ON THE PHYSICS OF FEMTO-SECOND ELECTRICAL PULSE GENERATION IN
TRANSMISSION-LINE GAPS
Xing ZHOU
School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798, Republic of Singapore
OPTOELECTRONICS--Devices and Technologies,
Vol. 10, No. 4, pp. 491-504, December 1995.
(Received 26 June 1995; accepted for publication 9 August 1995)
Copyright | Abstract
| References | Citation | Figures
| Back
Copyright Notice
© 1995 MITA PRESS. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from
MITA PRESS.
Abstract
This paper presents an up-to-date review of the experimental and theoretical
work on a novel femto-second electrical pulse generation technique using
non-uniform illumination of transmission-line gaps. Theory on the physics
of this pulse-generation technique is formulated and related to the experimental
observables. Different approaches and approximations as well as main issues
and problems in the modeling are discussed. The experimentally observed
shoulders of the pulses are analyzed based on a two-dimensional numerical
model.
Key Words Femto-second electrical pulse generation, non-uniform
gap illumination, transmission lines, MSM photodiodes.
References
-
[1] D. Krokel, D. Grischkowsky, and
M. B. Ketchen, Appl. Phys. Lett., 54 (1989) 1046.
-
[2] U. D. Keil and D. R. Dykaar, Appl.
Phys. Lett., 61 (1992) 1504.
-
[3] S. Alexandrou, C.-C. Wang, R. Sobolewski,
and T. Y. Hsiang, IEEE J. Quantum Electron., QE-30 (1994) 1332.
-
[4] S. Alexandrou, C.-C. Wang, R. Sobolewski,
and T. Y. Hsiang, OSA Proc. on Ultrafast Electronics and Optoelectronics,
Tagdeep Shah and Umesh Mishra (1993) 209; Conference on Ultrafast Electronics
and Optoelectronics, San Francisco, CA (1993) paper ME10.
-
[5] C.-C. Wang, M. Currie, R. Sobolewski,
and T. Y. Hsiang, Appl. Phys. Lett., 67 (1995) 79.
-
[6] E. Sano and T. Shibata, Appl. Phys.
Lett., 55 (1989) 2748.
-
[7] E. Sano and T. Shibata, IEEE J.
Quantum Electron., QE-26 (1990) 372.
-
[8] X. Zhou, S. Alexandrou, and T. Y.
Hsiang, J. Appl. Phys., 77 (1995) 706; Conference on Lasers and Electro-Optics
1994, Anaheim, CA (1994) paper CThI20.
-
[9] S. E. Ralph and D. Grischkowsky,
Conference on Lasers and Electro-Optics 1991, Baltimore, MD (1991) post-deadline
paper CPD17-1.
-
[10] N. Katzenellenbogen and D. Grischkowsky,
Appl. Phys. Lett., 58 (1991) 222.
-
[11] S. E. Ralph and D. Grischkowsky,
Appl. Phys. Lett., 59 (1991) 1972.
-
[12] X. Zhou, IEEE J. Quantum Electron.,
(1995), (to be submitted).
-
[13] D. H. Auston, IEEE J. Quantum Electron.,
QE-19 (1983) 639.
-
[14] C. V. Shank, R. L. Fork, B. I.
Grene, F. K. Reinhart, and R. A. Logan, Appl. Phys. Lett., 38 (1981) 104.
-
[15] M. C. Nuss, D. H. Auston, and F.
Capasso, Phys. Rev. Lett., 58 (1987) 2355.
-
[16] J. A. Valdmanis, G. A. Mourou,
and C. W. Gabel, IEEE J. Quantum Electron., QE-19 (1983) 664..
-
[17] M. B. Ketchen, D. Grischkowsky,
T. C. Chen, C.-C. Chi, I. N. Duling III, N. J. Halas, J.-M. Halbout, J.
A. Kash, and G. P. Li, Appl. Phys. Lett., 48 (1986) 751.
-
[18] F. W. Smith, H. Q. Lee, V. Diadiuk,
M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou,
and T. Y. Hsiang, Appl. Phys. Lett., 54 (1989) 890.
-
[19] M. Y. Frankel, J. F. Whitaker,
G. A. Mourou, F. W. Smith, and A. R. Calawa, IEEE Trans. Electron Devices,
ED-37 (1990) 2493.
-
[20] M. Klingenstein, J. Kuhl, R. Notzel,
K. Ploog, J. Rosenzweig, C. Moglestue, A. Hulsmann, and Jo. Schneider,
Appl. Phys. Lett., 60 (1992) 627.
-
[21] S. Alexandrou, C.-C. Wang, T. Y.
Hsiang, M. Y. Liu, and S. Y. Chou, Appl. Phys. Lett., 62 (1993) 2507.
-
[22] S. Y. Chou, Y. Liu, W. Khalil,
and T. Y. Hsiang, Appl. Phys. Lett., 61 (1992) 819.
-
[23] M. Klingenstein, J. Kuhl, J. Rosenzweig,
C. Moglestue, and A. Axmann, Appl. Phys. Lett., 58 (1991) 2503.
-
[24] M. Gillick, I. D. Robertson, and
J. S. Joshi, IEEE Trans. Microwave Theory Tech., MIT-41 (1993) 129.
-
[25] W. C. Koscielniak, M. A. Littlejohn,
and J.-L. Pelouard, IEEE Electron Device Lett., EDL-10 (1989) 209.
-
[26] R. L. Peterson, IEEE J. Quantum
Electron., QE-23 (1987) 1185.
-
[27] E. Sano, IEEE Trans. Electron Devices,
ED-37 (1990) 1964.
-
[28] S. N. Chamoun, R. Joshi, E. N.
Arnold, R. O. Grondin, K. E. Meyer, M. Pessot, and G. A. Mourou, J. Appl.
Phys., 66 (1989) 236.
-
[29] E. Sano, IEEE Trans. Electron Devices,
ED-38 (1991) 2075.
-
[30] C. Moglestue, J. Rosenzweig, J.
Kuhl, M. Klingenstein, M. Lambsdorff, A. Axmann, Jo. Schneider, and A.
Hulsmann, J. Appl. Phys., 70 (1991) 2435.
-
[31] MEDICI, Technology Modeling Associates,
Inc., Palo Alto, CA (1994).
-
[32] M. A. Lampert, Phys. Rev., 103
(1956) 1648.
Citation
-
[5] X.
Zhou, "Numerical physics of subpicosecond electrical pulse generation
by nonuniform gap illumination," IEEE J. Quantum Electron., Vol. 32, No.
9, pp. 1672-1679, Sept. 1996.
-
[11] X.
Zhou, T. Tang, L. S. Seah, C. J. Yap, and S. C. Choo, "Numerical investigation
of subpicosecond electrical pulse generation by edge illumination of silicon
transmission-line gaps," IEEE J. Quantum Electron., Vol. 34, No. 1, pp.
171-178, Jan. 1998.
-
[19] J.
F. Holzman and A. Y. Elezzabi, "Two-photon photoconductive terahertz
generation in ZnSe," J. Appl. Phys., Vol. 83, No. 14, pp. 2967-2969 Oct.
6 2003.
ISI
citation