We have done solid and impact research (~60 publications) in time series sensor data analytics in the following aspects:

1.  Time Series Representation Learning

1)    Yucheng Wang, Min Wu, Xiaoli Li, Lihua Xie, Zhenghua Chen, "Multivariate Time Series Representation Learning via Hierarchical Correlation Pooling Boosted Graph Neural Network", IEEE Transactions on Artificial Intelligence 2023. [PDF].

2)    Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li and Cuntai Guan, "Time-Series Representation Learning via Temporal and Contextual Contrasting", IJCAI 2021. (More than 100 citations according to Google Scholar).

3)    Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Ruqiang Yan and Xiaoli Li "Attention-Based Sequence to Sequence Model for Machine Remaining Useful Life Prediction ", Neurocomputing, 2021. [PDF].

4)    Zhenghua Chen, Min Wu, Rui Zhao, Feri Guretno, Ruqiang Yan and Xiaoli Li, "Machine Remaining Useful Life Prediction via an Attention based Deep Learning Approach", IEEE Transactions on Industrial Electronics (TIE) 2020. [PDF].(More than 100 citations according to Google Scholar).

5)    Sateesh Babu Giduthuri, Peilin Zhao and Xiaoli Li,"Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life", DASFAA, 2016 [PDF]. (More than 800 citations according to Google Scholar).

6)    Jian-Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, Priyadarsini Krishnaswamy Shonali, "Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition", IJCAI 2015[PDF]. (More than 1300 citations according to Google Scholar)

 

 

2.  Time Series Transfer Learning (domain adaptation and generalization)

1)    Yucheng Wang, Yuecong Xu, Zhenghua Chen, Min Wu, Xiaoli Li, "SEnsor Alignment for Multivariate Time-Series Unsupervised Domain Adaptation", AAAI 2023. [PDF].

2)    Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, "Contrastive Domain Adaptation for Time-Series via Temporal Mixup", IEEE Transactions on Artificial Intelligence 2023. [PDF].

3)    Xiaolei Yu, Zhibin Zhao, Xingwu Zhang, Shaohua Tian, Chee-Keong Kwoh, Xiaoli Li, Xuefeng Chen, "A universal transfer network for machinery fault diagnosis", Computers in Industry 2023. [PDF].

4)    Mohamed Ragab, Emadeldeen Eldele, Zhenghua Chen, Min Wu, Chee-Keong Kwoh and Xiaoli Li "Self-supervised Autoregressive Domain Adaptation for Time Series Data", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022. [PDF].

5)    Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, Cuntai Guan "ADAST: Attentive Cross-domain EEG-based Sleep Staging Framework with Iterative Self-Training", IEEE Transactions on Emerging Topics in Computational Intelligence, 2022. [PDF].

6)    Mohamed Ragab, Wenyu Zhang, Emadeldeen Eldele, Min Wu, Chee-Keong Kwoh, Xiaoli Li, "Conditional Contrastive Domain Generalization for Fault Diagnosis", IEEE Transactions on Instrumentation & Measurement 2022. [PDF].

7)    Mohamed Ragab, Zhenghua Chen, Min Wu, Chuan-Sheng Foo, Chee-Keong Kwoh, Ruqiang Yan and Xiaoli Li, "Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction", IEEE Transactions on Industrial Informatics. [PDF].

8)    Mohamed Ragab, Zhenghua Chen, Min Wu, Haoliang Li, Chee-Keong Kwoh, Ruqian Yan, Xiaoli Li, "Adversarial Multiple-Target Domain Adaptation for Fault Classification", IEEE Transactions on Instrumentation and Measurement, 2020. [PDF].

9)    Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, "Adversarial Transfer Learning for Machine Remaining Useful Life Prediction", IEEE International Conference on Prognostics and Health Management (ICPHM 2020). [PDF]. (Finalist Academic Paper Award)

10)Bo Zhang, Wei Li, Xiaoli Li, See-Kiong Ng "Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks", IEEE Access 2018. [PDF].

 

3.  Time Series Model Compression

1)    Qing Xu, Zhenghua Chen, Keyu Wu, Chao Wang, Min Wu, and Xiaoli Li, "KDnet-RUL: A Knowledge Distillation Framework to Compress Deep Neural Networks for Machine Remaining Useful Life Prediction", IEEE Transactions on Industrial Electronics, 2021. [PDF].

2)    Qing Xu, Zhenghua Chen, Mohamed Ragab, Chao Wang, Min Wu and Xiaoli Li, "Contrastive Adversarial Knowledge Distillation for Deep Model Compression in Time-Series Regression Tasks", Neurocomputing, 2021. [PDF].

3)    Qing Xu, Min Wu, Xiaoli Li, Kezhi Mao, Zhenghua Chen, "Contrastive Distillation with Regularized Knowledge for Deep Model Compression on Sensor-based Human Activity Recognition", IEEE Transactions on Industrial Cyber-Physical Systems 2023. [PDF].

4)    Qing Xu, Zhenghua Chen, Mohamed Ragab, Chao Wang, Min Wu and Xiaoli Li, "Contrastive Adversarial Knowledge Distillation for Deep Model Compression in Time-Series Regression Tasks", Neurocomputing, 2021. [PDF].

 

4.  Time Series Benchmarking, Evaluation and Comparison

1)    Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, "Self-supervised Learning for Label-Efficient Sleep Stage Classification: A Comprehensive Evaluation", IEEE in Transactions on Neural Systems & Rehabilitation Engineering 2023. [PDF].

2)    Mohamed Ragab Mohamed Adam, Emadeldeen Eldele, Wee Ling Tan, Foo Chuan Sheng, Chen Zhenghua, Wu Min, Kwoh Chee-Keong, Xiaoli Li, " ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data", ACM Transactions on Knowledge Discovery from Data (TKDD), 2023. [PDF].

3)    Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, "Self-supervised Learning for Label-Efficient Sleep Stage Classification: A Comprehensive Evaluation", IEEE in Transactions on Neural Systems & Rehabilitation Engineering 2023. [PDF].

 

5.  Time Series Privacy and Security

1)    Mohamed Ragab, Emadeldeen Eldele, Min Wu, Chuan-Sheng Foo, Xiaoli Li, and Zhenghua Chen, "Source-Free Domain Adaptation with Temporal Imputation for Time Series Data", KDD 2023. [PDF].

2)    Anushiya Arunan, Yan Qin, Chau Yuen, and Xiaoli Li. "A Federated Learning-based Industrial Health Prognostics for Heterogeneous Edge Devices using Matched Feature Extraction", IEEE Transactions on Automation Science and Engineering, 2023. [PDF].

 

 

 

 

6.  Time Series Sensor Drift Prediction

1)    Yu Zhang, Chaudhuri Tanaya, Pan Liu, Lu Wang, Min Wu, Xiaoli Li, "DPC-IINK: A Framework for Drift Prediction and Compensation with Inter and Intra Node Knowledge Transfer", IEEE Sensors Journal 2023. [PDF].

2)    Tanaya Chaudhuri, Min Wu, Yu Zhang, Pan Liu and Xiaoli Li, "An Attention based deep sequential GRU model for sensor drift compensation", IEEE Sensors Journal, 2020. [PDF].

 

 

7.  Time Series Imbalance Data Analytics

1)    Zhipeng Xie, Liyang Jiang, Tengju Ye, Xiaoli Li, " A Synthetic Minority Oversampling Method based on Local Densities in Low-Dimensional Space for Imbalanced Learning ", DASFAA 2015, [PDF].

2)    Hong Cao, Chunyu Bao, Xiaoli Li, Yew-Kwong Woon, "Class Augmented Active Learning", SDM 2014, [PDF].

3)    Hong Cao, Minh Nhut Nguyen, Clifton Chun Wei Phua, Shonali Priyadarsini Krishnaswamy, and Xiaoli Li, "An Integrated Framework for Human Activity Classification", ACM International Conference on Ubiquitous Computing (2012). [PDF] .

4)    Hong Cao, Xiaoli Li, Yew-Kwong Woon, See-Kiong Ng, "SPO: Structure Preserving Oversampling for Imbalanced Time Series Classification", IEEE International Conference on Data Mining (ICDM 2011). [PDF]

 

8.  Time Series Applications

1)     Qing Xu, Min Wu, Edwin Khoo, Zhenghua Chen, and Xiaoli Li, "A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life", IEEE/CAA Journal of Automatica Sinica (JAS), 2022.

2)     Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, Min Wu, Chee Keong Kwoh, Xiaoli Li and Cuntai Guan, "An Attention-based Deep Learning Approach for Sleep Stage Classification with Single-Channel EEG", IEEE Transactions on Neural Systems & Rehabilitation Engineering (TNSRE), 2021. [PDF]. (2023 IEEE Engineering in Medicine and Biology Prize Paper Award, cited by 221 times in the past two years.).

3)     Jin Ruibing, Zhou Duo, Wu Min, Xiaoli Li, Chen Zhenghua, "An adaptive and dynamical neural network for machine remaining useful life prediction", IEEE Transactions on Industrial Informatics, 2023. [PDF].

4)     Devki Nandan Jha, Zhenghua Chen, Shudong Liu, Min Wu, Jiahan Zhang, Graham Morgan, Rajiv Ranjan, and Xiaoli Li, "A hybrid accuracy- and energy-aware human activity recognition model in IoT environment", IEEE Transactions on Sustainable Computing, 2022. [PDF].

5)     Yan Qin, Chau Yuen, Yimin Shao, Bo Qin, and Xiaoli Li. "Slow-varying Dynamics Assisted Temporal Capsule Network for Machinery Remaining Useful Life Estimation", IEEE Transactions on Cybernetics, 2022. [PDF].

6)     Ruibing Jin, Zhenghua Chen, Keyu Wu, Min Wu, Xiaoli Li, Ruqiang Yan, "Bi-LSTM based Two-Stream Network for Machine Remaining Useful Life Prediction", IEEE Transactions on Instrumentation and Measurement, 2022. [PDF].

7)     Ruibing Jin, Min Wu, Keyu Wu, Kaizhou Gao, Zhenghua Chen, Xiaoli Li, "Position Encoding based Convolutional Neural Networks for Machine Remaining Useful Life Prediction", IEEE/CAA Journal of Automatica Sinica, 2022. [PDF].

8)     F.Md. Meftahul, Bangjian Zhou, JiWei Yoon, KL Low, J Pan, J Ghosh, Min Wu, Xiaoli Li, AVY Thean, J Senthilnath, "Significance of Activation Functions in Developing an Online Classifier for Semiconductor Defect Detection", IEEE Journal of Biomedical and Health Informatics, 2022. [PDF].

9)     Chenyang Li, Chee Keong Kwoh, Xiaoli Li, Lingfei Mo, Ruqiang Yan, "Rotating Machinery Fault Diagnosis Based on Multi-sensor Information Fusion Using Graph Attention Network", The 17th International Conference on Control, Automation, Robotics and Vision (ICARCV 2022). [PDF].

10)  Jiyan Wu, Min Wu, Zhenghua Chen, Xiaoli Li and Ruqiang Yan, "Degradation-Aware Remaining Useful Life Prediction with LSTM Autoencoder", IEEE Transactions on Instrumentation and Measurement (TIM), 2021. [PDF].

11)  Jiyan Wu, Min Wu, Zhenghua Chen, Ruqiang Yan and Xiaoli Li, "A Joint Classification-Regression Method for Multi-Stage Remaining Useful Life Prediction", Journal of Manufacturing Systems, 2021. [PDF].

12)Xiaoli Li, Peilin Zhao, Min Wu, Zhenghua Chen, and Le Zhang, "Deep learning for human activity recognition", Neurocomputing, 2021. [PDF]

13)  Zhenghua Chen, Min Wu, Wei Cui, Chengyu Liu and Xiaoli Li, "An Attention Based CNN-LSTM Approach for Sleep-Wake Detection with Heterogeneous Sensors", IEEE Journal of Biomedical and Health Informatics (J-BHI), 2020. [PDF].

14)  Yubo Hou, Zhenghua Chen, Min Wu, Chuan-Sheng Foo, Xiaoli Li and Raed Shubair, "Mahalanobis Distance based Adversarial Network for Anomaly Detection", 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020). [PDF].

15)  Zhenghua Chen, Min Wu, Kaizhou Gao, Jiyan Wu, Jie Ding, Zeng Zeng and Xiaoli Li, "A Novel Ensemble Deep Learning Approach for Sleep-Wake Detection Using Heart Rate Variability and Acceleration", IEEE Transactions On Emerging Topics In Computational Intelligence, 2020. [PDF].

16)  Zhenghua Chen, Le Zhang, Min Wu, Xiaoli Li, "Deep Learning based Human Activity Recognition for Healthcare Services", in book "Deep Learning for Biomedical Data Analysis: Techniques, Approaches and Applications", Springer 2020.

17)  Zhenghua Chen, Chaoyang Jiang, Shili Xiang, Jie Ding, Min Wu, and Xiaoli Li, "Smartphone Sensor Based Human Activity Recognition Using Feature Fusion and Maximum Full A Posteriori", IEEE Transactions on Instrumentation and Measurement, 2019. [PDF].

18)  Zhenghua Chen, Chaoyang Jiang, Mustafa K. Masood, Yeng Chai Soh, Min Wu, Xiaoli Li, "Deep Learning for Building Occupancy Estimation Using Environmental Sensors", Deep Learning: Algorithms and Applications’, Springer, edited by Witold Pedrycz, Shyi-Ming Chen. [PDF].

19)  Chen Zhenghua, Wu Min, Wu Jiyan, Ding Jie, Zeng Zeng, Xiaoli Li, Karl Surmacz, "A Deep Learning Approach for Sleep-Wake Detection from HRV and Accelerometer Data", IEEE International Conference on Biomedical and Health Informatics (BHI'19) [PDF].

20)  Shili Xiang, Dong Huang, Xiaoli Li, Yixin Cao, Lei Hou, Shuai Wang, " A Generalized Predictive Framework for Data Driven Prognostics and Diagnostics using Machine Logs", TENCON 2018.

21)  Phyo Phyo San, Pravin Kakar, Xiaoli Li, Priyadarsini Krishnaswamy Shonali Jian-Bo Yang, Minh Nhut Nguyen, "Deep learning for human activity recognition", Big Data Analytics for Sensor-Network Collected Intelligence, 2017, [PDF].

22)  Sateesh Babu Giduthuri, Xiaoli Li, and Suresh Sundaram, "Meta-cognitive Regression Neural Network for Function Approximation: Application to Remaining Useful Life Estimation", IJCNN, 2016 [PDF].

9.  Traditional Machine Learning and Feature Engineering

1)    Heidar Davoudi, Xiao-Li Li, Nguyen Minh Nhut and Shonali Priyadarsini Krishnaswamy, "Activity Recognition Using a Few Label Samples", PAKDD 2014, [PDF].

2)    Minh Nhut Nguyen, Chunyu Bao, Kar Leong Tew, Sintiani Dewi Teddy, and Xiaoli Li, "Ensemble based Real-time Adaptive Classification System for Intelligent Sensing Machine Diagnostics", IEEE Transactions on Reliability, VOL. 61, NO. 2, JUNE 2012, [PDF] .

3)    Minh Nhut Nguyen, Xiaoli Li, See-Kiong Ng, "Ensemble Based Positive Unlabeled Learning for Time Series Classification", Lecture Notes in Computer Science, 2012, Volume 7238, Database Systems for Advanced Applications, Pages 243-257 (International Conference on Database Systems for Advanced Applications, DASFAA 2012). [PDF]

4)    Minh Nhut Nguyen, Xiaoli Li, See-Kiong Ng, "Positive Unlabeled Learning for Time Series Classification", Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), Barcelona, Spain, July 16-22, 2011. [PDF] (More than 100 citations according to Google Scholar).

5)    Kar Leong Tew, Nguyen Minh Nhut, Sintiani Dewi Teddy, Xiaoli Li, "Real-time Adaptive Classification System for Intelligent Sensing in Manufacturing Environment (A Feasibility Study)", IEEE International Conference on Granular Computing, Taiwan, 2011.

6)    Kar Leong Tew, Sintiani D. T., Watt P.Y., Xiaoli Li, "A Systematic Approach towards Manufacturing Health Management", Proceedings of IEEE Conf Prognostics System Health Management, 2011.

 

10. Awards

1)  Paper An Attention-based Deep Learning Approach for Sleep Stage Classification with Single-Channel EEG, has been selected 2023 IEEE Engineering in Medicine and Biology Prize Paper Award.

2)  Paper Adversarial Transfer Learning for Machine Remaining Useful Life Prediction has been selected as the Finalist Academic Paper Award of The IEEE International Conference on Prognostics and Health Management (ICPHM 2020).

3)  Champions of Opportunity Activity Recognition Challenge (Conducted by EU Consortium), Task B1: Automatic Activity Data Segmentation and Task B2: Multimodal activity recognition: Gestures, 2011.

4)  Paper Adversarial Transfer Learning for Machine Remaining Useful Life Prediction" has been selected as the Finalist Academic Paper Award of IEEE International Conference on Prognostics and Health Management (ICPHM 2020).