Sunlight

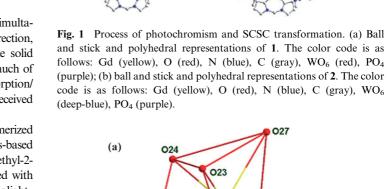
Solid-state photopolymerization of a photochromic hybrid based on Keggin tungstophosphates[†]

(a)

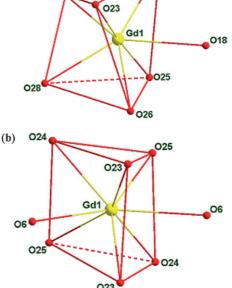
(b)

Li-Zhi Zhang,^{ab} Wen Gu,^a Xin Liu,^{*a} Zhili Dong^{*b} and Bing Li^{ab}

Received 30th November 2007, Accepted 28th February 2008 First published as an Advance Article on the web 14th March 2008 DOI: 10.1039/b718523e


Reversible photochromism occurring with reversible photopolymerization between 0-D and 1-D under irradiation with sunlight was clarified by X-ray analyses.

Photochromic compounds are a subject of growing interest because of their potential technological applications in the areas of information display devices, solar energy conversion, high-density memory devices, and photoelectric sensors.¹ It is well-known that one of the most important properties of polyoxometalates is the capability to accept various numbers of electrons giving rise to mixed-valency colored species (heteropolyblues or heteropolybrowns),² which make them suitable for photochromic and electrochromic materials.²⁻⁴ Since the investigation of inorganic–organic hybrid materials became an expanding field, the preparation, microstructure, and photochromic process of polyoxometalates-based hybrid composites have been extensively investigated.⁵


On the other hand, despite the inherent strong barriers of simultaneous bond breaking and formation in more than one direction, single-crystal-to-single-crystal (SCSC) transformations in the solid state have been studied widely in recent years.⁶⁷ However, much of the work has focused on thermal-stimulated⁶ or guest desorption/ absorption-induced⁷ types, while the photo-induced type received less attention.

Herein, we report an interesting discovery of a photo-polymerized SCSC transformation in a photochromic polyoxometalates-based hybrid, $[Gd_2(NMP)_{12}(PW_{12}O_{40})][PW_{12}O_{40}]$ (NMP = *N*-methyl-2-pyrrolidone) (1), in which reversible photochromism occurred with reversible structural transformation under irradiation with sunlight.

Reaction of GdCl₃, H₃PW₁₂O₄₀ and NMP in CH₃CN/H₂O (2 : 1, v/v) followed by slow evaporation at room temperature in the black position resulted in colorless single crystals.[‡] X-Ray analyses[‡] reveal that compound **1**, having a triclinic crystal system, exhibits an ionic, asymmetric structure consisting of the $[PW_{12}O_{40}]^{3-}$ anion and the $[Gd_2(NMP)_{12}(PW_{12}O_{40})]^{3+}$ cation in which either of Gd^{III} ions is coordinated with 6 NMP molecules and connected by $[PW_{12}O_{40}]^{3-}$ (Fig. 1a). The coordination polyhedron of Gd^{III} may be represented as a highly distorted, single-capped trigonal prism (Fig. 2a). The Gd–O bond lengths are within the range from 2.212 to 2.514 Å

Oxygen

Fig. 2 (a) Coordination polyhedron around Gd^{III} in 1; (b) coordination polyhedron around Gd^{III} in 2.

^aDepartment of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China. E-mail: liuxin64@nankai.edu.cn; Tel: +86 2350 5020 ^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore. E-mail: zldong@ntu.edu.sg; Tel: +65 6790 6727

[†] Electronic supplementary information (ESI) available : Photographs of samples, and tables of selected bond lengths and angles. See DOI: 10.1039/b718523e.CCDC reference numbers 611433 and 633062. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b718523e