
Service pattern aSet T

1: int i = 0; aSet T = NULL;
2: for each path in tree Tr from left to right do
3: i = i + 1;
4: Combine preference statements in all levels;
5: Sub_aSet T [i] = NULL;
6: Add the combination into T [i] as an item;
7: Add T [i] into aSet T ;
8: end for
9: for each remaining attribute do

10: if attribute value has strict priority then
11: Order preference statements by priority;
12: end if
13: Add them into each Sub_aSet in T ;
14: end for

Because T1 contains the best service patterns, we
define the initial rank of items in T1 as a number
setWeight. The value of setWeight is larger than the
product of the size of aSet T and the maximum size
of the Sub_aSets of T . In the example in Section 5,
we set setWeight to be 100. The initial rank of the
items in T1 is then 100. The rank of each pattern
in T1 will be added by its order number. For ex-

ample, Rank(a1c1e1b1d1) = 101, Rank(a1c1e1b1d2) =
102, and Rank(a1c1e1b2d1) = 102. a1c1e1b1d2 and
a1c1e1b2d1 have the same rank value because they are
in the same Sub_aSet of T1. The pseudo code for rank-
ing service patterns is shown in Algorithm 3.

Algorithm 3 Ranking Service Patterns in aSet
Input:

Service pattern aSet T ;
setWeight;

Output:
Ranked service patterns in aSet

1: int i = 0;
2: for each Sub_aSet in T by priority do
3: i = i + 1;
4: j = 0;
5: for each service pattern in T [i] by priority do
6: j = j + 1;
7: Rank(pattern[j]) = i × setWeight + j;
8: end for
9: end for

4.3.3. Merging and Selection
After we have an aSet for each agent and service

patterns with rank values in each aSet, we now merge
the aSets for all agents and compute the total rank val-
ues of each service pattern in the merged aSet. Service
selection for the agents will depend on these total rank
values of service patterns.

Different organizational forms exist among agents.
If all the agents have equal weight, the same pattern’s
rank values of the agents will simply be added. The
pattern with the highest total rank is the best pattern
for all the agents. However, agents may be weighted
differently in making decision on services. In this case,
the total rank of service pattern j (j is the id of the
pattern) can be computed as follows:

Rank_total(j) =
M∑
i=1

[Rankji ×Weight(i)] (1)

where i is the id of an agent, M is the total number of
agents, and Rankji is agent i’s rank for service pattern
j. The total weight of all agents is normalized to 1. If
some patterns have the same total rank, each of these
patterns will be ordered by its weighted distance to the
mean of all rank values for this pattern. Note that the
mean value can be calculated by Equation 1 because
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the total weight is 1. The weighted distance can then
be computed as follows:

Dis(j) =
M∑
i=1

[Weight(i)×|Rankji−Rank_total(j)|2]

(2)

The pseudo code for merging service patterns and
computing their total rank values is shown in Algo-
rithm 4.

Algorithm 4 Merging Service Patterns
Input:

Total number of agents M ;
ranked service pattern aSet for each agent;
weight of each agent (optional);

Output:
Service patterns ordered by total rank;

1: if no weight of agents provided then
2: Weight of each agent = 1

M ;
3: end if
4: Initialize Rank_total of each pattern = 0;
5: Compute Rank_total using Equation 1;
6: Order service patterns according to Rank_total
7: for each set of patterns with same Rank_total do
8: Compute weighted distance using Equation 2;
9: Order them according to weighted distance;

10: end for

Based on the total rank values of all service patterns,
service selection is done by matching available ser-
vices with service patterns. The services that match the
patterns with the smallest rank values will be returned
to all agents. The pseudo code for service selection is
shown in Algorithm 5.

4.3.4. Semantic Validation of Best Service Patterns
As mentioned in Section 3.4, there are mainly five

voting semantics in service selection. In the above al-
gorithms, the Rank semantic is used together with the
Lex semantic to produce the order of different service
patterns. But, in real world applications, other seman-
tics may also be concerned when selecting services
based on preferences of each member agent in a deci-
sion group. We thus propose to make use of the other
three voting semantics (i.e. Pareto, Majority and Max)
as additional validation for the best service patterns
that are ranked according to the Rank and Lex seman-
tics. We provide for each of the best service patterns

Algorithm 5 Service Selection
Input:

Service patterns ordered by total rank;
A set of available services;

Output:
Service patterns ordered by total rank;

1: for each available service do
2: Find matching pattern based on attribute values;
3: end for
4: boolean flag = true;
5: while flag do
6: for each ordered service pattern do
7: Find services that match the pattern;
8: if found matched services then
9: flag = false;

10: end if
11: end for
12: end while
13: return the found services;

a satisfactory degree calculated using Pareto, Majority
and Max respectively.

Pareto-Satisfactory Degree (PSD) of a service pat-
tern is a percentage value to describe the satisfactory
degree of the service pattern according to the Pareto
voting semantic. Let one of the best service patterns
(i.e. patterns with the smallest rank values according to
Algorithm 4) be Pj and |Pj | be the number of attribute
constraints (see Definition 1) in this pattern. If one of
the attribute constraints in the pattern is preferred by all
agents according to the agents’ preference statements,
the attribute constraint is called a Pareto-satisfactory
attribute constraint.

Let |Pj pPareto | be the number of Pareto-satisfactory
attribute constrains in the pattern Pj . We have the
Pareto-Satisfactory Degree of Pj as follows:

PSD(Pj) =
|Pj pPareto|

|Pj |
∗ 100% (3)

If the number of agents preferring an attribute con-
straint in Pj is larger than the number of the rest of the
agents, the attribute constraint is called the Majority-
satisfactory attribute constraint. Let |Pj pMajority| be
the number of Majority-satisfactory attribute con-
straints in the pattern Pj . Accordingly, the Majority-
Satisfactory degree (MajSD) can be defined as fol-
lows:

MajSD(Pj) =
|Pj pMajority|

|Pj |
∗ 100% (4)
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If the number of agents preferring an attribute con-
straint in Pj for an attribute is larger than the max-
imum number of agents that prefer any of the other
attribute constraints for the same attribute, and also
larger than the number of agents that disclaim the
attribute, the attribute constraint is called the Max-
satisfactory attribute constraint. Let |Pj pMax| be the
number of Max-satisfactory attribute constraints in the
pattern Pj . Accordingly, the Max-Satisfactory degree
(MaxSD) can be defined as follows:

MaxSD(Patj) =
|Pj pMax|

|Pj |
∗ 100% (5)

According to the definition of the above three voting
semantics, we can derive two important characteristics
of the relationships between the three voting seman-
tics. First, if an attribute constraint is called the Pareto-
satisfactory attribute constraint, it will satisfy all the
agents’ requirements. So the number of agents that do
not prefer the attribute constraint is zero. Obviously,
if an attribute constraint satisfies the Pareto voting se-
mantic, it will also satisfy the Majority voting semantic
and the Max voting semantic. Second, the number of
agents preferring a Majority-satisfactory attribute con-
straint is larger than the total number of agents that do
not prefer any of the outcome, which is larger than the
maximum number of agents that prefer any of the other
outcomes. So, if a preference outcome satisfies the Ma-
jority voting semantic, it will also satisfy the Max vot-
ing semantic. Based on the above relationship charac-
teristics of voting semantics, we can simplify the cal-
culation of |Pj pMax| and |Pj pMajority|.

The pseudo code for semantic validation is summa-
rized in Algorithm 6. Note that, in the algorithm, to
check whether an agent prefers an attribute constraint
in a service pattern, we can traverse the agent’s deriva-
tion tree to see whether the attribute constraint appears
on the left branch of the attribute. If the attribute con-
straint appears on the left branch, it means that the
agent prefers the attribute constraint. If the attribute
constraint appears on the right branch, it means that the
agent prefers other attribute constraints for the prefer-
ence. If the attribute does not appear in the derivation
tree, it means that the agent disclaims the attribute and
the attribute constraint.

4.3.5. Algorithm Complexity Analysis
Assume that the number of attributes included in

a CP-net is attNum and the maximum number of
attribute constraints in one preference statement is

Algorithm 6 Semantic Validation
Input:

Top N service patterns ordered by total rank;
Derivation tree of each agent;

Output:
Semantic satisfactory degrees of the service pat-
terns;

1: int nPrefer, nPreferOther, nDisclaim;
2: //number of agents preferring the attribute con-

straint, other constraints and disclaiming attribute,
respectively

3: for each service pattern Pj do
4: for each attribute constraint in Pj do
5: nPrefer = nPreferOther = nDisclaim=0;
6: for each agent with a derivation tree do
7: if it prefers the attribute constraint then
8: nPrefer ++;
9: else

10: if it prefers other constraints then
11: nPreferOther ++;
12: else
13: if it disclaims the attribute then
14: nDisclaim ++;
15: end if
16: end if
17: end if
18: end for
19: if nPreferOther=nDisclaim=0 then
20: |Pj pPareto| ++; |Pj pMajority | ++;
21: |Pj pMax| ++;
22: else
23: if nPrefer>nPreferOther+nDisclaim then
24: |Pj pMajority| ++;
25: |Pj pMax| ++;
26: else
27: if (nPrefer>nPreferOther) AND

(nPrefer>nDisclaim) then
28: |Pj pMax| ++;
29: end if
30: end if
31: end if
32: end for
33: Compute PSD(Pj), MajSD(Pj),

MaxSD(Pj);
34: end for
35: return semantic satisfactory degree of each pat-

tern;
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maxPS. The computational complexity of line 1 in
Algorithm 1 is lower than O(maxPS). The computa-
tional complexity of the first and second For loops is
lower than O(attNum×maxPS). Because the dupli-
cate operator costs only O(1) time, the computational
complexity of the second For loop will decrease dra-
matically depending on the ratio of duplicates. Further-
more, this algorithm gives the agent the right to set the
runtime limit. If the runtime limit is reached, the algo-
rithm will stop and return the left part of the deriva-
tion tree which represents the comparatively more pre-
ferred combination of attributes. Some methods of cut-
ting derivation trees may also be considered in our fu-
ture work.

Suppose that the number of all service quality
attributes is aNum_all and the maximum number
of attribute constraints of one attribute is maxAC.
The worst case complexity of Algorithms 2 and 3 is
O(aNum_allmaxAC). But, if the attribute constraints
of agents remain stable over time, this step can be pro-
cessed in advance to improve the efficiency.

If the size of aSet T is sizeT and we adopt the bin
sort method to order service patterns, the complexity
of Algorithm 4 is O(M×sizeT × log(sizeT )), where
M is the total number of agents. The complexity of
Algorithm 5 is dependent on sizeT and the number
of available services for selection. Because Algorithm
6 is used to validate the semantic satisfaction of se-
lected service patterns, only top N service patterns are
considered in the algorithm. The complexity of Algo-
rithm 6 is determined by the number of attributes in
one pattern and the number of agents. Furthermore,
although we use three semantics to validate the pat-
terns, we only need to execute one round of loop be-
cause of the relationships between the three semantics
discussed earlier. So the complexity of Algorithm 6 is
O(M × attNum). Our experimental results in Sec-
tion 6 indicate that the runtime of our algorithms is tol-
erable for a large number of available services.

5. Example Demonstration

In this section, we follow up with the example sce-
nario described in Section 2 and the preferences of
agent X in Section 4.1, and add preferences of other
two agents, Y and Z. We demonstrate the process-
ing results of our service pattern generation, ranking,
merging, as well as semantic validation algorithms.

The preferences of agents Y and Z are represented
by CP-nets, as shown in Figures 4 and 5. Agent Y

proposes its incomplete preference sequence: Secu-
rity ≽ Price ≽ Location, and agent Z’s preference
sequence is more complicated: Platform ≽ Security
∼ Response_time ≽ Location. Their preference state-
ments are expressed in Figure 4 (b) and Figure 5 (b).
As described in Section 4.3, we first generate deriva-
tion trees for these two CP-nets respectively, using Al-
gorithm 1. From each derivation tree, we use Algo-
rithm 2 to generate a service pattern aSet for each
agent, and rank these service patterns using Algo-
rithm 3. The 5 best Sub_aSets for each agent from T1

to T5 are listed in Tables 1, 2 and 3.

B: Security b1 ≻ b2

D: Price

E: Location

b1 : d1 ≻ d2

b2 : d1 ≻ d2

d1 : e1 ≻ e2 ≻ e3

d2 : e2 ≻ e3 ≻ e1

(a) (b) (c)

Location = Londone3 :

e1 : Location = New York

Location = Torontoe2 :

lowb1 :

b2 : high

Price ≥ $50

d1 : Price < $50

d2 :

Figure 4. (a,b) CP-net for Agent Y, (b) CPT, (c) Preference State-
ments

A: Platform
a1 ≻ a2

B: Security

E: Location

a1 : b1 ≻ b2, c1 ≻ c2

a2 : b1 ≻ b2, c1 ≻ c2

b1c1 : e1 ≻ e2 ≻ e3

(a) (b)

C: Response time

b1c2 : (e2, e3) ≻ e1

b2c1 : e1 ≻ e3 ≻ e2

b2c2 : e2 ≻ e3 ≻ e1

Figure 5. (a,b) CP-net for Agent Z, (b) CPT

From Tables 1, 2 and 3, we can see that a1b1c1d1e1
is in the best Sub_aSet of every agent. We can conclude
that this service pattern should be the best one for all
the agents. Our Algorithm 4 merges service patterns in
the aSet of each agent and assigns a total rank value
for each service pattern. The 10 best service patterns
are listed in Table 4 along with their rank values and
their distance from the respective mean rank values av-
eraged over all agents (see Equations 1 and 2). Note
that the three agents have equal weight in this case.

From Table 4, we can see that service pattern
a1b1c1d1e1 is indeed ranked the best by our algo-
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Table 1
Ranked Service Pattern aSet for Agent X

{a1c1e1b1d1}:101 ≻ {a1c1e1b1d2, a1c1e1b2d1}:102 ≻
{a1c1e1b2d2}:103
{a1c1e2b1d1}:201 ≻ {a1c1e2b1d2, a1c1e2b2d1}:202 ≻
{a1c1e2b2d2}:203
{a1c1e3b1d1}:301 ≻ {a1c1e3b1d2, a1c1e3b2d1}:302 ≻
{a1c1e3b2d2}:303
{a1c2e2b1d1, a1c2e3b1d1}:401≻{a1c2e2b1d2, a1c2e3b1d2,
a1c2e2b2d1, a1c2e3b2d1}:402≻{a1c2e2b2d2, a1c2e3b2d2}:403
{a2c2e1b1d1}:501 ≻ {a2c1e1b1d2, a2c1e1b2d1}:502 ≻
{a2c1e1b2d2}:503

Table 2
Ranked Service Pattern aSet for Agent Y

{b1d1e1c1a1, b1d1e1c1a2}:101≻{b1d1e1c2a1, b1d1e1c2a1}:102
{b1d1e2c1a1, b1d1e2c1a2}:201≻{b1d1e2c2a1, b1d1e2c2a1}:202
{b1d1e3c1a1, b1d1e3c1a2}:301≻{b1d1e3c2a1, b1d1e3c2a1}:302
{b1d2e2c1a1, b1d2e2c1a2}:401≻{b1d2e2c2a1, b1d2e2c2a1}:402
{b1d2e3c1a1, b1d2e3c1a2}:501≻{b1d2e3c2a1, b1d2e3c2a1}:502

Table 3
Ranked Service Pattern aSet for Agent Z

{a1b1c1e1d1, a1b1c1e2d1}:101≻{a1b1c1e1d2, a1b1c1e2d2}:102
{a1b1c1e3d1}:201≻{a1b1c1e3d2}:202
{a1b1c2e2d1, a1b1c2e3d1}:301≻{a1b1c2e2d2, a1b1c2e3d2}:302
{a1b1c2e1d1}:401≻{a1b1c2e1d2}:402
{a1b2c1e1d1}:501≻{a1b2c1e1d2}:502

Table 4
Merged and Ranked Service Patterns

# Pattern Rank_total Distance from Mean

1 a1b1c1d1e1 101 0

2 a1b1c1d1e2 168 57.74

3 a1b1c1d2e1 202 172.63

4 a1b1c1d1e3 268 207.61

5 a1b1c2d1e2 301 99.50

6 a1b1c2d1e3 335 57.45

7 a1b1c2d1e1 335 207.60

8 a1b1c1d2e3 368 207.60

9 a1b1c2d2e2 402 100.00

10 a1b2c1d1e1 435 304.96

rithms. The service patters a1b1c2d1e3 and a1b1c2d1e1
have the same rank 335. They are then ranked by
their distance to their respective mean rank values. In
this case, a1b1c2d1e3 is closer to its mean and ranked
higher than a1b1c2d1e1.

We also show the results of ranking when agents’
decisions are weighted differently. In this example, X’s
weight is 0.6, Y’s weight is 0.2, and Z’s weight is also
0.2. We list the 10 best service patterns in Table 5. Be-
cause no two patterns have the same total rank values,
the distance of service patterns from their respective
means is not shown in the table.

Table 5
Agents with Different Weights

# Pattern Rank_total

1 a1b1c1d1e1 101

2 a1b1c1d2e1 131.9

3 a1b1c1d1e2 191

4 a1b2c1d1e1 201.8

5 a1b1c1d2e2 221.9

6 a1b2c1d2e1 232.7

7 a1b1c1d1e3 291

8 a1b2c1d1e2 301.8

9 a1b1c1d2e3 321.9

10 a1b2c1d2e2 332.7

Comparing Tables 4 and 5, we can see that a1b1c1d1e1
still has the best rank. This service pattern is a dom-
inant one and is not affected by the importance of
agents’ preferences. However, many other service pat-
terns’ positions are changed. For example, a1b1c1d2e1
was less preferred than a1b1c1d1e2 in Table 4, but it
now becomes more preferred in Table 5 when agents
have different weights. The service pattern a1b1c1d2e2
is ranked the fifth in Table 5 but was not even in the
top 10 list of Table 4. Different weights of agents’ de-
cisions do affect the final ranking of service patterns.
Our algorithms are able to capture this effect.

Furthermore, we make use of the semantic valida-
tion algorithm to validate the ranking results under dif-
ferent voting semantics. According to the preferences
of the three agents X, Y and Z, the semantic voting re-
sults are shown in Table 6. Here, we use “1" to indi-
cate that an agent prefers the attribute constraint, “-1"
to indicate that the agent prefers other attribute con-
straints, and “0" to indicate that the agent disclaims the
attribute. Based on the agents’ voting results, the sat-
isfied voting semantics are also presented for each at-
tribute constraint in a service pattern in the table. Note
that as discussed in Section 4.3.4, if an attribute satis-
fies Pareto, it also satisfies both Majority and Max. If
it satisfies Majority, it also satisfies Max. The seman-
tic “Null" means that the attribute constraint does not
satisfy any voting semantic.
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Table 6
Semantic Validation of Top 3 Service Patterns

Pattern Constraint X Y Z Semantic

a1b1c1d1e1 a1 1 0 1 Majority
b1 0 1 1 Majority
c1 1 0 1 Majority
d1 0 1 0 Null
e1 1 1 1 Pareto

a1b1c1d1e2 a1 1 0 1 Majority
b1 0 1 1 Majority
c1 1 0 1 Majority
d1 0 1 0 Null
e2 -1 -1 0 Null

a1b1c1d2e1 a1 1 0 1 Majority
b1 0 1 1 Majority
c1 1 0 1 Majority
d2 0 -1 0 Null
e1 1 -1 1 Majority

Table 7
Semantic Validation Results

# Pattern PSD MajSD MaxSD

1 a1b1c1d1e1 20% 80% 80%

2 a1b1c1d1e2 0% 60% 60%

3 a1b1c1d2e1 0% 80% 80%

4 a1b1c1d1e3 0% 60% 60%

5 a1b1c2d1e2 0% 60% 60%

6 a1b1c2d1e3 0% 60% 60%

7 a1b1c2d1e1 0% 40% 40%

8 a1b1c1d2e3 0% 60% 60%

9 a1b1c2d2e2 20% 60% 60%

10 a1b2c1d1e1 20% 60% 60%

The semantic validation results for the top 10 ser-
vice patterns are shown in Table 7. Generally, the pat-
terns with higher ranking scores have better semantic
validation results. In Table 7, we can see that the first
pattern is still the best according to the semantic val-
idation. But the third pattern is better than the second
pattern according to the voting semantics of Pareto and
Majority. In this case, it is up to the agents to decide
which voting semantics they concern more in order to
choose the most suitable service patterns.

6. Experimental Results

In this section, we show experimental results from
four aspects. We first carry out experiments to verify
the effectiveness of our method and compare it with

a quantitative approach. We then evaluate our method
based on a large number of random QoS attribute val-
ues. After that, the execution time of our method is
tested for different numbers of generated candidate
services, QoS attributes, agents and possible values for
each attribute, respectively. Finally, we use the three
voting semantics of Pareto, Majority and Max to verify
the performance of the top 5 Sub_aSets generated by
our method.

6.1. Effectiveness Comparison with a Quantitative
Approach

We begin with a set of experiments to verify the ef-
fectiveness of our approach and compare with a quan-
titative approach. In these experiments, the good out-
come of an approach means that the approach cor-
rectly ranks candidate services and remains their rel-
ative positions according to agents’ preferences, no
matter what other services are. The effectiveness of the
approach is then evaluated as the ratio of the number
of good outcomes over all tests.

Table 8
Five Manually Generated Services

Service C D B Integrity Throughout Availability

S1 1 0 98 98 98 98

S2 12 10 86 85 86 86

S3 34 31 66 65 66 66

S4 65 62 36 35 36 36

S5 96 95 6 8 8 8

Table 9
Ranking of the Five Manually Generated Services

Service Test 1 Test 2 Test 3 Test 4 Test 5

S1 1 1 1 1 1

S2 2 3 3 3 3

S3 8 9 8 10 8

S4 19 22 20 21 21

S5 23 30 29 30 30

The first experiment involves six service attributes
(B, C and D mentioned in Section 4.1, and Integrity,
Throughout and Availability) where agents have the
consistent preferences over the values of these at-
tributes. For example, every agent prefers a lower price
(D) and higher security (B). This setting allows us to
objectively identify a set of services, some of which
are strictly more preferred than the others by all agents.
The domain of these attributes is normalized to be
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[0, 100]. 5 services are manually generated so that
S1 ≻ S2 ≻ S3 ≻ S4 ≻ S5 by all agents as shown in
Table 8. Another 25 services are randomly generated.
4 agents with randomly generated preferences are also
involved in the experiment. We run the experiment for
5 times and report the ranking of the five services in
Table 9. Although the rank of each service is different
in each test in the experiment, our approach remains
the relative positions of candidate services according
to agents’ preferences. It gives five good outcomes in
all five tests. So the effectiveness of our approach in
this experiment is 1.

In the second experiment, we evaluate the effective-
ness of our approach in a more general case. In this
experiment and all the later experiments in this sec-
tion, six QoS attributes are involved, including the five
ones mentioned in Section 4.1 and the extra one, Avail-
ability (F: 0 - 100%). Agents may not have consistent
preferences for these attributes. Each attribute has 2
values. We generate 500 candidate services. 4 agents
are involved in this experiment with randomly gener-
ated preferences, some of which are incomplete. This
experiment includes two cases. In the first case (Case
1), each agent has the equal weight, while in the sec-
ond case (Case 2), we assign each agent with a differ-
ent weight. For each case, our approach generates the
best 5 service pattern Sub_aSets. We measure the sat-
isfaction ratio of services in each pattern, and check
whether our approach generates ranked service pat-
terns that correctly match their satisfaction ratio. The
satisfaction ratio of one service S can be calculated by∑4

i=1
P ′

i

Pi
Weight(i), where Pi is the total number of

preference statements for agent i and P ′
i is the number

of satisfied preference statements by service S for this
agent. The average satisfaction ratios of the services in
the best 5 service pattern Sub_aSets after running the
experiment for 5 times are listed in Table 10. We can
see that the ranking of the 5 best Sub_aSets generated
by our approach correctly matches their average satis-
faction ratios, which confirms that our approach accu-
rately ranks services.

Table 10
Average Satisfaction Ratio of the Best 5 Sub_aSets

Cases T1 T2 T3 T4 T5

Case 1 0.95 0.88 0.83 0.72 0.65

Case 2 0.97 0.88 0.82 0.74 0.66

The third experiment is carried out to demonstrate
that a classic quantitative approach (i.e. of [10]) may
have problems when agents cannot accurately identify

Table 11
Incorrect scores of Another Quantitative Approach

Service Correct Score Incorrect Score Incorrect Rank

S13 352 376 3

S4 368 368 4

S16 400 352 7

S5 320 296 13

S19 368 280 16

their quantitative preferences. In this experiment, each
agent assigns a score in [1, 10] to each attribute value
of a service. However, an agent may incorrectly rep-
resent its preference by ±1, i.e. a score of 9 may be
assigned to a attribute value with the correct score of
10. 30 services are randomly generated for the experi-
ment involving 8 agents. Applying the quantitative ap-
proach to both correct and incorrect scores of attribute
values respectively, we can see from some examples
in Table 11 that the quantitative approach incorrectly
assigns scores to some services, and thus generates
wrong ranks for them because of the incorrect scores
of service attribute values assigned by agents.

6.2. Further Test Based on Random QoS Attribute
Values

In the second set of experiments, we further test our
algorithms based on a wide set of randomly generated
QoS attribute values of a large number of candidate
services. In some of these experiments, attributes may
have a larger number of possible values, which are ar-
tificially generated. 1000, 5000, and 8000 candidate
services are randomly generated respectively. We also
compare the results of service selection for different
cases where each attribute has 2, 4, and 8 values re-
spectively. We can see from Figures 6(a), 6(b) and 6(c)
that the best Sub_aSet T1 in each case (i.e. where 1000
services are generated and each attribute has 4 val-
ues) has at least one service. These services satisfy the
agents the most. As can be seen from these figures, the
number of services in each Sub_aSet decreases when
attributes have more possible values. This is simply be-
cause more possible values for attributes will increase
the number of attribute constraints. It becomes more
difficult for candidate services to match service pat-
terns in aSets. Comparing the three figures, we can see
that the number of services in each Sub_aSet increases
when a larger number of candidate services are gener-
ated.
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6.3. Experiments on Execution Time

In the third set of experiments, we analyze the ex-
ecution time of our algorithms for different numbers
of generated candidate services, QoS attributes, agents
and possible values for each attribute, respectively. In
the first three cases, each variable has 2, 4, and 8 val-
ues respectively. Our analysis has been performed on a
2.13GHz Intel Core2 Workstation with 2GB of RAM.
We first look at how the execution time will change
when different numbers of candidate services are gen-
erated. There are two agents in this experiment. From
Figure 6(d), we can see that the execution time of our
algorithms will increase exponentially when a larger
number of candidate services are generated. We then
fix the number of candidate services to 1000. We vary
the number of attributes from 6 to 15. The results are
shown in Figure 7(a). The execution time of our algo-
rithms also increases exponentially with the increase
of the number of attributes. These results comply with
our analysis of algorithm complexity in Section 4.3.5.
However, we can see that the execution time is only
36.8ms for the case where there are 15 attributes in to-
tal and each attribute has 8 possible values. This is ac-
ceptable for such a large number of generated candi-
date services.

We then vary the number of agents from 2 up to
16 to compare the execution time. In this case, there
are 8000 candidate services. We can see from Fig-
ure 7(b) that the execution time increases linearly with
the number of agents. Our algorithms scale well with
the increase of the number of agents involved in the
service selection process. We also fix the number of
candidate services to 8000 and the number of attributes
to 15, but vary the number of possible values for each
attribute. The results in Figure 7(c) show that our algo-
rithms increase exponentially when each attribute has
a larger number of possible values. Finally, we test the
execution time of our algorithms for the extreme case

where there are 8000 candidate services, 15 attributes,
and 16 agents, and each attribute has 8 possible val-
ues. We run our experiment for 30 times. The results
plotted in Figure 7(d) show that the average execution
time of our algorithms for this extreme case is less than
1 second, which is still acceptable for users of service
selection. Furthermore, the time of each execution is
close to the average execution time, indicating that our
experimental results in this section are statistically sig-
nificant.

6.4. Experiments on Semantic Validation

In this section, we show the results of semantic vali-
dation for the top 5 Sub_aSets when varying the num-
ber of agents, attributes and attribute constraint values.
The first set of experiments is to show the semantic
validation for the top 5 Sub_aSets under the voting se-
mantics of Pareto, Majority and Max when the num-
ber of agents is 4, 8, 16 and 32 respectively. These ex-
periments involve 6 attributes and each attribute has
4 constraint values. As some Sub_aSets (for exam-
ple, T2) may contain more than one service patterns,
we compute the average value of PSD, MajSD and
MaxSD for service patterns in those Sub_aSets. The
values of PSD, MajSD and MaxSD for the top
5 service pattern Sub_aSets are shown in Figure 8.
From the results, we can see that when the number of
agents is 4, service patterns in T1 have PSD=33.3%,
MajSD=83.3% and MaxSD=83.3%, while service
patterns in T5 have PSD=0%, MajSD=20.7% and
MaxSD=36%. The values of PSD, MajSD and
MaxSD are from high to low for T1 to T5. This trend
is also true when the number of agents is 8, 16 and 32
respectively, which demonstrates that the ranking for
the top 5 Sub_aSets is reliable.

The second set experiments aims to verify the top 5
Sub_aSets under the voting semantics of Pareto, Ma-
jority and Max when the number of attributes is 6, 9,
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12 and 15 respectively. It involves 32 agents, and each
attribute has 4 constraint values. The values of PSD,
MajSD and MaxSD for the top 5 Sub_aSets’s are
shown in Figure 9. From the results, we can see that
under 6 attributes, service patterns in T1 have PSD =
16.7%, MajSD = 66.7% and MaxSD = 100%, while
those in T5 have PSD = 0%, MajSD = 16.9% and
MaxSD = 39.3%. The values of PSD, MajSD and
MaxSD are from high to low for T1 to T5. This trend
is also true for the cases of 9 attribute, 12 attribute, 15
attribute, which validates that the ranking for the top 5
SubaSets is reliable.

The third set of experiments is used to verify the
top 5 Sub_aSets under Pareto, Majority and Max when
varying the number of attribute constraints. These ex-
periments involve 32 agents and 15 attributes, and the
number of constraint values of each attribute varies
from 2 to 8. The semantic validation for the top 5
Sub_aSets is shown in Figure 10. From the results, we
can see that under 2 constraint values, T1 has PSD =
6.7%, MajSD = 80%, and MaxSD = 100%, while
T5 has PSD = 0%, MajSD = 26.7%, and MaxSD
= 45.6%. The values of PSD, MajSD, and MaxSD
are from high to low for T1 to T5 when the number
of constraint values is 2. This trend is also true for the
cases where the number of attribute values is 4, 6, and
8 respectively. This confirms that the ranking of the top
5 Sub_aSets is reliable. The additional semantic val-
idation also provides more information for agents to
select best service patterns, in order to find the most
satisfactory services.

7. Related Work

In recent years, service selection based on QoS
for multiple agents has become an important research
problem in the area of service computing. The exist-
ing investigation is mainly focused on three directions:
QoS-oriented service selection, the group decision of
multi-agents, and uncertain preferences and factors in
service selection. In this section, we provide brief de-
scriptions of the studies in each direction and contrast
our work with those studies.

Different quantitative approaches have been pro-
posed for QoS-oriented service selection [1,2,11].
Ardagna and Pernici [2] introduce a mixed integer lin-
ear programming modeling approach to the service se-
lection problem. Lamparter et al. [1] uses utility func-
tion policies which are drawn from multi-attribute de-
cisions theory methods to develop algorithms for opti-

mal service selection. However, these methods require
users to provide the exact weight of each attribute.
In many situations, users possibly do not know how
they should assign weights to attributes in order to
maximally meet their preferences. Quantitative meth-
ods have also been considered for service composi-
tion. Quantitative intentional automata (QIA) [12] is
proposed to address the composition of service ori-
ented computing. QIA is an extension of constraint au-
tomata (CA) that incorporates the influence of a sys-
tem’s environment on its performance. The quantita-
tive constraint automata extends CA with quantita-
tive models to capture such non-functional aspects of
a system’s behavior. An efficient service selection al-
gorithm [13] is also presented to provide the appro-
priate ground for QoS-aware composition in dynamic
service environments. This algorithm is formed as a
guided heuristic, and uses “quality level" to express the
QoS attributes of services. It proceeds by exploring a
combinatorial search tree built from candidate services
according to certain rules. Although quantitative ap-
proaches have been widely used, qualitative methods,
on another hand, are more general. Garcia et al. [14]
present a service selection framework that transforms
qualitative preferences into an optimization problem.
However, they address only a single agent’s complete
preferences.

Group decision making of multi-agents is also an
important direction of related research work. Herrera-
Viedma et al. [15] present a selection process to
deal with group decision making problems with in-
complete fuzzy preference relations. They use con-
sistency measures to estimate the incomplete fuzzy
preference relations, and propose an iterative proce-
dure to estimate the missing information in incomplete
fuzzy preference relations. Xu and Chen [16] develop
linear-programming models for dealing with MAGDM
(multiple-attribute group decision making) problems,
where the information about attribute weights is in-
complete and the decision makers have their prefer-
ences on alternatives. Zhang et al. [17] propose an in-
tegration approach to combine multiple attribute de-
cision making with users’ preference information on
alternatives. [18] allows users to interpret the relation-
ships between their query terms and the query space.
Accordingly, it allows the users to take an active role
in the information retrieval process.

Some researchers have done work in the combina-
tion of service selection and group decision. For ex-
ample, in [19], Lo et al. propose a Web Services In-
tegration and Processing Language to describe opera-
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tions and data sources in data processing and integra-
tion to fulfill dynamic business requirements. [20] pro-
pose an enhanced I-B and B-MDL algorithm, which
tries to reduce constraint computation costs and im-
prove the pruning efficiency by means of sort order for
candidate parent nodes. [21] tries to solute the prob-
lem that efficient local selection strategy fails short in
handling global QoS requirements. The authors con-
sider the quantitative non-functional properties of ser-
vices, and propose a solution that consists of two steps:
1) a mixed integer programming (MIP) is used to
find the optimal decomposition of global QoS con-
straints into local constraints; 2) distributed local se-
lection is then used to find the best services that sat-
isfy these local constraints. Furthermore, they use the
notion of skyline to express the services’ quantitative
QoS attributes. [22] propose an approach to effectively
and efficiently select services for composition, reduc-
ing the number of candidate services to be consid-
ered. [23] distinctively use the concept of lexicograph-
ical preferences for the multi-criteria decision-making
of the most suitable information and services that fit
user needs. The criterion satisfaction levels are de-
fined with a single threshold that represents a bound-
ary value between acceptable and unacceptable values
of attributes of alternatives. [24] propose an algorithm
that can recommend a number of suitable services
based on the user’s QoS requirements. In this work,
the service’s response time, trust degree and mone-
tary cost are considered. [25] tries to use a semantic
method to support the automated discovery, selection,
and composition of services. They design an efficient
model-driven approach to generate OWL-S ontologies
from Unified Modeling Language (UML) models. But,
due to the complexity of the OWL-S grammar and
UML, it is difficult to realize the service selection
and discovery manually. Some researchers try to use
empirical analysis to study consumer selection of E-
Commerce websites in a B2C environment [26]. They
present and empirically examine a model where web-
site value in terms of website quality as well as aware-
ness of the site and consumer differences are key vari-
ables in explaining online consumer behavior in their
choice of websites despite the existence of price dis-
persions. [27] propose several multiple criteria pro-
gramming methods for analyzing customers’ behav-
ior and finding the appropriate measures to satisfy the
VIP user’s requirements. [28] examine a class of WSC
problems, attempting to balance the trade-off between
offline composition and online information gathering
with a view of producing high-quality compositions

efficiently and without excessive data gathering. Their
investigation is performed in the context of the seman-
tic web employing an existing preference-based Hier-
archical Task Network WSC system. [29] propose an
interaction model to detect and resolve inconsistencies
in evolving service compositions. This work presents a
new method that associates web services with agents’
capability of communication and reflective process ex-
ecution. [30] presents a framework for web service
composition based on social norms, particularly obli-
gations.

Because of the importance of user preferences dur-
ing the service selection, some researchers have stud-
ied the effect of uncertain preference in service com-
puting. [31] studies the problem of majority-rule-based
collective decision-making where the agents’ prefer-
ences are represented by CP-nets. This paper proposes
an efficient SAT-based approach, called MajCP, to
compute the majority winning alternatives. [32]studies
the problem of dominance testing in CP-nets. The au-
thors propose a heuristic algorithm for dominance test-
ing with arbitrary acyclic CP-nets. Their work is only
applicable for acyclic CP-nets. Furthermore, uncertain
factors have been considered in the QoS of services.
In [33], an approach is proposed to measure the qual-
ity of elementary services based on the superposition
of uncertain factors. And services’ priorities can be de-
termined by a method according to the qualities of el-
ementary services.

Although many researchers have worked on the ser-
vice selection in the environment of multi-agents, the
existing approaches are mostly based on quantitative
approaches. But in many cases, user’s preference can-
not be represented by quantitative approaches. In this
case, qualitative approaches can be another choice for
the representation of agents’ preferences. We apply the
compact representation of agents’ preferences using
CP-nets and propose a list of algorithms by implement-
ing the Rank and Lex semantics that are verified by
other voting semantics, to select satisfactory services
for multiple agents with incomplete preferences.

8. Conclusions and Future Work

Our work allows for service selection based on
agent preferences in a qualitative rather than quanti-
tative way. We use CP-nets for representing agents’
incomplete preference statements. We also implement
the Rank and ceteris paribus semantics for aggregating
multiple agents’ preferences. We then apply this ap-
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proach in the design of the algorithms to QoS-based
service selection for multiple agents with incomplete
preferences. Our experimental results show that our
approach is effective in selecting the best services for
multiple agents even when they have incomplete pref-
erences, and the execution time of our algorithms is
generally acceptable for a large number of agents when
many services are available for selection.

Our approach may be extended to cope with more
general group decision making problems with incom-
plete preference relations, as we will consider more
complex preferences for service selection in the future.
For future work, we will also consider preference anal-
ysis when there is a cycle in CP-nets.
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